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We describe the observed light-baryon spectrum by extending superconformal quantum mechanics to
the light front and its embedding in AdS space. This procedure uniquely determines the confinement
potential for arbitrary half-integer spin. To this end, we show that fermionic wave equations in AdS space
are dual to light-front supersymmetric quantum-mechanical bound-state equations in physical space-time.
The specific breaking of conformal invariance explains hadronic properties common to light mesons and
baryons, such as the observed mass pattern in the radial and orbital excitations, from the spectrum
generating algebra. The holographic embedding in AdS also explains distinctive and systematic features,
such as the spin-J degeneracy for states with the same orbital angular momentum, observed in the
light-baryon spectrum.
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I. INTRODUCTION

The classical Lagrangian of QCD is invariant under scale
and conformal transformations in the limit of massless
quarks [1,2]. However, meson and baryon bound-states
havewell-defined ground states and towers of excited states
with well-defined and measurable properties such as mass
and spin. A simple but fundamental question in hadron
physics is thus to understand the mechanism which endows
a nominally conformal theory with a mass scale, as well as
to explain the remarkably similar linear Regge spectros-
copy of both mesons and baryons.
In the quest for semiclassical equations to describe

bound states, in the large distance strongly coupled regime
of QCD, one can start by reducing the strongly correlated
multiparton light-front Hamiltonian dynamical problem to
an effective one-dimensional quantum field theory [3].
This procedure is frame independent and leads to a
semiclassical, relativistic light-front (LF) wave equation
for the valence state (the lowest Fock state), analogous to
the Schrödinger and Dirac equations in atomic physics. The
complexities arising from the strong interaction dynamics
of QCD and an infinite class of Fock components are
incorporated in an effective potential U, but its determi-
nation from first principles remains largely an open
question.

Thus, a second central problem in the theoretical search
for a semiclassical approximation to QCD is the construc-
tion of the effective LF confining potential U which
captures the underlying dynamics responsible for confine-
ment, the emergence of a mass scale and the universal
Regge behavior of mesons and baryons. Since our light-
front semiclassical approach is based on a one-dimensional
quantum field theory, it is natural to extend the framework
introduced by de Alfaro, Fubini and Furlan (dAFF) [4] to
the frame-independent light-front Hamiltonian theory,
since it gives important insight into the QCD confinement
mechanism [5]. Remarkably, dAFF show that a mass scale
can appear in the Hamiltonian without breaking the
conformal invariance of the action.
The dAFF construction [4] begins with the study of the

spectrum of a conformally invariant one-dimensional
quantum field theory which does not have a normalizable
ground state. A new Hamiltonian is defined as a super-
position of the generators of the conformal group and
consequently it leads to a redefinition of the corresponding
evolution parameter τ, the range of which is finite. This
choice determines the quantum-mechanical evolution of
the system in terms of a compact operator with normal-
izable eigenstates and a well-defined ground state. A scale
appears in the Hamiltonian while retaining the conformal
invariance of the action [4]. This remarkable result is based
on the isomorphism of the algebra of the one-dimensional
conformal group ConfðR1Þ to the algebra of generators of
the group SOð2; 1Þ. One of the generators of this group, the
rotation in the two-dimensional space, is compact. As a
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result, the form of the evolution operator is fixed and
includes a confining harmonic oscillator potential, and thus
equally spaced eigenvalues [6,7]. Since the generators of
ConfðR1Þ have different dimensions, their relations with
the generators of SOð2; 1Þ imply a scale, which according
to dAFF may play a fundamental role [4,5].
A third important feature in the construction of semi-

classical equations in QCD is the correspondence between
the equations of motion for arbitrary spin in anti–de Sitter
(AdS) space and the light-front Hamiltonian equations of
motion for relativistic light hadron bound states in physical
space-time [3,8]. This approach is inspired by the AdS/CFT
correspondence [9] where, in principle, one can compute
physical observables in a strongly coupled gauge theory in
terms of a weakly coupled classical gravity theory defined
in a higher dimensional space [9–11]. In fact, an additional
motivation for using AdS/CFT ideas to describe strongly
coupled QCD follows from the vanishing of the β-function
in the infrared, which leads to a conformal window in this
regime [12–14].
The procedure, known as light-front holography

[3,15,16], allows one to establish a precise relation between
wave functions in AdS space and the LF wave functions
describing the internal structure of hadrons. As a result, the
effective LF potential U derived from the AdS embedding
is conveniently expressed, for arbitrary integer spin repre-
sentations, in terms of a dilaton profile which is determined
by the dAFF procedure described above [5,8]. The result is
a light-front wave equation which reproduces prominent
aspects of hadronic data, such as the mass pattern observed
in the radial and orbital excitations of the light mesons [16],
and in particular a massless pion in the chiral limit.
The light-front holographic embedding for baryons is not

as simple as for mesons, since a dilaton term in the AdS
fermionic action can be rotated away by a redefinition of
the fermion fields in AdS [16,17], and therefore it has no
dynamical effects on the spectrum. In practice, one can
introduce an effective interaction in the fermion action, a
Yukawa term, which breaks the maximal symmetry in AdS
and consequently the conformal symmetry in Minkowski
space. This leads to a linear confining interaction in a LF
Dirac equation for baryons whose eigensolutions generate a
baryonic Regge spectrum [18,19]. The confining interac-
tion term can be constrained by the condition that the
square of the Dirac equation leads to a potential which
matches the form of the dilaton-induced potential for
integer spin, but this procedure appears to be ad hoc.
There are some striking similarities between the spectra

of the observed light mesons and baryons: they are of
similar mass, and the slope and spacing of the quantum
orbital excitations in L and their daughter spacing in n, the
radial quantum number, is the same. This behavior in the
meson sector is related to the introduction of a scale within
the framework of the conformal algebra. This procedure
leaves the action invariant [4,5]. Since supersymmetry is

related with boson-fermion symmetry, it is compelling to
examine the properties of the supersymmetric algebra and
its superconformal extension to describe baryons in com-
plete analogy to the bosonic case, where the confining
potential was determined by the conformal algebra of
one-dimensional quantum field theory [4,5]. In fact, it is
straightforward to translate a quantum-mechanical model
into its supersymmetric (SUSY) counterpart by following
Witten’s construction [20]. Superconformal quantum
mechanics, the supersymmetric extension [21,22] of con-
formal quantum mechanics [4], then follows from the
properties of the superconformal algebra.
We shall show in this article that the structure of

supersymmetric quantum mechanics is encoded holograph-
ically in the AdS equations for arbitrary half-integer spin
for any superpotential. Most importantly for the present
discussion, we will show that superconformal quantum
mechanics [22] has an elegant representation on the
light front and its holographic embedding in AdS space.
Remarkably, this procedure uniquely determines the form
of the confinement potential for arbitrary half-integer spin.
If one extends with Fubini and Rabinovici [22], the method
of de Alfaro et al. [4] to the superconformal algebra, the
form of the potential in the new evolution equations is
completely fixed. We will also discuss in this article how
the different embeddings of mesons and baryons in AdS
space [8] lead to distinct systematic features of meson and
baryon spectroscopy. In particular, we will show that the
integrability methods used to construct baryonic light-front
equations [19] are the light-front extension of the usual
formulation of supersymmetric Hamiltonian quantum
mechanics [20,23]. In fact, a possible indication of a
supersymmetric connection was already mentioned in
Ref. [19], but a proof was not actually given there [24].
This article is organized as follows: In Sec. II we review

for convenience light-front conformal quantum mechanics
and its holographic embedding in AdS space. In Sec. III we
extend supersymmetric quantum mechanics to the light
front and describe its embedding in AdS space. We show in
particular that properly taking the square root of the light-
front Hamiltonian operator leads to a linear relativistic
invariant Dirac equation. In Sec. IV superconformal quan-
tum mechanics is extended to light-front holographic QCD.
The application of the method to the complex patterns
observed in baryon spectroscopy is discussed in Sec. V.
Some final comments and conclusions are given in Sec. VI.
In the Appendix we discuss briefly the specific action of the
supercharges.

II. LIGHT-FRONT CONFORMAL QUANTUM
MECHANICS AND ITS HOLOGRAPHIC

EMBEDDING

Following Ref. [4] one starts with the one-dimensional
action
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S½x� ¼ 1

2

Z
dt

�
_x2 −

g
x2

�
; ð1Þ

where xðtÞ is a field operator, the constant g is dimension-
less, and t has dimensions of length squared. The action (1)
is invariant under conformal transformations in the variable
t; thus in addition to the Hamiltonian H there are two more
invariants of motion, namely the dilatation operator D and
the operator of special conformal transformations K,
corresponding to the generators of the conformal group
ConfðR1Þ with commutation relations

½H;D� ¼ iH; ½H;K� ¼ 2iD; ½K;D� ¼ −iK: ð2Þ

Specifically, if one introduces the new variable τ defined
through the relation

dτ ¼ dt
uþ vtþ wt2

; ð3Þ

it then follows that the operator

G ¼ uH þ vDþ wK ð4Þ

generates the quantum-mechanical unitary evolution
in τ [4]:

GjψðτÞi ¼ i
d
dτ

jψðτÞi: ð5Þ

One can show that G is a compact operator for
4uw − v2 > 0 [4]. In terms of the fields x and p ¼ _x the
new Hamiltonian G is given by

Gðx; pÞ ¼ 1

2
u

�
p2 þ g

x2

�
−
1

4
vðxpþ pxÞ þ 1

2
wx2; ð6Þ

at t ¼ 0. In the Schrödinger representation xð0Þ is repre-
sented by the position operator and p → −i d

dx. The
Hamiltonian is [4]

G ¼ 1

2
u

�
−

d2

dx2
þ g
x2

�
þ i
4
v

�
x
d
dx

þ d
dx

x

�
þ 1

2
wx2;

¼ uH þ vDþ wK; ð7Þ

with

H ¼ 1

2

�
−

d2

dx2
þ g
x2

�
; ð8Þ

D ¼ i
4

�
x
d
dx

þ d
dx

x

�
; ð9Þ

K ¼ 1

2
wx2; ð10Þ

the superposition of the “free” Hamiltonian H, the gen-
erator of dilatations D and the generator of special
conformal transformations K in one dimension.
We now compare the dAFF Hamiltonian with the light-

front Hamiltonian in the semiclassical approximation
described in [3]. A physical hadron in four-dimensional
Minkowski space has four-momentum Pμ and invariant
hadronic mass squared HLF ¼ PμPμ ¼ M2 [25,26]. In the
limit of zero quark masses the longitudinal modes decouple
and the LF eigenvalue equationHLFjϕi ¼ M2jϕi is a light-
front wave equation for ϕ [3]:

�
−

d2

dζ2
−
1 − 4L2

4ζ2
þ Uðζ; JÞ

�
ϕðζÞ ¼ M2ϕðζÞ; ð11Þ

a relativistic single-variable LF Schrödinger equation. The
boost-invariant transverse-impact variable ζ [15] measures
the separation of quarks and gluons at equal light-front time
[27], and it also allows one to separate the bound-state
dynamics of the constituents from the kinematics of their
LF internal angular momentum L in the transverse light-
front plane [3]. The effective interaction U is instantaneous
in LF time and acts on the lowest state of the LF
Hamiltonian. To actually compute U in the semiclasscal
approximation one must systematically express higher
Fock components as functionals of the lower ones. This
method has the advantage that the Fock space is not
truncated and the symmetries of the Lagrangian are
preserved [28].
Comparing the Hamiltonian G (7) with the light-front

wave equation (11) and identifying the variable x with
the light-front invariant variable ζ, we have to choose
u ¼ 2; v ¼ 0 and relate the dimensionless constant g to the
LF orbital angular momentum,

g ¼ L2 −
1

4
; ð12Þ

in order to reproduce the light-front kinematics.
Furthermore w ¼ 2λ2M fixes the form of the confining
light-front potential to that of a harmonic oscillator in
the LF transverse plane [5],

U ∼ λ2Mζ
2: ð13Þ

In contrast to the baryonic case, which is discussed below,
one can perform a constant level shift by adding an
arbitrary constant, with dimension mass squared, to the
confining term in the light-front potential.

A. Light-front holographic embedding

The next step is to determine the arbitrary constant term
in the LF effective potential for arbitrary integer spin
representations. Following Ref. [8] this constant term in
the potential is determined by the embedding of the LF
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Hamiltonian equations in AdS space. To this end it is
convenient to consider an effective action for a spin-J field
in AdSdþ1 space represented by a totally symmetric rank-J
tensor field ΦN1…NJ

, where M;N are the indices of the
dþ 1 higher dimensional AdS space with coordinates
xM ¼ ðxμ; zÞ. The coordinate z is the holographic variable
and the xμ are Minkowski flat space-time coordinates. In
the presence of a dilaton background φ the effective action
in [8] is

Seff ¼
Z

ddxdz
ffiffiffi
g

p
eφðzÞgN1N0

1…gNJN0
J

× ðgMM0
DMΦ�

N1…NJ
DM0ΦN0

1
…N0

J

− μ2effðzÞΦ�
N1…NJ

ΦN0
1
…N0

J
Þ; ð14Þ

where
ffiffiffi
g

p ¼ ðR=zÞdþ1 and DM is the covariant derivative
which includes the affine connection (R is the AdS radius).
The dilaton φðzÞ effectively breaks the maximal symmetry
of AdS, and the z dependence of the effective AdS mass μeff
allows a clear separation of kinematical and dynamical
effects. It is determined by the precise mapping of AdS to
light-front physics [8].
In order to map to the LF Hamiltonian, one considers

hadronic states with momentum P and a z-independent
spinor ϵν1…νJðPÞ with polarization components along the
physical Minkowski coordinates. In holographic QCD
such a state is described by the product of a free state
with moment P, propagating in physical space-time, and
z-dependent wave function ΦJ,

Φν1…νJðx; zÞ ¼ eiP·xϵν1…νJðPÞΦJðzÞ; ð15Þ

with invariant hadron mass PμPμ ≡ ημνPμPν ¼ M2.
Variation of the action leads to the wave equation

�
−
zd−1−2J

eφðzÞ
∂z

�
eφðzÞ

zd−1−2J
∂z

�
þ ðμRÞ2

z2

�
ΦJ ¼ M2ΦJ; ð16Þ

where ðμRÞ2 ¼ ðμeffðzÞRÞ2 − Jzφ0ðzÞ þ Jðd − J þ 1Þ is a
constant determined by kinematical conditions in the light
front [8]. Variation of the AdS action also gives the
kinematical constraints required to eliminate the lower
spin states J − 1; J − 2;… from the fully symmetric
AdS tensor field Φν1…νJ [8]:

ημνPμϵνν2…νJ ¼ 0; ημνϵμνν3…νJ ¼ 0: ð17Þ

We now perform the AdS mapping to light-front physics
in physical space-time. To this end we factor out the scale
ð1=zÞJ−ðd−1Þ=2 and dilaton factors from the AdS field
writing

ΦJðzÞ ¼ ðR=zÞJ−ðd−1Þ=2e−φðzÞ=2ϕJðzÞ: ð18Þ

Upon the substitution of the holographic variable z by
the light-front invariant variable ζ and replacing ΦJ into
the AdS eigenvalue equation (16), we obtain for d ¼ 4 the
QCD light-front frame-independent wave equation (11)
with the effective LF potential [8,29]

Uðζ; JÞ ¼ 1

2
φ00ðζÞ þ 1

4
φ0ðζÞ2 þ 2J − 3

2ζ
φ0ðζÞ: ð19Þ

The AdS mass μ in (16) is related to the light-front internal
orbital angular momentum L and the total angular momen-
tum J of the hadron according to

ðμRÞ2 ¼ −ð2 − JÞ2 þ L2; ð20Þ

where the critical value L ¼ 0 corresponds to the lowest
possible stable solution [30].
From the holographic relation (19) it follows that the

harmonic potential is holographically related to a unique
dilaton profile, φ ¼ λMz2, provided that φðzÞ → 0 as
z → 0. From (19) we find the effective LF potential (13)

Uðζ; JÞ ¼ λ2Mζ
2 þ 2λMðJ − 1Þ: ð21Þ

The term λ2Mζ
2 is determined uniquely by the underlying

conformal invariance of the one-dimensional effective
theory, and the constant term 2λMðJ − 1Þ is determined
by the spin representations in the embedding space.
For the effective potential (21) Eq. (11) has

eigenfunctions

ϕn;LðζÞ¼jλMjð1þLÞ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n!

ðnþLÞ!

s
ζ1=2þLe−jλM jζ2=2LL

n ðjλMjζ2Þ;

ð22Þ

and eigenvalues

M2
n;J;L ¼ 4λM

�
nþ J þ L

2

�
; ð23Þ

for λM > 0. The spectral predictions explain the essential
features of the observed light meson spectrum [16],
including a zero pion mass in the chiral limit, and
Regge trajectories with the same slope in the quantum
numbers n and L. The solution for λM < 0 leads to a meson
spectrum in clear disagreement with observations. Since the
effective interaction is determined from the conformal
symmetry of the effective one-dimensional quantum field
theory, which is not severely broken for small quark
masses, the method can be successfully extended to
describe, for example, the K and K� excitation spec-
trum [16,31].
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III. LIGHT-FRONT SUPERSYMMETRIC
QUANTUM MECHANICS AND ITS
HOLOGRAPHIC EMBEDDING

Supersymmetric quantum mechanics is a simple reali-
zation of a graded Lie algebra which contains two fer-
mionic generators, the supercharges Q and Q†, and a
bosonic generator, the Hamiltonian H, which are operators
in a state space [20]. It closes under the graded algebra
slð1=1Þ:

1

2
fQ;Q†g ¼ H; ð24Þ

fQ;Qg ¼ fQ†; Q†g ¼ 0; ð25Þ

½Q;H� ¼ ½Q†; H� ¼ 0: ð26Þ

It is useful to write down the SUSY formulation of
quantum mechanics in terms of anticommuting spinor
operators χ. A minimal realization of the group generators
is given in terms of the one-dimensional representation

Q ¼ χ

�
d
dx

þWðxÞ
�
; ð27Þ

and

Q† ¼ χ†
�
−

d
dx

þWðxÞ
�
; ð28Þ

where WðxÞ is called the superpotential in the context of
supersymmetric theories. The spinor operators χ and χ†

satisfy the anticommutation relation

fχ; χ†g ¼ 1: ð29Þ

Using a representation in terms of 2 × 2 Pauli-spin matrices
we have

χ ¼ σ1 þ iσ2
2

; χ† ¼ σ1 − iσ2
2

; ð30Þ

and

½χ; χ†� ¼ σ3: ð31Þ

Thus the Hamiltonian is

H ¼ 1

2
fQ;Q†g ¼ 1

2

�
−

d2

dx2
þW2ðxÞ þ σ3W0ðxÞ

�
: ð32Þ

It can be written in matrix form:

H ¼ 1

2

�
Hþ 0

0 H−

�
¼ 1

2

�− d2

dx2 þVþðxÞ 0

0 − d2

dx2 þV−ðxÞ

�
;

ð33Þ

with effective potential

V�ðxÞ ¼ W2ðxÞ �W0ðxÞ: ð34Þ

Since H commutes with Q and Q† (26), it follows that the
eigenvalues of Hþ and H− are identical.

A. Supersymmetric quantum mechanics
in the light front

To give a relativistic formulation of supersymmetric
quantum mechanics it is convenient to write the anticom-
muting spinor operators in terms of a 4 × 4 matrix
representation of the Clifford algebra, which acts on
four-dimensional physical space where the LF spinors
are defined. We use the Weyl representation where the
chirality operator γ5 is diagonal, and define the matrices α
and β by

iα ¼
�

0 I

−I 0

�
; β ¼

�
0 I

I 0

�
; ð35Þ

where I is a two-dimensional unit matrix. The matrices α
and β are Hermitian and anticommuting:

α† ¼ α; α2 ¼ 1; ð36Þ

β† ¼ β; β2 ¼ 1; ð37Þ

fα; βg ¼ 0: ð38Þ

From the product of α and β we construct a third matrix γ5,
which corresponds to the usual chirality operator, γ5 ¼ iαβ:

γ5 ¼
�
I 0

0 −I

�
: ð39Þ

The matrix γ5 is also Hermitian and anticommutes with α
and β:

γ†5 ¼ γ5; γ25 ¼ 1; ð40Þ

fγ5; αg ¼ fγ5; βg ¼ 0: ð41Þ

The SUSY LF Hamiltonian HLF is given by the slð1=1Þ
algebra

fQ;Q†g ¼ HLF; ð42Þ

fQ;Qg ¼ fQ†; Q†g ¼ 0; ð43Þ
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½Q; HLF� ¼ ½Q†; HLF� ¼ 0; ð44Þ

but the supercharges Q and Q† are now represented by
4 × 4 matrices. Furthermore, since the Hamiltonian oper-
ator HLF ¼ PμPμ ¼ M2 is invariant, it implies that HLF

should depend on a frame-independent variable. In impact
space the relevant invariant variable is ζ, and thus the
representation

Q ¼ η

�
d
dζ

þWðζÞ
�
; ð45Þ

and

Q† ¼ η†
�
−

d
dζ

þWðζÞ
�
; ð46Þ

where the spinor operators η and η† satisfy the anticom-
mutation relation

fη; η†g ¼ 1; ð47Þ

and are given by

η ¼ β þ iα
2

; η† ¼ β − iα
2

; ð48Þ

in the 4 × 4 matrix representation defined above. We also
have

½η; η†� ¼ γ5: ð49Þ

The LF Hamiltonian is thus expressed as

HLF ¼ fQ;Q†g ¼ −
d2

dζ2
þW2ðζÞ þ γ5W0ðζÞ; ð50Þ

which is frame independent.

B. A linear Dirac equation from supersymmetric
quantum mechanics in the light front

Since γ25 ¼ 1, the LF Hamiltonian (50) can be conven-
iently expressed as HLF ¼ BB† where

B ¼
�
d
dζ

þ γ5WðζÞ
�
; ð51Þ

and

B† ¼
�
−

d
dζ

þ γ5WðζÞ
�
: ð52Þ

The next step is to take the “square root” of the
Hamiltonian HLF. For this purpose we write HLF as a
product of Hermitian operators which we label DLF; thus

HLF ¼ D2
LF. Using the relation iαB ¼ −iB†α and Eqs. (51)

and (52), we have

DLF ¼ −iα
�
−

d
dζ

þ γ5WðζÞ
�
; ð53Þ

and thus the invariant Dirac equation [19]

ðDLF −MÞψðζÞ ¼ 0; ð54Þ
where ψðζÞ is a LF Dirac spinor. Premultiplying the linear
Dirac wave equation (54) by the operator DLF þM and
using the properties of the Dirac matrices given above, we
recover the LF eigenvalue equation

HLFψ ¼ D2
LFψ ¼ M2ψ ; ð55Þ

where HLF is given by (50). We thus reproduce the results
obtained in Ref. [19] using an operator construction of the
light-front Hamiltonian and the Dirac equation, but starting
from light-front supersymmetric quantum mechanics [32].
It is convenient to separate the kinematic and dynamic

contributions to the superpotential. We write

WðζÞ ¼ νþ 1=2
ζ

þ uðζÞ; ð56Þ

where ν is a dimensionless parameter representing the LF
orbital angular momentum, and the dynamical effects are
encoded in the function uðζÞ. From (53) we can express the
LF-invariant Dirac equation (54) for the superpotential (56)
as a system of coupled linear differential equations

−
d
dζ

ψ− −
νþ 1

2

ζ
ψ− − uðζÞψ− ¼ Mψþ;

d
dζ

ψþ −
νþ 1

2

ζ
ψþ − uðζÞψþ ¼ Mψ−; ð57Þ

where the chiral spinors are defined by ψ� ¼ 1
2
ð1� γ5Þψ.

C. Holographic embedding

We can now determine the LF superpotential uðζÞ in (56)
for arbitrary half-integer spin by embedding the LF results
in AdS space. We start with an effective action for Rarita-
Schwinger (RS) spinors in AdS space ½ΨN1…NT

�α, which
transforms as symmetric tensors of rank T with indices
N1…NT , and as Dirac spinors with index α [33]. In the
presence of an effective interaction ρðzÞ the effective action
is given by [8]

Seff ¼
1

2

Z
ddxdz

ffiffiffi
g

p
gN1N0

1…gNTN0
T

× ½Ψ̄N1…NT
ðiΓAeMA DM − μ − ρðzÞÞΨN0

1
…N0

T
þ H:c:�;

ð58Þ
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where
ffiffiffi
g

p ¼ ðRzÞdþ1 and eMA is the inverse vielbein,
eMA ¼ ðzRÞδMA . The covariant derivative DM includes the
affine connection and the spin connection. The tangent-
space Dirac matrices obey the usual anticommutation
relation fΓA;ΓBg ¼ 2ηAB. We have not included a dilaton
factor eφðzÞ in (58) since it can be absorbed by redefining
the RS spinor according toΨT → eφðzÞ=2ΨT [8,17]. This is a
consequence of the linear covariant derivatives in the
fermion action, which also prevents a mixing between
dynamical and kinematical effects, and thus, in contrast to
the effective action for integer spin fields (14), the AdS
mass μ in Eq. (58) is constant. Since a dilaton factor has no
dynamical consequences, one must introduce an effective
confining interaction ρðzÞ in the fermion action to break
conformal symmetry and generate a baryon spec-
trum [18,19].
It is shown below that the interaction term ρðzÞ, which

has been introduced hitherto ad hoc, is precisely related to
the superpotential u (56). Furthermore, in Sec. IV it is
shown that, in analogy with the boson case [5], the form of
u is determined in the framework of the superconformal
algebra.
A physical baryon has plane-wave solutions with four-

momentum Pμ, invariant mass PμPμ ¼ M2, and polariza-
tion indices along the physical coordinates. Factoring out
the four-dimensional plane-wave and spinor dependence,
as well as the scale factor ð1=zÞT−d=2, we have

Ψ�
ν1…νT ðx; zÞ ¼ eiP·xu�ν1…νT ðPÞ

�
R
z

�
T−d=2

Ψ�
T ðzÞ; ð59Þ

where T ¼ J − 1
2
and the fully symmetric RS chiral spinor

u�ν1…νT ¼ 1
2
ð1� γ5Þuν1…νT satisfies the four-dimensional

chirality equations

γ · Pu�ν1…νT ðPÞ ¼ Mu∓ν1…νT ðPÞ;
γ5u�ν1…νT ðPÞ ¼ �u�ν1…νT ðPÞ: ð60Þ

Variation of the AdS action (58) leads for d ¼ 4 to the
Dirac equation

−
d
dz

Ψ−
T −

μR
z
Ψ−

T −
R
z
ρðzÞΨ−

T ¼ MΨþ
T ;

d
dz

Ψþ
T −

μR
z
Ψþ

T −
R
z
ρðzÞΨþ

T ¼ MΨ−
T ; ð61Þ

and the Rarita-Schwinger condition [33] in physical space-
time [8]

γνΨνν2…νT ¼ 0: ð62Þ

By identifying the holographic variable z with the
invariant LF variable ζ and the AdS LF spinors by the
mapping Ψ�

T ðzÞ → ψ�ðζÞ, we can compare (61) with (57).

Provided that the AdS mass μ is related to the parameter
ν by

μR ¼ νþ 1

2
; ð63Þ

the specific LF mapping gives a relation between the
effective interaction ρðzÞ in the AdS action (58) and the
function uðζÞ in the LF superpotential (56)

uðζÞ ¼ R
ζ
ρðζÞ: ð64Þ

In fact they are identical (modulo a kinematic factor), and
this relation thus leads to a J-independent potential. This is
a remarkable result, since independently of the specific
form of the potential, the value of the baryon masses along
a given Regge trajectory depends only on the LF orbital
angular momentumL [34]. Thus, in contrast with the vector
mesons (21), there is no spin-orbit coupling, in agreement
with the observed near-degeneracy in the baryon spec-
trum [36,37].

IV. LIGHT-FRONT SUPERCONFORMAL
QUANTUM MECHANICS

In order to fix the superpotential u (56) we follow Fubini
and Rabinovici in Ref. [22], and consider a one-
dimensional quantum field theory invariant under con-
formal and supersymmetric transformations. Imposing
conformal symmetry leads to a unique choice of the
superpotential W (27), namely

WðxÞ ¼ f
x
; ð65Þ

in order for f to be a dimensionless constant. In this case
the graded-Lie algebra has, in addition to the Hamiltonian
H and the supercharges Q and Q†, an additional generator
S which is the square root of the generator of conformal
transformations K. The enlarged algebraic structure is the
superconformal algebra of Haag et al. [22,38] (See also
[39]). Using the one-dimensional quantum-mechanical
representation of the operators

Q ¼ χ

�
d
dx

þ f
x

�
; ð66Þ

Q† ¼ χ†
�
−

d
dx

þ f
x

�
; ð67Þ

S ¼ χx; ð68Þ

S† ¼ χ†x; ð69Þ

it is simple to verify that the algebraic structure of the
enlarged algebra is fulfilled. We find
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1

2
fQ;Q†g ¼ H;

1

2
fS; S†g ¼ K; ð70Þ

1

2
fQ; S†g ¼ f

2
þ σ3

4
− iD; ð71Þ

1

2
fQ†; Sg ¼ f

2
þ σ3

4
þ iD; ð72Þ

where the operators

H ¼ 1

2

�
−

d2

dx2
þ f2 − σ3f

x2

�
; ð73Þ

K ¼ 1

2
x2; ð74Þ

D ¼ i
4

�
d
dx

xþ x
d
dx

�
; ð75Þ

satisfy the conformal algebra (2). The anticommutation
of all other generators vanish: fQ;Qg ¼ fQ†; Q†g ¼
fQ; Sg ¼ � � � ¼ 0.
In analogy with the dAFF procedure [4], we now define,

following Fubini and Rabinovici [22], a new supercharge R
as a linear combination of the generators Q and S,

R ¼ ffiffiffi
u

p
Qþ ffiffiffiffi

w
p

S; ð76Þ
and compute a new Hamiltonian G ¼ 1

2
fR;R†g; which

also closes under a graded algebra slð1=1Þ :

1

2
fR;R†g ¼ G; ð77Þ

fR;Rg ¼ fR†; R†g ¼ 0; ð78Þ

½R;G� ¼ ½R†; G� ¼ 0. ð79Þ

We find

G ¼ uH þ wK þ 1

2

ffiffiffiffiffiffi
uw

p ð2f þ σ3Þ; ð80Þ

which is a compact operator for uw > 0.
The quantum-mechanical evolution operator G (80)

obtained by this procedure is analogous to the
Hamiltonian (6) obtained by the procedure of de Alfaro
et al. [4]. Remarkably, in the superconformal case there
appears beside the confining term wK also a constant term
1
2

ffiffiffiffiffiffi
uw

p ð2f � 1Þ in G, which, as we will describe below,
plays a key role in explaining the correct phenomenology.

A. Superconformal quantum mechanics
in the light front

The light-front extension of the superconformal results
follows from the LF superpotential

WðζÞ ¼ νþ 1=2
ζ

; ð81Þ

which corresponds to a kinematic term in the LF
Hamiltonian. We now extend the new Hamiltonian G
(80) to a relativistic LF Hamiltonian by the method
described in Sec. III A. This amounts to replace the
Pauli matrix σ3 in (80) with γ5 in (49). We obtain

HLF¼fR;R†g

¼−
d2

dζ2
þðνþ1

2
Þ2

ζ2
−
νþ1

2

ζ2
γ5þλ2Bζ

2þλBð2νþ1ÞþλBγ5;

ð82Þ

where the arbitrary coefficients u and w in (80) are fixed to
u ¼ 1 and w ¼ λ2B. Thus the supercharge R is the super-
position

R ¼ Qþ λBS: ð83Þ
In 2 × 2 block-matrix form the light-front Hamiltonian

(82) can be expressed as

HLF ¼
�− d2

dζ2 −
1−4ν2
4ζ2

þ λ2Bζ
2 þ 2λBðνþ 1Þ 0

0 − d2

dζ2 −
1−4ðνþ1Þ2

4ζ2
þ λ2Bζ

2 þ 2λBν

�
: ð84Þ

The light-front eigenvalue equation HLFjψi ¼ M2jψi has
eigenfunctions

ψþðζÞ ∼ ζ
1
2
þνe−λBζ

2=2Lν
nðλBζ2Þ; ð85Þ

ψ−ðζÞ ∼ ζ
3
2
þνe−λBζ

2=2Lνþ1
n ðλBζ2Þ; ð86Þ

and eigenvalues

M2 ¼ 4λBðnþ νþ 1Þ: ð87Þ
Since HLF commutes with R, the eigenvalues for the
chirality plus and minus eigenfunctions are identical.
One can also show that the probabilities for both compo-
nents ψþ and ψ− are the same (see the Appendix):Z

dζψ2þðζÞ ¼
Z

dζψ2
−ðζÞ: ð88Þ

For λB < 0 no solution is possible.
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V. SYSTEMATICS OF THE BARYON SPECTRUM

To determine how well the superconformal light-front
holographic model encompasses the systematics of the
baryon spectrum, we list in Table I the confirmed (3-star
and 4-star) baryon states from the particle data group
(PDG) [40]. The internal spin, light-front internal orbital
angular momentum and radial quantum number assignment
of the N and Δ excitation spectrum is found from the total
angular momentum-parity PDG assignment using the
conventional SUð6Þ ⊃ SUð3Þflavor × SUð2Þspin multiplet
structure [41], but other model choices are also possible
[42]. Further details can be found in [16].
The lowest possible stable state, the nucleon N1

2
þð940Þ,

corresponds to n ¼ 0 and ν ¼ 0. This fixes the scaleffiffiffiffiffi
λB

p ¼ MP=2. The resulting predictions for the spectros-
copy of the positive-parity spin-1

2
light nucleons are shown

in Fig. 1(a) for the parent Regge trajectory for n ¼ 0 and
ν ¼ 0; 2; 4;…; L, where L is the relative LF angular
momentum between the active quark and the spectator
cluster. Thus the dimensionless constant f in the super-
potential (65) is f ¼ Lþ 1

2
for the plus-parity nucleon

trajectory. The predictions for the daughter trajectories for
n ¼ 1; n ¼ 2;… are also shown in this figure. Only
confirmed PDG [40] states are shown. The Roper state

N1
2
þð1440Þ and the N1

2
þð1710Þ are well described in this

model as the first and second radial excited states of the
nucleon. The newly identified state, the N3

2
þð1900Þ [40], is

depicted here as the first radial excitation of theN3
2
þð1720Þ.

The model is successful in explaining the J-degeneracy for
states with the same orbital angular momentum observed in
the light-baryon spectrum, such as the L ¼ 2 plus-parity
doublet N3

2
þð1720Þ − N5

2
þð1680Þ, which corresponds to

and J ¼ 3
2
and 5

2
respectively [see Fig. 1(a)].

In Fig. 1(b) we compare the positive-parity spin-1
2
parent

nucleon trajectory with the negative-parity spin-3
2
nucleon

trajectory. As it is shown in this figure, the gap scale 4λ
determines not only the slope of the nucleon trajectories,
but also the spectrum gap between the plus-parity spin-1

2

and the minus-parity spin-3
2
nucleon families, as indicated

by arrows in this figure. This means the respective assign-
ments ν ¼ L and ν ¼ Lþ 1 for the lower and upper
trajectories in Fig. 1(b), or f ¼ Lþ 1

2
and f ¼ Lþ 3

2

respectively. The degeneracy of states with the same orbital
quantum number L is also well described, as for example
the degeneracy of the L ¼ 1 minus-parity triplet
N1

2
−ð1650Þ, N3

2
−ð1700Þ, and N5

2
−ð1675Þ, which corre-

sponds respectively to J ¼ 1
2
, 3
2
and 5

2
[see Fig. 1(b)].

Baryons with negative-parity and internal spin S ¼ 1
2
,

such as the N1
2
−ð1535Þ, as well as baryon states with

positive-parity and internal spin S ¼ 3
2
, such as the

Δ3
2
þð1232Þ, are well described by the assignment

ν ¼ Lþ 1
2
, or f ¼ Lþ 1. This means, for example, that

the positive- and negative-parity Δ states are in the same
trajectory consistent with experimental observations, as
depicted in Fig. 1(d). The newly found state, theN3

2
−ð1875Þ

[40], depicted in Fig. 1(c), is well accounted as the first
radial excitation of the N3

2
−ð1520Þ. The degeneracy of the

L ¼ 1 minus-parity doublet N1
2
−ð1535Þ − N3

2
−ð1520Þ for

J ¼ 1
2
and 3

2
is also well described. Likewise, the Δð1600Þ

corresponds to the first radial excitation of the Δð1232Þ as
shown in Fig. 1(d). The model explains the degeneracy of
the L ¼ 2 plus-parity quartet Δ1

2
þð1910Þ, Δ3

2
þð1920Þ,

Δ5
2
þð1905Þ, and Δ7

2
þð1950Þ which corresponds to J ¼ 1

2
,

3
2
, 5
2
and 7

2
respectively [see Fig. 1(d)]. Our results for the Δ

states agree with those of Ref. [43]. “Chiral partners” such
as the N1

2
þð940Þ and N1

2
−ð1535Þ nucleons with the same

total angular momentum J ¼ 1
2
, but with different orbital

angular momentum and parity, are nondegenerate from the
onset. To recapitulate, the parameter f has the internal spin
S and parity P assignment given in Table II, which is
equivalent to the assignment given in [44].
This particular assignment successfully describes the full

light-baryon orbital and radial excitation spectrum, and in
particular the gap between trajectories with different parity
and internal spin [44]. The assignment ν ¼ L for the lowest
trajectory, the proton trajectory, is straightforward and

TABLE I. Classification of confirmed baryons listed by the
PDG [40]. The labels L, S and n refer to the internal orbital
angular momentum, internal spin and radial quantum number
respectively. The even-parity baryons correspond to the 56
multiplet of SUð6Þ and the odd-parity to the 70.

SUð6Þ S L n Baryon state

56 1
2

0 0 N1
2
þð940Þ

3
2

0 0 Δ3
2
þð1232Þ

56 1
2

0 1 N1
2
þð1440Þ

3
2

0 1 Δ3
2
þð1600Þ

70 1
2

1 0 N1
2
−ð1535ÞN3

2
−ð1520Þ

3
2

1 0 N1
2
−ð1650ÞN3

2
−ð1700ÞN5

2
−ð1675Þ

1
2

1 0 Δ1
2
−ð1620ÞΔ3

2
−ð1700Þ

56 1
2

0 2 N1
2
þð1710Þ

1
2

2 0 N3
2
þð1720ÞN5

2
þð1680Þ

3
2

2 0 Δ1
2
þð1910ÞΔ3

2
þð1920ÞΔ5

2
þð1905ÞΔ7

2
þð1950Þ

70 3
2

1 1 N1
2
−N3

2
−ð1875ÞN5

2
−

3
2

1 1 Δ5
2
−ð1930Þ

56 1
2

2 1 N3
2
þð1900ÞN5

2
þ

70 1
2

3 0 N5
2
−N7

2
−

3
2

3 0 N3
2
−N5

2
−N7

2
−ð2190ÞN9

2
−ð2250Þ

1
2

3 0 Δ5
2
−Δ7

2
−

56 1
2

4 0 N7
2
þN9

2
þð2220Þ

3
2

4 0 Δ5
2
þΔ7

2
þΔ9

2
þΔ11

2
þð2420Þ

70 1
2

5 0 N9
2
−N11

2
−

3
2

5 0 N7
2
−N9

2
−N11

2
−ð2600ÞN13

2
−
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follows from the stability of the ground state, the proton,
and the mapping of AdS to light-front physics. The
assignment for other spin and parity baryons states, given
in Table II, is motivated by the observed spectrum. It is
hoped that further analysis of the different quark configu-
rations and symmetries of the baryon wave function
[36,45,46] will indeed explain the assignment of the
dimensionless parameter f.
If we follow the non-SUð6Þ quantum number assignment

for the Δ5
2
−ð1930Þ given in Ref. [36], namely S ¼ 3=2,

L ¼ 1, n ¼ 1, we find with the present model the
value MΔð1930Þ ¼ 4

ffiffiffiffiffi
λB

p ¼ 2MP, also consistent with the
experimental result 1.96 GeV [40]. An important feature of

light-front holography and supersymmetric LF quantum
mechanics is the fact that it predicts a similar multiplicity of
states for mesons and baryons, consistent with experimen-
tal observations [36]. This property is consistent with the
LF cluster decomposition of the holographic variable ζ,
which describes a system of partons as an active quark plus
a cluster of n − 1 spectators [37]. From this perspective, a
baryon with 3 quarks looks in light-front holography as a
quark-diquark system.
Another interesting consequence of the supersymmetric

relation between the plus and minus chirality states, is the
equal probability expressed by (88). This remarkable
equality means that in the light-front holographic approach
described here the proton’s spin Jz ¼ Lz þ Sz is carried by
the quark orbital angular momentum: hJzi ¼ hLz

qi ¼ �1=2
since hSzqi ¼ 0.

VI. CONCLUSIONS AND OUTLOOK

In this article we have shown how superconformal
quantum mechanics [21,22] can be extended to the light
front and how it can be precisely mapped to holographic
QCD. We have also examined the higher half-integer spin

LL
1-2014
8844A5

M
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FIG. 1 (color online). Orbital and radial baryon excitation spectrum. (a) Positive-parity spin-1
2
nucleons and (b) spectrum gap between

the negative-parity spin-3
2
and the positive-parity spin-1

2
nucleons families. (c) Minus-parity spin-1

2
N and (d) plus- and minus-parity spin-

1
2
and spin-3

2
Δ families. We have used in this figure the value

ffiffiffiffiffi
λB

p ¼ 0.49 GeV for nucleons and 0.51 GeV for the deltas.

TABLE II. Orbital quantum number assignment for the super-
potential parameter f for baryon trajectories according to parity P
and internal spin S.

S ¼ 1
2

S ¼ 3
2

P ¼ þ f ¼ Lþ 1
2

f ¼ Lþ 1

P ¼ − f ¼ Lþ 1 f ¼ Lþ 3
2
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representations of the model by embedding the resulting
Dirac invariant light-front wave equation in AdS space.
This procedure introduces a scale in the Hamiltonian
equations and completely fixes the light-front potential
in the Dirac equation introduced in Refs. [18,19]. In this
approach the main features of the observed light-baryon
spectrum are described.
The construction procedure is similar to that of bosons

[4,5]. Both are based on the breaking of conformal invariance
within the algebraic structure, by a redefinition of the
quantum-mechanical evolution in terms of a superposition
of the operators of the conformal or superconformal algebras.
Since the generators have different dimensions this amounts
to the introduction of a scale in the Hamiltonian while
maintaining a conformal action. Compared with the holo-
graphic construction for baryons, this unified approach is
more satisfactory. In contrast to the meson case, the dilaton in
the fermion action has no effect on the baryon spectrum.
Consequently, a Yukawa potential must be introduced by
hand to break conformal invariance. Here, the same under-
lying principle is used to introduce a mass scale and generate
the masses for mesons and baryons from a spectrum
generating algebra. For baryons the quantum-mechanical
evolution is determined from a supercharge which is a
superposition of elements of the superconformal algebra
[22]. In fact, the introduction of the generator S (the square
root of the generator of conformal transformations K) is the
key step for extending the dAFF [4,5] procedure for obtaining
a confining potential in the LF Dirac equation for baryons,
while maintaining the graded algebraic structure.
Mapping the results to light-front bound-state equations

leads to a linear potential in the light-frontDirac equationand
to a harmonic potential with additional constants in the
quadraticHamiltonian for fermions. In contrast to the case of
mesons, there is no possibility to shift the energy levels by
adding a constant to the linear potential in the light-front
Dirac equation. Therefore superconformal quantum
mechanics, together with the introduction of the scale
according to Fubini and Rabinovici [22], fixes completely
the fermionic Hamiltonian. The equations of motion
obtained by following this procedure are equivalent to the
holographic light-front equations obtained from the fermion
Lagrangian in AdS5, with a Yukawa coupling providing
the effective potential. In the bosonic case light-front
holographic QCD yields a J-dependent constant from the
holographic embedding—in addition to the confining
harmonic potential obtained from conformal quantum
mechanics [4]—which leads to a J-dependent level shift
[5]. Such a level shift is not possible for fermions, and
therefore there is a spin-J degeneracy for states at fixedL and
n, an important characteristic which is actually observed in
experiment. Themodel is also consistent with similar Regge
meson and baryon spectra and a similar multiplicity of
states for mesons and baryons. In effect, the light-front
Dirac equation for baryons described here is effectively a

quark-diquark model. A quark-diquark construction is not
imposed, but it is a natural consequence of the light-front
cluster decomposition which follows from the LF embed-
ding in AdS space [37]. In this approach the quark and
diquark are both massless.
In this paper we have described a mechanism for the

emergence of a confining light-front Hamiltonian for
hadrons. A mass scale

ffiffiffi
λ

p
and confining potentials appear

in the light-front Schrödinger and Dirac equations, consis-
tent with the conformal invariance of the action, by applying
the group-theoretical methods of Refs. [4,22].We have given
a relation between the dimensionless quantitiesL, f or g, and
μR occurring in the light-front Hamiltonian, the quantum-
mechanical evolution operator in the algebraic approach, and
the wave equations in AdS5, respectively [see Eqs. (12),
(20), (63) and Table II].We expect that further analysis of the
different quark configurations and symmetries of the hadron
wave functions will shed further light on the detailed
relations between these dimensionless parameters.
Even if a supersymmetric connection inspired by the

universality of the Regge trajectories for bosons and
baryons was our starting point, in the context of this article
the supersymmetric construction of baryonic states refers to
the “supersymmetry” between positive and negative chi-
rality of light-front spinors. In this case supersymmetry is
not broken since there is a perfect pairing for each baryonic
state including the ground state, consistent with parity
invariance. This does not exclude the possible supersym-
metric connections between mesons and baryons which
would be manifest as a consequence of confinement
dynamics. In fact, although the form of the potential is
fixed in both cases by the dAFF procedure and its extension
to the superconformal algebra, the numerical values of the
confining scales are a priori not related. Nevertheless the
values of λ for the coefficient of the confining potentials
come out to be similar in both cases with similar spacing
between the orbital and radial hadronic excitations. This
suggests a supersymmetric relation between the underlying
dynamics of the observed bosonic and fermionic hadrons.
In this case, supersymmetry is broken since the ground
state, the pion, is massless in the chiral limit and is not
paired. We shall treat this subject in a subsequent article.
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APPENDIX: SUPERCHARGES
AND LADDER OPERATORS

The supercharge operator R (83) in the light-front
quantum-mechanical representation discussed in Sec. IV
can be expressed as
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R ¼ Qþ λS ¼ ηb; ðA1Þ

R† ¼ Q† þ λS† ¼ η†b†; ðA2Þ

where the spinor operators η and η† in a 4 × 4 matrix
representation are

η ¼
�
0 I

0 0

�
; η† ¼

�
0 0

I 0

�
; ðA3Þ

with I a two-dimensional unit matrix, and the operators b
and b† are given by

bν ¼
d
dζ

þ νþ 1
2

ζ
þ λζ; ðA4Þ

b†ν ¼ −
d
dζ

þ νþ 1
2

ζ
þ λζ: ðA5Þ

The LF HamiltonianHLF (84) is conveniently factorized in
terms of the linear operators b,

Hν
LF ¼ fR;R†g ¼

�
bνb

†
ν 0

0 b†νbν

�
; ðA6Þ

and is thus integrable [47,48].
Consider the eigenvalue equation for bνb

†
ν:�

−
d2

dx2
−
1 − 4ν2

4x2
þ κ2ζ2 þ 2κðνþ 1Þ

�
ϕνðxÞ ¼ ϕνðxÞ;

ðA7Þ

where x ¼ ζM and κ ¼ λ=M. Equation (A7) is equivalent
to bνb

†
νjνi ¼ jνi. It is also simple to verify that b†νjνi ∼

jνþ 1i or�
−

d
dζ

þ νþ 1
2

ζ
þ λζ

�
ϕνðζÞ ∼ ϕνþ1ðζÞ: ðA8Þ

Likewise, one can show that bνjνi ∼ jν − 1i.
We now construct a new supercharge T and its adjoint T†

as the linear superposition [22]

T ¼ Q† − λS† ¼ η†a; ðA9Þ

T† ¼ Q − λS ¼ ηa†; ðA10Þ

where

aν ¼ −
d
dζ

þ νþ 1
2

ζ
− λζ; ðA11Þ

a†ν ¼ d
dζ

þ νþ 1
2

ζ
− λζ: ðA12Þ

One can show that the operator (A11) lowers the radial
quantum number n by one unit and raises ν by one unit:

aνjn; νi ∼ jn − 1; νþ 1i: ðA13Þ
For a given ν the lowest possible state corresponds to
n ¼ 0. Consequently the state jn ¼ 0; νi is annihilated
by the action of the operator aν, aνjn ¼ 0; νi ¼ 0, or
equivalently �

d
dζ

−
νþ 1

2

ζ
þ λζ

�
ϕn¼0
ν ðζÞ ¼ 0; ðA14Þ

with solution

ϕn¼0
ν ðζÞ ¼ Cνζ

1=2þνe−λζ
2=2; ðA15Þ

where Cν is a constant. Writing

ϕνðζÞ ¼ Cνζ
1=2þνe−λζ

2=2GνðζÞ; ðA16Þ
and substituting in (A8) we get

2xGνðxÞ − G0
vðxÞ ∼ xGνþ1ðxÞ; ðA17Þ

with x ¼ ffiffiffi
λ

p
ζ, a relation which defines the confluent

hypergeometric function Uðn; νþ 1; xÞ in terms of
Uðn; ν; xÞ [49]:

Uðn; νþ 1; xÞ ¼ Uðn; ν; xÞ −U0ðn; ν; xÞ; ðA18Þ
or equivalently

2xUðn; νþ 1; x2Þ ¼ 2xUðn; ν; x2Þ − dUðn; ν; x2Þ
dx

:

ðA19Þ
Thus the normalizable solution to the eigenvalue equation
bb†ϕðζÞ ¼ M2ϕðζÞ is

ϕn;νðζÞ ¼ Cνζ
1=2þνe−λζ

2=2Lν
nðλζ2Þ: ðA20Þ

The solution also follows from the iterative application of
the ladder operators following the procedure described in
[50]. We find

ϕðζÞn;ν ∼ ζ1=2−νeλζ
2=2

�
1

ζ

d
dζ

�
n
ζ2ðnþνÞe−λζ2 ; ðA21Þ

with eigenvalues

M2 ¼ 4λðnþ νþ 1Þ: ðA22Þ
Since we know the general solution for the upper

component of the spinor wave function ϕν, it is straightfor-
ward to compute the lowest component b†ϕν, with identical
mass, by applying the supercharge operators. We find
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T

�
ϕn;ν

0

�
¼ 0; ðA23Þ

R†
�
ϕn;ν

0

�
¼ Cn;ν

�
0

ϕn;νþ1

�
; ðA24Þ

with

Cn;ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ

nþ νþ 1

r
: ðA25Þ

Thus the solution is

ψðζÞ ¼ ψþuþ þ ψ−u− ðA26Þ

¼Cz
1
2
þνe−λζ

2=2

�
Lν
nðλζ2Þuþþ

ffiffiffi
λ

p
ζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþνþ1
p Lνþ1

n ðλζ2Þu−
�
;

ðA27Þ

with normalization

Z
dζψ2þðζÞ ¼

Z
dζψ2

−ðζÞ: ðA28Þ

Identical results follow by solving directly the Dirac
equation (57) for the conformal superpotential (56)
with u ¼ λζ.
The light-front quantum-mechanical evolution operator

Hν
LF (A6) was constructed in terms of the supercharges R

and R†. We can also construct a light-front Hamiltonian
H̄ν

LF in terms of the supercharges T and T† given by (A9)
and (A10):

H̄ν
LF ¼ fT; T†g ¼

�
a†νaν 0

0 aνa
†
ν

�
: ðA29Þ

The light-front Hamiltonians H̄LF (A29) and HLF (A6) are
related by H̄LFðλÞ ¼ HLFð−λÞ.
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