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It is shown that the causal structure associated to stringlike solutions of the Faddeev-Niemi model is
described by an effective metric. Remarkably, the surfaces characterizing the causal replacement depend
on the energy momentum tensor of the background soliton and carry implicitly a topological invariant
π3ðS2Þ. As a consequence, it follows that the preimage curves in R3 nontrivially define directions where
the cones remain unchanged. We expect that these early results may be of importance in understanding
time dependent solutions (collisions/scatterings) numerically or analytically.
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I. INTRODUCTION

The existence of closed stringlike solutions in (3þ 1)-
dimensional field theories is certainly one of the intriguing
aspects of modern mathematical physics. Typically, these
localized solutions describe one-dimensional structures
which may twist nontrivially in the forms of loops, links
and knots characterized by a Hopf index. Roughly, a Hopf
soliton (or hopfion) is a knot in a three-dimensional
continuous unit vector field which cannot be unknotted
without cutting [1]. Remarkably, they appear in a variety of
physical systems such as Bose-Einstein condensates [2],
ferromagnetism [3], magnetohydrodynamics [4] and non-
Abelian gauge theories, where they are supposed to
describe glueballs [5]. More recently, it was proposed that
liquid crystals also provide an ideal setting for exploring
such topological phenomena [6].1

One of the simplest relativistic systems supporting knots
is the Oð3Þ variant of the Skyrme model [8]. The so-called
Faddeev-Niemi (FN) model describes the dynamics of a
three-dimensional isovector nðxaÞ taking values on a bi-
dimensional sphere S2 i.e. n · n ¼ 1 [5]. The Lagrangian is
that of a sigma model plus fourth order corrections and the
topological content appears when we consider static
solutions with asymptotic behavior nj∞ ¼ ð0; 0; 1Þ. In this
situation the field realizes the map between spheres
R3∪f∞g ≅ S3 → S2 which is characterized by the Hopf
index. Interestingly, the FN model appears quite naturally
in the dual superconducting picture of the strongly coupled
SU(2) Yang-Mills theory discussed in a series of papers
[9–13]. Accordingly, the high energy limit of the theory
may describe asymptotically free, massless pointlike
gluons while the infrared limit may describe extended flux
tubes which close on themselves in stable knotted

configurations. This scenario is particularly compelling
because it is consistent with the accepted notion of color
confinement in QCD and therefore can shed some light into
the mass gap problem. Unfortunately, the equations are
highly nonlinear and most of the results rely on numerical
lattice approaches and/or approximations [14–17].
Although important results on the global existence and

development of singularities have been obtained for semi-
linear wave maps (see, for instance, [18–20] and references
therein), much less is known about the evolutionary
properties of the FN equations. Generically, one expects
that not all initial data will be mathematically admissible
since for a large class of them the Cauchy problem would
be ill-posed. Indeed, it is quite common that quasilinear
partial differential equation’s (PDE) generate systems
which are not of evolutionary type (for some data) even
if the theory is Lorentz invariant by construction (see, for
instance, [21]). Needless to say, this lack of hyperbolicity
may be of crucial importance in numerical simulations
where imprecisions in the initial data may originate
instabilities, singularities and discontinuous solutions.
In this paper we investigate the causal structure of the

FN model and clarify some aspects related to its propa-
gation features. We show that the high frequency excita-
tions on top of background solutions are described by
characteristic surfaces governed by a curved effective
geometry (see [22] for a review). This is related to the fact
that for quasilinear equations wave velocities are not given
a priori, but change as functions of initial data, directions
of propagation and wave polarization. With respect to the
new geometry, rays are equivalent to null geodesics, and
therefore can be described using traditional tools of
general relativity (see [23] for a similar analysis in the
context of hydrodynamics). In particular, we show that the
causal replacement inherits the Hopf charge of the soliton.
In this sense, the present work is a natural generalization
of previous results sketched by Gibbons and the author
in [24].
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1See also [7] for a discussion in the context of steady Euler

flows.
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II. FADDEEV-NIEMI MODEL

A. Kinematics

Formally, the FN model is a Lorentz invariant
Lagrangian theory of maps into a surface [19]. It can be
implemented in terms of a continuous and surjective map
ϕ∶ ðR1þ3; ηÞ → ðS2; hÞ where ηab ¼ diagðþ − −−Þ and
hABðϕÞ is the Riemannian metric on the unit 2-sphere.
The map induces the pull-back spacetime tensors ϕ�h
and ϕ�ϵ:

Lab∶ ¼ hABðϕÞ∂aϕ
A∂bϕ

B;

Fab∶ ¼ ϵABðϕÞ∂aϕ
A∂bϕ

B;

with ϵAB the area 2-form on the sphere. Following [25] we
call the tensor η−1∘ϕ�h the strain for the map ϕ. The
antisymmetric object Fab and the strain satisfy the algebraic
relation

Fa
cFcb ¼ La

cLcb − Lc
cLab: ð1Þ

Typically, one is interested in particular mappings with
the asymptotic behavior ϕAj∞ → const, which means that
the state of the fields are homogeneous as they approach
spatial infinity.2 As usual, we choose this constant such that
the field state corresponds to the north pole N on the target.
Under this boundary condition, ϕAðx0; xiÞ effectively maps
S3 in S2 for a given time coordinate x0 and therefore there
is a homotopy invariant Q ¼ π3ðS2Þ ∈ Z. Roughly, it will
remain the same under any smooth deformation of the map.
According to the above construction the 2-form Fab

identically satisfies

∂bFab
�

¼ 0; ð2Þ

with Fab

� ≡ ηabcdFcd=2 the dual and ηabcd the usual
Levi-Civita tensor. Thus, ∃Ca such that Fab ¼ ∂ ½aCb�
everywhere. Also, due to rank considerations, it follows
the algebraic relation

Fab

�
Fab ¼ 0; ð3Þ

which leads to a conserved current of the form Ja ¼
Fa

b

�
Cb. Whitehead first showed [26] that it is possible to

express the Hopf invariant as an integral of the form

Q ∝
Z
R3

Fab

�
Catbdv; ð4Þ

with tb a normalized timelike vector (tata ¼ 1) orthogonal to
the space slices and dv the element of volume. Interestingly,
the preimage ϕ−1ðPÞ of a given point P ∈ S2 is an integral

line of the divergenceless magneticlike vector field in R3

given by

Ba ≡ Fa
b

�
tb: ð5Þ

As is well known, Q can be interpreted heuristically as the
linking number between two such “magnetic” field lines,
[ϕ−1ðP1Þ andϕ−1ðP2Þ, respectively]. Generically, these field
lines will twist among themselves in a highly nontrivial way
for large values of the index, filling the space with a complex
fibered structure (see Fig. 1). In particular, the preimage of
the south pole S is defined as the position of the Hopf soliton
as it corresponds to the position in S2 more distant to the
vacuum.

B. Dynamics

The pulled-back tensors Lab and Fab give rise to
invariants from which we can naturally define an action
for the map. In the model proposed by Faddeev and Niemi
the action is given by

S½ϕ� ¼
Z

1

2
La

a −
κ2

4
FabFabd4x; ð6Þ

where, as usual, the second term (Skyrme term) is introduced
to guarantee the stability of solitons against scalings and κ
is a parameter controlling the strength of nonlinearities. We
note that this term resembles the Lagrangian of Maxwell’s
electrodynamics.3

FIG. 1 (color online). Pencils of magnetic field lines in R3 for
Q ¼ 1, 2 and 3, respectively. The closed curves representing the
boundaries of the (Seifert) surfaces correspond to the preimages
ϕ−1ðP1Þ and ϕ−1ðP2Þ of two points P1 and P2 in S2.

2This is related to the requirement of finiteness of the energy
for static configurations.

3When one considers static configurations, the first term
corresponds to a Dirichlet term and the second to the energy
of the vector field Ba directed along the fibers [7].
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Variation with respect to ϕA yields a system of second
order quasilinear PDE’s which can be written in the
compact form

ðHAB∂aϕBÞjjC∂aϕ
C ¼ 0; ð7Þ

where

HAB ≡ hAB − κ2ϵAPϵBQXPQ; ð8Þ
XAB ≡ ∂aϕ

A∂bϕ
Bηab and jj represents the covariant deriva-

tive with respect to hAB.
4 In terms of the target connection

ΓA
BC, Eq. (7) becomes

∂aðHAB∂aϕBÞ ¼ ΓD
ACHDB∂aϕB∂aϕ

C; ð9Þ
which reveals that the equation of motion consists of
various types of self-interactions arising from the non-
standard kinetic terms and the target space geometry.
Generically, it is possible to express Eq. (9) as

Mab
ABðϕ; ∂ϕÞ∂a∂bϕ

B þ � � � ¼ 0; ð10Þ
where “� � �” stands for semilinear terms in ϕA (lower order
derivatives) and the principal symbol is given by

M ¼ ηabHAB þ κ2

2
ϵAPϵBQ∂aϕðQ∂bϕPÞ: ð11Þ

As it is well known, the highest-order terms in deriv-
atives almost completely control the qualitative behavior of
solutions of a partial differential equation. We note that M
is automatically symmetric about ab and AB. Also, in the
absence of the Skyrme term Eq. (7) reduces to the semi-
linear equation known as the classical Oð3Þ sigma model.
In what follows we will see that the energy momentum

tensor plays a crucial role in the description of the
propagation cones. Since the Faddeev-Niemi model can
be viewed as the restriction of the Skyrme model to the
“equator” of the target 3-sphere, the energy momentum
tensor discussed in [27] can be directly applied to our
context. In particular, Tab ¼ Tab

ð1Þ þ Tab
ð2Þ with

Tab
ð1Þ ¼ Lab − Lc

cgab=2;

Tab
ð2Þ ¼ ½Fa

cFcb þ FcdFcdgab=4�κ2;

and satisfies the dominant energy condition, i.e. Ta
btb is

future directed for all timelike tb. It is worth pointing out,
however, that although solutions of the FN model are
automatically solutions of the restricted SUð2Þ Skyrme
model, the principal symbol for the latter is given by a
3 × 3 matrix, which would complicate substantially the
characteristic analysis performed in the next section (see
[28] for some preliminary results on the hyperbolicity and
instabilities for the Skyrme model).

III. CHARACTERISTIC SURFACES

The nonlinear structure of the field equations implies that
linearized waves interact with background solutions in a
nontrivial way. The characteristic surfaces of the model can
be obtained with the eikonal approximation. Formally, we
consider a one-parameter family of solutions of the form

ϕAðxÞ ¼ ϕA
0 ðxÞ þ αφAðxÞ exp ðiΣðxÞ=αÞ; ð12Þ

where ϕA
0 ðxÞ is a smooth solution and let the real parameter

α → 0. In this limit, we can discard all semilinear con-
tributions in (10) and only consider the principal part term
contributions.
Defining the wave covector ka ≡ ∂aΣ, the equation of

motion reduces to the eigenvalue equation

½MABðϕ0; kÞ�φB ¼ 0; ð13Þ
where we defined the symmetric matrix MABðϕ0; kÞ≡
Mab

ABðϕ0Þkakb. It follows that (13) can be solved only
if ka satisfy the algebraic conditions

Fxðϕ0; kÞ≡ detðMABðϕ0; kÞÞ ¼ 0: ð14Þ

As a consequence, at a given spacetime point, the wave
normals are characterized by the roots of a multivariate
polynomial of fourth order5 in ka in the cotangent space
T�
pM. The resulting algebraic variety changes from point to

point in a way completely prescribed by the background
solution ϕA

0 and the nonlinearities of the model.
The general form of Fx is given by a quartic polynomial

that factorizes. In other words the characteristic polynomial
reduces to a product of two simpler quadratic terms
satisfying

½ηabkakb�½ðh−1Þcdkckd� ¼ 0: ð15Þ

Surprisingly, the reciprocal quadratic form ðh−1Þab can be
written in terms of the total energy momentum tensor of the
background field

ðh−1Þab ≡ ð1 − κ2LÞηab þ κ2Tab; ð16Þ
where L is nothing but the Lagrangian of the model and
Tab ¼ Tab

ð1Þ þ Tab
ð2Þ. As a consequence, the vanishing sets of

(15) constitute the FN analogues of the Fresnel equation
encountered in optics. They play the role of a fourth order
spacetime dispersion relation (at least up to a conformal
factor). In general, ΣðxÞ will solve one quadratic poly-
nomial or the other, although it is possible that there exist
some directions where the vanishing sets coincide.
Consequently, the model admits two different types of

4Note that Eq. (7) is equivalent to ½ðhABηab− κ2ϵABFabÞ∂bϕ
B�jj

C∂aϕ
C ¼ 0.

5A similar calculation for the SUð2Þ Skyrme model leads to a
sixth order polynomial.
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waves. One wave travels with the velocity of light while the
other travels with a velocity which depends implicitly on
the solution and on the Hopf charge. More explicitly, we
have

ðh−1Þab ¼ ð1 − 2κ2LÞηab þ κ2ðLab þ κ2Fa
cFcbÞ ð17Þ

which reveals that both pulled-back tensors contribute to
the causal structure. Note that if κ is set to zero the FN
model reduces to the usual Oð3Þ sigma model (wave map
equation) implying that the effective metric becomes flat
everywhere.
Now, if the quantity ðh−1Þab is nondegenerate it is

possible to define its inverse hab such that ðh−1Þachcb ¼
δab. In general, the effective metric hab defines a Lorentzian
metric on spacetime, the null cones of which are the
effective “sound cones” of the theory. The ray vectors
qa associated to the wave fronts are the vanishing sets of the
dual polynomial Gx:

Gxðϕ0; qÞ≡ ½ηabqaqb�½habqaqb� ¼ 0: ð18Þ
As is well known, these cones completely determine the
causal structure of the theory once a solution is given. In
particular, nontrivial excitations propagate along geodesics
of the effective spacetime. In fact, we obtain (see, for
instance, [29])

ðh−1Þabkc;akb ¼ 0; ð19Þ

where ; is such that hab;c ¼ 0. Note that for an arbitrary
solution ϕ0 endowed with invariant Q the quadratic form h
is generally curved, implying that we can use appropriate
geometrical methods to describe the causal structure.

IV. QUALITATIVE ANALYSIS

We now discuss some general properties of the effective
metric. For the sake of simplicity, let us suppose that the
solution ϕA

0 describes a static Hopf soliton with a given
topological invariant Q. Time-dependent configurations
may be easily obtained using the same framework. In
the static regime Eq. (17) reduces to

ðh−1Þabð~rÞ ¼
� ðh−1Þ00 0

0 ðh−1Þij
�

with ~r the position vector in R3 and i; j ¼ 1; 2; 3. As the
field tends to its vacuum in spatial infinity, i.e.
ϕAj∞ → const, we automatically have ðh−1Þabj∞ → ηab

which means that the effective geometry is static and
asymptotically flat for all possible static solitons. This is
an expected result since the solitons are supposed to be
localized field structures in space with finite energy.
We now ask the following: locally, how does a wave

propagate in the direction of Ba? In other words, what is the

velocity of a disturbance evolving in the direction defined
by a preimage curve at a spacetime point p? To find this
velocity, first note that the vector Ba is automatically an
eigenvector of the linear operator La

b with a null eigen-
value. Indeed, in the static regime we have

La
btb ¼ 0; La

bBb ¼ 0; ð20Þ
meaning that the kernel of La

b is determined by a timelike
vector ta and the magnetic field itself. A direct inspection in
Eq. (1) implies that the projection Fa

cFc
bBb also vanishes.

Now, the wave front is determined by a covector ka ∈ T�
pM

of the form ka ¼ rta þ sBa with (r,s) real components.
Using the above results in Eq. (17) it follows directly

ðh−1Þabkakb ¼ 0 → ηabkakb ¼ 0: ð21Þ
Thus, the vector field Ba defines special directions where
the effective cone coincides with the Minkowski cone.
In other words, the preimages of the map ϕA in R3 define
directions where the effective causal structure is not
affected by the solution. Note, however, that because the
preimage curves are linked in a nontrivial way, the resulting
light cones in the global may have a very complicated
structure.
What about wave propagation in other directions?

Following Manton [25] we suppose that Lab can be
diagonalized relative to ηab in a given spacetime point
p. As is well known the eigenvalues are necessarily
nonnegative and due to rank considerations two of them
vanish identically. Choosing the spatial axis in such a way
that Ba ¼ ð0; 0; 0; B3Þ it follows

Lab ¼ diagð0; λ21; λ22; 0Þ;
Fa

cFcb ¼ diagð0; λ21λ22; λ21λ22; 0Þ:

In particular, we have BaBa ¼ −λ21λ22. Using Eq. (22) in
Eq. (17) leads to an automatically diagonal ðh−1Þab:

ðh−1Þ00 ¼ þð1þ κ2λ21Þð1þ κ2λ22Þ;
ðh−1Þ11 ¼ −ð1þ κ2λ22Þ;
ðh−1Þ22 ¼ −ð1þ κ2λ21Þ;
ðh−1Þ33 ¼ −ð1þ κ2λ21Þð1þ κ2λ22Þ:

Two important results emerge: (i) The effective metric has a
Lorentzian signature ðþ − −−Þ for all possible static
solitons.6 This means that the linearization of the equations
of motion (9) on top of a static solution yields a well-
defined causal structure. (ii) Wave propagation is always
subluminal, implying that the theory is causal. In particular,
velocities of propagation orthogonal to the preimage curve

6At least when the quantities λi are sufficiently regular
everywhere.
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are of the form c2i ¼ ð1þ κ2λ2i Þ−1 with i ¼ 1; 2. Note that
they tend to 1 in spatial infinity.
The “sound” cones of the theory may be obtained also in

terms of the null intervals,

ðdx0Þ2 − ð1þ κ2λ21Þðdx1Þ2
− ð1þ κ2λ22Þðdx2Þ2 − dx23 ¼ 0: ð22Þ

It follows that, locally, the cross sections of the effective
cone in the tangent space are described by ellipsoids with
major axis oriented in the directions defined by Ba. This
result is valid for all possible preimages ϕA ¼ const for all
possible charges. See Fig. 2 for an illustration. Again, we
stress that because links between preimages are nontrivial
and eigenvalues are space-dependent quantities there will
be a highly complex causal structure associated. It remains
the possibility that linked or knotted congruences of rays
emerge in R3 with regions where waves are trapped.

V. RATIONAL MAPS AND APPROXIMATE
EFFECTIVE GEOMETRIES

In this section we use the rational map ansatz introduced
by Suttcliffe in [17] (see also [30]) in order to explore
approximate expressions for ðh−1Þab. The idea is to achieve
a qualitative picture of the metrics without appealing to
complicated numerical simulations.
The strategy is as follows. Recall that the assumption

ϕAj∞ ¼ const effectively compactifies R3 to the hyper-
sphere S3. A point of S3 can be thought also as a point
of the plane of complex dimension 2 with coordinates
ðZ1; Z0Þ and jZ1j2 þ jZ0j2 ¼ 1. Project the point ðZ1; Z0Þ
onto R3 using the map

ðZ1; Z0Þ ¼
�
x1 þ ix2

r
sin f; cos f þ i

sin f
r

x3

�
; ð23Þ

where ðx1; x2; x3Þ are Cartesian coordinates, r¼ðx21þx22þ
x23Þ1=2 and fðrÞ is a monotonically decreasing function such
that fð0Þ ¼ π and fð∞Þ ¼ 0. Interpret S2 as a Riemann
sphere introducing a complex coordinate W. The idea is to
start with spherical coordinates ϕA ¼ ðΘ;ΦÞ and metric
hAB ¼ diagð1; sin2ΘÞ. Then, do a stereographic projection
from the south pole S (Θ ¼ π) to the equatorial plane to
obtain W ¼ ReiΦ with the absolute value given by
R ¼ tgðΘ=2Þ. Finally, write W as a rational function of
the complex quantities Z1 and Z0 in the form

W ¼ pðZ1; Z0Þ=qðZ1; Z0Þ ð24Þ

where p and q are polynomials.
As a consequence, for each point W ∈ S2, we obtain a

closedcurveϕ−1ðWÞ inR3,whoseimagebyϕA is thepointW.7

The tangent vectors to these curves define precisely the
direction of Ba. In particular, we can obtain the whole of
theR3 as “fibers” over the ordinary 2-sphere. Incidentally, for
any twopoints,W1 andW2 onS2, thecorresponding fibers are
nontrivially linked. The number of links depends crucially on
the degree of the polynomials pðZ1; Z0Þ and qðZ1; Z0Þ.
The point here is that once p and q are given as functions

of Z1 and Z0, the effective metric may be easily obtained.
This can be accomplished writing the pull-back quantities
Lab and Fab in terms of the derivatives of W. We obtain

Lab ¼
2

ð1þ jWj2Þ2 ∂ðaW∂bÞW̄; ð25Þ

Fab ¼
2i

ð1þ jWj2Þ2 ∂ ½aW∂b�W̄; ð26Þ

with ða; bÞ ¼ ðabþ baÞ and ½a; b� ¼ ab − ba and W̄ the
complex conjugate.8Basically, there will be three different
classes of effective geometries. They follow naturally from
the classification presented in [17] for all possible back-
ground fields. Roughly, they describe the causal structures
associated to
(1) Toroidal fields An;m: W ¼ Zn

1=Z
m
0 , with n;m ∈ Z

and Q ¼ n:m;

FIG. 2 (color online). Cross section of the effective “light” cone
in TpM. The round sphere represents velocities of propagation
according with the Minkowski metric. Note that they intersect in
the direction of Ba.

7It is also common to call the preimage as the “fiber” over the
point W.

8Alternatively, we have

Lij ¼
4

ð1þ R2Þ2 ð∂iR∂jRþ R2∂iΦ∂jΦÞ;

Fij ¼
4

ð1þ R2Þ2 ∂ ½iR∂j�Φ:
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(2) (a,b)-torus knotsKab:W ¼ Zα
1Z

β
0=ðZa

1 þ Zb
1Þ, with α

a positive integer, β a non-negative integer and
a,b coprime positive integers with a > b and Q ¼
αbþ βa;

(3) Linked Hopfions Lα;β
p;q: W ¼ Zα

1Z
β
0=ðZp

1 þ Zq
1Þ with

α a positive integer, β a non-negative integer p; q not
coprime.

As a consequence of the above ansatz, one is now able to
speak about effective geometries engendered by knotted
structures. Each geometry carries implicitly a Hopf charge
with it and is somehow related to the homotopy class of
the configuration. Waves are described by pencils of null
geodesics scattered by the corresponding geometry and it is
possible that they remain trapped for some regions of the
effective spacetime. In order to understand better these
aspects, it would be interesting to analyze in more detail
the geometrical and topological properties of the above
metrics, including their symmetries (see [31] for a Bianchi
classification in the helical phase of chiral nematic liquid
crystals). In particular, one could investigate the approxi-
mate behavior of geodesics arriving from the vacuum and
scattered by the solitonic structure. We shall come back to
these questions in the future.

A. Example: Q ¼ 1 Hopfion

As a final remark, lets us illustrate the qualitative
behavior of the preimages in R3 for the Q ¼ 1 Hopfion.
As discussed above, they define directions where the waves
“perceive” the actual Minkowski spacetime. In other
words, metrical relations are only distorted for intervals
having some component orthogonal to Ba.
In this case the rational map is simply W ¼ Z1=Z0. For

the sake of simplicity we choose a profile function with an
exponential decay of the form fðrÞ≡ πe−r

2

. We can now
calculate the absolute value (R) and the argument (Φ) as
explicit functions of the coordinates ðx1; x2; x3Þ. Now,
instead of only considering preimages of points, we will
consider preimages of whole sets on S2. In particular, we
consider the preimages of the parallels R ¼ const and the
meridians Φ ¼ const. They characterize two families of
surfaces inR3. Surfaces with constant R are homeomorphic
to tori. The tori are nested, and their size increase as R
decreases. In particular, one obtains a one-dimensional
curve in the limit R → ∞. This curve is precisely the
position of the Hopfion. Surfaces with constantΦ are not so
simple. They are homeomorphic to parabolic Dupin
cyclides, i.e. a specific inversion of the torus.
The points where a parallel intersects a meridian in S2

are given by the intersections of ϕ−1ðR ¼ constÞ and
ϕ−1ðΦ ¼ constÞ in R3. They are closed curves pairwise
linked. We can see such a general behavior in Fig. 3. The
figure shows the intersection between the meridian Φ ¼ 0
and a parallel R ¼ 1. Now, if we consider the collection of
all points lying in S2 we obtain the congruence of magnetic
field lines filling the entire space (see Fig. 4). They can be

thought as a continuous deformation of the usual Hopf
fibration [32]. Roughly, effective metrical relations are the
same in the directions of the fibers while they are distorted
in any other direction, leading to a nontrivial causal
structure in the global.
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FIG. 3 (color online). Intersection of a torus and a parabolic
Dupin cyclide. The resulting closed curve is the preimage of a
point in the unit sphere where a parallel meets a meridian.
The figure shows also the position of the Hopfion and the
preimage of infinity.

FIG. 4 (color online). Global behavior of the magnetic field
lines. Metrical relations remain the same in the directions of the
fibers while they are distorted in any other direction.
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