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Higgs inflation from standard model criticality
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The observed Higgs mass My = 125.9 4+ 0.4 GeV leads to the criticality of the standard model, that is,
the Higgs potential becomes flat around the scale 10'7-'® GeV for the top mass 171.3 GeV. Earlier we
proposed a Higgs inflation scenario in which this criticality plays a crucial role. In this paper, we investigate
the detailed cosmological predictions of this scenario in light of the latest Planck and BICEP?2 results. We
also consider the Higgs portal scalar dark matter model, and compute the Higgs one-loop effective potential
with the two-loop renormalization group improvement. We find a constraint on the coupling between the
Higgs boson and dark matter which depends on the inflationary parameters.
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I. INTRODUCTION
The observed value of the Higgs mass [1]'

My = 1259+ 0.4 GeV (1)

indicates that the standard model (SM) Higgs potential
becomes small and flat at the scale around 10!"-'8 GeV for
the top mass 171.3 GeV; see e.g. [4-16] for the latest
analyses.” This fact suggests [34] that the Higgs field
beyond the ultraviolet (UV) cutoff of the SM, at the
criticality [35], may play the role of the slowly rolling
inflaton in the early Universe; see Ref. [36] for the original
proposal to use the Higgs field for the cosmological
inflation and also Refs. [37-40] for the idea to use the
false vacuum of the SM at criticality. Especially, under the
presence of the large nonminimal coupling &~ 10*
between the Higgs field and the Ricci curvature, there
arises a plateau in the SM effective potential above the field
value ¢ ~ M p/+/E, and enough of a number of e-foldings is
achieved without introducing any other field beyond the
SM [36,41-46]. In Ref. [47], it has been shown by
numerical analysis that smaller values of &~ 400 and 90
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'"The latest values of the Higgs mass are
125.031028 (stat) 013 (syst) GeV  (CMS) [2] and 125.36 &

0.37(stat) £ 0.18(syst) GeV (ATLAS)[3], which are consistent
with each other and also with the particle date group (PDG) value
we are using here.

It is an intriguing fact that the bare Higgs mass also becomes
small at the same scale [9,17-19]; see also Refs. [20-24]. The
running Higgs mass after the subtraction of the quadratic
divergence is considered e.g. in Ref. [25]; see also Refs. [26-33].
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are possible in the prescriptions I and II, respectively; see
Sec. III for what prescription means.

In Ref. [48], we proposed to push the idea of Ref. [34] to
use the criticality of the SM for the Higgs inflation scenario
in order to accommodate a lower value of & = 7-100, as
well as a wider range of the tensor-to-scalar ratio r < 0.2;
see also Refs. [49,50].3 Similar attempts have been done in
some extensions of the SM [48,51-55]. There have also
been different directions of the extension of the Higgs
inflation involving higher dimensional operators [56—63].
See also Refs. [64-92].

In this paper, we give detailed analyses of the Higgs
inflation scenario proposed in Ref. [48] that utilizes the
saddle point, at which both the first and second derivatives
of the potential become very small. The scale dependence
of the effective quartic coupling A.¢ is very important to
determine the effective potential, whose behavior around
the saddle point is characterized by the minimum value A,
of the effective coupling A, the corresponding scale iy,
and the second derivative f#, of A around g, in addition
to £. We examine the predictions of this model on spectral
index ng, tensor-to-scalar ratio r, and the running of spectral
index dng/dInk.

We also estimate how small the higher dimensional
Planck-suppressed operators must be in order to maintain
the observed values of the cosmic microwave background
(CMB). For that purpose, we pick up the six-dimensional
operator ¢°/M?3 in the Jordan-frame potential as a concrete
example, and compute the CMB spectral indices.

We also evaluate the relation between the high-scale
parameters p,;,, > and the low energy parameters in the
SM, as well as in the Higgs portal scalar dark matter (DM)

’See Sec. VA 3 foran explanation for the apparent discrepancy
between the results from Refs. [48,50] and those from
Ref. [47.,49].
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model, using one-loop effective potential and the two-loop
renormalization group equation (RGE).

This paper is organized as follows. In Sec. II, we review
the criticality, namely the flatness and smallness, of the SM
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II. STANDARD MODEL HIGGS POTENTIAL

In the SM on the flat spacetime background, the one-
loop effective potential calculated in the MS scheme in the

Higgs potential around the scale 10'7~!8 GeV. In Sec. I1I, we Landau gauge is

review the Higgs inflation scenario in a wider perspective. In

Sec. IV, we investigate the predictions of this model in detail. V= Viee T AV 1L100ps (2)
In Sec. V, we consider the extension with the Higgs portal
scalar DM. We summarize our results in the last section. with
|
A
Viree = ') ST/‘)(P{ (3)
3m,(p)* m(p)?* 3
AV 1o0p = e4F<¢){_ 1622 In 22 +2(¢p)
6my (¢)* my(@)* 5 3my(p)* my(@)® S
| ——+2r 1 ——+2I , 4
e " T HW ) g (e e AW )
»
M) = [y 5
M,
1 9 3
=—— |- ~ gk —3y?), 6

where my (@) = g0/2, mz (@) = /g% + Gp/2, and m, (@) = y,¢//2. We have neglected the effects from the loops

of the Higgs and would-be Nambu-Goldstone bosons since we are interested in the scale where 4 becomes small. We also

neglect the quadratic term; the bare Higgs mass is canceled by the loop effect at low energies; see e.g. Appendix B in Ref. [34].
We define the effective quartic coupling as [6]

et (@0, 1
Vig) = 2t s )
At the one-loop level,
2 .2 4 2 .2
yig© 3 36, (, .59~ 5
Aesi (. ) = €O 2(p) + ) 1622 {—3)’? (111 Ztﬂz 5 +2F(¢)> T3 (1114—/42 % +2I'(p)
3oy +9)° (| (97 +93)9* 5
1 —Z4or
T 16 e AW (8)

where we have made the scale dependence explicit in the right-hand side while omitting it in y,, ¢,, and gy, which
correspond to the two-loop corrections.
In the SM on the flat spacetime background, AV, is minimized by

1n<p_2_ C}(—=InC,+3—2I') —2C}/(—=InCy +2—2I') = C4(—InC, + 32 —2I)
W G —2C5, - G

_ 391y 2%k (_ 5 o1y - SZ(— 5_
(=InC,+5-2I) =2 (=InCy +3—2I') = & (=InC, + ¢ —2I) o)
= C2 s

CZ
1—2%% &
a

where Cyy = ¢5/4, C;, = (g% + ¢5)/4, and C, = y?/2. Around i, ~ 1017718 GeV, Eq. (9) leads to u = 0.23¢p. However,
because the difference of the numerical values of the one-loop effective potential for 4 = ¢ and u = 0.23¢ is negligibly
small, we use y = ¢ hereafter in this section.

053008-2



HIGGS INFLATION FROM STANDARD MODEL CRITICALITY

Then we obtain

where ey (1) is written by

At (1) =

at the one-loop level.

1 y> 3 3
AT A0 —3v4( 1 Jr T o
eMA(u) + e 16”2[ yt<n2 2+ <

PHYSICAL REVIEW D 91, 053008 (2015)

9", (10)

3(97 + 53)?
16

2
In ——§+2r> +

2 2
176 (1n(gY+92)—§+2F>}

4 6
(11)

The effective coupling A is quartically sensitive to y, and thus the top quark mass, M,, which is scheme dependently
defined. The actual value of M, is known with large uncertainties at the level of GeV scales depending on the measurements:

t

173.21 £0.51 £0.71 GeV,

174.98 £ 0.76 GeV,
= ( 17434 £ 0.64 GeV,
173.34 £0.76 GeV,

thi
Mf'y ia

172.38 £0.10 £ 0.65 GeV,

One should note that the “directly measured value” in
Eq. (13) obtained by Tevatron (DO and CDF) and by LHC
(ATLAS and CMS) is indeed a parameter in Monte Carlo
simulation code [7,93], the so-called Pythia mass [94],
whose physical relation to the pole and MS masses is not
well established. In discussing the Higgs inflation near
criticality, however, the only important fact is that the
critical value for the pole mass M, = 171.3 GeV, shown
just below, is perfectly consistent with both the mainz
institute for theoretical physics (MITP) and PDG within 26
confidence level. Below, we take the MITP value as a
benchmark.

In Fig. 1, we can see that A, has the minimum around
10718 GeV. Interestingly, if M, =171.3 GeV, the mini-
mum value of A becomes zero around the scale
10'7-18 GeV, and the Higgs potential has a plateau around
1078 GeV as shown in Fig. 2.

Let us expand the effective potential of the Higgs field
V(@) on the flat spacetime background around its
minimum in terms of In¢:

*It has been known that such a position of plateau is unphysical
and can vary by an order of magnitude depending on the gauge
choice [95]. The gauge dependence of the effective potential can
be absorbed by a field redefinition [96]. The eventual field
equation for ¢ should not depend on such a choice, but the field
value here necessarily contains this amount of uncertainty. See
also Refs. [97,98] for a further account on the gauge (in)
dependence.

ol { 17124 2.4 GeV, MITP[99],
— 1176.7740 Gev,

(12)
PDG [136),
direct measurment, PDG [136)]
DO[137],
DO -+ CDF [138], (13)
ATLAS [139],
CMS [140)].
et = @
Vio) = ff(4 gt
B ’
A , 14
i) =+ 0 gy (M) - (1)

where the overall factor ¢* is put to make the expansion
well behaved. In the potential analysis around the mini-
mum, we can safely neglect the higher order terms with

0.10

0.05r

/\eff

0.00

-0.05r

10xdAge/d Inp

5 10 15 20
Log,u [GeV]

FIG. 1 (color online). The light red (lower) and blue (upper)
bands are two-loop RGE running of A(y) and Aeg(p) (11),
respectively. The dark red (upper) and blue (lower) bands are
the beta function times ten 10 X dA./d In u evaluated at the tree
and one-loop levels, respectively. We take My = 125.9 GeV and
a; = 0.1185. The band corresponds to 95% C.L. deviation of M,
[99]; see Eq. (12).
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FIG. 2 (color online).
(3)-(4). We take My = 125.9 GeV and a, = 0.1185.
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Left: The tree-level Higgs potential (3) as a function of Higgs field ¢. Right: The one-loop Higgs potential
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FIG. 3 (color online).

M, (left), 5, (center), and p;, (right) that realize the condition A,

= /. are plotted as functions of M. We have

imposed the condition 4,,,;, = 1. using the tree-level potential (3) and the one-loop one, (3)—(4), for the red and blue bands, respectively.
(The one-loop blue band is the upper one for left and right, whereas it is the lower for center.) The width of the bands corresponds to the
95% C.L. of a,(M). Dotted lines show the current 95% C.L. for My; see Eq. (1).

n > 3, and omit them hereafter. By tuning the top mass for
a given Higgs mass, we can obtain arbitrarily small A,.
This fact is crucial for our inflation scenario.

We note that for the potential to be monotonically
increasing [48], A, must be larger than a critical value 4,.:

22
Amin = e = —5. 15
min = ‘¢ (6471'2>2 ( )

When A;, saturates this inequality,
Amin = 4e; (16)

there appears a true saddle point of the potential
V,=V,,=0. We see in Sec. VA that in prescription
I, this value A, also gives the true saddle point of the
modified potential: U, = U, = 0.

In the left, center, and right of Fig. 3, we plot M, f3,, and
Hmins TeSPectively, with the critical value of 4., given in

>The numerical difference between the results from the
condition Ay, = 0 and from Eq. (16) is much smaller than the
deviation coming from the a,(M) error. We have imposed
Amin = O within a precision of 107> in the actual numerical
computation in writing Fig. 3. Note that 4, = 2.5 x 10764,.

Eq. (16). The band corresponds to the 95% C.L. for the
strong coupling constant measured at y = M, where

(17)

at the 1o level [1]. We see that 3, does not depend much on
Mpy. In the following figures except Fig. 12, we take a
reference value f, = 0.5.° Umin changes by an order of
magnitude when one includes the one-loop corrections to
the effective potential as shown in the right of Fig. 3. The
two-loop corrections are negligible compared with the one-
loop corrections; see e.g. Ref. [6]. In Fig. 3, we see that f3,
and p.,;, differ between tree and one-loop levels, but note
that M, is almost identical at both levels.

a, (M) = 0.1185 % 0.0006

III. INFLATION MODEL

Let us consider the effective action of the SM-gravity
system in the local potential approximation. As we are
interested in the spatially constant field configuration and
the case where the Hubble parameter is much smaller than
the Planck scale, we restrict ourselves to the terms

®We have checked that the changes of spectral index, its
running, its running of running, and tensor-to-scalar ratio are
hardly seeable when we vary f,.
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containing up to the second derivative of the fields. We can write down the effective action schematically as’

M? 1
5= [ @/ AR - B 0,000+ Ab) = V(o) - CORPFD

y } E(p)
-2 D He) — F, F| .
v (@) (pwy + H.c.) 4

where g, and y are gauge and Yukawa couplings, respectively, Mp := 1//8zG =

scale, ¢ is the physical (real) Higgs field, and

2 4

4 4
A(¢):1+G2W+Q4W+"',
P P

with a,,...,b,, ..., etc. being dimensionless constants.
Generically the potential V also contains higher dimen-

sional terms
0 ) o

2 6 8

m- A 4 @ Q@

=+t [ de——F Ag——+ -
2 P <°M%, M3

@
B =14+b,—

(18)

2.4 x 10" GeV is the reduced Planck

2 ¢4
+by—+--, etc., (19)
M}

We can recast the Jordan-frame action (18) by the field
redefinition

gﬁ:y = A((p)guw (21)

to get the action in the Einstein frame

M L[Blg)  3B(9)Ae )? 1 [B(p) V(p)
S—/d“x\/—g {—PR [ I Oupduip =5 I AAvp
E2 N2 Al T2 alp A T Ry
Clo) _ . y D(o) E(p)
- D,y — H. F, F*¥1; 22
A((ﬂ)3/2 l//yE ﬂlI/ \/EA(QD)Z ( + C. ) 49}24 uwt E |» ( )
see e.g. Refs. [100,101]. B(o)

By the field redefinition, m; = gy —————. 25
Y A\ ) EG) %)
3B(@)A'(p)? C(p)'/? For later convenience, we define the Einstein frame

d B

d_ [Blo) 3 (23)
dp  \Alp) 2

we get the canonically normalized kinetic term for y and

" For a given background field ¢ in the Jordan frame, the
effective mass for the canonically normalized field v is

) lil = 71//’
A(p)? A(p)**

m Y D)
" V3@ 24

Similarly, the effective mass for a canonically normalized
gauge field is

"In article [48], we used A instead of ¢.

There appear extra derivative terms from the kinetic term of
the fermion. We neglect such terms, since we are interested in the
expression of the fermion mass for a constant background field ¢
and for the Hubble parameter much smaller than the Planck scale.

potential

U(p) = . (26)

In the original version of the Higgs inflation [36,44,45],
it is assumed that & := a, happens to be large: &~ 10%,
whereas the other couplings are not much larger than unity:
E> a,,ay,...;b,, ..., etc. In that limit, we can write

Alg) = 1+i;”2 ,
B(p) = C(¢) = D(p) = E(p) = 1,

As a side remark, we note that we can instead assume
b, ~ 10° while keeping all other coefficients, including a,,
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not much larger than unity in order to realize another
version of Higgs inflation [61]. It may be interesting to look
for more possibilities of putting a large number in other
places. In this paper, we restrict ourselves to a more
conventional set of the nonminimal couplings (27), and
later take into account the term Ag¢® in the potential (20) as
a next step.

For ¢> Mp/\/E& we have dy/dp=+6Mp/p,
which leads to ¢ = %exp(;(/ V6Mp), and the potential

becomes [36]

Vv

Uy) = Tr (28)

The analysis of this model without taking into account the

running of 4 gives the following predictions [36]:

ng =1—6ey + 25y = 0.967,
r=16ey =3 x 1073,

ddlzsk = 16eyny —24c}, — 203 = =54 x 1074, (29)
where

€y = MT% <%> 2’ 0

ny = Mp &Uiédxz (3D

o (& U/d;(;)z(dU/d)() ' (32)

As is seen in Eq. (8), the loop corrections to the effective
potential contain large logarithms. They can be written as
In(M(¢)/u), where u is the renormalization scale and
M (p) stands for the field-dependent mass of the particle
running in the loop, namely the top quark and the gauge
|

PHYSICAL REVIEW D 91, 053008 (2015)

bosons. The problem is that there are two possibilities in
defining the field-dependent mass [44]. In the so-called
prescription I, we use the field-dependent mass in the
Einstein frame, as in Egs. (24)—(25), whereas in prescrip-

tion II, we use the ones in the Jordan frame, namely m,, =

yo/\/2 and m, = g,¢. We leave the possibilities open for
future research and present our results for both
prescriptions.

As we have done below Eq. (9), in either prescription I or
II, we can drop the gauge and Yukawa couplings in the
field-dependent mass. For prescription I, assuming the
minimal set of coefficients (27), we put

@
p= (33)
V1+ &/ M3
and for prescription II,
H= 0. (34)
Therefore, the effective potential is
A

with the scale (33) for prescription I and scale (34) for
prescription II, where A.¢ () in the SM is given by Eq. (11).

IV. COSMOLOGICAL CONSTRAINTS

The overall normalization of the CMB fluctuation
fixes [102]

1%
= = (2.1961003) x 107°,  (36)
T 2dnle M5 0.058
within 16 C.L. Current Planck + WMAP bounds on the
spectral index, its running, its running of running, and the
tensor-to-scalar ratio are [102]

d &
n, = 0.951470:0087 dl’:: - = 0.0015881S. dln”]; =0.02070918 ;=0 (assumed),
0.9583 4 0.0081 I pmrto02, S0 (assumed) <025 (26C.L), (37)
n, =0. . , = —0. .012, = u , r . L),
' dink dink? ?

at the pivot scale k, = 0.05 Mpc~!, within 16 C.L. unless
otherwise stated. The BICEP2 experiment has reported an
observation of r [103]:

r=0.201007, (38)

within 1o C.L.

It has been pointed out that the BICEP2 result may
become consistent with r =0 because the foreground
effect can be sizable [104,105]. We also note that by
including isocurvature perturbation, the 95% C.L. bound
on ng is roughly loosened to [106]

0.93 <ny, $0.99 (39)
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and that by including sterile neutrinos, the allowed range is
shifted to [107]

0.95 < n, < 1.02. (40)

Given the above, we plot our results within wider ranges
than those in Eqgs. (37)-(38):

0.93 < n, < 1.02, (41)
dn

—0.05 < —2<0.05, 42

0.05 < -t < 0.05 (42)

0<r<03. (43)

V. HIGGS INFLATION FROM STANDARD MODEL
CRITICALITY

In this section, we start from the minimal set of
coefficients (27), and later include the term Aq¢°.

PHYSICAL REVIEW D 91, 053008 (2015)

We expand the effective potential of the Higgs field V
on the flat spacetime background around its minimum as
in Eq. (14):

PR (44)

LS 2
Deit (1) = Ammin + Z(lfﬁ)n <ln #) . (49)

n=2

The choice of scale (33)—(34) corresponds to prescription I
and II, respectively. As in Sec. II, we can safely neglect the
higher order terms with n >3, and we continue to
omit them.

A. Prescription I

1. Analysis in prescription 1

In prescription I, the Higgs potential is given by Egs. (26)
and (44) with the scale (33). Concretely,

4 2 2 2
@ b 1 Sop° | My
Up)=———— ). In{—|[——57"—
(Q”) 4(] Jrfq)z/M%)z mm+(]6ﬂ_2)2 [n<c 1 Jrfqo2/]w%3
3176 2 2
/ @’ Mp 22 1 3% 1 Sy
= F . ——— |1 4+2In|—/—5—— || In| |5 4
Ule) (M3 + &9?)° {1“““ * 2(1672)? ’ n(c Mi+er) |\ \ M2+ [ (40
l
where we define ¢ by 9. = cMp 1 (49)

M
Hmin — € 72’ . (47)
Note that we have defined y,,;, to give the minimum of the
effective coupling A (Mmin) = Amin ON the flat spacetime

background Eq. (45). The stationary points U’(¢;) = 0 are
given by

_cMp 1

P = v :
Ve (11 /1-tmin] C2)1/2

(48)

We can see the following:
(i) When 4, > 4., the potential is a monotonically
increasing function of ¢. This case corresponds to
the red (upper) line in Fig. 4.
(i) When Ay, = 4.
(a) For ¢ > e!'/*, the potential is monotonically
increasing.
(b) For ¢ < e!/* the potential has a stationary
point at

VE (Ve

In this case, ¢, becomes a saddle point:
Ul(p.) =U"(¢p.) =0. This case corresponds to
the green (center) line in Fig. 4.

6.x107°
5.x107%F
4.x107°F
3.x107°F

U [Mp*]

2.x107°F

1.x107%F

0 . . .
0.0 0.5 1.0 1.5 2.0

¢ [Mp]

FIG. 4 (color online). SM Higgs potential in prescription I with
&=10and ¢ = 1, corresponding to g, = 7.6 x 10'7 GeV, and
with #, = 0.5. The red (upper), green (center), and purple (lower)
lines are drawn with A, = 24., 4., and 1./2, respectively. The
values of A, =24, and A./2 are chosen just for illustration.
Each line roughly corresponds to the one with the same color
in Fig. 2.
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025——m———r——— 7

0.20
0.15
0.10

0.05

FIG. 5 (color online).
end of each dashed line for & =

2

1+ 1— “min
(iii) When Ay, < 4., we define ¢ := exp—Y—<:
(a) For ¢ > ¢, the potential is monotomcally in-

creasing.
(b) For c_ < ¢ < ¢, the potential has a stationary
point given by the plus sign of Eq. (48).
(c) For ¢ < c_, the potential has two stationary
points given by Eq. (48). This case corresponds
to the (lower) line in Fig. 4.

In this paper, we pursue the possibility that A(py;,) = 0 is
realized by a principle beyond the ordinary local field
theory, such as the multiple point criticality principle
[35,108,109], classical conformality [26-31,110-112],
asymptotic safety [113], the hidden duality and symmetry
[114,115], and the maximum entropy principle [116—119].

In practice, this amounts to the following: p;, is fixed
for a given set of My and a,(M) in the SM. For a given
Hmin» WE TEquire & to sit in

M? M?
f=ct 5t < Vet

min min

(50)

That is, we consider the case ¢ < ¢!/4. By tuning the top
quark mass, we can always choose a 4.,,;, that is very close
but larger than A. so that we realize U'(¢) < U(¢p)/Mp
and U"(¢) < U(p)/M3 around ¢ = ¢..” In Fig. 4, our
choice is very close but slightly above the green
(middle) line.

In extensions of the SM, u,,;, depends on newly added
parameters too. Anyway, we require Eq. (50), and choose a

"More precisely, we need U, <U/Mp and U,, < U/M3,
which are satisfied when U, << U/Mp and U,, < U/ M3
because we have dg/dy ~ 1/ \/@ during the inﬂatlon
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0.05—
0.04f

0.03f

dng
dink

0.02f
0.01F.

0.00f

Left: r vs n,. Right: dn,/d In k vs n,. The solid and dashed contours are for fixed ¢ and &, respectively. The left
15, 20, and 50 corresponds to ¢ = 0.94. The lower end of each solid line corresponds to & = 50.

Amin that is very close to 4., with A,;, > 4., by the tuning of
the top mass and possible other parameters.

We also need to consider the effect of the running of &
[120-123]. However, this effect is small. More concretely,
if £ and ¢ are sufficiently large, & is given around y = p;,
by [44]

3 1 u
&(u) 250{1 - (59%/"‘39%—6)’%> 16ﬂ21nﬂmin}

)
Hmin

We treat £ as a constant in this paper.

250{1 -+ 0.001 In (51)

2. Results in prescription 1

The Higgs potential is determined by three parameters, &,
¢, and 4,,;,. Qualitatively, £ determines the total suppression
of the potential above the scale ¢ > Mp/+/E, ¢ determines
the maximum value of €, above the almost-saddle point,
and A, determines the number of e-foldings. We choose
Amin Such that we can have sufficient e-folding N = 60. For
afixed A, = 2.2 x 107°, other cosmological parameters 7,,
r, and dn,/d1n k can be calculated as functions of & and c.

We show the typical predictions of this model in Fig. 5.
Each solid line corresponds to a constant c¢. Dashed lines
correspond to the values of £ from 6 to 50 as indicated in the
figure. In Fig. 5, we see that there is a minimum value of £
that can result in r < 0.2, namely &.,;, ~ 7. The model can
reproduce r = O(1073) ~0.2 and n, = 0.9 ~ 1.0. These
predictions are consistent with the Planck or BICEP2 result
[102,103]. However, the value of dn,/dInk is slightly
large. The prediction is dn;/dInk = 0(0.01) for r = 0.05.
In Sec. VA4, we see that the introduction of small
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FIG. 6 (color online).
¢=1and p, =0.5.

coefficients of higher dimensional operators may amelio-
rate the situation.

Finally, we discuss the field value ¢, that corresponds to
the observed CMB fluctuation. The left panel of Fig. 6
shows ¢, in the case of c =1 and 3, = 0.5."° We see that
@, is around the Planck scale: ¢, ~ Mp.

3. Constraint on p;,

The above analysis shows the existence of the lowest
possible value of &, which is &;, ~7. It is a necessary
condition that p,;,, which is obtained from the parameters
at low energy, satisfies ppin < Mp/\/Emin fOr any success-
ful Higgs inflation with & > &;,. However, as we have
observed in Sec. II, SM one-loop effective potential takes
its minimum above Mp/+\/Enin although the tree-level
potential can realize ppi, < Mp/+/Emin- It appears that it
is difficult to do our Higgs inflation in SM.

However, taking into account the ambiguity coming
from nonrenormalizable nonminimal coupling &, there still
remains a possibility of realizing ppin, < Mp//Emin [50].
Around the scale Mp/&, we match A in the SM without &
and 4; in the SM with &:

A = Z¢ + (threshold corrections), (52)
where the threshold corrections generally contain power
divergences and cannot be determined unless we specify a
UV theory beyond the cutoff. One expects that the thresh-
old corrections start from one-loop order. Because they
are of the same order as the difference between the tree
and one-loop effective potentials, it may result in
Hiin S Mp//Emin- See also the similar discussion in foot-
note 4 regarding the gauge dependence.

In Sec. VI, we see that we can easily obtain p;, <
Mp/\/Emin In the Higgs portal scalar DM model without

'OPrecisely speaking, there are two ¢, which satisfy Eq. (36)
given ¢, . We plot the one solution which gives more desirable
predictions on cosmological parameters, namely, n, < 0.99.

Left and right: ¢, as a function of & with Ac = 0 and 7.5 x 1072, respectively. Other parameters are taken as

referring to such arguments. The argument of this section
applies also to prescription II shown in Sec. V B.

4. Estimation of the effects of higher dimensional
operators in prescription 1

As we have seen in the previous sections, the extrapolation
of the low energy data shows that the Higgs potential in the
SM is flat around the string scale. This flatness can be broken
if we introduce arbitrary strengths to the higher dimensional
Planck-suppressed operators. In order to examine the effects
of such operators on the cosmological data, we consider, for
example, a small sixth order term in the Jordan frame

(,06

AV =lg—. 53
GM%) ( )

Here we do not claim that Eq. (53) gives the leading
contribution among the higher dimensional operators, but
simply estimate the ambiguity in the value of dn,;/dInk
discussed in the previous section. Of course, we can give
any form to dn,/dInk as a function of k if we introduce
arbitrary strengths to the higher dimensional operators. As
we will see below, the single term (53) allows the value of
dng/dInk at k, to reside in the favored region. However,
this should not be taken as a prediction of the value of A4 but
as an estimation for the allowed magnitude of the coef-
ficients of the higher dimensional operators.

In the Einstein frame potential, the term (53) becomes

§06

AU =y ——————.
(1 + &p?/M3)?

(54)

In Figs. 7-8, we plot the contours for fixed 4, < 108 with
the solid lines, in the r vs n, plane and the dn,/dInk vs n;
one, respectively. We also plot the contours for fixed &
and /¢ in the dashed and solid lines, respectively. We can
realize the r=0.1, n, =0.96, and dn,/dInk = —0.01
simultaneously. Finally, ¢, has been plotted in the right
panel of Fig. 6 with 4 =5x 107, ¢ =1, and 3, = 0.5.
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FIG. 7 (color online). r vs ng, with ¢ = 0.98 (left) and 1 (right). Solid and dashed contours are for fixed A¢ and &, respectively. We put
p, =0.5.

¢=0.98
0.05F N I 0.04f
0.04F »
[ 0.03F
0.03f [
{ 0.02f
0.02F [
o | 24 [ o | 4
g|= [ e [
° oo1f 001y
' L =0
0.00: 0.00 6
; [e=2.5%107°
—0.01F I A6=5x10"° ;
[ [ A6=7.5%x107"° =S
i —0.01¢ o= =10
—0.021 " " " " 1 " " " " 1 " " " N == (1 " " " " 1 " " " " 1 " " " " 1 " |
0.85 0.90 0.95 1.00 0.85 0.90 0.95 1.00
ng ng

FIG. 8 (color online). dng/dInk vs ng, with ¢ = 0.98 (left) and 1 (right). Solid and dashed contours are for fixed ¢ and &, respectively.
We put p, = 0.5.

The other higher dimensional operators should also have B. Prescription II
the coefficients <O(1078) in order to keep the flatness of the
potential. Their smallness may be understood for example as 1. Analysis in prescription IT
a tiny explicit breaking of the asymptotic scale invariance in In prescription II, the Higgs potential is given by

Jordan frame (the shift symmetry in Einstein frame) [124]. Egs. (26) and (44) with u = ¢,

_ o) ¢!
N eI >
which gives
Xt b X\ 2\ /Mp\*
U=y (o e (n2) ) () 0
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X P B X\ (Mp?
U ——=>2 ), P o 1 X X M .
o= e e 0+ G+ g (n) 172 (57)
where X = M:; 2 Then the slow-roll parameter (30) becomes
8¢ (ﬂmin+$§[z)zlnX(l+X2+2ln§))2
eV:X2+(1+6§>X4 1 " v (58)
( min‘l'(l(m_) : (In%)?)

For ¢ > Mp/+/6& and £>> 1/6, we obtain

4 (lmin+%lné(]+xz+2ln%))2
€V -~
3x* ()“min + G (16;1) (111 ) )2

(59)

Similarly we have

P
=" (1-x
= 3xa < 4062y

(1+Xx2)(1 +X2 +61n¥))
ﬂmm + (16”-) (111 )
(60)

These expressions are in agreement with those in the

3x3
1+X%2)

lmin_’_(m 2)2 (ln )
In¥(1+X>+2n%)"

(63)

X,
Nz/ X
Xend

min +(]£#)z

This is also in agreement with Ref. [36] if we put f, =0
and X, > 1.

2. Results in prescription 11

Let us numerically estimate the lowest possible value of
Amin that allows U(¢) to be monotonically increasing. We
call this value 4. In prescription I, such a value was 4.,
whereas in prescription II, 4 is a function of , and c¢. Note
that 4, is independent of £ because the expression in the

on%ilnal P?glgs 1nﬂat.10n [3.6] 1ft:>v ¢ take f = 0 and X > 1. braces in Eq. (57) only depends on X, and explicit
¢ e-folding NV is written by dependence on & drops out of it. In Fig. 9, we plot A,
% d : & dx 1 and the position of the saddle point ¢ as functions of ¢ for
N — / dr / Qe dX 1 61y afixed p, = 0.5. We see that A ~ 1075 and o = 0734y,

Xea Mp /26y dX \/2ey Mp for c = 1.
The potential is determined by A.;,, ¢, and & To be
where specific, we consider the ¢ = 1 case hereafter. We plot the
ey inFig. 10 withc = 1, f, = 0.5, and A,;;, = 4. The solid
/—2 and dashed lines represent €y, and 7y, respectively. We can
G _yi+r{+ 6EX"Mp _ (62)  see that ey =ny = 1 around X = 2. Therefore the end of

ax 1 + X? VE 1+X 2

In the last step, we have used the same limit as above:

X > 1/V/6& and &> 1/6. Finally, we can write N as a
function of X in that limit:

_53 IS
0.76
—S4f 0.75F
S =551 <| £ 0.74F
=) g Y-
& Ths
= _56F 0.73¢
-5.7 0.72F

1.0 1.4
[¢

0.6 0.8

inflation corresponds to X ,q = 2.

We can calculate the prediction of inflationary param-
eters with ¢ =1, f, = 0.5, and A.,;, = 4p. N =50 and 65
correspond to X, = 360 and 790, respectively. We fix £ in
such a way that Planck normalization is satisfied,

1.0 12
c

0.6 0.8

FIG. 9 (color online). Left: 4,, the minimal value of 4,,;, to maintain monotonicity of the potential, as a function of c. Right: ¢, the
position of the saddle point when we set A;, = 4¢, as a function of c.
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U

= 64
Y 24n*Miey (64)

=22x107°.

By using this condition, £ becomes 190 and 240 for N = 50
and 63, respectively. The prediction of n, and r is shown
in Fig. 11. dny/dInk is small in this case, dn,/dInk <
O(1072). These predictions are just the same as the chaotic
inflation, as discussed in Ref. [48].

We note that the argument in this subsection implicitly
assumes that Planck scale physics does not modify the
Higgs potential above the UV cutoff.

VI. SCALAR DARK MATTER MODEL

Next we consider the model which includes Higgs portal
singlet scalar DM S [125,126]; see also Ref. [127]. The
Lagrangian is [128]
L= Loy ti(0,97—tms—Ls _Kepipg

T ASMT R NG T T ‘
We put subscript Z on the new parameters at the Z mass
scale p=M,, that is, k; =k(u=M,), and p, =
p(u = My,). If we require perturbativity up to the cutoff
scale, these parameters should be «; <04 and
pz < 0.6 [129]. The one-loop effective potential in this

model is given by

(65)

V= Viee + AVl—loop.DM» (66)
A
Vieee = e % 904’
My

2
mpm (@ 3
o (m D“;E ) —§>, (67)

where mpy (@) = 4/ K—‘gzem‘/’) +m§. AV and I are

given by SM one-loop potential 12 and Eq. (5), respectively.

We plot M,, 5, and p,,;, as functions of x, imposing the
existence of the saddle pointin Fig. 12. Here we use two-loop
RGEs [129] and put My = 125.9 GeV, a, = 0.1184. The
band width comes from the requirement of perturbativity of p
up to string scale [129]: 0 < p; < 0.6. The red (lower) and
blue (upper) bands correspond to the tree and one-loop

AV 1oop.oM = AV 1oop +

40F > T
35} S 18}
=
3.0¢ / 2 16l
251 oz
|
2.0¢ A1 E sl
15} 5
1.0} 2 121 \i
0.5l ‘ i o L ‘ ‘ ‘ ‘
00 0.1 02 03 04 8 00 o1 0.2 0.3 0.4
Kz Kz

M, (left), p, (center), and u,,;, (right) are plotted as functions of x,. Red (lower) and blue (upper) bands

correspond to the tree and one-loop potentials, respectively. The band width comes from the requirement of perturbativity of p up to the
string scale [129]: 0 < p, < 0.6. My and myg are set to be 125.9 and 0 GeV, respectively.
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effective potentials, respectively. From this figure, we see
that p,,;, can become smaller than M p by adding x and that 3,
remains to be O(1). In particular, the addition of the scalar
DM does not alter the existence of the minimum of A (p),
which is essential in this inflation scenario with criticality.

VII. SUMMARY

We have considered the Higgs inflation model which
contains nonminimal coupling £p*>R [36]. Conventional
wisdom was that a large nonminimal coupling & ~ 10* is
required to fit the cosmic background explorer normalization,
8T/T ~ 1073, and cosmological predictions are n; = 0.967
and the small tensor-to-scalar ratio, » = 3 x 1073. In article
[48], we have reconsidered this model in light of the discovery
of the Higgs boson, which indicates the criticality of the SM.
That is, if the SM parameters are tuned so that the saddle point
appears, itis possible to realize a Higgs inflation with moderate
£ and generate O(0.1) tensor-to-scalar ratio 7. The value of &
is O(10) for prescription I and O(100) for prescription II.

In this paper, we investigate the cosmological predictions
of this Higgs inflation in greater detail. To realize this Higgs
inflation scenario, it is essential that the effective Higgs
quartic coupling A,y takes its minimum around the scale
10"7-18 GeV. The Higgs potential around the inflation scale
is determined by the position p,;, of the minimum of A,
the minimum value A.;,, and the second derivative S,
around the minimum, in addition to the nonminimal
coupling . We calculate the cosmological predictions as
functions of the above parameters. We also estimate the
effects of higher dimensional operators by considering the
Z6@®/ M3 term as an example. We find that the coefficients
of the higher dimensional operators should be as small as

PHYSICAL REVIEW D 91, 053008 (2015)

1078 in order to account for the scalar and tensor pertur-
bations consistent with the Planck and BICEP2 results.
Although we have concentrated on the SM and the Higgs
portal scalar DM model in this paper, one may apply our
analysis to the other models beyond the SM by evaluating
Amin> Hmin» P2 10 terms of the model parameters.

Finally, we comment on the problem of unitarity
[62,130-135]. The problem of unitarity does not threaten
the consistency of the Higgs inflation by itself. Concretely
speaking, the physical momentum scale during the infla-
tion, which is given by the de Sitter temperature
Hiye = 10" GeV(r/0.2)'/2, is smaller than the unitarity
violation scale Mp/¢ that is evaluated on the electroweak
vacuum.'' In general, a new physics would appear around
the unitarity violation scale. It is interesting that it is around
the grand unified theory or string scale in our model.
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"n Ref. [135], it is shown that the unitarity constraints are
relieved for moderate values of nonminimal coupling,
£ = 0(10-100).
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