
Fermion masses and mixing in Δð27Þ flavor model

Mohammed Abbas1 and Shaaban Khalil2,3
1Department of Physics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt

2Center for Fundamental Physics, Zewail City of Science and Technology, Giza 12588, Egypt
3Department of Mathematics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt

(Received 7 July 2014; revised manuscript received 21 December 2014; published 9 March 2015)

An extension of the Standard Model (SM) based on the non-Abelian discrete group Δð27Þ is considered.
The Δð27Þ flavor symmetry is spontaneously broken only by gauge singlet scalar fields, therefore our model
is free from any flavor changing neutral current (FCNC). We show that the model accounts simultaneously for
the observed quark and lepton masses and their mixing. In the quark sector, we find that the up-quark mass
matrix is flavor diagonal and the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix arises from down
quarks. In the lepton sector, we show that the charged lepton mass matrix is almost diagonal. We also adopt
type-I seesaw mechanism to generate neutrino masses. A deviated mixing matrix from tri-bimaximal Maki-
Nakagawa-Sakata (MNS), with a correlation between sin θ13 and sin2 θ23 are illustrated.

DOI: 10.1103/PhysRevD.91.053003 PACS numbers: 14.60.Pq, 11.30.Hv

I. INTRODUCTION

The understanding of the origin of quark and lepton
families and the observed pattern of their masses and
mixing is still one of the major outstanding problems in
particle physics. In the SM, these masses and mixing are
derived from Yukawa couplings, which are not defined by
the gauge symmetry. Therefore, they are arbitrary param-
eters and another type of symmetry, called flavor symmetry,
is required to explain the observed fermion flavor struc-
tures. In particular, one aims to interpret the large mass
ratios between generations: mu ≪ mc ≪ mt; md ≪ ms ≪
mb; me ≪ mμ ≪ mτ, and the smallness of the off-diagonal
elements of the quark weak coupling matrix, in addition to
the tiny neutrino masses and their large mixings as recent
data suggests [1].
Two standard approaches for dealing with flavor

symmetries in particle physics. The first one is known as
“top-down” approach, where one assumes that the SM
Lagrangian is invariant under certain flavor group G and a
number of Higgs-like scalar bosons, called flavons, are
coupled invariantly to SM fermions. The vacuum expect-
ation values (VEVs) of these flavons break the flavor
symmetries and generate mass terms for SM fermions.
The comparison of the resultant mixing matrices and the
mass eigenvalues with the experimental data will confirm
or refute if this group represents the correct flavor sym-
metry. In the second approach, which is known as “bottom-
up,” one studies the residual symmetry that manifests in the
mass matrix and tries to relate it with the flavor symmetry
group, for instance, by calculating the matrices Si that keep
the neutrino mass matrix invariant and the matrices Ti that
keep the charged leptons mass matrix invariant [2]. The
group G generated by these matrices can be considered
as the group of the flavor symmetry of the lepton sector. In
this regard, it was argued that for Majorana neutrinos,

regardless of the form of the mass matrixMν, it has Z2 × Z2

residual symmetry [3,4], provided that it has three distinct
eigenvalues [5].
Many attempts were made to interpret the flavor aspects

by using discrete symmetry groups (see [6]). In particular,
the non-Abelian groups A4 and S4 have been significantly
considered and shown to be useful for obtaining tri-
bimaximal neutrino mixing matrix [7,8]. Also, Δð27Þ
which belongs to Δð3n2Þ [9] has been considered in
Refs. [10–16] and Δð54Þ which belongs to Δð3n2Þ [17]
was considered in [18,19] as examples of discrete sym-
metries that may deviate MNS mixing matrix from tri-
bimaximal. However, in [14,15] the attention has been
devoted to the lepton sector only. Also extra Higgs
(flavons) doublets have been considered, which could
make the model suffer from dangerous flavor changing
neutral currents. It is worth noting that within flavor
symmetry approaches, the Yukawa couplings are typically
generated through nonrenormalizable flavon interactions
with the SM fermions, i.e., Y ∼ hϕin=Λn, n ¼ 1; 2;….
In this respect, the hierarchy of fermion masses is related
to the order of nonrenormalizable interactions. For in-
stance, third-generation Yukawa couplings can be obtained
from hϕi=Λ, while first- and second-generation Yukawa
couplings should correspond to higher-order terms.
In this paper, we explore the possibility that the flavor

symmetry based on the group Δð27Þ leads to the correct
quarks, charged leptons, and neutrino masses, in addition to
the quark and neutrino mixing matrices, consistent with the
latest experimental results. We present a new model based
on the semi-direct product Δð27Þ ⋉ S2, where S2 is quite
useful symmetry that guarantees the tri-bimaximal mixing
as zero approximation in our model. It is worth mentioning
that although Δð27Þ ⋉ S2 is isomorphic to Δð54Þ, the
constructed model based on these two symmetries could
be different in the following aspects: (i) Δð54Þ is rather
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more constrained than Δð27Þ ⋉ S2, since in the latter case
we may have a multiplet charged under Δð27Þ and a singlet
under S2 or, conversely, a multiplet under S2 and a singlet
under Δð27Þ where this may not be feasible in Δð54Þ.
(ii) Δð54Þ contains doublets where Δð27Þ does not.
(iii) Δð54Þ contains all permutations of three objects [as
S3 is a subgroup of Δð54Þ], while in Δð27Þ ⋉ S2 we chose
certain permutations, namely, the permutation of the second
and third elements of the triplet. Furthermore, as we will
see, other types of symmetry like Uð1Þ should be consid-
ered to obtain viable mixings in quark and lepton sectors.
We will show that deviation from the tri-bimaximal

neutrino mixing matrix is related to spontaneous breaking
of this symmetry. The Higgs sector in our model consists of
one Higgs doublet only to break the electroweak symmetry
and the SM singlet scalars to break the flavor symmetry.
Therefore, our model is free from the famous flavor
changing neutral current constraints that most constructed
models suffer from due to the existence of more than one
SUð2Þ doublet Higgs.
We will show that the observed hierarchical structure of

quark and lepton masses can be accommodated. In addi-
tion, the small quark mixing in the VCKM and large neutrino
mixing in UMNS can be simultaneously realized. If one
assumes that left-handed quarks and right-handed up
quarks transform as a triplet under Δð27Þ, then one finds
that the up-quark mass matrix is flavor diagonal. With
right-handed down quarks transform as singlets under
Δð27Þ, we will show that the VCKM mixing matrix can
be obtained from the down quark sector. In the lepton
sector, the lepton doublet transforms under Δð27Þ as a
triplet, while the right-handed charged lepton transforms as
a singlet. In this case, the charged lepton mass matrix is
almost diagonal. Finally, we assume right-handed neutrinos
as singlets under Δð27Þ; thus, with the appropriate singlet
scalars [triplet and singlets under Δð27Þ], we will show that
a generic MNS mixing matrix can be obtained, and
different interesting limits will be studied.
The paper is organized as follows. In the next section we

briefly introduceΔð27Þ flavor symmetry. In Sec. IIIwe show
that the charged lepton mass hierarchy can be naturally
accounted for. Section IVis devoted for neutrinomasses and
mixing, where the observed nearly tri-bimaximal mixing is
realized.Quark sector is discussed in Sec.V. In ourmodel the
quark mixing matrix, VCKM, is obtained from down quarks.
Finally, we give our conclusions in Sec. VI.

II. Δð27Þ FLAVOR SYMMETRY

The discrete group Δð27Þ is a subgroup of SUð3Þ
and an isomorphic to the semi-direct product group
ðZ3 × Z0

3Þ ⋉ Z00
3 . It is also one of the groups Δð3n2Þ with

n ¼ 3. It has 27 elements and 11 conjugacy classes, so it
has 11 irreducible representations, two triplets, 3 and its
conjugate 3̄, and 9 singlets 11–19. The group multiplication
rules for Δð27Þ are

0
B@

x1
x2
x3

1
CA

3

×

0
B@

y1
y2
y3

1
CA

3

¼

0
B@

x1y1
x2y2
x3y3

1
CA

3̄

þ

0
B@

x2y3
x3y1
x1y2

1
CA

3̄

þ

0
B@

x3y2
x1y3
x2y1

1
CA

3̄

;

ð1Þ

3̄ × 3̄ ¼ 3þ 3þ 3; ð2Þ

with similar multiplication rules as above. 3 × 3̄ ¼P
9
i¼1 1i, where

11 ¼ x1ȳ1þx2ȳ2þx3ȳ3; 12 ¼ x1ȳ1þωx2ȳ2þω2x3ȳ3;

13 ¼ x1ȳ1þω2x2ȳ2þωx3ȳ3; 14¼ x1ȳ2þx2ȳ3þx3ȳ1;

15 ¼ x1ȳ2þωx2ȳ3þω2x3ȳ1; 16¼ x1ȳ2þω2x2ȳ3þωx3ȳ1;

17 ¼ x2ȳ1þx3ȳ2þx1ȳ3; 18 ¼ x2ȳ1þω2x3ȳ2þωx1ȳ3;

19 ¼ x2ȳ1þωx3ȳ2þω2x1ȳ3; ð3Þ

where ω ¼ e2πi=3. The singlet multiplications are given in
Table I.
Nonvanishing neutrino masses imply the existence of

three right-handed neutrinos. Therefore, we consider the
matter sector of SM besides three right-handed neutrinos.
We assign the lepton doublet to the triplet 3 ofΔð27Þ, while
right-handed components are ascribed to different singlet
representations of Δð27Þ. As mentioned, we consider only
one SM Higgs scalar (H) and the following singlets: χ, ξ, η,
σ, and ϕ that break the flavor symmetry.
In order to get the tri-bimaximal mixing as a zero-order

approximation in our model, we find that an additional S2
symmetry should be considered. The S2, the group of
permutation of two objects, has the following generators in
the three-dimensional representation:

e ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA a ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA: ð4Þ

The particle transformations under S2 are given by

f1 ↔ f1; f2 ↔ f3; ð5Þ

TABLE I. The singlet multiplications of the group Δð27Þ.
12 13 14 15 16 17 18 19

12 13
13 11 12
14 16 15 17
15 14 16 19 18
16 15 14 18 17 19
17 18 19 11 13 12 14
18 19 17 12 11 13 16 15
19 17 18 13 12 11 15 14 16
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where fi stands for li, χi, ηi, ϕi, ξi, σi, eRi
, and νRi

.
Moreover, we consider an extra Uð1Þ group to get the
correct mass hierarchy of the charged leptons. In Table II,
we present the field transformations underΔð27Þ andUð1Þ.

Before concluding this section, we comment on possible
vacuum alignments for the VEVs of the singlet scalars.
The Δð27Þ ⋉ S2 ×Uð1Þ invariant scalar potential at the
renormalizable level is given by

V ¼ m2
1η

†
1η1 þ g1ðη†1η1Þ2 þm2

2ðη†2η3 þ η†3η2Þ þ g2η
†
1η1η

†
2η3 þ g3η

†
2η2η

†
2η1 þ g4η

†
3η3η

†
3η1

þ g5η
†
2η2η

†
3η3 þm2

ξξ
†ξþ h1ðξ†ξÞ2 þm2

σσ
†σ þ h2ðσ†σÞ2 þm2

ϕϕ
†ϕþ h3ðϕ†ϕÞ2

þm2
χχ

†χ þ h4ðχ†χÞ2 þ h5η
†
1η1ξ

†ξþ h6η
†
1η1σ

†σ þ h7η
†
1η1ϕ

†ϕþ h8η
†
1η1χ

†χ

þ h9η
†
2η3ξ

†ξþ h10η
†
2η3σ

†σ þ h11η
†
2η3ϕ

†ϕþ h12η
†
2η3χ

†χ þ h13ξ†ξϕ†ϕþ h14ξ†ξχ†χ

þ h15ϕ†ϕχ†χ þ h16ξ†ξσ†σ þ h17χ†χσ†σ þ h18ϕ†ϕσ†σ þ H:c: ð6Þ

The S2 symmetry leads to g3 ¼ g4. From this equation, one
can notice that the potential contains 6 free mass parameters
and 23 free self-interacting couplings. This large number of
free parameters is one of the features of any flavor scalar
(nonsupersymmetric) potential. Therefore, the minimiza-
tion conditions of this potential can imply the following
extremum solutions:

hξi¼ð0;w;0Þ; hϕi¼ð0;0;w0Þ; hχi¼ðv;v;vÞ
hσi¼ðv0;0;0Þ; hη1i¼u1; hη2i¼u2; hη1i¼u3: ð7Þ

We assume that the VEVs w, w0, v0, and v are of the same
order and satisfy the following relation:

w
Λ
∼
w0

Λ
∼
v
Λ
∼
v0

Λ
∼Oðλ2CÞ; ð8Þ

where λC is the Cabibbo angle, i.e., λC ∼ 0.22.

III. CHARGED LEPTON MASSES
AND Z4 SYMMETRY

As shown in Table II, the lepton doublet is assigned
to the triplet 3 of Δð27Þ, while the right-handed leptons lci
are ascribed as singlet representations of Δð27Þ. We find
that the hierarchy between the charged lepton masses may
be achieved by imposing an extra Uð1Þ symmetry. A
possible set of charge assignments of Uð1Þ that lead to
Yukawa interactions compatible with the experimental
data is given in Table II. Therefore, the charged lepton
Yukawa Lagrangian, invariant underΔð27Þ ⋉ S2 ×Uð1Þ, is
given by

Ll ¼
λe
Λ4

l̄HeRχ2ϕ2 þ λμ
Λ2

l̄HμRϕ
†σ þ λτ

Λ
l̄HτRϕþ H:c:;

ð9Þ

where Λ is nonrenormalization scale, which is ≫ TeV.
The Yukawa couplings λe, λμ, λτ are of order one.
As mentioned in the previous section, the scalar potential
Vðϕ; χ; ξ; σÞ contains several free parameters that can be
adjusted to generate the VEVs for the flavons as given in
Eq. (7). From Eqs. (1) and (2), one can show that

hχ2i × hϕ2i ¼

0
B@

v2

v2

v2

1
CA ×

0
B@

0

0

ω02

1
CA ¼

0
B@

v2ω02

v2ω02

v2ω02

1
CA;

hϕ†i × hσi ¼

0
B@

0

0

ω0†

1
CA ×

0
B@

v0

0

0

1
CA ¼

0
B@

0

ω02v0

0

1
CA: ð10Þ

In this case, one finds that the charged lepton mass
matrix ml is given by

ml ¼

0
B@

aλ6C 0 0

aλ6C bλ2C 0

aλ6C 0 1

1
CAλτλ

2
ChHi; ð11Þ

where a ¼ λe
λτ
, b ¼ λμ

λτ
. The matrix ml is not symmetric or

Hermitian, so it can be diagonalized by two unitary
matrices:

ml ¼ ULm
diag
l UT

R ∼ λτλ
2
ChHi

0
B@

1
ffiffiffi
2

p
abλ8C 0

−
ffiffiffi
2

p
abλ8C 1 0

0 0 1

1
CA

×

0
B@

aλ6C 0 0

0 bλ2C 0

0 0 1

1
CA
0
B@

1 − a
b λ

4
C −aλ6C

a
b λ

4
C 1 0

aλ6C 0 1

1
CA: ð12Þ

TABLE II. Field transformations under Δð27Þ and Uð1Þ. Here,
α refers to 1, 2, 3.

Fields l eR μR τR νRα
H χ ηα ξ ϕ σ

Δð27Þ 3 11 11 11 1α 11 3 1α 3̄ 3 3̄
U(1) 1 −6 2 −2 −1 1 1 2 1 2 0
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Therefore, the charged lepton masses are given by

me ∼ aλτλ8ChHi;
mμ ∼ bλτλ4ChHi;
mτ ∼ λτλ

2
ChHi: ð13Þ

Hence, the following mass relations are satisfied:

mτ∶mμ∶me ≈ 1∶bλ2C∶aλ6C: ð14Þ

We can choose a and b to get the hierarchy between the
charged lepton masses. For a ¼ 2.53, b ¼ 1.22, the masses
of the charged particles are

me ¼ 0.511 MeV;

mμ ¼ 105.658 MeV;

mτ ¼ 1.776 GeV:

It is worth noting that the left-handed mixing matrix UL is
close to the identity matrix, so the lepton mixing arises
mainly from the neutrino sector.

IV. NEUTRINO MASSES AND MIXING

From solar and atmospheric neutrino oscillation data
[20], the neutrino mass squared differences are given by

Δm2
21 ¼ 7.54þ0.26

−0.22 × 10−5 eV2;

jΔm2
31j ¼ 2.47þ0.06

−0.22 × 10−3 eV2;

jΔm2
32j ¼ 2.46þ0.07

−0.11 × 10−3 eV2: ð15Þ

In addition, the latest best-fit results for the mixing pattern
in the lepton sector are given by [1]

sin2θ12 ¼ 0.308þ0.017
−0.017 ;

sin2θ23 ¼ 0.437þ0.033
−0.023 ;

sin2θ13 ¼ 0.0234þ0.0020
−0.0019 : ð16Þ

Having the lepton doublet, li, as a Δð27Þ triplet and
right-handed neutrinos, νRj

, as singlets, one can then
construct the following invariant interaction terms:

LD ¼ 1

Λ
λil̄νRi

Hχ; ð17Þ

where χ is a Δð27Þ triplet scalar. Therefore, one gets the
following terms:

1

Λ
λ1ðl̄1χ1 þ l̄2χ2 þ l̄3χ3ÞνR1

H;

1

Λ
λ2ðl̄1χ1 þ ω2l̄2χ2 þ ωl̄3χ3ÞνR2

H;

1

Λ
λ3ðl̄1χ1 þ ωl̄2χ2 þ ω2l̄3χ3ÞνR3

H:

The S2 flavor symmetry imposes the equality of the second
and third couplings: λ2 ¼ λ3. After the flavor symmetry
breaking through the aligned vacuum, hχi ¼ ðv; v; vÞ, the
following Dirac neutrino mass matrix is obtained

mD ¼ v
Λ

0
B@

λ1 λ2 λ2

λ1 ω2λ2 ωλ2

λ1 ωλ2 ω2λ2

1
CAhHi; ð18Þ

which can be expressed as

mD ¼ v
Λ

0
B@

1 1 1

1 ω2 ω

1 ω ω2

1
CA
0
B@

λ1 0 0

0 λ2 0

0 0 λ2

1
CAhHi: ð19Þ

Note that here all Dirac neutrino masses are generated from
the same nonrenormalizable interactions of order v=Λ.
Therefore, one would not expect any hierarchy between
them.
Furthermore, from the invariant interactions of right-

handed neutrinos with Δð27Þ singlets ηi, Majorana mass
terms for νR can be obtained from the following renorma-
lizable interactions:

LM ¼ fijkν̄cRi
νRj

ηk: ð20Þ

According to the Δð27Þ multiplication rules of singlet
representations, the invariants that give right-handed neu-
trino masses are

f1ν̄cR1
νR1

η1; f2ν̄cR1
νR2

η3; f3ν̄cR1
νR3

η2;

f4ν̄cR2
νR2

η2; f5ν̄cR2
νR3

η1; f6ν̄cR3
νR3

η3: ð21Þ

The symmetry S2 imposes the following constraints:

f2 ¼ f3 f4 ¼ f6:

Therefore, after Δð27Þ symmetry breaking through the
VEVs of ηk, one obtains the following right-handed
Majorana mass matrix:

MR ¼

0
B@

f1u1 f3u3 f3u2
f3u3 f4u2 f5u1
f3u2 f5u1 f4u3

1
CA: ð22Þ
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As usual, the light neutrino mass matrix is obtained in
terms of the Dirac neutrino mass matrix and right-handed
neutrino one through a type I seesaw mechanism as

Mν ¼ −mDM−1
R mT

D: ð23Þ

It is noticeable that the mass matrix MR in Eq. (22)
is a generic matrix that can lead to different type of
neutrino mixing matrix (tri-bimaximal or nearly tri-
bimaximal mixing matrix), depending on the coupling
f3 and the difference between the VEVs u2 and u3. In
general, the tri-bimaximal mixing matrix, UTBM, can be
written as [21,22]

UTBM ¼ ΓmagU0; ð24Þ

where Γmag is the magic matrix proposed by Cabibbo [23]
and Wolfenstein [24] and has the form

Γmag ¼
1ffiffiffi
3

p

0
B@

1 1 1

1 ω ω2

1 ω2 ω

1
CA; ð25Þ

and

U0 ¼

0
B@

1 0 0

0 1ffiffi
2

p 1ffiffi
2

p

0 1ffiffi
2

p − 1ffiffi
2

p

1
CA
0
B@

0 1 0

1 0 0

0 0 i

1
CA ¼

0
B@

0 1 0

1ffiffi
2

p 0 iffiffi
2

p

1ffiffi
2

p 0 − iffiffi
2

p

1
CA:

ð26Þ

From Eqs. (19) and (25),

Mν ¼ −
3v2

Λ2
hHi2ΓmagDλM−1

R DλΓmag; ð27Þ

where Dλ ¼ diagðλ1; λ2; λ2Þ. If Mν is diagonalized by a
tri-bimaximal mixing matrix, then we can determine the

corresponding form of the right-handed neutrino mass
matrix, which typically takes the form

ðMRÞTBM ¼

0
B@

x 0 0

0 z y

0 y z

1
CA: ð28Þ

Therefore, the exact tri-bimaximal can be naturally
obtained within Δð27Þ flavor symmetry if the coupling
f3 ¼ 0 and the VEVs u2 ¼ u3 ¼ u, which ensures the S2
invariance. In this case, one obtains

Mdiag
ν ¼ −3

v2

Λ2
hHi2

0
BBBBB@

λ2
2

f5u1þf4u
0 0

0
λ2
1

f1u1
0

0 0
λ2
2

f5u1−f4u

1
CCCCCA: ð29Þ

As expected, unlike the charged lepton masses, here there is
no clear argument for neutrino mass hierarchy. Instead, one
should assume a hierarchy among the involved couplings of
flavon VEVs to achieve the type of desired neutrino mass
spectrum. For instance, if one considers f4 ∼ f5 ≫ f1,
u1 ∼ u, and the couplings λs are of the same order, the
normal neutrino mass hierarchy is realized, while an
inverted neutrino mass hierarchy is obtained if f4 ∼ f5 ≫
f1 and u1 ∼ −u. Finally, the degenerate scenario is obtained
if f1 ∼ f5 ≫ f4 and u1 ≫ u.
Now we consider the case of f3 ≠ 0 and u2 ¼ u3 ¼ u

(i.e., Mν is still invariant under S2 symmetry). In this case,
the neutrino mass matrix is given by

Mν ¼
v2

Λ2
hHi2

0
B@

A B B

B C D

B D C

1
CA; ð30Þ

where

A ¼ f5u1λ21 þ ðf4λ1 − 4f3λ2Þuλ1 þ 2f1λ22u1
f1u1ðf5u1 þ f4uÞ − 2f23u

2
;

B ¼ f5u1λ21 þ ðf4λ1 − f3λ2Þuλ1 − f1λ22u1
f1u1ðf5u1 þ f4uÞ − 2f23u

2
;

C ¼ f25λ
2
1u

2
1 þ 2f5λ2u1ðf1λ2u1 þ f3λ1uÞ − uð−f1f4λ22u1 þ ðf24λ21 þ 2f3f4λ1λ2 þ 3f23λ

2
2ÞuÞ

ðf5u1 − f4uÞðf1u1ðf5u1 þ f4uÞ − 2f23u
2Þ ;

D ¼ f25λ
2
1u

2
1 þ f5λ2u1ð−f1λ2u1 þ 2f3λ1uÞ − uð2f1f4λ22u1 þ ðf24λ21 þ 2f3f4λ1λ2 − 3f23λ

2
2ÞuÞ

ðf5u1 − f4uÞðf1u1ðf5u1 þ f4uÞ − 2f23u
2Þ :

As emphasized in Ref. [25], the tri-bimaximal mixing matrix corresponds to the neutrino mass matrix that satisfies the
following three conditions:
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ðMνÞ12 ¼ ðMνÞ13;
ðMνÞ22 ¼ ðMνÞ33;

ðMνÞ11 þ ðMνÞ12 ¼ ðMνÞ22 þ ðMνÞ23: ð31Þ
It is clear that the neutrino mass matrix in our case satisfies
the first two conditions only while the third condition is
not satisfied. Therefore, this neutrino mass matrix can be
diagonalized by a matrix which is very close to tri-
bimaximal. However, we find that the resulting mixing
matrix still has zero θ13 and maximal θ23. It essentially
deviates from tri-bimaximal in the first and the second
columns. Also, the corresponding eigenvalues of neutrino
masses are given by

m1 ¼ −3
v2

Λ2
hHi2 2λ21λ

2
2

ðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − y2

p
Þ
;

m2 ¼ −3
v2

Λ2
hHi2 2λ21λ

2
2

ðx −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − y2

p
Þ
;

m3 ¼ −3
v2

Λ2
hHi2 λ22

ðf5u1 − f4uÞ
; ð32Þ

where x ¼ ðf1λ22 þ f5λ21Þu1 þ f4uλ21 and y2 ¼ 4λ21λ
2
2

ð−2f23u2 þ f1u1ðf5u1 þ f4uÞÞ. Here the normal hierarchy
is achieved if f4 ∼ f5 ≫ f1 ≫ f3, u1 ∼ u, and the cou-
plings λ1 ∼ λ2. The degenerate scenario is obtained if f1 ∼
f5 ≫ f4 ≫ f3 and u1 ≫ u. Finally, the inverted hierarchy
is obtained if f4 ∼ f5 ≫ f1 ≫ f3 and u1 ∼ −u.
Now we turn to the case of spontaneous S2 symmetry

breaking, i.e., u2 ≠ u3, with f3 ∼ 0. In this case, all three
relations in Eq. (31) are violated. The consequences of the
deviation from tri-bimaximal mixing on the symmetry
manifesting in the neutrino mass matrix were studied in
[25]. Following the notations used in this reference, we
define the parameters which characterize the deviation of
mixing angles from the tri-bimaximal values as

D12 ≡ 1

3
− s212; D23 ≡ 1

2
− s223; D13 ≡ s13; ð33Þ

where sij ≡ sin θij. The violation of the tri-bimaximal
symmetry of the neutrino mass matrix in Eq. (31) can
be written in terms of deviation parameters D23 and s13 as
follows:

Δ1 ¼ ðMνÞ12 − ðMνÞ13 ¼
ffiffiffi
2

p

3
ðð2m1 þm2Þe2iδ − 3m3Þs13e−iδ þ

2

3
ðm2 −m1ÞD23;

Δ2 ¼ ðMνÞ22 − ðMνÞ33 ¼
2
ffiffiffi
2

p

3
ðm2 −m1Þs13eiδ þ

1

3
ðm1 þ 2m2 − 3m3ÞD23;

Δ3 ¼ ðMνÞ11 þ ðMνÞ12 − ððMνÞ22 þ ðMνÞ23Þ

¼
�

1

3
ffiffiffi
2

p ð3m3 − ð2m1 þm2Þe2iδÞe−iδ −
ffiffiffi
2

p

3
ðm2 −m1Þeiδ

�
s13

þ
�
2

3
ð3m3 − ð2m1 þm2Þe2iδÞe−2iδ −

1

3
ðm2 −m1Þ

�
s213
2

−
1

3
ð2m1 þm2 − 3m3ÞD23 −

9

4
ðm2 −m1ÞD12; ð34Þ

where mi are the masses of the effective neutrinos and δ is the leptonic Dirac phase. In our model the deviations from
tri-bimaximal conditions in Eq. (31) can give constrains on our parameters (couplings and VEVs) in order to get the correct
mixing angles and desired scenario of mass spectra,

Δ1 ¼ −
v2

Λ2
hHi2 i

ffiffiffi
3

p
λ22ðu2 − u3Þf4

f25u
2
1 − f24u2u3

; Δ2 ¼
v2

Λ2
hHi2 i

ffiffiffi
3

p
λ22ðu2 − u3Þf4

f25u
2
1 − f24u2u3

; Δ3 ¼ −
v2

Λ2
hHi2 i

ffiffiffi
3

p
λ22ðu2 − u3Þf4

f25u
2
1 − f24u2u3

: ð35Þ

From Eqs. (34) and (35) we can calculate the deviation parameters from tri-bimaximal mixing (33) as follows

s13 ¼
v2

Λ2
hHi2

3i
ffiffi
3
2

q
f4λ22ðu2 − u3Þðm2 −m3Þeiδ

ððm1 þ 2m2 − 3m3Þm3 þ e2iδð−3m1m2 þ 2m1m3 þm2m3ÞÞð−f25u21 þ f24u2u3Þ
;

D23 ¼ −
v2

Λ2
hHi2 i

ffiffiffi
3

p
f4λ22ðu2 − u3Þðe2iδm2 −m3Þ

2ððm1 þ 2m2 − 3m3Þm3 þ e2iδð−3m1m2 þ 2m1m3 þm2m3ÞÞð−f25u21 þ f24u2u3Þ

D12 ¼
�
v2

Λ2
hHi2

�
2 −3ðu2 − u3Þ2f24λ42ðe2iδðm1 þm2Þ − 2m3Þðm2 −m3Þ2
ðm1 −m2Þððm1 þ 2m2 − 3m3Þm3 þ e2iδð−3m1m2 þ 2m1m3 þm2m3ÞÞ2ðf25u21 − f24u2u3Þ2

: ð36Þ
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Thus, one can write the following relations:

s13 ¼
ffiffiffi
2

p
eiδð−m2 þm3Þ
ðe2iδm2 −m3Þ

D23

D12 ¼
4ðe2iδðm1 þm2Þ − 2m3Þðm2 −m3Þ2

9ðm1 −m2Þð−e2iδm2 þm3Þ2
D2

23: ð37Þ

If the Dirac phase δ ¼ 0, from the first relation, one finds
that s13 ∼ 0.13 (lower 3σ experimental limit) if D23 ∼ 0.09,
which corresponds to 1σ limit of atmospheric neutrino
mixing angle [1]. In addition, if D23 ∼ 0.11 (2σ limit), one
gets s13 ∼ 0.155 (best-fit value). In Fig. 1, we plot the
relation between the Dirac phase δ and s13 for different
values of D23. As can be seen from this figure, the
phase may change the value of s13 up to 40% depending

on the value of the phase. In Fig. 2 we plot the relation
between the lightest neutrino massm1 andD12 for different
values of D23. As can be seen from this figure, for
D23 ¼ 0.09–0.11, which leads to consistent s13, the mass
spectrum of the neutrino should be strongly hierarchical,
i.e.,m1 < 0.01 eV, in order to getD12 in the allowed range.
We also present the relation between D12 and D23 for
different values of m1. It confirms the same conclusion that
the allowed range for D12 can be achieved if m1 ≲ 0.01 eV
for 0.09≲D23 ≲ 0.11.
The approximated neutrino mass eigenvalues are

given by

m1≃−3
v2

Λ2
hHi2

 
2λ22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4f25u
2
1þf24ðu2−u3Þ2

q
þf4ðu2þu3Þ

!
;

m2≃−3
v2

Λ2
hHi2

�
λ21

f1u1

�
;

m3≃−3
v2

Λ2
hHi2

 
2λ22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4f25u
2
1þf24ðu2−u3Þ2

q
−f4ðu2þu3Þ

!
:

ð38Þ

We can tune the parameters to obtain the various mass
hierarchy spectra as follows: The normal hierarchy is
achieved if f4 ∼ f5 ≫ f1, u1 ∼ ðu2 þ u3Þ, and the cou-
plings λs are of the same order. The degenerate scenario is
obtained if f1 ∼ f5 ≫ f4 and u1 ≫ u2; u3. The inverted
hierarchy is obtained if f4 ∼ f5 ≫ f1 and u1 ∼ −ðu2 þ u3Þ.
To ensure that there are plenty of values for the

parameters, flavon VEVs, and coupling, which can account
for the recent values of mixing angles and neutrino masses
simultaneously, we show in Fig. 3 a correlation between s13
and m3, where all free parameters vary in their allowed
ranges.

0 1 2 3 4 5 6
0.00

0.05

0.10

0.15

Δ

13

FIG. 1 (color online). s13 versus the Dirac phase δ for normal
mass hierarchy and different values of D23. The deviation
parameter D23 is set to its best fit value ∼0.066, 1σ limit 0.09
and 0.11 for the dashed, solid, dotted lines, respectively.
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FIG. 2 (color online). (Left) The deviation parameter D12 versus the neutrino mass m1 for different values of D23. The deviation
parameter D23 is set to its best-fit value ∼0.066, 1σ limit 0.09, and 0.11 for the dashed, solid, dotted lines, respectively. (Right)
The deviation parameter D23 versus D12 for different values of m1. m1 ¼ 0, 0.01, 0.015 eV for the dashed, solid, dotted lines,
respectively. The horizontal dashed lines represent the best-fit value and the upper 3σ limit of D12. Here we set the Dirac delta δ ¼ 0:
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It is important to note the essential role of S2 symmetry,
which permutes the second flavor to the third one and
leads to the equality of the couplings in the Dirac mass
matrix and right-handed mass matrix. In this case, the
neutrino mass matrix has the form of Eq. (28) and, hence,
tri-bimaximal mixing is realized. When we break the S2
spontaneously by imposing different VEVs to the second
and the third flavor of the flavon η, the deviation from tri-
bimaximal is achieved.

V. QUARK MASSES AND CKM MIXING

In this section we analyze the quark masses and mixing
in the framework of the symmetry group Δð27Þ ⋉
S2 ×Uð1Þ. The quark transformations under Δð27Þ are
shown in Table III. We also assume that the left-handed
quarks and upright quarks transform under S2 such that
QL2

↔ QL3
and UR2

↔ UR3
, while the down right quarks

transform trivially under S2 symmetry. From these charge
assignments, one finds that Yukawa interaction terms of
the up quarks, invariant under Δð27Þ ⋉ S2 ×Uð1Þ, are
given by

Lu ¼
1

Λ
hui Q̄HURηi; ð39Þ

where i ¼ 1, 2, 3. The allowed invariants terms are

1

Λ
hu1HðQ̄1uR þ Q̄2cR þ Q̄3tRÞη1;

1

Λ
hu2HðQ̄1uR þ ω2Q̄2cR þ ωQ̄3tRÞη2;

1

Λ
hu3HðQ̄1uR þ ωQ̄2cR þ ω2Q̄3tRÞη3: ð40Þ

From the S2 symmetry, hu2 ¼ hu3 . The masses of the up
quarks are

mu ¼
1

Λ
hHiðhu1u1 þ hu2ð2u2 þ ΔÞÞ;

mc ¼
1

Λ
hHiðhu1u1 þ hu2ðωu2 þ ω2ðu2 þ ΔÞÞÞ;

mt ¼
1

Λ
hHiðhu1u1 þ hu2ðω2u2 þ ωðu2 þ ΔÞÞÞ; ð41Þ

where Δ ¼ u3 − u2. In general, the coupling constants hui
and VEVs ui are complex, so the previous three masses
are different and can account for the hierarchial mass
spectrum of the up-quark sector. As an example for this
possibility, if ui

Λ ∼Oðλ2CÞ and hu1 ≃ 6.85, hu2 ≃ −6.85eiπ=3,
Δ
Λ ≃ −0.083eiπ=6, one gets the up-quark masses consistent
with the following experimental results:

muð1 GeVÞ ¼ 4.5� 1 MeV;

mcðmcÞ ¼ 1.25� 0.15 GeV;

mtðmtÞ ¼ 166� 5 GeV: ð42Þ

Finally, we consider the down quark mass and mixing.
From the charge assignments given in Table III, one can
write the following invariants:

Ld ¼
1

Λ3
hdQ̄HdRðχη21 þ ϕ2ξÞ

þ Q̄HsR

�
1

Λ3
hs1ϕξ

†σ þ 1

Λ2
hs2ξ

†η1 þ
1

Λ2
hs3ξσ

�

þ Q̄HbR

�
1

Λ3
hb1ξ

†ξϕþ 1

Λ2
hb2ξξþ

1

Λ
hb3ϕ

�
: ð43Þ

If hs3 ∼ 2hs2 ∼ hs1=2, then after spontaneous symmetry
breaking, the following mass matrix of down quarks is
obtained:

md ≃

0
BB@

λ4C 2λ4C λ4C

λ4C
λ2C
2

λ2C

λ4C λ2C 1

1
CCAhb1λ

2
ChHi: ð44Þ

This matrix can be diagonalized by two unitary
matrices as

md ¼ ULm
diagonal
d UT

R; ð45Þ

FIG. 3 (color online). sin θ13 versus the greatest neutrino mass
m3. All free parameters of the model are varying within their
allowed regions

TABLE III. Quark assignments under Δð27Þ and Z4.

Fields Q dR sR bR UR

Δð27Þ 3 11 11 11 3
Uð1Þ 1 -5 -1 -2 -2
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where, for λC ¼ 0.22,

UL ¼

0
B@

0.976 0.214 0.0026

−0.214 0.975 0.049

0.0080 −0.0488 0.9987

1
CA;

mdiagonal
d ¼

0
B@

0.0018 0 0

0 0.0224 0

0 0 1.0024

1
CAhb1λ

2
ChHi;

UR ¼

0
B@

0.992 0.119 0.0024

−0.119 0.991 0.049

0.0034 −0.049 0.9987

1
CA: ð46Þ

It is clear that the left-handed rotation matrix is close to
the quark VCKM mixing matrix, and the hierarchical
spectrum of down quark masses is slightly compatible
with measured down quark masses:

mdð1 GeVÞ ¼ 8.0� 2 MeV;

msð1 GeVÞ ¼ 150� 50 MeV;

mbðmbÞ ¼ 4.25� 0.15 GeV: ð47Þ

VI. CONCLUSIONS

In this paper we have constructed a model of fermion
masses and mixing based on an extension of the SM with a
discrete flavor symmetryΔð27Þ. Our study is different from
the previous Δð27Þ analyses on two main points: (i) One

Higgs doublet is used to break the electroweak symmetry,
and SM singles only are involved in spontaneous breaking
of Δð27Þ, so our model is FCNC free. (ii) Both quark and
lepton masses and their mixing are simultaneously ana-
lyzed under the same flavor symmetry. In fact, most of the
work in the literature focuses on the lepton sector only.
By assigning lepton doublets to a Δð27Þ triplet and right-

handed leptons to singlets, we show that the charged lepton
mass matrix is almost diagonal with the desired hierarchy.
Therefore, the neutrino mixing matrix is generated from the
neutrino sector. We also argue that deviation from tri-
bimaximal is due to spontaneous violation of the imposed
S2 symmetry. Similarly, by assigning quark doublets and
right-handed up quarks to a Δð27Þ triplet and right-handed
down quarks to singlets, we obtain the diagonal up-quark
mass matrix, and the CKM quark mixing matrix arises from
the down sector only.
Finally, our model predicts that for sin θ13 ≃ 0.13, the

mass of the lightest neutrino is of order Oð0.1Þ eV and
sin2 θ23 ≃ 0.41, which is a remarkable deviation from
maximal mixing.
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