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In this paper, we examine the strategies and prospects for distinguishing between traditional dark-matter
models andmodels with nonminimal dark sectors—includingmodels of Dynamical DarkMatter—at hadron
colliders. For concreteness, we focus on events with two hadronic jets and large missing transverse energy at
the Large Hadron Collider (LHC). As we discuss, simple “bump-hunting” searches are not sufficient;
probing nonminimal dark sectors typically requires an analysis of the actual shapes of the distributions of
relevant kinematic variables.We therefore begin by identifying those kinematic variableswhose distributions
are particularly suited to this task. However, as we demonstrate, this then leads to a number of additional
subtleties, since cuts imposed on the data for the purpose of background reduction can at the same time have
the unintended consequence of distorting these distributions in unexpected ways, thereby obscuring signals
of new physics. We therefore proceed to study the correlations between several of the most popular relevant
kinematic variables currently on the market, and investigate how imposing cuts on one or more of these
variables can impact the distributions of others. Finally, we combine our results in order to assess the
prospects for distinguishing nonminimal dark sectors in this channel at the upgraded LHC.

DOI: 10.1103/PhysRevD.91.054002 PACS numbers: 95.35.+d, 13.85.−t, 14.80.−j

I. INTRODUCTION

Overwhelming evidence now suggests [1] that nonbar-
yonic dark matter contributes a substantial fractionΩCDM ≈
0.26 [2] of the energy density in the Universe. Experimental
and observational data significantly constrain the funda-
mental properties of the particle(s) which contribute toward
this dark-matter abundance. Nevertheless, a broad range of
viable theoretical possibilities exists for what the dark
matter in our Universe might be. One possibility is that the
dark sector is “minimal” in the sense that a single, stable
particle species contributes essentially the entirety of
ΩCDM. However, there also exist additional well-motivated
possibilities in which the dark sector manifests a richer
and more complicated nonminimal structure. For example,
several particle species could contribute nontrivially
toward ΩCDM [3–5]. Indeed, ΩCDM could even represent
the collective contribution from a vast ensemble of
potentially unstable individual particle species whose
lifetimes are balanced against their cosmological abundan-
ces—a possibility known as Dynamical Dark Matter
(DDM) [5]. Other extensions of the minimal case exist
as well. Thus, once an unambiguous signal of dark matter
is identified, differentiating between all of these possibil-
ities will become the next crucial task for dark-matter
phenomenology.

This task presents a unique set of challenges. Practically
by definition, the dark sector comprises neutral particle
species with similar or identical quantum numbers under
the Standard-Model (SM) gauge group. Indeed, many
theoretical realizations of the dark sector differ from one
another only in the multiplicity and/or masses of such
particle species and the strengths of their couplings to other
fields in the theory. For this reason, evidence for a particular
structure within the dark sector is not usually expected to
manifest itself via the simultaneous observation of signal
excesses in multiple detection channels. Rather, such
evidence will often appear only in the shapes of the
distributions of particular kinematic quantities in one
particular channel. Such distributions include, for example,
the recoil-energy spectra obtained from direct-detection
experiments, the energy spectra of photons or other cosmic-
ray particles at indirect-detection experiments, and the
distributions of a number of kinematic variables (particle
momenta, invariant and transverse masses, etc.) at colliders.
Of course, some information about the properties of the
dark particles can be ascertained merely by identifying the
kinematic endpoints of these distributions. However, such
information is typically insufficient to distinguish single-
particle from multiparticle dark sectors. Indeed, for such
purposes, an analysis of the full shape of the distribution is
required.
In many experimental contexts, the extraction of infor-

mation from kinematic distributions is complicated by the
presence of sizeable backgrounds—backgrounds which
can only be reduced through the imposition of stringent
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event-selection criteria. While such cuts are often critical
for signal extraction, they can have unintended conse-
quences for distribution-based searches. Specifically, the
cuts imposed on one variable can potentially distort the
shapes of the kinematic distributions of other variables
whenever those variables are nontrivially correlated. Such
effects are not particularly important in “bump-hunting”
searches, in which the goal is merely to identify an excess
in the total number of observed events over the expected
background. By contrast, in distribution-based searches,
these effects can obscure critical information and lead to
misleading results—or, in certain cases, can actually
amplify distinctive features which point toward different
kinds of dark-sector nonminimality. These issues are
especially relevant for collider searches, wherein a variety
of different strategies often exist for extracting signal from
background in any particular channel.
Of course, we are not the first to study such correlations,

nor are we the first to exploit such correlations for
phenomenological purposes—the impact of correlations
between collider variables on search strategies for new
physics has been studied in a variety of contexts (see, e.g.,
Ref. [6]). However, as we shall demonstrate, such corre-
lations are particularly relevant for distinguishing between
minimal and nonminimal dark sectors. Indeed, these sorts
of correlations between collider variables are particularly
important in searches for nonminimality in the dark sector
because cuts on one variable imposed for the purpose of
background reduction can often selectively erase the
contribution from particular invisible particles, thereby
making a nonminimal dark sector appear minimal. As a
result, different strategies may offer very different prospects
for distinguishing among different dark-matter scenarios.
Effective strategies for distinguishing nonminimality in

the dark sector been developed for certain detection chan-
nels. For example, it has been shown that DDM ensembles
can give rise to statistically significant deviations from the
kinematic distributions associated with traditional, single-
particle dark-matter candidates at colliders [7], at direct-
detection experiments [8], and at cosmic-ray detectors [9].
Similar analyses have also been performed for other non-
minimal dark-matter scenarios in the context of direct
detection [4], indirect detection [10], and collider searches
[11–14]. However, in general, it is also important to
investigate the effects of correlations between kinematic
variables and their impact on distribution shapes.
In this paper, we investigate the prospects for distin-

guishing between minimal and nonminimal dark sectors on
the basis of kinematic distributions at the the CERN Large
Hadron Collider (LHC). For concreteness, we focus on the
dijetþ ET channel, primarily due to its kinematic simplic-
ity and its relevance for a wide variety of new-physics
scenarios, including supersymmetry, theories with univer-
sal extra dimensions, and theories including scalar lepto-
quarks. Nevertheless, we emphasize that many of our

findings transcend this particular analysis and apply more
broadly to any distribution-based search for dark-sector
nonminimality.
This paper is organized as follows. In Sec. II, we introduce

the class of minimal and nonminimal dark-matter models
which will serve as benchmarks in our study. In Sec. III, we
then review the properties of various kinematic variables
which can be constructed for the dijetþ ET channel. We
examine the kinematic distributions of these variables for
both our minimal and nonminimal benchmark models and
determine the degree to which each variable is sensitive to
the structure of the dark sector. In Sec. IV, we proceed to
examine the correlations between these different variables
and provide a qualitative assessment of how cuts on certain
variables affect the distributions of other variables. In Sec.V,
we combine our results in order to assess the extent to which
signal-event distributions can be used to differentiate DDM
ensembles from traditional dark-matter candidates. Finally,
in Sec. VI, we conclude with a discussion of how to extend
our analysis of cuts and correlations among collider vari-
ables to other channels relevant for the detection and
differentiation of dark-matter candidates.
Before proceeding, one final comment is in order. Our

primary aim in this paper is to examine the information that
different kinematic variables can provide about the struc-
ture of the dark sector and to assess the impact of
correlations between these variables. In particular, it is
not our aim to present an exhaustive quantitative analysis of
the discovery prospects for dark-sector nonminimality in
the dijetþ ET channel. For this reason, we choose to focus
on the signal contributions to the event rate and treat the SM
backgrounds merely as a motivation for the cuts we impose
on the signal distributions. However, we note that sub-
stantial residual backgrounds from processes such as
t̄tþ jets, W� þ jets, and Z þ jets remain for this channel
even after stringent cuts are applied. These residual back-
grounds make extracting information about the dark sector
particularly challenging. In Sec. VI, we shall return to this
issue and discuss potential techniques for further reducing
these backgrounds in future collider searches for non-
minimal dark sectors. These issues notwithstanding, we
emphasize that the correlations we discuss here are every
bit as relevant for a full study including both signal and
background contributions as they are for this background-
free analysis. Moreover, many of the general considerations
we discuss here transcend this particular channel and apply
more broadly to any search which involves the analysis of
kinematic distributions rather than merely the identification
of an excess in the number of observed events.

II. PRELIMINARIES: PARAMETRIZING THE
DARK SECTOR

As discussed in the Introduction, our goal is to examine
the strategies and prospects for distinguishing nonminimal
dark sectors on the basis of results in the dijetþ ET channel
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at the LHC. However, dark sectors can exhibit various
degrees of nonminimality ranging from just a few dark
particles all the way to large DDM-like ensembles. In order
to obtain a sense of the full scope of possibilities, in this
paper we shall therefore consider two extremes which sit at
opposite poles of complexity.
The simplest situation one can consider is the case of a

single dark-matter particle χ of mass mχ . For concreteness,
we take χ to be a Dirac fermion which transforms as a
singlet under the SM gauge group. We also assume that
the theory contains an additional scalar field ϕ with mass
mϕ > mχ which transforms in the fundamental representa-
tion of SUð3Þc and which can therefore be produced
copiously via strong interactions at the LHC. In addition,
we also assume that ϕ couples to χ and right-handed SM
quarks qR via an interaction Lagrangian of the form

Lint ¼
X
q

½cχqϕ†χ̄qR þ H:c:�; ð2:1Þ

where the cχq are dimensionless coupling coefficients. For
simplicity, we take the cχq to be real and focus on the case
in which ϕ couples to a single light quark species, which
we here take to be the up quark—i.e., we take cχu ≡ cχ to
be nonvanishing, while cχq ¼ 0 for q ∈ fd; s; c; b; tg. Such
coupling structures arise naturally for a variety of exotic
particles in well-motivated extensions of the SM, including
up squarks in flavor-aligned supersymmetry. Note that in
general the cχq may be nonvanishing for either up-type or
down-type quarks, depending on the Uð1ÞEM charge of ϕ,
but not for both simultaneously. Furthermore, we assume
that there are no other interactions within this simplified
model which contribute to ϕ decay, so that the decay
process ϕ → qχ̄ dominates the width Γϕ of ϕ. This situation
arises naturally in any scenario in which there exists a
symmetry under which ϕ and χ transform nontrivially but
all SM particles transform trivially, thereby rendering χ
stable. Finally, we assume that the characteristic time scale
τϕ associated with this decay process is sufficiently short
(τϕ ≲ 10−12 s) that ϕ decays promptly within a collider
detector once it is produced.
At the opposite extreme of nonminimality, we shall

consider a benchmark scenario in which the dark sector
consists of an entire ensemble of individual components—
e.g., an entire so-called “DDM ensemble” [5]. Indeed, in
this paper such DDM ensembles will be taken as our
canonical representatives of highly nonminimal dark sec-
tors. The class of DDM models on which we choose to
focus is that in which the constituent particles χn of
this ensemble, n ¼ 1;…; N, are SM-gauge-singlet Dirac
fermions with a mass spectrum of the form

mn ¼ m0 þ nδΔm; ð2:2Þ
where the mass m0 of the lightest constituent in the
ensemble, the mass-splitting parameter Δm, and the
power-law index δ are free parameters of the theory.

Note that in this parametrization, Δm > 0 and δ > 0 by
construction, so that the index n labels the χn in order of
increasing mass. Indeed, it turns out that many naturally
occurring DDM ensembles have mass spectra of this form.
Just as for the single-component case discussed above,

we also assume that the theory includes an additional,
heavy scalar field ϕ with mass mϕ which transforms in the
fundamental representation of the SM SUð3Þc gauge group.
Likewise, the χn are assumed to couple to this heavy scalar
and to right-handed quarks qR via the interaction
Lagrangian

Lint ¼
XN
n¼0

X
q

½cnqϕ†χ̄nqR þ H:c:�: ð2:3Þ

Indeed, this is the analogue of the interaction Lagrangian in
Eq. (2.1) for the single-particle case, and the cnq are a set of
dimensionless coupling coefficients analogous to cχ . Once
again, to facilitate direct comparison with the single-
particle case, we focus on the case in which the cnq are
real and in which only cnu ≡ cn is nonvanishing for each n,
while cnq ¼ 0 for all other quark species. We also likewise
assume that decay processes of the form ϕ → qχ̄n dominate
Γϕ to such an extent that all other contributions to that
width can safely be neglected, and that all such decay
processes occur promptly within the detector. Finally, we
assume that the cn scale across the ensemble according to a
power-law relation of the form

cn ¼ c0

�
mn

m0

�
γ

; ð2:4Þ

where the exponent γ is another free parameter of the
theory.
In general, the number of dark-matter components in the

ensemble can be quite large, and it is possible for the
masses of the heaviest components in the ensemble to
greatly exceed mϕ. However, only those states χn with
mn < mϕ can be produced through the decays of ϕ, and
thus only those states will be relevant for the study in this
paper. As a result, for the purposes of this study, we shall
effectively consider N to be the number of states in the
ensemble with masses less thanmϕ, with the understanding
that mN < mϕ but mNþ1 ≥ mϕ.
We emphasize that we have chosen to focus on a scenario

in which ϕ is a Lorentz scalar and transforms in the
fundamental representation of SUð3Þc merely for concrete-
ness. Similar results will emerge in any alternative scenario
in which ϕ transforms under the Lorentz and SUð3Þc
groups in such a way that two-body decays to a SM quark
or gluon and one of the χn are permitted and dominate Γϕ.
For example, the results obtained for an SUð3Þc-octet
fermion whose width is dominated by decays of the form
ϕ → gχn, where g denotes a SM gluon, are quite similar to
those we obtain in this paper. Moreover, the enhanced pair-
production cross section in this case would improve the
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prospects for distinguishing dark-sector nonminimality.
Similar results would likewise emerge for different assign-
ments of the coupling coefficients cnq.

III. PROBING THE DARK SECTOR: VARIABLES
THAT DO, AND VARIABLES THAT DO NOT

In this section, we survey some of the kinematic
variables in common use for the event topology discussed
in Sec. II, with an eye towards assessing their possible
utility in probing nonminimal dark sectors. As discussed in
the Introduction, bump-hunting is not enough—we need to
analyze the shapes of the distributions associated with these
variables. In this connection, several questions emerge. For
instance, is it possible to distinguish nonminimal or
multicomponent dark sectors from traditional single-
component dark sectors on the basis of such distributions?
If so, which kinematic variables provide the best prospects
for doing this? In short, we seek to understand the extent to
which differences in the particle content of the dark sector
can affect the shapes of the kinematic distributions of
whatever useful variables can be constructed.
In this section, we take the first step toward answering

these questions by examining the qualitative features
associated with the kinematic distributions of different
variables and assessing to what extent these features are
affected by dark-sector nonminimality. We begin by enu-
merating the kinematic variables we consider in this study
and discussing their general properties. We then discuss the
underlying methodology and assumptions inherent in our
calculation of the corresponding kinematic distributions
using Monte Carlo techniques. Finally, we present the
results of this calculation and provide a preliminary assess-
ment as to which variables have distributions which are
sensitive to nonminimality, and which do not.

A. Kinematic variables

As discussed in the Introduction, one of the challenges of
extracting information about the dark sector from the
dijetþ ET channel is the paucity of information contained
in the description of any given event. Indeed, other than
variables that characterize the angular size and substructure
of the two jets (considerations which are not particularly
relevant for this analysis), such events are completely
characterized by only six independent degrees of freedom:
the six components of the momenta ~p1 and ~p2 of the jets j1
and j2, respectively. Nevertheless, a number of kinematic
variables can be constructed from these six degrees of
freedom which can be used to extract information from this
channel. These include

• the magnitude ET of the missing transverse momen-
tum in the event;

• the magnitudes pT1
and pT2

of the transverse momenta
of the leading jet j1 and next-to-leading jet j2 in the
event, respectively, where the jets are ranked by pT ;

• the scalar sum HTjj
of the transverse momenta pT1

and pT2
;

• the scalar sum HT of ET and the transverse momenta
pT1

and pT2
;

• the absolute value jΔϕjjj of the angle between j1
and j2;

• the variable αT ≡ pT2
=mjj, where mjj is the invariant

mass of j1 and j2 (this variable was introduced in
Ref. [15] and is correlated with the degree to which
these two leading jets are back to back);

• the transverse massMT1
constructed from ~pT1

and the
total missing-transverse-momentum vector ~pT ; and

• the standard MT2 variable [16].

The last variable, MT2, will play a significant role in this
paper. We therefore pause to discuss its definition and
properties in some detail. This quantity is essentially a
generalization of the transverse-mass variable for use in
situations in which more than one invisible particle is
present in the final state for a given collider process. For the
process pp → ϕ†ϕ → jjχaχ̄b, which is the primary focus
of this study, this variable is defined as

M2
T2ð ~mÞ≡ min

~pTaþ~pTb
¼~pT

½maxfðM2
TÞ1a; ðM2

TÞ2bg�; ð3:1Þ

where ~m is a common “trial mass” which is assumed for
both χa and χb; where ~pT1

and ~pT2
are the transverse

momenta of the two leading lets (ranked by pT); where ~pT
is the total missing-transverse-momentum vector for the
event; where ~pTa

and ~pTb
represent possible partitions of

this total missing-transverse-momentum vector between
the two invisible particles χa and χb; and where

ðM2
TÞ1a ≡m2

j1
þ ~m2 þ 2ðETj1

ETa
− ~pT1

· ~pTa
Þ;

ðM2
TÞ2b ≡m2

j2
þ ~m2 þ 2ðETj2

ETb
− ~pT2

· ~pTb
Þ ð3:2Þ

are the squared transverse masses of j1 with χa and of j2
with χb for any particular such partition, respectively. In
this expression, mj1 and mj2 denote the masses of the two
jets (which are negligible in practice). In the toy model
considered here, in which only light quarks appear in the
final state, we take mj1 ¼ mj2 ¼ 0. However, we explicitly
retain the jet masses in the formulas displayed here for sake
of generality. Note that by construction, the transverse
energies ETa;b

≡ ðj~pTa;b
j2 þ ~m2Þ1=2 appearing in Eq. (3.2)

are both defined in terms of the trial mass ~m. The MT2
variable in Eq. (3.1) is defined to be the minimum of the
greater of these two transverse masses over all possible
partitions of ~pT between ~pTa

and ~pTb
.

In cases in which each of the two decay chains in the
event includes only one visible-sector particle in the final
state, it can be shown [16–18] that the partition of ~pT for
which this minimum occurs is always the so-called
“balanced” solution—i.e., the solution for which ðM2

TÞ1a ¼
ðM2

TÞ2b. For this balanced solution, one finds that
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M2
T2ð ~mÞ ¼ ~m2 þ Aþ ðA2 −m2

j1
m2

j2
Þ1=2

×

�
1þ 4 ~m2

2A −m2
j1
−m2

j2

�
1=2

; ð3:3Þ

where

A≡ ET1
ET2

þ ~pT1
· ~pT2

: ð3:4Þ
One particularly useful feature of theMT2 variable is that

it is bounded from above. Indeed, the maximum possible
valueMT2 can attain within any sample of events is the one
in which all of the particles involved are maximally
transverse, and the transverse mass reconstructed for each
of the two decay chains in the event coincides with its
corresponding invariant mass. It therefore follows that in
traditional dark-matter models, for which ma ¼ mb ¼ mχ

by assumption, the maximum possible value Mmax
T2

for MT2 is equal to the mass mϕ of the parent particle.
However, since the value of mχ is in general not a priori
known, one can only examine the functional dependence of
Mmax

T2 on ~m.
In DDM scenarios, in which the massesma andmb of the

invisible particles associated with the two decay chains in a
given event are not necessarily equal, the MT2 values
obtained for a population of signal events in the pp →
jjþ ET channel may differ significantly from those
obtained in traditional dark-matter models, even for the
same mϕ. Moreover, we emphasize that the kinematic
endpoint Mmax

T2 itself is not particularly useful in discrimi-
nating between DDM ensembles and traditional dark-
matter candidates; rather, it is only by comparing the
shapes of the full MT2 distributions that one might hope
to distinguish DDM ensembles from traditional dark-matter
candidates. Of course, the maximum value of MT2 for a
DDM ensemble is obtained for ma ¼ mb ¼ m0, with all
final-state particles maximally transverse. Thus, for a
sufficiently large sample of events, one finds that
Mmax

T2 ðm0Þ → mϕ, a result identical to that obtained for a
traditional dark-matter candidate with mχ ¼ m0.
We emphasize that the list of kinematic variables we

have presented in this section is by no means complete.
Indeed, a number of additional collider variables have
been developed to extract information from channels
involving substantial ET . These include ratios of the
transverse energies of visible particles [19], the so-called
“constransverse mass” and variants thereof [20], and
numerous generalizations of the MT2 variable [21], includ-
ing particular variants [11] specifically designed for
probing scenarios in which the invisible particles have
unequal masses. While we do not consider any of these
additional variables in this paper, we note that an
analysis of the extent to which their kinematic distribu-
tions may be influenced by different sets of event-selection
criteria would be completely analogous to the procedure
outlined here.

B. Calculating distributions

Our ultimate goal is to examine the prospects these
kinematic variables proffer for distinguishing between
different dark sectors at the LHC. As discussed in the
Introduction, an analysis of the full distributions associated
with these kinematic variables is frequently required for
this purpose. Thus, using Monte Carlo simulations, we
explicitly derive kinematic distributions for these variables
for both the traditional dark-matter candidates and the
DDM ensembles included in this study.
Specifically, all data sets used in this study were

generated at the parton level using MadGraph 5/
MadEvent 1.4.8 [22] with model files obtained from the
FeynRules [23] package as inputs. Events were generated
at a center-of-mass energy

ffiffiffi
s

p ¼ 14 TeV. For this prelimi-
nary, parton-level study, only events with two jets were
generated and we did not include the effects of initial-state
or final-state radiation. In order to account for the effects of
detector uncertainties, we have smeared the original values
for the magnitude pT of the transverse momentum, the
azimuthal angle ϕ, and the pseudorapidity η obtained for
each jet in each parton-level data set according to the
following procedure. We replace the value of each of these
three jet parameters with a pseudorandom value distributed
according to a Gaussian probability-distribution function.
We take the mean value for this Gaussian function to be the
original value obtained from the Monte Carlo simulation
and the variance to be the square of the uncertainty in the
measurement of the corresponding variable. In particular,
we take the uncertainty in the pT of each jet to be given by
the jet-pT resolution for the CMS detector. This resolution
was evaluated in Ref. [24] as a function of pT and is well
approximated by the expression

δpTðpTÞ ≈ 0.037þ 0.67 ×

�
pT

GeV

�
−1=2

: ð3:5Þ

We likewise take the uncertainties in η and ϕ to be given
by the pseudorapidity and azimuthal-angle resolutions of
the CMS detector, respectively. These resolutions were
evaluated as functions of pT in Ref. [25]. We find that the
results are well approximated by the expressions

δηðpTÞ ≈ 0.024þ 3.00 ×

�
pT

GeV

�
−3=2

þ 0.070 ×

�
pT

GeV

�
−1=2

;

δϕðpTÞ ≈ 0.027þ 2.45 ×

�
pT

GeV

�
−1

− 0.046 ×

�
pT

GeV

�
−1=2

ð3:6Þ

for pT ≲ 1 TeV.
In addition to the above smearing, we also incorporate a

set of precuts into our analysis. In particular, we consider in
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our analysis only those events in each of these data sets
which satisfy the following precuts, which are designed to
mimic a realistic detector acceptance:

• A transverse momentum pTj
≥ 40 GeV and pseudor-

apidity jηjj ≤ 3 for each of the two highest-pT jets in
the event.

• A minimum separation ΔRjj ≥ 0.4 between
those two leading jets, where ΔRjj≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηjjÞ2 þ ðΔϕjjÞ2

q
.

Note that these acceptance cuts alone do not guarantee that
a particular event satisfies any particular detector trigger.
Indeed, we have chosen not to incorporate any particular
triggering criteria into our precuts because different event-
selection strategies may in principle be constructed around
different triggers, and we wish to inject as little prejudice as
possible about the event-selection strategy at this stage in
the analysis. However, when we turn to assess the prospects
for distinguishing DDM ensembles from traditional dark-
matter candidates in Sec. V, we shall include additional cuts
designed to satisfy triggering requirements.

C. Kinematic distributions

Following the above procedures, we can now evaluate
the distributions associated with each of our kinematic
variables.
We begin by considering the distributions associated with

the variables αT , jΔϕjjj, andHTjj
. Indeed, these variables are

of particular relevance for new-physics searches in the
dijetþ ET channel because cuts on these variables are
particularly effective in reducing SM backgrounds from
QCD processes, electroweak processes, etc. In the left panel
of Fig. 1, we display the αT distributions associated with a
number of traditional dark-matter models characterized by

different values ofmχ , as well as the distributions associated
with a number of DDM ensembles characterized by different
values of γ for fixed m0 ¼ 100 GeV, Δm ¼ 50 GeV, and
δ ¼ 1. Note that these distributions have been normalized so
that the total area under each is unity. In the center panel of
this figure, we display the jΔϕjjj distributions corresponding
to the same parameter choices. The results shown in these
two panels suggest that the shapes of αT and jΔϕjjj
distributions are not particularly sensitive to the structure
of the dark sector and therefore not particularly useful for
distinguishing among different dark-matter scenarios.
Indeed, we find that the αT and jΔϕjjj distributions obtained
for different choices of the DDMmodel parametersm0,Δm,
and δ do not differ significantly from the distributions
shown in Fig. 1.
In the right panel of Fig. 1, we display the HTjj

distributions associated with the same set of traditional
dark-matter models and DDM ensembles as in the left and
center panels. In contrast to the corresponding αT and
jΔϕjjj distributions, which are largely insensitive to the
structure of the dark sector, the HTjj

distributions shown in
Fig. 1 display a somewhat greater sensitivity to the
spectrum of masses and couplings of the invisible particles.
However, despite this sensitivity, we also find that for any
given DDM ensemble, there is generally a traditional dark-
matter candidate with some value of mχ which yields a
fairly similar HTjj

distribution.
We now turn to the distributions associated with the

kinematic variables ET and MT2. The distributions of these
two variables exhibit similar features. One of the reasons
for this similarity is that in the limit in which both visible
particles are massless, the value of MT2 obtained with
~m ¼ 0 represents the minimum possible value for ET in any
given event. Indeed, for this choice of trial mass and
mj1 ≈mj2 ≈ 0, Eq. (3.3) reduces to

FIG. 1 (color online). A comparison of the normalized αT (left panel), jΔϕjjj (center panel), and HTjj
(right panel) distributions

associated with traditional dark-matter candidates as well as DDM ensembles. In each panel, the black curves correspond to distributions
for a representative set of traditional dark-matter candidates, while the red, green, and blue curves in each panel correspond to
DDM ensembles with m0 ¼ 200 GeV, Δm ¼ 50 GeV, δ ¼ 1, and γ ¼ f0; 1; 2g, respectively. All distributions shown correspond to a
parent-particle mass mϕ ¼ 1 TeV.
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M2
T2ð0Þ ≈ 2A ≈ 2ðET1

ET2
þ ~pT1

· ~pT2
Þ: ð3:7Þ

Likewise, in this same limit, E2
T reduces to

E2
T ¼ ð~pT1

þ ~pT2
Þ2

≈ E2
T1

þ E2
T2

þ 2~pT1
· ~pT2

: ð3:8Þ

The minimum value of ET is obtained for ET1
¼ ET2

, for
which ET ¼ MT2ð0Þ. This relationship between ET and
MT2 results in the distributions of these two variables being
quite similar within any particular dark-matter model.
However, despite this similarity, there are also slight but
important differences between these two distributions (i.e.,
differences in their precise kinematic endpoints and slopes,
the sharpness of their individual features, etc.). Moreover,
as we shall see, these differences between these two
distributions lead to a difference in their sensitivities to
nonminimality in the dark sector after cuts are applied.

In Fig. 2, we display the normalized ET distributions
associated with a number of traditional dark-matter models
characterized by different values of mχ as well as a number
of DDM ensembles characterized by different values of the
parameters m0, Δm, and γ (with δ ¼ 1). In contrast to the
distributions for αT and jΔϕjjj displayed in Fig. 1, the ET
distributions shown in Fig. 2 are far more sensitive to the
structure of the dark sector. Events which involve the
heavier χn in a DDM ensemble tend to have smaller ET
values. The contribution from such events therefore tends
to shift the peak of the distribution to lower ET—especially
when γ is large and the branching fraction of ϕ to the
heavier kinematically accessible χn in the ensemble is
sizeable. On the other hand, the contribution from the
lighter χn nevertheless affects the “tail” of the distribution at
high ET . The interplay between these two effects results in
distributions for DDM ensembles with shifted peaks and
longer tails—distributions whose distinctive shapes are
not reproduced by any traditional dark-matter candidate,

FIG. 2 (color online). A comparison of the normalized ET distributions associated with traditional dark-matter candidates as well as
DDM ensembles. In each panel, the black curves correspond to distributions for a representative set of traditional dark-matter
candidates, while the colored curves in the left, middle, and right panels correspond to the DDM parameter choices mϕ ¼ 1 TeV,
m0 ¼ 200 GeV, δ ¼ 1, and Δm ¼ f50; 300; 500g GeV, respectively, with γ ¼ 0 (red), γ ¼ 1 (yellow), and γ ¼ 2 (blue).

FIG. 3 (color online). Same as Fig. 2, but for normalized MT2 distributions with trial mass ~m ¼ 0.
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regardless of the value of mχ . Moreover, it can also be seen
from Fig. 2 that the shape of the ET distribution associated
with a DDM ensemble is also sensitive to the choice of
DDMmodel parameters. Indeed, as discussed above, larger
values of γ serve to shift the peak of the distribution to
lower ET. Furthermore, comparing results across the three
panels shown in the figure, we also see that larger values of
Δm result in a sharp decrease in event count with increasing
ET above the value for which the distribution peaks,
whereas smaller values of Δm result in a more gradual
decline in event count with increasing ET .
Finally, in Fig. 3, we display the MT2 distributions

associated with a variety of DDM ensembles for the trial
mass ~m ¼ 0. Note that this choice of ~m generally yields the
most distinctive distributions because the MT2 variable is
restricted to the range ~m ≤ MT2ð ~mÞ ≤ mϕ for any particular
choice of ~m. Thus, as ~m increases, the window of possible
MT2 values narrows and the resulting distributions become
more “compressed” and therefore less distinctive.
Once again, just as with the ET distributions shown in

Fig. 2, we find that the MT2 distributions shown in this
figure display a significant sensitivity to the structure of the
dark sector. Moreover, the shapes of the distributions of
these two variables depend on the DDM model parameters
in similar ways. For example, the shapes of the MT2
distributions associated with DDM ensembles with larger
values of γ peak at lower values ofMT2 while still retaining
a significant tail which extends out to the kinematic
endpoint at Mmax

T2 ¼ mϕ. For large Δm, the individual
contributions to the distributions from events with different
values of ma and mb can be independently resolved, as
shown in the right panel of the figure, and a “kink” behavior
arises similar to that which arises in the case in which
multiple invisible particles are produced from a single
decay chain [13]. By contrast, for small Δm, these con-
tributions cannot be resolved, and the tail of the resulting
distribution appears smooth. In either case, it is evident
from Fig. 3 that MT2 distributions are particularly useful
for distinguishing DDM ensembles from traditional dark-
matter candidates—and from each other. In fact, as we shall
show in Sec. V, MT2 is an even better variable than ET for
extracting information about the structure of the dark
sector.
The distributions associated with the other kinematic

variables discussed above (including pT1
, pT2

, HT ,
and the transverse mass MT1

) likewise display some sensi-
tivity to the structure of the dark sector. However, we find
that these distributions have far less power for distinguishing
minimal from nonminimal dark sectors than those associated
with ET andMT2. Moreover, these variables also turn out to
be less effective than αT , jΔϕjjj, and HTjj

for extracting
signal from background. Thus, we shall not consider the
distributions of these other variables further.
In summary, we conclude that the distributions of some

kinematic variables, such as αT and jΔϕjjj, are almost

completely insensitive to the degree of nonminimality of
the dark sector. By contrast, we find that others, such as ET
and MT2, are particularly sensitive to such nonminimality.
Finally, we find that still others, such as HTjj

, lie between
these two extremes.

IV. CORRELATIONS BETWEEN
KINEMATIC VARIABLES

In any experiment, signals come with unwanted back-
grounds. Finding cuts that reduce these backgrounds
relative to the resulting signal is therefore an important
task. Although we are not performing a detailed analysis of
the backgrounds in this paper, there are certain SM back-
grounds which are endemic to dark-matter searches in this
channel. Along with these are certain cuts which are well
known to be particularly advantageous in dealing with
these backgrounds.
For example, cuts on variables such as αT and jΔϕjjj—

variables which are strongly correlated with the angle
between the spatial momenta ~pT1

and ~pT2
of the two

leading jets in a given event—are particularly effective in
reducing the substantial QCD background in the dijetþ ET
channel. This is because QCD-background events tend to
be back-to-back and therefore seldom have αT ≳ 0.5.
Indeed, the minimum cut αT > 0.55 imposed in CMS
searches in this channel [26,27] has been shown to be
extremely effective in reducing—and indeed effectively
eliminating—the sizeable background from QCD
processes.
Likewise, cuts on variables such as HTjj

and HT—
variables which are correlated with the overall energy of
the underlying event—can be effective in reducing the
remaining SM backgrounds which are dominated by
processes such as t̄tþ jets, W� þ jets with the W�
decaying leptonically, and Z þ jets with the Z decaying
into a neutrino pair. These variables are relevant for
searches in the dijet þ ET channel for another reason as
well: detector triggers useful in selecting events involving
hadronic jets and substantial ET frequently rely on the
scalar sum of the transverse momenta of those jets
exceeding a particular threshold.
Unfortunately, it is possible for cuts on these variables to

significantly affect the shapes of the distributions we have
calculated in Sec. III. Such cuts might therefore eliminate
not only our backgrounds, but also the ability of kinematic
variables such as ET and MT2 to discriminate between
minimal and nonminimal dark sectors. To illustrate this
possibility, we can begin with the ET andMT2 distributions
in Figs. 2 and 3 and impose a single additional cut
αT > 0.55. The results are shown in Figs. 4 and 5. Note
that although this cut also results in a substantial reduction
in the signal-event count, our primary focus is on the
shapes of the distributions. Thus, the distributions in Figs. 4
and 5 are likewise normalized so that the area under each
distribution is unity.
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Comparing the distributions in Fig. 4 with those of Fig. 2
(or equivalently comparing those of Fig. 5 with those of
Fig. 3), we see that our αT cut has had a significant impact
on the shapes of these ET and MT2 distributions. Such cuts
can therefore have a significant effect on our ability to
distinguish minimal from nonminimal dark sectors. Indeed,
this is true even when the variable on which the cut is
imposed itself displays little sensitivity to the parameters
which characterize the dark sector—as we have shown to
be the case for αT.
Ultimately, cuts on variables such as αT andHTjj

are able
to affect the shapes of ET and MT2 distributions for only
one reason: there are nontrivial correlations between these
two groups of variables. Otherwise, in the absence of such
correlations (and given sufficient statistics), cuts on these
variables would result in a uniform reduction in signal
events across these distributions but leave the overall
shapes of these distributions intact.
In order to explore this issue further, we turn to directly

examine the correlations between the variables
fαT; jΔϕjjj; HTjj

g—which are important for removing
backgrounds and extracting signals—and the variables
fET;MT2g—which are also important for distinguishing

between minimal and nonminimal dark sectors. The cor-
relations between this former set of variables and
MT2 (with a trial mass ~m ¼ 0) are illustrated in the
scatter plots displayed in Fig. 6 for a benchmark set of
traditional dark-matter models (left column) and DDM
ensembles (center and right columns). In each of these
scatter plots, we display several sets of data points
associated with these different benchmark models. Each
data point corresponds to a single event chosen randomly
from the Monte Carlo data sample for that model: its
color indicates the model with which it is associated
and its coordinates indicate the values x and y of the
two kinematic variables X and Y of interest for the
corresponding event. Thus, the density of points within
the region ðx; yÞ to ðxþ δx; yþ δyÞ indicates the relative
likelihood of values for X and Y within that range occurring
in combination. A uniform density of points throughout
a particular panel would imply that the variables are
essentially uncorrelated.
Clearly, the results shown in Fig. 6 indicate not only that

MT2 and the variables fαT; jΔϕjjj; HTjj
g are correlated in

interesting, nontrivial ways, but also that these correlations
often depend sensitively on the masses and couplings of the

FIG. 4 (color online). Same as Fig. 2, but with the additional cut αT > 0.55.

FIG. 5 (color online). Same as in Fig. 3, but with the additional cut αT > 0.55.
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dark-sector particles. For example, we observe from the top
left panel of this figure that there is far less overlap among
the data-point distributions for traditional dark-matter
models with different mχ within the region of parameter
space in which αT > 0.55 than there is within the region in
which αT < 0.55. Therefore, while a cut on αT of this
magnitude does significantly reduce the total number of
signal events, this effect is offset at least in part by the fact
that the MT2 distributions of the surviving data points for

different mχ are significantly more segregated from one
another after the cut than before. Indeed, the way in which
αT andMT2 are correlated makes αT a particularly effective
selection variable: not only are cuts on αT effective in
reducing SM backgrounds, but they also serve to amplify
distinctions between the shapes of the MT2 distributions
associated with different dark-matter models. Indeed, as we
shall see in Sec. V, this effect more than compensates for
the loss in signal-event count that arises for a threshold cut

FIG. 6 (color online). Scatter plots illustrating the correlations between MT2 and the selection variables αT (top row), jΔϕjjj (center
row), and HTjj

(bottom row) for a trial mass ~m ¼ 0. The left panel in each row shows the results for traditional dark-matter models with
mχ ¼ 0 (red), mχ ¼ 400 GeV (green), and mχ ¼ 800 GeV (blue). The center panel in each row shows the results for three DDM
models, with m0 ¼ 100 GeV, Δm ¼ 50 GeV, mϕ ¼ 1 TeV, and γ ¼ 0 (red), γ ¼ 1 (green), and γ ¼ 2 (blue). The right panel in each
row shows the corresponding results for a DDM model with Δm ¼ 500 GeV and all other parameters unchanged.
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αmin
T on αT of the order necessary to effectively eliminate

the substantial QCD background.
It is likewise evident from Fig. 6 that similar correlations

exist between jΔϕjjj and MT2. However, cuts on αT and
jΔϕjjj are to a large extent redundant, since both variables
essentially reflect the degree to which the leading two jets
in a given event are back-to-back. Moreover, we note that
cuts on αT are typically found to be significantly more
effective in reducing SM backgrounds than cuts on jΔϕjjj.
For these reasons, we henceforth focus on αT , but we note
that results similar to those we obtain in this study could in
principle be obtained by imposing cuts on jΔϕjjj rather
than αT .
By contrast, Fig. 6 reveals that HTjj

and MT2 are
correlated in such a way that imposing a substantial
minimum cut onHTjj

distortsMT2 distributions in a reliable
but far less advantageous manner. In particular, we observe
from the bottom left panel of this figure that a minimum cut
of HTjj

results in a far more severe reduction in signal
events for traditional dark-matter models with largemχ than
for those with small mχ . This in turn implies that in DDM
scenarios and other theories involving multiple invisible
particles, information about the heavier particles tends to be
washed out by the application of such a cut. It therefore
follows that DDM ensembles with extremely large values
of the coupling index γ will be somewhat more difficult to
distinguish on the basis of theirMT2 distributions, since the
branching fractions of the parent particle ϕ to the heavier χi
are comparatively large in this case.
We note that while the results shown in Fig. 6 correspond

to the choice of ~m ¼ 0, we find that the corresponding
results for other choices of this trial mass exhibit the same
qualitative features. However, as discussed in Sec. III, the
window of possible MT2 values narrows as ~m increases. In
general, this narrowing results in a greater degree of overlap
among the the data-point distributions associated with
different dark-matter models and consequently makes
distinguishing among such models more difficult. We also
note that in both the Δm → ∞ and γ → −∞ limits, the
data-point distribution associated with a DDM ensemble
reduces to that associated with a single dark-matter particle
with mχ ¼ m0, as expected.
Since we have seen in Sec. III that the shape of

the ET distribution is also sensitive to the structure of
the dark sector, it is interesting to examine the correlations
between ET and the variables fαT; jΔϕjjj; HTjj

g as well.
We find that each of these variables turns out to be
correlated with ET in a manner extremely similar to that
in which it is correlated with MT2. Indeed, the correspond-
ing scatter plots are qualitatively so similar to those shown
in Fig. 6 that we refrain from reproducing them here. As we
shall see in Sec. V, these correlations likewise imply that
imposing cuts on variables such as αT , jΔϕjjj, andHTjj

can
have a significant effect on the distributions of both ET
and MT2.

V. COMPARING CORRELATIONS:
BALANCING SIGNAL EXTRACTION

AGAINST DARK-SECTOR RESOLUTION

As we have seen, the existence of nontrivial correlations
between the variables fαT; jΔϕjjj; HTjj

g and the variables
fET;MT2g implies that cuts on variables in the first set will
distort the shapes of the kinematic distributions associated
with variables in the second set. This is generically true for
both traditional single-component dark sectors and non-
minimal dark sectors. However, these correlations are
ultimately a reflection of fundamental kinematic relation-
ships between the masses, energies, and momenta of the
particles involved in the production and decay processes
associated with any particular event. This means that the
way in which kinetic variables are correlated—and there-
fore the effect that a cut on one such variable will have on
the distribution of another—is itself dependent on the
properties of the dark-sector particles.
As a result, the degree to which we can ultimately exploit

the distributions associated with the fET;MT2g variables in
order to distinguish between any two dark-matter models—
and, by extension, between minimal and nonminimal dark
sectors—rests upon our understanding of the correlations
that exist for those models. Indeed, in order to assess the
degree to which dark-sector nonminimality can be distin-
guished at the LHC, we must compare the effects of the
correlations which arise in nonminimal dark sectors with
the effects of the correlations which arise in minimal dark
sectors. More specifically, for the case at hand, we must
ultimately compare the correlations illustrated in the
second and third columns of Fig. 6 with those illustrated
in the first column of Fig. 6.
In order to make this comparison, we require a method of

quantifying the degree to which the expected distribution
for any particular collider variable associated with a given
DDM ensemble is distinct from the distributions associated
with traditional dark-matter candidates in general. To do
this, we shall adopt a procedure similar to that employed in
Ref. [7]. In particular, we survey over a variety of tradi-
tional dark-matter candidates, each characterized by a
different value of mχ , and compare the distribution of that
variable with the distribution obtained for the DDM
ensemble of interest. We include in our survey values of
mχ ranging from mχ ¼ 0 to mχ ¼ mϕ at intervals of
100 GeV. For each value of mχ , we assess the degree of
distinctiveness between the two distributions by computing
the goodness-of-fit statistic GðmχÞ≡ −2 ln λðmχÞ, where
λðmχÞ is the ratio of the likelihood functions for the two
distributions. For binned data in which the number of
events in each bin is independent of the number of events in
every other bin, GðmχÞ takes the form

GðmχÞ ¼ 2
XN
k¼1

�
μkðmχÞ − nk þ nk ln

�
nk

μkðmχÞ
��

; ð5:1Þ
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where the index k labels the bin, where nk is the
expected population of events in bin k in the DDM
model, and where μkðmχÞ is the expected population
of events in bin k in the traditional dark-matter model to
which this DDM model is being compared. We take the
minimum value

Gmin ≡min
mχ

fGðmχÞg ð5:2Þ

from among the GðmχÞ obtained in our survey over mχ as
our final measure of the distinctiveness of the distribution
associated with the DDM ensemble. Moreover, for the case
in which the expected population of events in each bin is
sufficiently large, the Gmin statistic follows a χ2 distribution
with N − 1 degrees of freedom. We can therefore estimate
the statistical significance of our results by comparing the
value of Gmin to such a χ2 distribution in order to obtain a p
value. We then take the number of standard deviations
away from the mean to which this p value would
correspond for a Gaussian distribution as an estimate of
the statistical significance of differentiation—i.e., the
statistical significance with which the signal distribution
can be claimed to differ from the expected distributions for
traditional dark-matter candidates. We note that in principle
one could also incorporate a broader class of traditional
dark-matter models with other particle properties and
coupling structures into this survey; however, the inclusion
of such additional models in our analysis will not signifi-
cantly impact our results.
One subtlety which arises in quantifying the discrepancy

between different kinematic distributions is that the reli-
ability of most goodness-of-fit statistics breaks down in
cases in which there are bins for which the expected
number of events in the reference model is small or zero.
For example, the GðmχÞ statistic defined in Eq. (5.1) is
infinite if the expected number of events in one or more
bins is zero in the traditional dark-matter model to which
the DDMmodel is being compared. In order to address this
issue, the event count in each bin in a given background-
event distribution for which μkðmχÞ < 3 is treated as if it
were μkðmχÞ ¼ 3. This is the event count which corre-
sponds to the 95% C.L. upper limit on the expected number
of events for data which follow a Possion distribution in the
case in which no events are observed [28]. Likewise, the
event count in each bin in a given signal-event distribution
for which nk < 3 is treated as if it were nk ¼ 3. Note that
while the normalization of each distribution is in principle
fixed by the measurement of the total number of signal
events, this procedure for treating low-statistics bins does
not necessarily preserve the equality between the sum of
the nk and the sum of the μkðmχÞ for any two kinematic
distributions being compared. Thus, the GðmχÞ statistic for
each mχ in the survey takes the form given in Eq. (5.1),
rather than the alternative form appropriate for data
distributed according to a multinomial distribution.

Having defined the Gmin statistic in Eq. (5.2), we now
turn to examine how the imposition of event-selection
criteria can affect the distinctiveness of the distributions of
key kinematic variables—in particular, MT2 and ET . We
begin by examining the effect of imposing a minimum cut
αmin
T on αT . In the top left panel of Fig. 7, we plot the value

of Gmin for the MT2 distributions associated with several
DDM ensembles as a function of αmin

T . The precuts are the
only additional cuts imposed on the data. The results shown
here correspond to an integrated luminosity Lint ¼
300 fb−1 at each of the LHC detectors. Note that while
Gmin generally decreases with increasing αmin

T due to the
overall reduction in number of signal events, it does not do
so monotonically. Indeed, for all curves shown, Gmin
actually rises with increasing αmin

T within the range
0.4≲ αmin

T ≲ 0.55. As can readily be seen from Fig. 6, this
is precisely the range within which the αT cut effectively
eliminates the region of parameter space within which the
data-point distributions corresponding to different invis-
ible-particle masses overlap, yet still retains the majority of
the events in the region within which those data-point
distributions are the most distinctive. A similar enhance-
ment in the Gmin values obtained from the corresponding
ET distributions is apparent in the bottom left panel
of Fig. 7.
We now turn to examine the effect on Gmin of imposing

a minimum cut Hmin
Tjj

on HTjj
. In the top right panel of

Fig. 7, we plot the value of Gmin for the MT2 distributions
associated with the same DDM ensembles as a function of
Hmin

Tjj
. Once again, the precuts are the only additional

cuts imposed on the data. In contrast with the Gmin
curves for αmin

T , we see that the corresponding curves
for Hmin

Tjj
fall monotonically due to the loss in statistics.

This is to be expected, as we have seen that there is no
advantageous correlation between HTjj

and MT2 which
can be exploited to offset this loss. The same behavior is
also apparent in the Gmin values obtained from the
corresponding ET distributions in the bottom right panel
of Fig. 7.
Despite the enhancement within the range 0.4≲ αmin

T ≲
0.55 discussed above, it is nevertheless clear from
Fig. 7 that increasing αmin

T generally has the effect of
diminishing our power to discriminate nonminimal dark
sectors from traditional dark sectors. Likewise, we see that
a similar conclusion holds, perhaps even more dramatically,
for cuts on HTjj

. However, the extraction of signal from
background typically requires more than simply one or the
other cut in isolation: we typically need to impose an entire
slew of cuts simultaneously. Inevitably, these cuts, which
are designed to enhance signal extraction, further reduce
our power to resolve nontrivial dark sectors relative to
traditional dark sectors. Thus, we find ourselves in a
position in which we must ultimately balance consider-
ations related to signal extraction against those related to
dark-sector resolution.
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In order to study this issue, we adopt a set of cuts
which is similar to those employed in the CMS jetsþ ET
analysis in Ref. [26]. In particular, we simultaneously
require that

• fpTj1
; pTj2

g ≥ 100 GeV,
• ET ≥ 90 GeV,
• αT ≥ 0.55.

In addition to these cuts, we also impose a minimum cut of
the form HTjj

≥ Hmin
Tjj

on the data and examine the effect of

varying Hmin
Tjj

on the statistical significance of differentiation
between DDM and traditional dark-matter models. As
discussed in Sec. IV, a cut of this sort can be effective in
reducing the backgrounds from SM processes such as
tt̄þ jets,W�þ jets, and Z þ jets—processes which can give
rise to genuine sources of missing energy in the form of
neutrinos, and whose contributions to the total SM back-
ground are therefore more likely to survive the αT cut. Note
also that these selection cuts are sufficient for passing CMS
triggering requirements, provided that Hmin

Tjj
≥275GeV [26].

Our results are shown in Table I, where we display the
Gaussian-equivalent significance of differentiation for the
MT2 distributions associated with several benchmark
DDM models after the imposition of the selection cuts
described above. These benchmark models are charac-
terized by different values of Δm and γ, with fixed
m0 ¼ 100 GeV. Results are given for several different
choices of Hmin

Tjj
.

The decline in sensitivity with increased Hmin
Tjj

can be
qualitatively understood as follows. Since events involving
heavier χn tend to have both smaller HTjj

values and
smaller MT2 values, as shown in the bottom left panel of
Fig. 6, increasing Hmin

Tjj
results in a disproportionately

severe reduction in events involving heavier χn in com-
parison with events involving lighter ones. As a result,
increasing Hmin

Tjj
has the effect of washing out the imprints

of the heavier χn in MT2 distributions and leads to a
decrease in the significance of differentiation, as seen in
Table I.
Similarly, the dependence of the results shown in Table I

on the power-law index γ can be qualitatively understood as

FIG. 7 (color online). The value of the statistic Gmin for the MT2 distributions (top row) and ET distributions (bottom row) associated
with several DDM ensembles as a function of the minimum cut αmin

T imposed on αT (left column) or the minimum cut Hmin
Tjj

imposed on
HTjj

(right column). In each case, the precuts in Sec. III B are the only other cuts imposed on the data. The curves shown in all panels
correspond to the parameter choices m0 ¼ 100 GeV, Δm ¼ 50 GeV, and δ ¼ 1, and theMT2 curves correspond to a trial mass ~m ¼ 0.
Further details are discussed in the text.
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follows. As γ decreases, the width Γϕ of ϕ will be
increasingly dominated by the contribution from decays
to the lightest dark-matter component χ0. Thus, for suffi-
ciently small γ, the resulting kinematic distributions
become effectively indistinguishable from those obtained
for a traditional dark-matter candidate of mass mχ ¼ m0.
Conversely, for sufficiently large γ, it turns out that Γϕ will
be dominated by the contributions from the most massive
kinematically accessible states in the ensemble. In this
regime, the resulting kinematic distributions become effec-
tively indistinguishable from those obtained for a tradi-
tional dark-matter candidate with mχ equal to the mass of
the most massive accessible ensemble component. Indeed,
as was noted in Ref. [7] in the case of three-body parent-
particle decays, there exists a particular intermediate range
of γ for any particular assignment of m0, Δm, etc., within
which the branching fractions of ϕ to two or more of the χn
are of roughly the same order and the corresponding
kinematic distributions are therefore more distinctive.
Taken together, then, the primary message of the results

shown in Table I is that there are nontrivial regions of our
parameter space within which the population of signal
events associated with a DDM ensemble can be distin-
guished from the population of signal events associated
with any traditional dark-matter candidate on the basis of
the distributions of kinematic variables such as MT2.
Indeed, with an integrated luminosity of 300 fb−1 in both
LHC detectors, a statistical significance of differentiation
close to 5σ is obtained for low-to-moderate values of Hmin

Tjj

for 50 GeV≲m0 ≲ 300 GeV and 1≲ γ ≲ 2.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the prospects for
distinguishing nonminimal dark sectors in the dijetþ ET
channel at the LHC. Almost by necessity, searches of this
sort—both in this channel and others—involve not merely

identifying an excess in the total number of signal events
over background, but actually analyzing the shapes of the
full distributions of the relevant kinematic variables. It is
therefore critical to examine the correlations between such
variables, since cuts imposed on one variable in order to
reduce the background have the capacity to alter or distort
the distributions of other variables which are critical for
probing the structure of the dark sector.
Using DDM ensembles as a benchmark, we have

examined the extent to which the distributions of different
kinematic variables are impacted by dark-sector nonmini-
mality. We have shown that the distributions of certain
variables such as ET and MT2 are particularly sensitive to
the properties of the dark-sector particles. By contrast, we
have shown that the distributions of other variables such as
αT and jΔϕjjj are comparatively insensitive to the details of
the dark sector. Finally, we have shown that still other
variables such as HTjj

lie between these extremes.
Furthermore, we have also demonstrated that nontrivial

correlations exist between the variables fET;MT2g and the
variables fαT; jΔϕjjj; HTjj

g. In particular, we find that αT is
correlated with MT2 and ET in such a way that a threshold
cut on αT can actually enhance the distinctiveness of the
corresponding kinematic distributions in certain situations.
Indeed, we have shown that this effect more than offsets the
corresponding loss in statistics for certain values of αmin

T .
By contrast, we find that HTjj

is correlated with these same
variables in such a way that a threshold cut on HTjj

generically serves to wash out distinguishing features in
the corresponding distributions.
Finally, we have investigated the impact of such cuts of

the distinctiveness of the ET and MT2 distributions asso-
ciated with our DDM ensembles, as quantified by the
goodness-of-fit statistic Gmin. We have shown that corre-
lations between variables give rise to a nontrivial depend-
ence of Gmin on the cuts imposed—a dependence which

TABLE I. The statistical significance of differentiation derived from examining the goodness of fit between the
MT2 distributions associated with a variety of benchmark DDM models and those associated with traditional dark-
matter models. The values of Δm and γ for each DDM model are specified in the table, and in all cases we have
taken m0 ¼ 100 GeV and δ ¼ 1. The results shown here correspond to an integrated luminosity of Lint ¼ 300 fb−1

in each of the two LHC detectors for a center-of-mass energy
ffiffiffi
s

p ¼ 14 TeV. The event-selection criteria imposed
include the minimum cut on HTjj

shown in the table as well as the other selection cuts discussed in the text.

DDM benchmark Significance σ
Δm γ Hmin

Tjj
¼ 275 GeV Hmin

Tjj
¼ 325 GeV Hmin

Tjj
¼ 375 GeV Hmin

Tjj
¼ 425 GeV

50 GeV 0 0.03 0.02 0.01 0.01
50 GeV 1 3.08 2.60 1.20 0.22
50 GeV 2 3.13 1.35 0.09 0.00
300 GeV 0 0.00 0.00 0.00 0.00
300 GeV 1 1.39 1.33 1.22 1.17
300 GeV 2 4.63 4.14 3.02 1.31
500 GeV 0 0.02 0.01 0.01 0.01
500 GeV 1 0.00 0.00 0.00 0.00
500 GeV 2 0.00 0.00 0.00 0.00
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transcends mere issues of event count. Due in part to these
effects, the signal-event distributions associated with DDM
ensembles can be distinguished from those associated with
traditional dark-matter candidates at a significance level
approaching 5σ in many situations.
One final comment is in order. Our focus in this paper

has been on the correlations between selection cuts and
kinematic distributions of signal events and on the effects
that such correlations have on the distinctiveness of those
distributions. We have therefore focused our analysis
primarily on the signal contributions from different dark-
sector models alone and have only incorporated the SM
backgrounds into our analysis as a motivation for the cuts
imposed on certain kinematic variables. However, despite
the established efficiency of the selection cuts adopted here
in reducing those backgrounds [26,27] (and especially the
contribution from QCD processes), we note that the
residual backgrounds from t̄tþ jets, W� þ jets, and Z þ
jets are still quite sizeable. Nevertheless, it may be possible
to isolate these residual backgrounds using other tech-
niques. For example, both the normalization and shape of
the “irreducible” background from Zþ jets can in principle
be determined from the related process in which the Z

decays into a pair of charged leptons [15]. Such informa-
tion could in principle allow for a modeling of this
background that would make background subtraction a
viable possibility. Further reducing the W� þ jets back-
ground is a significantly more challenging endeavor.
However, while a full analysis of the effect of selection
cuts on the combined contribution from both signal and
background processes to the relevant kinematic distribu-
tions is beyond the scope of this paper, we emphasize that
the correlations we have investigated here are every bit as
relevant for such a study as they have been for this
background-free analysis.
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