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I. INTRODUCTION

The baby Skyrme model in ð2þ 1Þ dimensions [1,2] has
beenwidely investigated, both for its own sake and for being
a toy model of more sophisticated theories in higher
dimensions. In this paper we focus our attention on its
features as a theory that interpolates between two distinct
BPS systems [3,4]. We note that, after a convenient rescal-
ing, the model depends on only one parameter ζ that can be
set to take values in the interval 0 ≤ ζ ≤ 1. At the edges of
this interval there are two distinct BPS models: the Oð3Þ
sigmamodel at ζ ¼ 0 and the restricted baby Skyrmemodel
at ζ ¼ 1. Near both edges of this interval, an almost-BPS
approximation can be used to obtain an analytic approxi-
mation of the soliton solution. The exact solution, which we
obtain numerically for the first topological sector, flows to
this approximation as the parameter ζ goes to 0 or to 1.
The near-BPS approximation has been recently used in

two different physical contexts. The first one is that of the
holographic QCD [5–9] and the second one is the so-called
“generalized Skyrme model” [10–13]. The first case is very
similar to the ζ → 0 limit in our toy model, while the
second one is very similar to its ζ → 1 limits (is essentially
the same in one higher dimension). In both cases, one of the
main physical reasons for studying the near-BPS systems is
to have a model that reproduces the small binding energies
observed in nuclear physics. So the near-BPS approxima-
tion has both mathematical and phenomenological interest.
Thus, looking at the baby Skyrme model, we can study this
near-BPS limit in a simplified context and, in particular,
provide a concrete explanation for its validity.
The baby Skyrme model possesses various supersym-

metric extensions which all have in common the same

bosonic sector. These supersymmetric extensions of the
baby Skyrme model were first discussed in [14,15],
following earlier attempts to supersymmetrize Skyrme-like
theories in 3þ 1 dimensions [16,17] (see also more
recently [18]). These supersymmetric theories are, in
general, N ¼ 1 supersymmetric, thus with two real super-
charges, and N ¼ 2 at the two ends of the interval. The
almost-BPS properties of the almost-BPS theory can then
be understood in terms of the quantum supersymmetry
algebra, at least near the ζ ¼ 0 edge.
The paper is organized as follows: In Sec. II we study the

bosonic baby Skyrme model and its near-BPS limits for
various choices of potentials. In Sec. III we consider the
N ¼ 1 supersymmetric extensions of these theories. In
Sec. IV we study the N ¼ 2 extensions and their BPS
properties.We conclude in Sec. Vwith some open questions.

II. THE BOSONIC BABY SKYRME MODEL

The action for the Oð3Þ ¼ S2 baby Skyrme model is

S ¼
Z

d3x

�
θ2
2
∂μ

~ϕ · ∂μ ~ϕ −
θ4
2
ð∂μ

~ϕ × ∂ν
~ϕÞ

· ð∂μ ~ϕ × ∂ν ~ϕÞ − θ0Vð~ϕÞ
�
; ð2:1Þ

with the target space subject to the constraint ~ϕ · ~ϕ ¼ 1. We
consider this model for a class of potentials of the following
form,

Vð~ϕÞ ¼
�
1 − n̂ · ~ϕ

2

�k

; ð2:2Þ

where n̂ is a unit vector and k an integer. This family of
potentials contains, for example, the old baby Skyrme
model for k ¼ 1 and the so-called holomorphic model for
k ¼ 4 [1]. In addition to the arbitrariness of the functional
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form of the potential, we have, in general, three parameters
θ0;2;4 in the model. Rescaling the action by an overall
constant, and rescaling the length scale, we can effectively
reduce this arbitrariness to having only a one-parameter
family of Lagrangians.
Shortly we choose a parametrization which is the most

convenient for us, namely, to describe the flow between two
BPS systems that we want to study in this paper.
The first BPS system is the pure sigma model whose

Lagrangian is given by

L2 ¼
1

2
∂μ

~ϕ · ∂μ ~ϕ; ð2:3Þ

which, in the CPð1Þ formulation, takes the form

L2 ¼
1

ð1þ jwj2Þ2 ∂μw∂μw̄: ð2:4Þ

This model has a BPS bound which is saturated by the
holomorphic and antiholomorphic solutions,

EBPS ¼ 4πjQj; ð2:5Þ
where Q is the topological charge.
The second BPS system is the so-called restricted baby

Skyrmemodel and its Lagrangian consists of only two terms,
the term with quartic derivatives and the potential term:

L4;0 ¼ −
1

2
ð∂μ

~ϕ × ∂ν
~ϕÞ · ð∂μ ~ϕ × ∂ν ~ϕÞ − Vð~ϕÞ: ð2:6Þ

For the potential of the form (2.2), and using the CPð1Þ
formulation, the Lagrangian of the restricted baby Skyrme
model is described by

L4;0 ¼
1

ð1þ jwj2Þ4 ∂μw∂νw̄ð∂μw∂νw̄ − ∂νw∂μw̄Þ

−
jwj2k

ð1þ jwj2Þk : ð2:7Þ

This model also has a BPS bound and its solutions satisfy

EBPS ¼
8π

kþ 2
jQj: ð2:8Þ

The full baby Skyrme model can be thought of as an
interpolation between these two BPS systems. By rescaling
the action and the length scale, we can choose the
parameters in (2.1) to be of the form

θ2 ¼ 1 − ζ; θ0 ¼ θ4 ¼
ζðkþ 2Þ

2
; ð2:9Þ

and so the full Lagrangian can be written as

L ¼ ð1 − ζÞL2 þ
ζðkþ 2Þ

2
L4;0; ð2:10Þ

where L2 and L4;0 are given in (2.4) and (2.7). The
parameter ζ takes the value in an interval [0, 1] and the

boundaries of the interval represent the two BPS systems.
Note that for this choice of parameters the total bound,
which is the sum of the two BPS bounds (2.5) and (2.8), is
fixed to be 4πjQj for every value of ζ. The existence of this
bound for the full system follows directly from the
existence of the two bounds of the two BPS systems taken
in isolation [3]. In general, the bound can be saturated only
at the edges of the interval as we shall demonstrate below.
To find a one-soliton solution, we consider the radial

ansatz.

wðr; θÞ ¼ eiθfðrÞ; ð2:11Þ
for which the profile function fðrÞ has to satisfy the
boundary conditions fðr → 0Þ ¼ ∞ and fðr → ∞Þ ¼ 0.
The energy functional in terms of fðrÞ is now given by

E
4π

¼
Z

dr

�
rð1 − ζÞ
ð1þ f2Þ2

�
f02 þ f2

r2

�

þ ζðkþ 2Þ
4

�
4f02f2

rð1þ f2Þ4 þ
rf2k

ð1þ f2Þk
��

: ð2:12Þ

The exact forms of this profile function can be obtained by
minimizing this functional for various values of ζ. The
profile functions, for all values of ζ, always diverge like
fðrÞ≃ λ=r as r → 0. To find the profile function numeri-
cally, we can use the “shooting method,” i.e., varying the
parameter λ until we find that the other boundary condition
(at infinity) is also satisfied.
Next we consider a near-BPS approximation to describe

the soliton solutions near the two edges of the interval. We
first describe our approach in detail for the first edge, ζ → 0,
i.e., the one close to the pure sigma model. This method is
very similar to the one discussed in [8] for a holographic
model in which the role of the potential was played by the
space-time curvature. Earlier uses of this method for differ-
ent theories can be found in [5–8,10,11,13]. A similar, but
not equivalent, approach for the study of the baby Skyrme
model can also be found in [19].
A solution of the one-soliton profile of the pure sigma

model L2 can be taken in the form of the holomorphic
function,

fðrÞ ¼ λ

r
; ð2:13Þ

where λ describes the scale of the lump and is a free
parameter. We put this ansatz into (2.12) and determine the
value of λ that minimizes the total energy. The result of the
minimization gives us

λ� ¼
21=2ðk − 1Þ1=4

31=4
: ð2:14Þ

Note that this approach can be used only ifL4;0, evaluated on
the holomorphic ansatz, is convergent. This is true for k > 1
and thus excludes the old baby Skyrmemodel whichwewill
discuss separately. The total energy for the holomorphic
ansatz, evaluated for the minimum (2.14), is then
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E ¼ 4π þ 4πζ

�
kþ 2

ðk − 1Þ1=22 ffiffiffi
3

p − 1

�
: ð2:15Þ

This result can now be used in two different ways. First
of all, it provides an upper bound to the exact soliton
energy, which is valid for any value of ζ. Second, in the
limit ζ → 0, the exact solutions become well approximated
by the holomorphic ansatz (2.13) at the scale (2.14), and
(2.15) gives the correct first-order expansion of the soliton
mass near ζ ¼ 0. Later wewill present an analytic argument
explaining why this approximation can be trusted, and we
will present numerical evidence for this claim.
The other BPS approximation is very analogous in spirit.

To discuss it, we first consider any solution of the restricted
baby Skyrme model L4;0. Such a solution would strongly
depend on the value of the parameter k, so for the moment
we consider k ¼ 2. The restricted baby Skyrme model has
an infinitely large space of solutions, due to its area-
preserving diffeomorphism invariance. The solution with
radial symmetry is of the form

fðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er

2=2 − 1
p : ð2:16Þ

Minimizing L2 on the space of solutions is quite simple for
the one-soliton case; we just pick the radially symmetric
solution. The energy of this solution is then given by

E ¼ 4π þ 4πð1 − ζÞ
�
π2

12
þ log 2

2
− 1

�
: ð2:17Þ

Again this result has a double interpretation. It is either
an exact upper bound, which can be taken together with
(2.15), or it is an approximate solution valid near ζ ¼ 1.
Another case we will consider explicitly is the k ¼ 6

case for which the solution with radial symmetry of L4;0

is given by

fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
− 1

s
; ð2:18Þ

and its energy is

E ¼ 4π þ 4πð1 − ζÞ
�
log 2 −

5

8

�
: ð2:19Þ

We can determine the profile functions of the one-soliton
fields numerically for k ¼ 2; 6 and for various values of ζ.
Our results are presented in Figs. 1 and 2. The first plot in

E 4
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FIG. 1 (color online). In the first plot, first row, the mass of the soliton normalized to the BPS lower bound 4π for k ¼ 2 is plotted as a
function of ζ. The upper bounds are the two near-BPS approximations (blown up in the plots below). The second plot, first row, presents
the corresponding radial profiles for fðrÞ for various values of ζ. Thus, it shows the flow between the two almost-BPS solutions as ζ
varies over the interval [0, 1]. The plots in the second row are the mass plot zoomed near the two edges of the interval.
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the first row in both sets of figures is of the soliton mass,
normalized to 4π, and compared with the various bounds.
The plots show that the lower BPS bound and the two upper
bounds (2.15) and (2.17) form a triangle. The energy near
the two edges is well approximated by the upper bounds.
The second plot in the first row in the figures shows the
corresponding profile functions fðrÞ for different values of
ζ. It is quite clear that the full functions converge to the BPS
solutions near the two edges. In the second row of the
figures, we zoom near the two edges of the mass plot to
show that the linear expansion is well captured by the near-
BPS ansatz.
The case k ¼ 4 is special. This is the case of the

holomorphic potential for which a holomorphic solution
for the charge one sector exists for all values of ζ. This is
due to the fact that the moduli space for L2 and the moduli
space for L4;0 intersect at one point. In this case, there is no
flow and the total BPS bound is always saturated.
So we see that for the cases k > 1, everything works very

well. The only exception is, as stated before, the case of
k ¼ 1 near the first edge of the interval η → 0. Clearly,
when k ¼ 1 we cannot use Eq. (2.15). The reason for this is
that the holomorphic solution (2.13) diverges when evalu-
ated on L4;0. The only information we can extract from this
analysis is that the solution converges to a singular
holomorphic function as λ� → 0, and the derivative of
the energy with respect to ζ is infinite at ζ ¼ 0. For the
other edge, we can still use the near-BPS approximation.

The solution at ζ ¼ 1 is given by the following function
(with compact support):

fðrÞ ¼
� 4−r2

r
ffiffiffiffiffiffiffi
8−r2

p r ≤ 2

0 r ≥ 2
: ð2:20Þ

The energy evaluated for this function is given by

E ¼ 4π þ 4πð1 − ζÞ
�
2 log 2 −

17

24

�
: ð2:21Þ

All this is confirmed by the numerical calculations, the
results of which are presented in Fig. 3.
Now we present an explanation of why the near-BPS

approximation works in a general case, using a finite-
dimensional toy model. In general, the energy is of the
following form,

E ¼ EBPSðΦÞ þ ζVðΦÞ; ð2:22Þ

with the property that EBPSðΦÞ has a flat direction in a
subspace ΦBPSðλÞ, while VðΦÞ is a generic potential which
lifts this degeneracy, and ζ is a parameter which we want to
send to zero. The BPS property implies that, as we perform
any expansion around a BPS solution

Φ ¼ ΦBPSðλÞ þ ΔΦ⊥BPS þ ΔΦ∥BPS; ð2:23Þ
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FIG. 2 (color online). As Fig. 1 but for k ¼ 6.
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the energy is sensitive only to the fluctuations in the space
perpendicular to the moduli space δΦ⊥BPSðxÞ:

EBPSðΦÞ ¼ EBPS bound þ
1

2

∂2EBPSðΦÞ
∂Φ⊥2

ΔΦ2⊥BPS þ � � �

ð2:24Þ

Note that the fluctuations Δ⊥ and Δ∥ live in a vector space,
but for simplicity we avoid writing explicitly the vectorial
indices.
To prove our claim we want to determine the minimum

of this expression for small ζ. We use the expansion (2.23)
around a generic point in the BPS moduli space. Our
derivation will provide at the end the correct value ΦBPSðλÞ
to which the solution is flowing as ζ → 0.
It is convenient to separate the fluctuations into two

parts,

ΔΦ⊥BPS ¼ δ̄Φ⊥BPS þ δΦ⊥BPS;

ΔΦ∥BPS ¼ δ̄Φ⊥BPS þ δΦ⊥BPS; ð2:25Þ

where δ̄ is the fluctuation of the solution around the ζ → 0
limit, while δ describes any other fluctuation which we may
consider when we try to minimize the energy. The total
energy expansion, up to the second order, is then given by

E ¼ EBPS bound þ
1

2

∂2EBPSðΦÞ
∂Φ⊥2

ΔΦ2⊥BPS

þ ζ

�
VðΦBPSðλÞÞ þ

∂VðΦÞ
∂Φ⊥

ΔΦ⊥BPS

þ ∂VðΦÞ
∂Φ∥

ΔΦ∥BPS
1

2

∂2VðΦÞ
∂Φ⊥2

ΔΦ2⊥BPS

þ ∂2VðΦÞ
∂Φ∥∂Φ⊥

ΔΦ⊥BPSΔΦ∥BPS þ
1

2

∂2VðΦÞ
∂Φ∥

2
ΔΦ2

∥BPS

�
;

ð2:26Þ

where Δ’s are given by (2.25).
We first evaluate the perpendicular part of the fluctuation

δ̄Φ⊥BPS. For this we have to set to zero the term in (2.26)
proportional to δΦ⊥BPS:

�∂2EBPSðΦÞ
∂Φ⊥2

δ̄Φ⊥BPS þ ζ
∂VðΦÞ
∂Φ⊥

�
δΦ⊥BPS ¼ 0: ð2:27Þ

Thus, we have

δ̄Φ⊥BPS ¼ −ζ
�∂2EBPSðΦÞ

∂Φ⊥2

�−1 ∂VðΦÞ
∂Φ⊥

; ð2:28Þ

and so we see that δ̄Φ⊥BPS goes to zero linearly in ζ.
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FIG. 3 (color online). As Figs. 1 and 2 but this time for k ¼ 1.
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Then we find the right value of λ to which the solution
flows as ζ → 0 and also the fluctuation δ̄Φ∥BPS. This time
the term in (2.26) is proportional to δΦ∥BPS which must be
set to zero:

ζ

�∂VðΦÞ
∂Φ∥

þ ∂2VðΦÞ
∂Φ∥∂Φ⊥

δ̄Φ⊥BPSþ
∂2VðΦÞ
∂Φ∥

2
δ̄Φ∥BPS

�
δΦ∥BPS¼0:

ð2:29Þ

The leading term must be set to zero separately, and this
gives

∂VðΦÞ
∂Φ∥

¼ 0: ð2:30Þ

This, as anticipated before, is the condition that determines
the correct point of the BPS moduli space. Setting to zero
the higher-order terms in (2.29), we get the fluctuation
in the parallel direction

δ̄Φ∥BPS ¼ −
�∂2VðΦÞ

∂Φ∥
2

�−1 ∂2VðΦÞ
∂Φ∥∂Φ⊥

δ̄Φ⊥BPS; ð2:31Þ

where δ̄Φ⊥BPS is given in (2.28). So δ̄Φ∥BPS also goes to
zero linearly in ζ.
So we note that the energy evaluated on the solution has

the following expansion in ζ:

E ¼ EBPS bound þ ζVðΦBPSðλÞÞ þOðζ2Þ: ð2:32Þ

All the terms in this expression that depend on the
fluctuations δ̄Φ⊥BPS and δ̄Φ∥BPS are at least of order ζ2.
We give an illustrative example which supports these

claims. It involves a two-dimensional ðx; yÞ model with

EBPS ¼ x2; V ¼ y2 þ αxþ βx2 þ γxy: ð2:33Þ

The moduli space in this case is the line x ¼ 0, so Φ⊥
corresponds to x and Φ∥ to y. The minimum of EBPSðΦÞ þ
ζVðΦÞ can be computed exactly in this case, and it
corresponds to

x ¼ −
αζ

2þ 2βζ − γ2ζ=2
; y ¼ αγζ

4þ 4βζ þ γ2ζ
: ð2:34Þ

As ζ → 0, this minimum flows to the point ðx; yÞ ¼ ð0; 0Þ
which is exactly the minimum of V restricted to the line
x ¼ 0. Moreover, the perpendicular and parallel fluctua-
tions as ζ → 0 are exactly the ones given by (2.28) and
(2.31), namely,

δ̄x ¼ −ζ
�∂2EBPS

∂x2
�−1 ∂V

∂x ¼ −
αζ

2
;

δ̄y ¼ −
�∂2V
∂y2

�−1 ∂2V
∂x∂y δ̄x ¼ αγζ

4
: ð2:35Þ

III. THE SUPERSYMMETRIC
BABY SKYRME MODEL

In this section we consider various types of super-
symmetric extensions of the baby Skyrme model. We
use the conventions of [20] for N ¼ 1 supersymmetry
in ð2þ 1Þ dimensions, apart from the metric signature
which we take as ημν ¼ diagð1;−1;−1Þ. We will follow
closely the supersymmetric constructions of Refs. [14,15],
but with the inclusion of some important extra terms.
First of all, let us say a few words about our notation. An

N ¼ 1 superfield in ð2þ 1Þ dimensions has the following
expansion in Grassmannian coordinates,

U ¼ uþ θαψα − θ2F; ð3:1Þ
where θα is a Majorana spinor. The tensors for raising and
lowering the spinorial indices are Cαβ ¼ σ2 ¼ −Cαβ. The
covariant derivative which commutes with the supersym-
metry generators is given by

Dα ¼ ∂α þ iγμβα θβ∂μ; ð3:2Þ
and the gamma matrices are of the purely imaginary form:

γ0 ¼ σ2; γ1 ¼ iσ3; γ2 ¼ iσ1: ð3:3Þ

We consider the following terms in the Lagrangian
density, of which we will write down explicitly only their
bosonic terms in the action. The first term is the quadratic
derivative term:

L2 ¼ −
Z

d2θgðU; ŪÞDαŪDαU

¼ gðu; ūÞðjFj2 þ ∂μū∂μuÞ þ ferm: ð3:4Þ

Then we have five different higher-derivative terms. The
first three of them are generated by considering a superfield
of the following form,

DαUDβŪDξDτUDρDσŪ; ð3:5Þ
with different contractions of the spinorial indices per-
formed with the Cαβ tensor. The three such terms and their
bosonic parts in the Lagrangian are given by

L4;1 ¼−
1

4

Z
d2θh1ðU;ŪÞDαUDαŪDβDγUDβDγŪ

¼ h1ðu; ūÞðjFj4þ 2jFj2∂μū∂μuþð∂μū∂μuÞ2Þþ ferm;

ð3:6Þ
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L4;2 ¼ −
1

2

Z
d2θh2ðU; ŪÞDαUDβŪDαDβUDγDγŪþH:c:

¼ h2ðu; ūÞð4jFj4 þ 8jFj2∂μū∂μu

−F2∂μū∂μū− F̄2∂μu∂μuÞ þ ferm; ð3:7Þ

L4;3 ¼ −
1

2

Z
d2θh3ðU; ŪÞDαUDβŪDαDγUDβDγŪ

¼ h3ðu; ūÞðjFj4 þ 2jFj2∂μū∂μuþ j∂μu∂μuj2
− F2∂μū∂μū − F̄2∂μu∂μuÞ þ ferm: ð3:8Þ

Note that the last two of these terms (L4;2 and L4;3) were
not included in [14,15], and they will be important in what
follows.
The remaining two higher-derivative contributions are

constructed from a superfield of the form

DαUDβUDξDτŪDρDσŪ þ H:c:; ð3:9Þ

with different contractions of its spinorial indices. The two
terms that we need are

L4;4¼−
1

8

Z
d2θh4ðU;ŪÞðDαUDαUDβDβŪDγDγŪþH:c:Þ

¼h4ðu;ūÞð2jFj4þF2∂μū∂μūþF̄2∂μu∂μuÞþferm;

ð3:10Þ

L4;5¼−
1

8

Z
d2θh5ðU;ŪÞðDαUDαUDβDγŪDβDγŪþH:c:Þ

¼h5ðu;ūÞðjFj4 þ j∂μu∂μuj2
þF2∂μū∂μūþ F̄2∂μu∂μuÞþ ferm: ð3:11Þ

There are many other possible scalar superfield combi-
nations which have the same number of superfields U and
same number of covariant derivatives Dα. The previous list
does not provide a complete classification. But for our
purposes, our choice of five terms is the minimal number
we have to take into consideration. The reason for this is the
following. The bosonic sector of the higher-derivative
terms has five possible terms, which can be combined into
a five-vector Bi,

Bi ¼ ðjFj4; jFj2∂μū∂μu; ð∂μū∂μuÞ2; j∂μu∂μuj2; F2∂μū∂μū

þ H:c:Þ; ð3:12Þ

with i ¼ 1; ::5. A sum of the previous five terms in the
Lagrangian, (3.6), (3.7), (3.8), (3.10), and (3.11), gives a
generic linear combination of these terms in the bosonic
sector

X5
i¼1

L4;i ¼ hiðu; ūÞMijBj; ð3:13Þ

with the matrix Mij being

M ¼

0
BBBBBB@

1 2 1 0 0

4 8 0 0 −1
1 2 0 1 −1
2 0 0 0 1

1 0 0 1 1

1
CCCCCCA
: ð3:14Þ

Since the determinant of the matrix M is different from
zero, the five terms are all linearly independent. These five
terms are then sufficient to construct any possible combi-
nation of such bosonic terms in the Lagrangian. With the
inclusion of more general higher-derivative terms, we
could have a different fermionic sector with the same
bosonic part. Exploring the full set of possibilities is
beyond the scope of this project. The four terms L4;i with
i ¼ 2; 3; 4; 5 are the ones that arise in the N ¼ 2 extended
model, as we shall derive in Eq. (4.10), so it is natural to
choose these. If we want to consider a generic N ¼ 1
bosonic sector, we need to add a fifth linearly independent
one which is L4;1.
We also have a potential term with no derivatives:

L0 ¼ −
Z

d2θwðU; ŪÞ ¼ ∂uwF þ ∂ ūwF̄ þ ferm: ð3:15Þ

So the total Lagrangian is a sum of these various terms:

L ¼ L2 þ
X5
i¼1

L4;i þ L0: ð3:16Þ

Next we look at the ways of recovering the baby Skyrme
model in the bosonic sector. For this we want to sum all the
bosonic terms, integrate out the auxiliary field F, and then
constrain the remaining bosonic Lagrangian to be the one
of the baby Skyrme model. The fermionic part of the
Lagrangian contains purely fermionic terms and also the
mixed ones. In fact, it is not possible to integrate out, in a
closed form, the auxiliary field for the full Lagrangian,
including the fermionic sector. So we do not have an on-
shell form of the supersymmetric baby Skyrme model, with
only the fields u and ψ . Only for the solution in which the
fermions have been set to zero, which is always possible
due to the form of their equation of motion, do we recover
the baby Skyrme model after integrating out the aux-
iliary field.
The most general bosonic baby Skyrme model is para-

metrized by three real and positive functions Vðu; ūÞ,
Kðu; ūÞ, Sðu; ūÞ and is of the form
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L ¼ Kðu; ūÞ∂μū∂μuþ Sðu; ūÞðj∂μu∂μuj2 − ∂μū∂μuÞ
− Vðu; ūÞ: ð3:17Þ

The specific cases considered in Sec. II are

K ¼ 1

ð1þ juj2Þ2 ; S ¼ 1

ð1þ juj2Þ4 ;

V ¼ juj2k
ð1þ juj2Þk : ð3:18Þ

To proceed further, we note that there are two different
strategies to obtain the baby Skyrme Lagrangian; both
strategies have been considered in Refs. [14] and [15]. We
will adopt the same strategies, but taking into consideration
also the extra terms (3.7) and (3.8).
The first strategy is the one discussed in [14]. Here we try

to combine the higher-derivative terms in order to repro-
duce the baby Skyrme term with no additional auxiliary
field terms. The baby Skyrme higher-derivative term, in the
notation of (3.12), correspond to the vector ð0; 0;−1; 1; 0Þ.
We then have the equation

Sðu; ūÞð0; 0;−1; 1; 0Þ ¼ hiðu; ūÞMij; ð3:19Þ

which is solved by

hiðu; ūÞ ¼ Sðu; ūÞ 1
5
ð−5; 1; 1;−2; 4Þ: ð3:20Þ

The Lagrangian in this case becomes

L ¼ gjFj2 þ g∂μū∂μuþ Sðu; ūÞðj∂μu∂μuj2 − ∂μū∂μuÞ
þ ∂uwF þ ∂ ūwF̄ þ ferm: ð3:21Þ

After setting ψ ¼ 0, the auxiliary field can be solved by

F̄ ¼ −
∂uw
g

; ð3:22Þ

and so the Lagrangian becomes

L ¼ g∂μū∂μu −
j∂uwj2

g
þ Sðu; ūÞðj∂μu∂μuj2 − ∂μū∂μuÞ:

ð3:23Þ

In this case we can then recover the baby Skyrmion
theory by making the following choice:

gðu; ūÞ ¼ Kðu; ūÞ;
j∂uwj2 ¼ Vðu; ūÞKðu; ūÞ: ð3:24Þ

For example, for the specific choice (3.18), the solution for
w is given by the real integral

wðu; ūÞ ¼
Z juj

dx
xk

ð1þ x2Þ1þk=2 : ð3:25Þ

A solution of this form can be easily found whenever V and
K are simply functions of juj.
In the second approach (see [15]), we do not use any

superpotential term, so we set L0 ¼ 0. We then arrange the
coefficients of the higher-derivative terms L4;i so that only
the terms proportional to jFj4, jFj2, or jFj0 appear in the
bosonic sector; i.e., we set to zero coefficients of the terms
F2 and F̄2. In this case, we can integrate out explicitly the
auxiliary field after we have also set ψ ¼ 0. Finally, we
arrange the coefficient of the term with four time deriva-
tives to vanish.
For the terms proportional to F2 and F̄2 to vanish, we

have

ð−h2 − h3 þ h4 þ h5ÞðF2∂μū∂μūþ F̄2∂μu∂μuÞ ¼ 0;

ð3:26Þ

and, thus, we require that

h5 ¼ h2 þ h3 − h4: ð3:27Þ

Then the total Lagrangian becomes

L ¼ gjFj2 þ g∂μū∂μuþ ðh1 þ 5h2 þ 2h3 þ h4ÞjFj4
þ ð2h1 þ 8h2 þ 2h3ÞjFj2∂μū∂μuþ h1ð∂μū∂μuÞ2
þ ðh2 þ 2h3 − h4Þj∂μu∂μuj2 þ ferm: ð3:28Þ

Next we set ψ ¼ 0 and find that the auxiliary field can be
solved by

jFj2 ¼ −
gþ ð2h1 þ 8h2 þ 2h3Þ∂μū∂μu

2ðh1 þ 5h2 þ 2h3 þ h4Þ
: ð3:29Þ

Thus, the bosonic Lagrangian, at this stage, becomes

L ¼ gðh2 þ h3 þ h4Þ
h1 þ 5h2 þ 2h3 þ h4

∂μū∂μu

þ h1ðh4 − 3h2Þ − ð4h2 þ h3Þ2
h1 þ 5h2 þ 2h3 þ h4

ð∂μū∂μuÞ2

þ ðh2 þ 2h3 − h4Þj∂μu∂μuj2

−
g2

4ðh1 þ 5h2 þ 2h3 þ h4Þ
: ð3:30Þ

Finally, we have to impose the vanishing of the coefficient
of the terms with four time derivatives, and this gives us the
following constraint:
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−11h22 − 2h1ðh2 − h3Þ þ 3h23 þ 4h2ðh3 − h4Þ − h24 ¼ 0:

ð3:31Þ

The final bosonic Lagrangian of the baby Skyrme type
is, thus,

L ¼ gðh2 þ h3 þ h4Þ
h1 þ 5h2 þ 2h3 þ h4

∂μū∂μu

þ ðh2 þ 2h3 − h4Þðj∂μu∂μuj2 − ∂μū∂μuÞ

−
g2

4ðh1 þ 5h2 þ 2h3 þ h4Þ
; ð3:32Þ

with h1;2;3;4 related by the condition (3.31).
If we want a restricted baby Skyrme Lagrangian, which

is (3.17) with K ¼ 0, we have to also impose the vanishing
of the coefficient of the kinetic term in (3.32), and this
gives us

h2 ¼ −h3 − h4: ð3:33Þ

The constraint (3.31) then becomes

2ðh1 − 3h3 − 4h4Þð2h3 þ h4Þ ¼ 0: ð3:34Þ

We note that we have two branches of solutions of this
equation. The first branch, h1 − 3h3 − 4h4 ¼ 0, gives an
infinite potential, so we exclude it. The second one is

h4 ¼ −2h3; ð3:35Þ

and it gives us the following bosonic Lagrangian:

L ¼ 5h3ðj∂μu∂μuj2 − ∂μū∂μuÞ − g2

4ðh1 þ 5h3Þ
: ð3:36Þ

To match the restricted baby Skyrme model we can make
the following choice:

h3ðu; ūÞ ¼
1

5
Sðu; ūÞ;

h1ðu; ūÞ ¼
ϵ

5
Sðu; ūÞ;

gðu; ūÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

5
þ ϵ

�
Vðu; ūÞSðu; ūÞ

s
; ð3:37Þ

with ϵ > 1=5. This can also be rewritten using (3.27) and
(3.35) as

hiðu; ūÞ ¼ Sðu; ūÞ 1
5
ðϵ; 1; 1;−2; 4Þ: ð3:38Þ

At the value ϵ ¼ −1=5, we meet the first branch of
solutions of (3.34). Not only can we then recover any

restricted baby Skyrme model, but we also have a one-
parameter family labeled by ϵ.
To recover the most general baby Skyrme model, we

need first to solve explicitly the constraint (3.31). We can
express h1 as a function of the others as follows,

h1 ¼
−11h22 þ 4h2h3 þ 3h23 − 4h2h4 − h24

2ðh2 − h3Þ
; ð3:39Þ

and then the bosonic Lagrangian becomes

L ¼ 2gðh3 − h2Þ
h2 þ h3 þ h4

∂μū∂μu

þ ðh2 þ 2h3 − h4Þðj∂μu∂μuj2 − ∂μū∂μuÞ

−
g2ðh3 − h2Þ

2ðh2 þ h3 þ h4Þ 2
: ð3:40Þ

We are, thus, left with having to solve the following three
equations:

K ¼ gðh3 − h2Þ
h2 þ h3 þ h4

;

S ¼ h2 þ 2h3 − h4;

V ¼ g2ðh3 − h2Þ
2ðh2 þ h3 þ h4Þ2

: ð3:41Þ

One possible set of solutions is

g ¼ α
ffiffiffiffiffiffi
VS

p
ð3:42Þ

and

hi ¼
�
K2 þ SVðα2 − 4Þ − 2K

ffiffiffiffiffiffi
SV

p
α

4V
;

−3K2 þ 8SV þ 2K
ffiffiffiffiffiffi
SV

p
α

40V
;
K2 þ 4SV þ K

ffiffiffiffiffiffi
SV

p
α

20V
;

K2 − 16SV þ 6K
ffiffiffiffiffiffi
SV

p
α

40V
;
−K2 þ 16SV − K

ffiffiffiffiffiffi
SV

p
α

20V

�
;

ð3:43Þ

with α > 0. So we have a one-parameter family of
models for any bosonic baby Skyrme model. When
K ¼ 0 we recover the solutions (3.37) and (3.38) with
α ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=5þ ϵ

p
.

IV. N ¼ 2 SUPERSYMMETRIC EXTENSIONS

In N ¼ 2, the superspace spinor is complex. We can
write it as a sum of real and imaginary components as

Θα ¼ θα þ iδα; ð4:1Þ
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where θ and δ are two Majorana spinors. In particular, θ is
the one that in our conventions corresponds to the N ¼ 1
supersymmetry of the previous section.
The N ¼ 2 covariant derivatives are

Dα ¼ ∂α þ iσμα _αΘ̄
_α∂μ; D̄ _α ¼ −∂ _α − iΘασμα _α∂μ: ð4:2Þ

To proceed further, we decompose the N ¼ 2 covariant
derivatives into sums of the N ¼ 1 ones,

Dα ¼ DðθÞ
α þ iDðδÞ

α ; D̄ _α ¼ −DðθÞ
_α þ iDðδÞ

_α ; ð4:3Þ

where DðθÞ
α and DðδÞ

α are the same as (3.2), respectively, for
θ and δ. N ¼ 2 chiral and antichiral superfields satisfy the
constraints D̄ _αUN¼2 ¼ 0 and DαŪN¼2 ¼ 0, and when
expanded into components, they become

UN¼2 ¼ uþ iΘσμΘ̄∂μuþ 1

4
ΘΘΘ̄ Θ̄□uþ

ffiffiffi
2

p
Θψ

−
iffiffiffi
2

p ΘΘ∂μψσ
μΘ̄þ ΘΘF;

ŪN¼2 ¼ ū − iΘσμΘ̄∂μūþ 1

4
ΘΘΘ̄ Θ̄□ūþ

ffiffiffi
2

p
Θ̄ ψ̄

þ iffiffiffi
2

p Θ̄ Θ̄ Θσμ∂μψ̄ þ Θ̄ Θ̄ F̄ : ð4:4Þ

When the N ¼ 2 superfields are chiral or antichiral, the
following relations between the N ¼ 1 covariant deriva-
tives are satisfied:

DðθÞ
α UN¼2 ¼ iDðδÞ

α UN¼2; DðθÞ
α ŪN¼2 ¼ −iDðδÞ

α ŪN¼2:

ð4:5Þ

So all derivatives can be expressed as a function of a unique

derivative which we take to be DðθÞ
α . From now on we will

denote DðθÞ
α simply as Dα.

The N ¼ 2 superfields can be expanded in powers of δ
as follows,

UN¼2 ¼ U þ iδαDαU −
1

2
δαδαDβDβU;

ŪN¼2 ¼ Ū − iδαDαŪ −
1

2
δαδαDβDβŪ; ð4:6Þ

where U is the N ¼ 1 superfield, like the one defined in
(3.1), but with a different normalization for the fermionic
field,

U ¼ uþ
ffiffiffi
2

p
θαψα − θ2F: ð4:7Þ

In this formulation the θ dependence is hidden inside the
N ¼ 1 superfields U and Ū.
Returning to our problem, we note that one N ¼ 2

model is the pure sigma model arising from the Kahler
potential, namely,

L2 ¼
Z

d2Θd2Θ̄KðŪN¼2; UN¼2Þ

¼ −
Z

d2θ∂̄∂KðŪ; UÞDαŪDαU: ð4:8Þ

When expressed in theN ¼1 form, this shows that aN ¼1

sigma model with a Kahler metric gðŪ; UÞ ¼ ∂̄∂KðŪ; UÞ
has a hiddenN ¼ 2 supersymmetry [21–24]. This model is
one particular case of the theories arising from the first
strategy of the previous section. We schematically describe
these theories in Fig. 4. The first strategy leads to the
general N ¼ 1 extension of the baby Skyrme model. Any
theory with a parameter ζ defined in Sec. II can be extended
to N ¼ 1. Among these theories, only one with δ ¼ 0 is
extendable to N ¼ 2, and this is only the case if the metric
is Kahler.
Another N ¼ 2 extension is provided by the model

discussed in [15] which is a particular extension of the
restricted baby Skyrme model. So let us consider this model
and expand it in theN ¼ 1 formalism to see where it lies in
the more general N ¼ 1 extensions.
This model is defined by

L ¼ L2 þ L4; ð4:9Þ

where L2 is (4.8) and L4 is

L4 ¼ −
Z

d2Θd2Θ̄
1

10
SðŪN¼2; UN¼2Þ

×DαUN¼2DαUN¼2DαŪN¼2DαŪN¼2

¼
Z

d2θ
1

10
SðŪ; UÞð−DαUDαUDβDγŪDβDγŪ

þ H:c: − 2DαUDβŪDαDγUDβDγŪ

þ 1

2
DαUDαUDβDβŪDγDγŪ þ H:c:

þDαUDβŪDαDβUDγDγŪ þ H:c:Þ þ � � � : ð4:10Þ

Second strategyFirst strategy

FIG. 4 (color online). Supersymmetric extensions of the baby
Skyrme model.
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For the last two lines we have performed an integration by
parts of Dα, and the … terms depend on derivatives of
SðŪ; UÞ, but these do not affect the bosonic part of the
Lagrangian. This expansion, taking into account also the
coefficients in (3.7), (3.8), (3.10), (3.11), coincides exactly
with (3.38) for the choice ϵ ¼ 0.
This other N ¼ 2 extension belongs to the second

strategy, as depicted in Fig. 4. This extension is also
surrounded by other more general N ¼ 1 extensions of
the baby Skyrme model. Note that the two N ¼ 2

extensions cannot be continuously connected by N ¼ 1
extensions since they belong to two disconnected families.
The extended supersymmetry algebra is usually modi-

fied by the presence of topological central charges [25]. For
theN ¼ 2 CPð1Þ sigma model in ð2þ 1Þ dimensions, this
charge has been computed explicitly in [26,27]. The
algebra is given by

fQI
α; QJ

βg ¼ δIJCβργ
μ ρ
α Pμ þ iϵIJCαβT; ð4:11Þ

where QI
α with I ¼ 1; 2 are the two supersymmetry gen-

erators and T is the topological charge. Using the linear
combinations

Qα ¼
1ffiffiffi
2

p ð1þ γ2ÞβαðQ1
α þ iQ2

αÞ;

Q̄α ¼
1ffiffiffi
2

p ð1 − γ2ÞβαðQ1
α − iQ2

αÞ; ð4:12Þ

and going into the soliton rest frame Pμ ¼ ðM; 0; 0Þ,
we have

fQα; Q̄βg ¼ 2

�
M − T 0

0 M þ T

�
: ð4:13Þ

Solitons are the half-BPS states that annihilate the two
supercharges Q1 and Q̄1; antisolitons annihilate instead Q2

and Q̄2. We can rewrite the four supercharges as Q1;2;3;4:

Q1 ¼
1ffiffiffi
2

p ðQ1
1 −Q2

2Þ; Q2 ¼
1ffiffiffi
2

p ðQ1
2 þQ2

1Þ;

Q3 ¼
1ffiffiffi
2

p ðQ1
1 þQ2

2Þ; Q4 ¼
1ffiffiffi
2

p ðQ1
2 −Q2

1Þ: ð4:14Þ

The soliton annihilates Q1 and Q2, while the antisoliton
annihilates Q3 and Q4. The supersymmetric multiplet is
built around the bosonic soliton state jsi by acting with the
broken supercharges: jsi, Q3jsi, Q4jsi, Q3Q4jsi. Since
Q1jsi ¼ Q2jsi ¼ 0, we can equivalently write the multi-
plet as jsi, Q1

1jsi, Q1
2jsi, Q1

1Q
1
2jsi. When supersymmetry is

broken to N ¼ 1, the multiplet is simply lifted in a
continuous way from the BPS bound. A short multiplet
for N ¼ 2 has, in fact, the same number of states of a long
multiplet of N ¼ 1 theory (see Fig. 5).

The discussion of the model near the other N ¼ 2
theory is more subtle. In [15] it was shown that the soliton
preserves locally half of the supersymetric generators. In
order for the soliton to be really 1=2 BPS, these local
generators must be globally extended. So far only 1=4 of
the global generators have been proven to be left unbroken
by the soliton [18]. Furthermore, the quantum algebra has
not yet been computed in an explicit form for the N ¼ 2
theory corresponding to the restricted baby Skyrme
model. So this problem is left to some further study in
the future.

V. CONCLUSIONS

In the first part of this paper, we have laid the ground-
work for the near-BPS approximation, both analytically
and numerically, using the baby Skyrme as a prototype
model. Our analytical arguments also predict the rate of
convergence to the BPS moduli space of solutions and, in
particular, the rate of the deviation from the BPS moduli
space (2.28) and (2.31). To test this rate of convergence,
we would need more powerful numerical methods than
those we currently have at our disposal. Also, a rigorous
analytic proof would require more powerful functional
analysis methods. It would also be interesting to extend
this analysis to the multisoliton sector and to the bound
states of baby Skyrmions.
We have also given a more complete construction of the

N ¼ 1 supersymmetric extensions of the baby Skyrme
model, generalizing the results of [14,15]. Using two
different strategies, we were able to construct two dis-
connected families of N ¼ 1 theories, each of which
possesses an N ¼ 2 extension in which the solitons
become BPS saturates. It has not, however, been possible,
within the theories we have constructed, to construct a
theory with a flow between these two N ¼ 2 models
without breaking all the supersymmetries. It is not clear, at
present, whether a more general N ¼ 1 framework exists
that would allow such a continuous flow to be present.
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FIG. 5. A “short” N ¼ 2 multiplet is lifted to a “long” N ¼ 1
multiplet when supersymmetry is partially broken.
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