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We study the symmetries of nonrelativistic systems with an emphasis on applications to the fractional
quantum Hall effect. A source for the energy current of a Galilean system is introduced and the
nonrelativistic diffeomorphism invariance studied in previous work is enhanced to a full spacetime
symmetry, allowing us to derive a number of Ward identities. These symmetries are smooth in the massless
limit of the lowest Landau level. We develop a formalism for Newton-Cartan geometry with torsion to write
these Ward identities in a covariant form. Previous results on the connection between Hall viscosity and
Hall conductivity are reproduced.
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I. INTRODUCTION

The fractional quantum Hall (FQH) [1,2] effect is one
of the most difficult problems in condensed matter physics.
In the integer quantum Hall effect, interactions do not play
a large role and one can make much progress by studying
the dynamics of free electrons moving in a uniform
magnetic field in the presence of impurities. The FQH
effect on the other hand, relies crucially on the interactions
of particles within a single Landau level and cannot be
analyzed using perturbative techniques. The lowest Landau
level (LLL) constraint is especially difficult to deal with;
the majority of proposed theoretical schemes break this
constraint at some stage. For example, in the popular
Chern-Simons field theories (in both the bosonic [3] of
fermionic [4] varieties) the operation of flux attachment
mixes states in different Landau levels. The consequence of
this breaking is that many physical quantities which should
depend only on the Coulomb (or interaction) energy scale,
appear to be sensitive to the cyclotron energy. Schemes have
been developed within the Chern-Simons field theory to
evade this unphysical sensitivity to the cyclotron energy, at
the cost of introducing phenomenological elements into the
theory. Some other theoretical approaches have been devel-
oped to deal with the LLL constraint explicitly (see, for
example, Refs. [5,6]), but most have only limited scope.
This paper proposes a new approach that emphasizes the

symmetries of the LLL. In recent work we have demon-
strated that nonrelativistic particles moving in an external
electromagnetic field possess a far larger degree of sym-
metry than was previously realized, namely invariance
under arbitrary time-dependent diffeomorphisms of space
[7,8] which may further be enlarged to full spacetime
diffeomorphism invariance by introducing a background
source coupled to the energy current [9,10].
In Sec. II we recap this story, demonstrating how diffeo-

morphism invariance may be obtained by introducing a
number of different sources. The source for the energy

density was first introduced by Luttinger [11]; including a
source coupled to the energy flux allows for local time
reparametrizations. For specific interactions, most impor-
tantly for a delta-function contact interaction between bosons,
this action is also Weyl invariant. We then demonstrate in
Sec. III how a regular massless limit may be taken after a
special choice of parity breaking parameters. The resulting
theory contains only particles confined to the LLL. Physical
results of this limit will be considered in upcoming work.
In Sec. IV we consider the complete set of one-pointWard

identities that follow from nonrelativistic diffeomorphism
invariance. Spatial diffeomorphismsgive rise to localmomen-
tum conservation in the presence of external electromagnetic
and dilaton fields whereas temporal diffeomorphisms lead
to the work-energy equation. In trivial backgrounds, these
Ward identities were considered in Refs. [10,12]. Here we
present them in their full generality for nonzero spin and
g-factor. In Sec. V we rederive the viscosity-conductivity
relations that were first found in Ref. [13].
Spacetime diffeomorphism invariance can be naturally

treated using the formalism of Newton-Cartan geometry
with torsion, which we present in Sec. VI. In Sec. VII we
present a fully covariant treatment of the one-point Ward
identities. The stress tensor and energy current as tradition-
ally defined do not transform covariantly under general
diffeomorphisms and need to be modified. We define these
covariant currents and derive their Ward identities. The
spacetime transformation properties of the new covariant
stress, charge and energy densities both facilitate streamlined
calculations and place strong constraints on the allowed
response. Section VIII contains concluding remarks while
various technical details are contained in the Appendixes.

II. SYMMETRIES

At its most basic level, the FQH problem is that of
particles moving in 2þ 1 dimensions in the presence of a
magnetic field,
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S ¼
Z

d3x

�
iψ†D0ψ −

1

2m
jDiψ j2 − λjψ j4

�
: ð1Þ

Here Dμ ¼ ∂μ − iAμ is the gauge covariant derivative and
the theory is gauge invariant,

ψ → eiαψ Aμ → Aμ þ ∂μα: ð2Þ

We have chosen a contact interaction for simplicity though
more general interactions will be consistent with the
symmetries we are about to discuss. Strictly speaking,
the contact interaction requires a cutoff to be well defined in
2þ 1 dimensions due to the logarithmic running of the
coupling constant λ. In the LLL limitm → 0 that we will be
especially interested in, the running of λ disappears. We
thus will ignore the dependence on the cutoff altogether.
When the magnetic field B ¼ ϵij∂iAj is large (here ϵij is

the antisymmetric symbol with ϵ12 ¼ 1), the spectrum is
stratified into Landau levels of energy B

m ðnþ 1
2
Þ that are

well separated compared to the intra-Landau level spacing
(we choose units where ℏ ¼ c ¼ 1). Since we are only
concerned with the LLL, we would like to integrate out all
states for which n ≥ 1. One possible way of doing this is to
take them → 0 limit in which the higher Landau levels tend
to infinity and decouple from the theory. Unfortunately, this
limit is not regular due to the infinite shift in the zero-point
energy, but we shall see there is an easy way around this.

A. The g-factor

We will now systematically introduce a number of
generalizations to the basic action (1) that will not affect
the physics at the end of the day but are essential for our
later analysis. In the process we introduce a number of
external probes used to define response currents. Begin
with an intrinsic angular momentum parametrized by
a g-factor g,

S ¼
Z

d3x

�
iψ†D0ψ −

1

2m
jDiψ j2 þ

gB
4m

jψ j2 − λjψ j4
�
:

ð3Þ

In GaAs, this factor is close to zero (there g is the product of
the Lande g-factor g� [14]) and the ratio of the band massm
to the bare electron mass: g ¼ g�m=me ≈ −0.03), but it is
easy to see, at least for constant B, that its actual value is
irrelevant. In this case the new term merely gives rise to a
constant shift to the Hamiltonian, which has no physical
significance.
When B is not uniform, the situation is somewhat more

involved but not insurmountable. Notice that g enters the
action in the combination A0 þ g

4mB. Defining a new
electric potential,

A0
0 ¼ A0 þ

g − g0

4m
B; ð4Þ

maps the action to itself, but with a new g-factor,

Sg½A0� ¼ Sg0 ½A0
0�: ð5Þ

We may just as well perform calculations with any g we
like, so long as we use the shifted gauge field A0

0. In Sec. III
we shall see that when we select g ¼ 2, the LLL is shifted
to zero energy even in a nonuniform field and curved space.
The massless limit is then regular and the projection onto
the LLL proceeds without difficulty. This feature was
exploited in Ref. [7] in the construction of an effective
field theory for FQH states.

B. Curvature

Next introduce a nontrivial background metric gij,

S ¼
Z

d3x
ffiffiffi
g

p �
i
2
ψ†D

↔

0ψ −
gij

2m
Diψ

†Djψ

þ gB
4m

jψ j2 − λjψ j4
�
; ð6Þ

where ψ†D
↔

0ψ ¼ ψ†D0ψ −D0ψ
†ψ . The magnetic field is

now B ¼ εij∂iAj where εij ¼ 1ffiffi
g

p ϵij is the natural spatial

volume element associated to the metric. There is some
ambiguity in how we choose to couple the theory to
geometry; we could for example have included higher
curvature terms. These terms would change the equations
of motion on curved backgrounds but leave the flat space
dynamics unaltered. If at the end of the day one is only
interested in flat space, we may choose the coupling however
we like without fear of altering the physics. In the above we
have chosen to couple the theory in the minimal way.
If the field ψ has spin s, even minimal substitution

requires the introduction of a zweibein eai that diagonalizes
the metric,

gij ¼ δabeai e
b
j eai e

bi ¼ δab: ð7Þ

The covariant derivative is then

Dμ ¼ ∂μ − iAμ þ isωμ; ð8Þ

where ωμ is the spin connection,

ω0 ¼
1

2
ϵabeaj∂0ebj

ωi ¼
1

2
ϵabeaj∇iebj ¼

1

2
ϵabeaj∂iebj −

1

2
εjk∂jgik: ð9Þ

Here ∇i represents the spatial covariant derivative defined
by gij. Under a local rotation of the zweibein by an angle
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θðxÞ, the spin connection transforms as a Uð1Þ gauge
field,

ωμ → ωμ þ ∂μθ; ð10Þ

canceling the spin rotation of the field ψ → e−isθψ . We
notice that the same minimal coupling to gravity through
spin connection was recently used in Ref. [15] to modify
the conventional flux attachment procedure to derive the
Hall viscosity and Wen-Zee term from the Chern-Simons
gauge theories.
Even if one does not care about curved space dynamics

and plans to set gij ¼ δij, introducing a metric is a useful
intermediate step for several reasons. First, it gives a natural
definition of a symmetric stress tensor as the response of
the action to geometric perturbations in the same way that
the charge current is a response to electromagnetic pertur-
bations,

δS ¼
Z

d3x
ffiffiffi
g

p �
1

2
Tij
ncδgij þ jμncδAμ

�
; ð11Þ

as is done in relativity theory. The subscript “nc” (as in
“noncovariant”) is to differentiate this notion of stress from
the spacetime covariant one that we shall introduce later. In
the usual case g ¼ s ¼ 0 in flat space, these are the familiar
expressions:

j0nc ¼ jψ j2 jinc ¼ −
i
2m

ψ†Di
↔

ψ

Tij
nc ¼ 1

m
Dðiψ†DjÞψ

þ
�
i
2
ψ†D

↔

0ψ −
1

2m
Dkψ

†Dkψ − λjψ j4
�
gij: ð12Þ

The spin is often set to zero in the literature, although for
spin polarized electrons in two spatial dimensions, the
actual value would be 1=2. However, as with g, there is
a simple mapping between theories of different spin.
Like before, a redefinition,

A0
μ ¼ Aμ þ ðs0 − sÞωμ; ð13Þ

sends the action to itself, but with s replaced by s0,

Ss½Aμ� ¼ Ss0 ½A0
μ�: ð14Þ

In what follows we will find the selection s ¼ 1 to be
particularly convenient. Note a pure zweibein rotation
A0
μ → A0

μ, ωμ → ωμ þ ∂μθ of the new theory now corre-
sponds to a zweibein rotation of angle θ plus a gauge
transformation Aμ → Aμ − ðs0 − sÞ∂μθ of the original
theory. Thus in this new picture the field ψ has spin s0
and local rotation invariance is still manifest.

The redefinitions (4) and (13) will affect the stress and
charge current. In Appendix B we derive the relationship
between the primed and unprimed currents, which we
present here in flat space for simplicity. If we imagine doing
an experiment on a system with say g0 ¼ s0 ¼ 0 and change
to our preferred values g ¼ 2, s ¼ 1, the new currents are

j0nc ¼ j00nc jinc ¼ j0inc þ
1

2m
ϵij∂jj00nc

Tij
nc ¼ T 0ij

nc − ϵkði∂kj
0jÞ
nc −

1

2m
ðBj00ncδij þ ð∂i∂j − gij∂2Þj00ncÞ:

ð15Þ

The primed currents are to be evaluated at the physical
fields E0

i, B
0, whereas the unprimed currents are at

Ei ¼ E0
i −

1

2m
∂iB0 B ¼ B0: ð16Þ

One of the main reasons for introducing gij is that it
makes the symmetry of the action more apparent. The index
structure makes clear that the theory is invariant under time-
independent spatial diffeomorphisms ξk ¼ ξkðxÞ,

δψ ¼ −ξk∂kψ

δAμ ¼ −ξk∂kAμ − Ak∂μξ
k

δgij ¼ −ξk∂kgij − gjk∂iξ
k − gik∂jξ

k: ð17Þ

In Refs. [7–9] it was found that this invariance may be
extended to time-dependent diffeomorphisms ξkðt;xÞ by
adding a noncovariant part to the transformation of the
vector potential

δψ ¼ −ξk∂kψ

δA0 ¼ −ξk∂kA0 − Ak
_ξk þ g − 2s

4
εij∂iðgjk _ξkÞ

δAi ¼ −ξk∂kAi − Ak∂iξ
k −mgij _ξ

j

δgij ¼ −ξk∂kgij − gjk∂iξ
k − gik∂jξ

k; ð18Þ

which they called nonrelativistic general coordinate
invariance. The s part has not been considered in previous
work. Note that for g ¼ 2, s ¼ 1, these transformations take
a particularly simple form. Taking s ¼ 1 is mostly a choice
made to make the formulas easier to work with, whereas
using g ¼ 2 is crucial to ensure that the regularity of the
m → 0 limit.

C. A source for the energy current

This symmetry may be enlarged further to show that
the microscopic action is not only invariant under time-
dependent spatial coordinate reparametrizations, but
completely general changes of coordinates on spacetime.
This allows for a fully spacetime covariant treatment of
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nonrelativistic physics just as in relativity theory. To do so
however, we begin with a seemingly unrelated question:
how to define an energy current for our theory.
In general relativity, charged fields couple to both a

vector potential and a Lorentzian metric and we can
consider the system’s response to infinitesimal variations
in these quantities. As in (11) this defines a charge current
jμ and a stress-energy tensor Tμν that collects both the
energy current T0i and the stress Tij into a single object. It
is well known that in nonrelativistic physics, we have an
independent energy current which we will denote as εμnc that
is not tied to the stress Tij

nc in any way [16].
A source for the energy current was considered in

Refs. [9,10]. This involves dilaton Φ and a spatial vector
Ci in the following way,

S ¼
Z

d3x
ffiffiffi
g

p
e−Φ

�
i
2
eΦψ†D0

↔
ψ −

1

2m

�
gij þ ig

2
εij
�

× ~Diψ
† ~Djψ − λjψ j4

�
; ð19Þ

where ~Di ¼ Di þ CiD0. The Hamiltonian now appears in
the action with a factor e−Φ and Φ is essentially the source
introduced by Luttinger [11]. Note that we have also
collected the magnetic momentum term into the kinetic
term. Upon integration by parts, this merely becomes the
gB
4m jψ j2 coupling considered before, plus boundary terms
that go as the derivatives of the new fields Φ and Ci.
Finally, for the symmetries we are about to consider

to hold, we must also modify the spatial Christoffel symbol
to be

Γk
ij ¼

1

2
gklð ~∂igjk þ ~∂jgik − ~∂kgijÞ: ð20Þ

In our action this only affects the spin connection

ωi ¼
1

2
ϵabeaj∇iebj ¼

1

2
ϵabeaj∂iebj −

1

2
εjk ~∂jgik: ð21Þ

For Φ ¼ Ci ¼ 0, this is just the action (6) and so we have
not altered the dynamics in these backgrounds, but we can
now define εμnc via

δS ¼
Z
d3x

ffiffiffi
g

p
e−Φ

�
1

2
Tij
ncδgij þ jμncδAμ þ ε0ncδΦþ εincδCi

�
:

ð22Þ

One might also wish to introduce a source for the
momentum current, but in a Galilean invariant theory,
the momentum is entirely determined by the charge current,
so we do not include any further sources. We will see this in
Sec. IVand again in Sec. VII B where we find a unique way
to demonstrate this using Newton-Cartan geometry.

To motivate our placement of Φ and Ci, consider the
energy current so defined for g ¼ s ¼ 0 and a trivial
background Φ ¼ Ci ¼ 0, gij ¼ δij:

ε0nc ¼
1

2m
Diψ

†Diψ þ λjψ j4

εinc ¼ −
1

2m
ðD0ψ

†Diψ þDiψ†D0ψÞ: ð23Þ

We immediately recognize ε0nc as the total energy of the
system. One may also check using the equation of motion
that the work-energy equation holds

∂0ε
0
nc þ ∂iε

i
nc ¼ Eijinc; ð24Þ

so it is clear that εinc is indeed the energy flux.
The energy current is also altered upon a change of the

parity breaking parameters g and s. As before, translating
from g0 ¼ s0 ¼ 0 to g ¼ 2, s ¼ 1 in the trivial background
gives

ε0nc ¼ ε00nc −
1

2
ϵij∂ij0jnc −

1

2m
Bj00nc

εinc ¼ ε0inc þ
1

2
ϵij∂0j0jnc −

1

2m
ðBj0inc þ ϵijEjj00ncÞ: ð25Þ

We again refer the reader to Appendix B for details as well
as the case for general g0, s0, g, s and a curved metric.

D. Spacetime coordinate invariance

Our placement of these new sources does much more
than give a convenient definition of the energy current, it
allows us to enlarge the group of spacetime symmetries by
properly selecting the transformations of Φ and Ci. The
action is invariant under arbitrary spacetime diffeomor-
phisms ξλðt;xÞ:

δψ ¼ −ξλ∂λψ

δΦ ¼ −ξλ∂λΦþ ∂λξ
λ − ~∂iξ

i

δCi ¼ −ξλ∂λCi − Cj
~∂iξ

j þ ~∂iξ
0

δeai ¼ −ξλ∂λeai þ eak ~∂kξ
i

δgij ¼ −ξλ∂λgij þ ~∂iξj þ ~∂jξi

δεij ¼ −ξλ∂λε
ij þ εik ~∂kξ

j − εjk ~∂kξ
i

δA0 ¼ −ξλ∂λA0 − Aλ∂0ξ
λ þ g − 2s

4
ðεij ~∂iðgjk _ξkÞ þ εij _Ci

_ξjÞ
δAi ¼ −ξλ∂λAi − Aλ∂iξ

λ −meΦgij _ξ
j

−
g − 2s

4
Ciðεjk ~∂jðgkl _ξlÞ þ εjk _Cj

_ξkÞ; ð26Þ

where λ now includes the temporal index 0. This is
the full set of symmetries of a nonrelativistic spacetime
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corresponding to infinitesimal coordinate transformations
(see Sec. VI B).
We stress once more that this represents full spacetime

coordinate reparametrization invariance. From (18) it was
clear that the theory was invariant under arbitrary time-
dependent coordinate changes on spatial slices. Now we
see that the theory is also unaffected by local time
reparametrizations ξ0ðt;xÞ. In particular, we may choose
a new spatial foliation of spacetime. This is another way to
see that the new sources are not essential modifications to
the physics. Even if Ci was zero initially, in these new
slicings, it may not be (for example if the temporal shift is
not constant −∂iξ

0 ≠ 0), just as the metric δij may not look
flat in some other randomly chosen curvilinear coordinate
system. Hence we see allowing for nonzero Ci is necessary
to make the full spacetime symmetry of the initial theory
manifest, even if we are considering a trivial background
that merely reduces the problem to the original action (3) in
the end.
There is a minor complication to this story. One could

imagine that given some background Ci that there is no
slicing where it vanishes. It turns out that a Ci ¼ 0 slicing
exists if and only if

εij ~∂iCj ¼ 0: ð27Þ

This is in fact a coordinate representation of the Frobenius’
condition that a local spatial slicing exists. When Ci ¼ 0,
coordinates have been chosen so that constant time surfaces
coincide with spatial slices. In the discussion below
Eq. (78), we show from causal considerations that (27)
must in general be satisfied. Coordinates where Ci ¼ 0 are
called global time coordinates (GTC). Since we shall
always assume GTC exist, in what follows we will take
Ci ¼ 0, only restoring it when necessary to compute the
energy current.
Gauge invariance and spatial diffeomorphisms are not

the only local symmetries of the action (19). For each
Ωðt;xÞ, the theory also exhibits Weyl invariance:

δψ ¼ Ωψ ; δΦ ¼ 2Ω; δgij ¼ −2Ωgij; δCi ¼ 0

δA0 ¼ −
1

2m

�
1 −

g2

4

��
1ffiffiffi
g

p ~∂iðe−Φ
ffiffiffi
g

p ~∂iΩÞ þ e−Φ _Ci
~∂iΩ

�

δAi ¼
g − 2s

2
εij ~∂jΩ: ð28Þ

This is of course specific to the point interaction λjψ j4
where scale invariance is well known to be violated
quantum mechanically [17]. In the massless limit however,
λ does not run and the LLL theory is truly conformally
invariant. Note that for g ¼ 2, s ¼ 1, the vector potential
does not transform.
This concludes the complete set of generalizations of the

initial problem that are relevant for this paper. We are now

considering particles of arbitrary spin and g-factor moving
in the presence of an electromagnetic field Aμ, a curved
metric gij, a dilaton Φ and a spatial vector Ci. g and s may
be chosen at will so long as we remember to translate back
to their physical values using (15), (16) and (25). In Sec. VI
we present a manifestly coordinate invariant treatment of
this symmetry from which the anomalous transformation
laws (26) follow naturally. This is the Newton-Cartan
geometry first considered in Ref. [7] in the context of
the FQH effect. There we shall find that properly defining
the energy current requires a generalization of this formal-
ism to include nonzero torsion.

III. THE MASSLESS LIMIT

We now perform the massless limit discussed earlier. In
GTC the action is

S ¼
Z

d3x
ffiffiffi
g

p
e−Φ

�
i
2
eΦψ†D

↔

0ψ −
1

2m

�
gij þ ig

2
εij
�

×Diψ
†Djψ − λjψ j4

�
;

and the quantum partition function is given by

Z ¼
Z

Dψ†DψeiS: ð29Þ

The matrix εij has eigenvalues �i and so the value g ¼ 2

is distinguished for the matrix gij þ iεij is degenerate.
In terms of the zweibein eai we have

εij ¼ ϵabeaiebj: ð30Þ

The eigenvectors of εij are the chiral basis vectors,

ei ¼
1ffiffiffi
2

p ðe1i þ ie2i Þ; ēi ¼
1ffiffiffi
2

p ðe1i − ie2i Þ; ð31Þ

in terms of which we have the convenient formulas,

gij ¼ eiēj þ ēiej

εij ¼ iðeiēj − ēiejÞ
gij þ iεij ¼ 2ēiej: ð32Þ

Hence the g ¼ 2 action may be written as

S ¼
Z

d3x
ffiffiffi
g

p
e−Φ

�
i
2
eΦψ†D0

↔
ψ

−
1

m
ðēiDiψ

†þÞðejDjψÞ − λjψ j4
�
: ð33Þ

In flat space, eiDiψ ¼ Dz̄ψ and we see the degeneracy
direction corresponds precisely to particles in the LLL.
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Using a Hubbard-Stratonovich transformation, we write
this as

S ¼
Z

d3x
ffiffiffi
g

p
e−Φ

�
i
2
eΦψ†D

↔

0ψ − χðēiDiψ
†Þ

− χ̄ðeiDiψÞ þmχ̄χ − λjψ j4
�
: ð34Þ

The m → 0 limit is manifestly regular and the higher
Landau levels are now completely trivial to integrate out
as χ and χ̄ simply become Lagrange multipliers enforcing
the constraint

eiDiψ ¼ 0; ð35Þ
which is the curved space equation for the LLL wave
function. The many-body problem of particles confined to
the LLL thus can be understood as a system of interacting
particles with no kinetic energy,

S ¼
Z

d3x
ffiffiffi
g

p �
i
2
ψ†D

↔

0ψ − e−Φλjψ j4
�
; ð36Þ

for which path integration is only carried out subject to the
holomorphic constraint (35). This theory inherits all the
symmetries discussed above. In particular, one may check
that both Eqs. (35) and (36) are preserved by spacetime
diffeomorphisms and Weyl transformations.
We note briefly that for s ¼ 1 the transformation laws are

especially simple in the massless limit. In particular, Aμ is
just a one-form

δAμ ¼ −ξλ∂λAμ − Aλ∂μξ
λ ð37Þ

and is unchanged under Weyl transformations.

IV. NONCOVARIANT WARD IDENTITIES

In this section we derive the complete set of Ward
identities that follow from the symmetries above. The Ward
identities are a result of only the symmetries of the problem
and are valid in arbitrary backgrounds so long as (26) is not
anomalous. We begin however with a slight change of
viewpoint however. In Sec. II we used a model microscopic
action S to motivate the introduction of sources and
demonstrate the symmetry of the problem. The full
quantum dynamics is however determined by the effective
action W obtained from integrating out the field ψ and is a
functional only of the external fields:

eiW ¼ Z W ¼ W½Aμ; gij;Φ; Ci�: ð38Þ
The currents defined from W are then the 1-point expect-
ation values of the microscopic ones defined above. To
simply notation we drop the brackets hi and simply denote
them as

δW ¼
Z

d3x
ffiffiffi
g

p
e−Φ

�
1

2
Tij
ncδgij þ jμncδAμ

þ ε0ncδΦþ εincδCi

�
: ð39Þ

Let’s begin with gauge invariance, which is the simplest
of the symmetries considered above. The gauge variation of
the electromagnetic potential is δAμ ¼ ∂μα:

δW ¼
Z

d3x
ffiffiffi
g

p
e−Φjμnc∂μα ¼ 0 ⇒ 0

¼ −
Z

d3x∂μð
ffiffiffi
g

p
e−ΦjμncÞ: ð40Þ

Since α is an arbitrary function of space and time, we
conclude ∂μð ffiffiffi

g
p

e−ΦjμncÞ ¼ 0 or

1ffiffiffi
g

p ∂0ð
ffiffiffi
g

p
e−Φj0ncÞ þ∇iðe−ΦjincÞ ¼ 0; ð41Þ

which is simply the continuity equation on a curved
background with dilaton Φ.
The remaining Ward identities follow in like manner.

Spatial diffeomorphisms ξk imply stress conservation:

eΦffiffiffi
g

p ∂0

� ffiffiffi
g

p �
mjinc −

g − 2s
4

εij∇jðe−Φj0ncÞ
��

þ eΦ∇jðe−ΦTi
j
ncÞ

¼ j0ncEi þ εijj
j
ncBþ ε0nc∇iΦ: ð42Þ

Note that nonrelativistic diffeomorphism invariance com-
pletely determines the momentum current,

pi
nc ¼ mjinc −

g − 2s
4

εij∇jðe−Φj0ncÞ;

as mentioned previously. In particular, the mass leads to a
momentum along the direction of charge flow while the
parity breaking terms give rise to an intrinsic angular
momentum density,

l ¼ −
g − 2s

2
e−Φj0nc;

as may be seen by computing the flat space total angular
momentum L ¼ R

d2xϵijxipj. Note that the dilaton exerts
an external force on the system just as the electromagnetic
field does.
Temporal diffeomorphisms ξ0 result in the work-energy

equation

1ffiffiffi
g

p ∂0ð
ffiffiffi
g

p
ε0ncÞ þ eΦ∇iðe−ΦεincÞ ¼ Eijinc −

1

2
Tij
nc _gij: ð43Þ
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Eiji is the familiar work done by the electric field whereas
the metric term corresponds to the work done on the walls
of a volume element as it expands or contracts due to the
internal forces of the system. The Ward identities of a
system with a conserved particle number thus reproduce the
full set of hydrodynamic equations of motion for a non-
relativistic fluid [16].
Finally, Weyl invariance gives rise to a generalization of

the tracelessness of the stress-energy tensor

ε0nc ¼
1

2
Tij
ncgij þ

1

4m

�
1 −

g2

4

�
eΦ∇i½e−Φ∇iðe−Φj0ncÞ�

−
g − 2s

4
eΦεij∇iðe−ΦjjncÞ: ð44Þ

Note that the Ward identities take a particularly simple form
for the LLL theory: the momentum vanishes and the energy
is simply the trace of the stress tensor:

eΦ∇jðe−ΦTi
j
ncÞ ¼ j0ncEi þ εijj

j
ncBþ ε0nc∇iΦ;

ε0nc ¼
1

2
Tij
ncgij: ð45Þ

It is worth pointing out that the quantum conservation
laws in curved space contain the full information on Ward
identities. By taking functional derivatives of these equa-
tions with respect to the sources one obtains higher-order
Ward identities which relate the n-point correlation func-
tions to δ-function terms involving lower-order correlators.

V. VISCOSITY-CONDUCTIVITY RELATION

As an illustration, here we will give two Ward identities
for two-point functions and show how they can be used to
extract the independent viscosity coefficients from the
conductivities at all frequencies. Our work provides an
alternative field-theory approach to the previous result [13]
based on a microscopic Hamiltonian and generalize it to the
nonvanishing g-factor and spin.

A. Ward identities on closed time path

To discuss the real-time response functions, let us invoke
the closed time-path formalism [18–20] and double
Eq. (42) on two time branches,

∂t

�
g�ij

�
mGj

� −
g − 2s

4
ϵjk∂k

Gt
�ffiffiffiffiffiffi
g�

p
��

þ 2∂kðg�ijG
jk
� Þ

− ∂ig�jkG
jk
� − E�iGt

� − ε�ijBG
j
� ¼ 0 ð46Þ

The nonequilibrium current and tensor (density) are
defined by

Gμ
� ≡ δW

δA�μ
; Gij

� ≡ δW
δg�ij

:

The dilaton has been set to zero since it has no effect on the
results of this section.
Taking variation of Eq. (46) with respect to sources Al

and gjk on two branches, we obtain four identities. Their
linear combinations give

0 ¼ ðmδij∂t − ϵijBÞGj;l
ra ðxÞ − g − 2s

4
δijϵ

jk∂t∂kG
t;l
ra ðxÞ

þ 2δij∂kG
jk;l
ra ðxÞ þ δliG

t∂tδðxÞ; ð47Þ

0¼ðmδil∂t− ϵilBÞGl;jk
ra ðxÞ−g−2s

4
ϵin∂t∂nG

t;jk
ra ðxÞ

þ2∂nG
in;jk
ra ðxÞþg−2s

8
ϵinGt∂t∂nδðxÞδjk

þ
�
ðδikδjmþδijδkmÞ∂nδðxÞ−

1

2
ðδkmδjnþδjmδknÞ∂iδðxÞ

�
Gmn;

ð48Þ
where the correlators GraðxÞ are defined by the second
variation of the generating functional with respect to the
sources in physical presentation [20]. It can be split as the
retarded Green’s function and the contact term

GB;A
ra ðxÞ≡ δ2W

δJBa ðxÞδJAr ð0Þ
¼ iθðtÞh½φBðxÞ;φAð0Þ�i

þ
�
δφB

r ðxÞ
δJAr ð0Þ

�
; ð49Þ

where φA denotes the conjugate operator of the source JA.
One can also define the advanced correlators

GB;A
ar ðxÞ≡ δ2W

δJBr ðxÞδJAa ð0Þ
¼ iθð−tÞh½φAð0Þ;φBðxÞ�i

þ
�
δφB

a ðxÞ
δJAa ð0Þ

�
:

Note that after the variation, we have put everything on the
unperturbed background, which is assumed as a transla-
tionally invariant state with a uniform magnetic field and a
vanishing electric field on the flat spacetime.
Keeping in mind the symmetry,

GB;A
ra ðxÞ ¼ GA;B

ar ð−xÞ; ð50Þ
and the variation of the continuity equation,

∂μGμ;νðxÞ ¼ 0; ∂μGμ;ijðxÞ ¼ 0; ð51Þ

one can combine Eq. (47) and Eq. (48) as
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�
mδnl ∂t − ϵnl Bþ g − 2s

4
ϵnm∂m∂l

�

×

�
mδji∂t − ϵjiB −

g − 2s
4

ϵki ∂j∂k

�
Gl;j

ra ðxÞ

¼ 4δij∂k∂mG
nm;jk
ra ðxÞ þ 2δni ∂k∂lδðxÞGkl

−ðmδni ∂t − ϵni BÞ∂tδðxÞGt: ð52Þ

In momentum space, this can be recast as a relation at all
frequencies

4Gjði;kÞl
ra ðωÞ þ 2δljGik ¼ 1

2
m2bjm

∂2

∂qi∂qk G
m;n
ra ðqÞj

~q→0

bnl

−
g − 2s

4
im½ϵjðkGiÞ;n

ra ðxÞbnl þ bjnGn;ðk
ra ðxÞϵiÞl�; ð53Þ

where

bij ¼ ωδij − iωcϵ
ij; ωc ¼ B=m:

B. Linear response tensor

In the following, we study the structure of the correlators,
which allows us to transform Eq. (53) into a relation
between the independent viscosity coefficients and the
conductivity. Define the nonequilibrium current

hJμðxÞir ≡ 1ffiffiffi
g

p δW
δAaμðxÞ

; ð54Þ

from which we have

δhJμðxÞir
δArνð0Þ

¼ Gμ;ν
ra ðxÞ: ð55Þ

The deviation in the current from its equilibrium value can
be formally expanded in time derivatives

δhJμðxÞir ¼ −
Z

d3x0σμν1 ðx − x0ÞδArνðx0Þ

−
Z

d3x0σμν2 ðx − x0Þ∂ 0
tδArνðx0Þ þ � � � : ð56Þ

In linear response theory, one usually is interested in the
case

δhJiðxÞir ¼
Z

d3x0σijðx − x0ÞδErjðx0Þ: ð57Þ

Its variation gives

δhJiðxÞir
δArjð0Þ

¼ −∂tσ
ijðxÞ: ð58Þ

Combining Eqs. (55) and (58), the correlator of currents
can be expressed as the conductivity tensor

Gi;j
ra ðxÞ ¼ −∂tσ

ijðxÞ: ð59Þ
Similarly, define the nonequilibrium stress tensor,

hTijðxÞir ¼
2ffiffiffi
g

p δW
δgaijðxÞ

:

Then we have

δhTijðxÞir
δgrklð0Þ

¼ 2Gij;kl
ra ðxÞ − 1

2
δklhTijiδðxÞ:

Vary the spatial components of the metric and define the
elastic modulus and viscosity tensors by the expansion

δhTijðxÞir ¼ −
1

2

Z
d3x0λijklðx − x0Þδgrklðx0Þ

−
1

2

Z
d3x0ηijklðx − x0Þ∂ 0

tδgrklðx0Þ þ � � � :

In other words,

δhTijðxÞir
δgrklð0Þ

¼ −
1

2
λijklðxÞ − 1

2
∂tη

ijklðxÞ:

By comparison, we obtain

Gij;kl
ra ðxÞ ¼ 1

4
δklhTijiδðxÞ − 1

4
λijklðxÞ − 1

4
∂tη

ijklðxÞ: ð60Þ

C. Elastic modulus

The tensor λijklðxÞ is the stress response up to the zeroth
order in time derivatives. However, it is also enough to treat
it at zeroth order in space derivatives, since our final goal is
to obtain the viscosity at all frequencies and zero wave
number. In other words, we can use the approximation of
the perfect fluid. For a system without magnetic field, the
hydrodynamic expansion is given by Ref. [21],

δhTijðxÞir ¼ −
�
Pδikδjl þ 1

2
δijδklκ−1

�
δgklðxÞ; ð61Þ

where κ−1 ≡ −Vð∂P=∂VÞS;N is the inverse compressibility.
The case of the system with a magnetic field is similar.
Since the stress density in a rotationally invariant system
with volume V includes both the pressure P and magneti-
zation M [13],

hTiji ¼ δijPint;

Pint ¼ P −
MB
V

;
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the constitutive equation at leading order can be written as

Tμν ¼ ϵuμuν þ Pintðuμuν þ gμνÞ:
This result is consistent with the one obtained in
Refs. [22,23] both for relativistic and nonrelativistic sys-
tems, though B is taken there as first order in derivatives.
Consider the energy of the system as EðN;V; BÞ ¼

Vεðν; BÞ, where ν is the filling factor. One can define the
internal inverse compressibility,

κ−1int ≡ −V
∂Pint

∂V
				
ν;N

¼ B2
∂2εðν; BÞ

∂B2

				
ν

: ð62Þ

Thus, the elastic modulus can be decomposed as

λijklðxÞ ¼ ½Pintðδikδjl þ δilδjkÞ þ δijδklκ−1int �δðxÞ: ð63Þ

D. Irreducible decomposition of response tensors

Any rank-2 tensor can be decomposed as a symmetric
trace, a symmetric traceless and an antisymmetric part, so
we have

σijðxÞ ¼ σLðxÞδij þ σijT ðxÞ þ σHðxÞϵij; ð64Þ

in which the Hall and longitudinal conductivities,

σH ≡ 1

2
ðσ12 − σ21Þ; σL ≡ 1

2
ðσ11 þ σ22Þ;

are frequently used in references. Also consider the tensor
ηijklðxÞ divided into its symmetric and antisymmetric parts
in the pairs of indices ij and kl,

ηijklðxÞ ¼ ηijklS ðxÞ þ ηijklA ðxÞ:

We restrict our interest to the systems with rotational
invariance. Then the symmetric part has only two inde-
pendent components,

ηijklS ðxÞ ¼ ζðxÞδijδkl þ ηshðxÞðδikδjl þ δilδjk − δijδklÞ;
ð65Þ

and the antisymmetric part has one,

ηijklA ðxÞ ¼ ηHðxÞðδjkϵil − δilϵkjÞ: ð66Þ

E. Viscosity and conductivity

Now combining Eqs. (59), (60) and (63), we can recast
Eq. (53) as

η̄ijklðωÞ− 1

2iω
ðδijδklþδkjδilÞκ−1int ¼

m2

2
bjm

∂2σmnðqÞ
∂qi∂qk

				
~q→0

bnl

−
g−2s
4

im½bnlϵjðiσkÞnðωÞþbjnσnðiðωÞϵkÞl�; ð67Þ

where the “−” denotes

η̄ijkl ¼ 1

2
ðηijkl þ ηkjilÞ:

Note that all the contact terms exactly cancel, up to the term
with κ−1int .
Plugging Eqs. (64), (65) and (66) into Eq. (67), we can

extract respectively the bulk, shear and Hall viscosities
from the conductivities at all frequencies:

ζ −
1

iω
κ−1int ¼

m2

2
ðω2 − ω2

cÞ
∂2

∂q21 ½σ
11ðqÞ − σ22ðqÞ�

				
~q→0

þ g − 2s
2

im½iωcσLðωÞ − ωσHðωÞ�;
ð68Þ

ηshðωÞ¼
m2

2

∂2

∂q21 ½ω
2σ22ðqÞþω2

cσ
11ðqÞþ2iωcωσHðqÞ�

				
~q→0

−
g−2s
2

im½iωcσLðωÞ−ωσHðωÞ�; ð69Þ

ηHðωÞ ¼
m2

2

∂2

∂q21 ½ðω
2 þ ω2

cÞσHðqÞ − 2iωωcσLðqÞ�
				
~q→0

−
g − 2s

4
im½ωσLðωÞ þ iωcσHðωÞ�: ð70Þ

Note that theabovefourequations recoverEqs. (4.11)–(4.14)
in Ref. [13] when g − 2s ¼ 0.
In the limit of m → 0, we have the regular identities,

η̄ijklðωÞ − 1

2iω
ðδijδkl þ δkjδilÞκ−1int

¼ −
1

2
B2ϵjmϵnl

∂2σmnðqÞ
∂qi∂qk

				
~q→0

−
g − 2s

4
B½ϵnlϵjðiσkÞnðωÞ

þ ϵjnσnðiðωÞϵkÞl�; ð71Þ

and

ζ −
1

iω
κ−1int ¼ −

1

2
B2

∂2

∂q21 ½σ
11ðqÞ − σ22ðqÞ�j

~q→0

−
g − 2s

2
BσLðωÞ; ð72Þ

ηshðωÞ ¼
1

2
B2

∂2σ11ðqÞ
∂q21

				
~q→0

þ g − 2s
2

BσLðωÞ; ð73Þ

ηHðωÞ ¼
1

2
B2

∂2σHðqÞ
∂q21

				
~q→0

þ g − 2s
4

BσHðωÞ: ð74Þ
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A number of interesting identities of this type were recently
found for nonzero g in Ref. [24].

VI. NEWTON-CARTAN GEOMETRY
WITH TORSION

The derivation of the Ward identities in the previous
sections is quite straightforward, but the diffeomorphism
invariance of the resulting equations can be verified only by
rather cumbersome direct calculation. We now develop a
formalism in which the diffeomorphism invariance is explicit
at each stage of the calculation. That formalism is a version
of Newton-Cartan geometry, which has been previously
applied to the quantum Hall problem was developed first in
the context of nonrelativistic gravity by Cartan [25,26] and
may be viewed as the natural structure preserved by a
gauging of Galilean symmetry [27,28].
This section differs from our previous work in that we

consider torsionful backgrounds. Torsionful geometries are
generally necessary in the presence of a nontrivial dilaton
field and have for example been considered in Ref. [29],
where it is shown that boundary theory corresponding to a
z ¼ 2 Lifschitz spacetime is set in a torsionful Newton-
Cartan setting. We now describe this torsionful version of
Newton-Cartan geometry.
A Newton-Cartan geometry is a manifold endowed with

a one-form nμ, a degenerate metric tensor with upper
indices gμν for which nμ is a zero eigenvector and a vector
vμ whose projection onto nμ is 1:

gμνnμ ¼ 0 nμvμ ¼ 1: ð75Þ

From ðg; n; vÞ one can uniquely define a metric tensor with
lower indices gμν by requiring

gμλgλν ¼ δμν − vμnν; gμνvν ¼ 0: ð76Þ

We define a connection by

Γλ
μν ¼ vλ∂μnν þ

1

2
gλρð∂μgνρ þ ∂νgμρ − ∂ρgμνÞ: ð77Þ

It is easy to see that under coordinate reparametrizations
Γλ

μν transforms as required for a connection.
In the simplest version of the Newton-Cartan geometry,

nμ is assumed to be a closed one-form. In this case the
connection (77) is torsionless: Γλ½μν� ¼ 0. We shall not
assume that this is the case; instead, we only assume the
weaker condition,

n∧dn ¼ 0: ð78Þ
By the Frobenius theorem, nμ then locally defines a unique
spatial slicing to which nμ is normal, giving us a preferred
notion of space. This condition was also imposed in
Ref. [29] so that connection on these slices is the usual,

torsionless Riemannian connection. However, we note that
this is in fact generally required by the causality of a
nonrelativistic theory. One may show that if n∧dn ≠ 0 at a
point x, there is a neighborhood of x in which every point
may be reached by a future directed curve (one in which the
tangent uμ satisfies nμuμ > 0) [30]. In particular, an
observer may with sufficient speed intersect his own past.
In the case that dn ≠ 0, the connection has nonzero

torsion:

Tλ
μν ≡ 2Γλ½μν� ¼ 2vλ∂ ½μnν�: ð79Þ

The torsion has the following property: it vanishes when all
indices are lowered or raised,

Tλμν ≡ gλαTα
μν ¼ 0; Tλμν ≡ gμαgνβTλ

αβ ¼ 0: ð80Þ

The first equation comes from gλαvα ¼ 0. To see the second
equation, one can work in the coordinate system where
ni ¼ 0. This condition assumes no spatial torsion, which in
the condensed matter context corresponds to a nontrivial
Burgers vector density, and may be relaxed if one wishes to
study material defects. The torsion (79) on the other hand is
temporal, and finds its origin in the presence of a nontrivial
gravitational potential −Φ (see (89).
The connection Γλ

μν has some further interesting fea-
tures. It is compatible with the metric gμν and with nμ,

∇λgμν ¼ 0; ∇νnμ ¼ 0: ð81Þ
On the other hand, the covariant derivatives of gμν and vμ

are nonzero. They can be expressed in terms of the Lie
derivative of the metric along vμ,

∇λgμν ¼ −τλðμnνÞ; ∇νvμ ¼
1

2
τναgαμ ð82Þ

τμν ≡ £vgμν ¼ vλ∂λgμν þ gλν∂μvλ þ gμλ∂νvλ: ð83Þ
Using vμτμν ¼ 0 one can show that

gα½μ∇ν�vα ¼ 0 ∇αv½μgν�α ¼ 0 gμαgνβ∇λgαβ ¼ 0

vλ∇λgμν ¼ 0 vλ∇λvμ ¼ 0: ð84Þ

In fact, it is possible to show that the connection (77) is
uniquely determined from Eqs. (80), (81), and the first
equation in (84). The connection, of course, also defines a
unique volume element by

∇ρεμνλ ¼ 0: ð85Þ

A. Conservation laws with torsion

The way the connection is defined introduces one
subtlety which is important for our further discussion.
Namely, in a Newton-Cartan theory current conservation
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∂μðe−Φ
ffiffiffi
g

p
jμÞ ¼ 0 ð86Þ

does not have the familiar form ∇μjμ ¼ 0, but instead is

ð∇μ −GμÞjμ ¼ 0 where Gμ ¼ Tν
νμ: ð87Þ

We will find this combination of ∇μ and Gμ recurring
often. This is because the usual formula for integration by
parts is modified on a torsionful manifold. Because

1ffiffi
g

p
e−Φ ∂μð ffiffiffi

g
p

e−ΦÞ ¼ Γν
νμ − Tν

νμ, in addition to the usual

minus sign, we must also take ∇μ → ∇μ −Gμ upon an
exchange of the derivative.
Furthermore, (87) is consistent with time independence

of total charge on a torsionful manifold. By Stokes’s
theorem,

Z
Σ1

nμjμ −
Z
Σ2

nμjμ ¼
Z

εμνλ∂μjνλ

¼
Z

ðεμνλ∇μjνλ − Tν
νμjμÞ

¼
Z

ð∇μ −GμÞjμ ¼ 0; ð88Þ

where Σ1 and Σ2 are spatial slices, nμjμ is the charge
density and jμν ¼ 1

2
εμνλjλ is the dual of jμ.

B. Coordinate expressions

To gain some intuition for the above objects and to
connect this discussion with the noncovariant presentation
of the previous sections, we introduce a parametrization of
the geometry by going into coordinates. In some coordinate
patch, we have without loss of generality:

nμ ¼ ð e−Φ; −e−ΦCi Þ vμ ¼
�
eΦð1þ CjvjÞ

eΦvi

�
:

ð89Þ

As we shall see, this is the sameCi introduced previously to
couple to the energy current. Because n∧dn ¼ 0, we may
always choose coordinates where Ci ¼ 0. Writing out
n∧dn ¼ 0 in coordinates gives (27), so such coordinates
are indeed the global time coordinates discussed before.
From the Newton-Cartan perspective, this condition is
elegant and physically motivated.
However, it is often necessary to work outside of GTC, at

least to first order, in order to calculate the energy current.
Given (89), the following coordinate expressions follow
straightforwardly:

gμν ¼
�
C2 Cj

Ci gij

�

gμν ¼
�

v2 −vj − v2Cj

−vi − v2Ci gij þ viCj þ vjCi þ v2CiCj

�
:

ð90Þ

The transformation laws (26) for Φ, Ci and gij can now be
derived from the above expressions as natural conse-
quences of the covariant transformations

δnμ ¼ −ξλ∂λnμ − nλ∂μξ
λ δvμ ¼ −ξλ∂λvμ þ vλ∂λξ

μ

δgμν ¼ −ξλ∂λgμν þ ∂μξν þ ∂νξμ: ð91Þ

We also have

εμνλ ¼
ffiffiffi
g

p
e−Φϵμνλ τij ¼ eΦð∇ivj þ∇jvi þ _gijÞ: ð92Þ

Here ϵμνλ is the antisymmetric symbol with ϵ012 ¼ 1. The
remaining components of τμν are specified by the transverse
condition τμνvν ¼ 0. We see that τμν is a spacetime
covariant form of the fluid shear.

C. The velocity vμ and the covariant vector potential

In the above, gμν and nμ play essential roles with clear
physical interpretations. nμ gives an absolute notion of
space via its integral submanifolds. gμν restricts to a
Riemannian metric on space and supplies an invariant
notion of distance. The “velocity” vector vμ on the other
hand is the odd man out, what is it supposed to represent?
Indeed, for a general nonrelativistic theory there can be no
preferred vector field since its integral curves would define
a distinguished family of observers. Only in the presence of
a background medium that breaks nonrelativistic boost
invariance (an “ether”) would this be physically acceptable.
For us, vμ is merely a convenience, an inessential

structure that we use to help define a partial metric inverse
and a connection. It may be selected at will only subject to
the constraint nμvμ ¼ 1. In the presence of a fluid one
useful choice is for vi to simply be the fluid velocity. In this
paper, however, we prefer not to assume anything about the
system beyond diffeomorphism invariance and so do not
have any preferred notion for vμ. We will rather be more
concerned with demonstrating the vμ independence of our
treatment.
If we were to leave it at that, vμ may be more trouble than

it is worth: whenever it appears we need to worry if the
physics depends on an arbitrary choice. However, in the
presence of a vector potential Aμ, having vμ around is
crucial. In GTC, the vector potential obeys an anomalous
transformation law,
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δA0 ¼ −ξλ∂λA0 − Aλ∂0ξ
λ þ g − 2s

4
ðεij ~∂iðgjk _ξkÞ þ εij _Ci

_ξjÞ
δAi ¼ −ξλ∂λAi − Aλ∂iξ

λ −meΦgij _ξ
j

−
g − 2s

4
εijCi∂iðgjk _ξkÞ; ð93Þ

to first order in Ci. Extending the discussion Ref. [7] to
arbitrary g and s, we may use the components of vμ to
define a modified gauge field,

~A0 ¼ A0 −
1

2
meΦv2 −

g − 2s
4

εijð ~∂ivj þ _CivjÞ

~Ai ¼ Ai þmeΦvi þ
1

2
meΦv2Ci þ

g − 2s
4

Ciε
jk∂jvk; ð94Þ

that transforms covariantly under diffeomorphisms,

δ ~Aμ ¼ −ξλ∂λ
~Aμ − ~Aλ∂μξ

λ: ð95Þ

All transformations (26) then follow by representing a
Newton-Cartan background in a system of coordinates,
except for the transformation of the noncovariant vector
potential, which also relies on the decomposition (94).
Thus we may use vμ to take any invariant effective action

phrased in terms of the components gij,Φ,Ci and the vector
potential Aμ and present it as a functional of only covariant
objects:

W½gij;Φ; Ci; Aμ� ¼ W½gμν; nμ; ~Aμ; vμ�: ð96Þ

Since the original action carried no vi dependence, the
covariant version must have the following special property:
it is invariant under changes to vμ and ~Aμ that leave the
physical vector potential Aμ unchanged. In Sec. VII B, we
use this to provide another demonstration that the momen-
tum of a nonrelativistic system is determined by the
charge flow.
It is easy to now write down our microscopic action in a

manifestly covariant form using Newton-Cartan geometry,

S ¼
Z

d3x
ffiffiffi
g

p
e−Φ

�
i
2
vμψ†D

↔

μψ −
1

2m

�
gμν þ ig

2
εμν

�

×Dμψ
†Dνψ − λjψ j4

�
; ð97Þ

where the covariant derivative involves the modified vector
potential and the Newton-Cartan spin connection,

ωμ ¼
1

2
ϵabeaν∇μebν : ð98Þ

Plugging in the coordinate expressions of the geometry,
we find this action reduces to the microscopic action
considered previously with all sources present. Indeed,

for g ¼ s ¼ 0, it was shown in Ref. [28] that one may
generally promote a Galilean invariant theory to a diffeo-
morphism invariant one via the simple prescription,

D0 ¼ vμDμ Da ¼ eμaDμ; ð99Þ

which is all that we’ve done here.
Note that in the LLL limit, the physical vector potential

is already a one-form and need not be modified. In this
simple case, vμ is truly unnecessary and can be discarded:

WLLL½gij;Φ; Ci; Aμ� ¼ WLLL½gμν; nμ; Aμ�: ð100Þ

VII. COVARIANT WARD IDENTITIES

In Sec. IV we derived Ward identities by considering the
variation of Aμ, Φ, Ci and gij under nonrelativistic diffeo-
morphisms. In this approach, the physical meaning of the
currents jμnc, ε

μ
nc, and Tij

nc is clear, and the resulting Ward
identities take the form of the fluid dynamical equations of
motion [16]. However from the Newton-Cartan point of
view, the above approach is somewhat unnatural.Φ,Ci, and
gij are merely the components of covariant objects nμ and
gμν in some choice of coordinates and Aμ is not even a one-
form. Similarly, the above currents do not form spacetime
vectors and tensors in an obvious way.
In what follows, we reformulate the previous work in a

fully geometric fashion. We begin with an effective action
written as a functional of the geometry and the modified
gauge field,

W½nμ; gμν; vμ; ~Aμ�; ð101Þ
and then define currents jμ, εμ and Tμν that transform as
spacetime tensors. Covariant Ward identities are derived. In
Sec. VII B we impose the vi independence of the action as
well as demonstrate the relationship between the cova-
riantly defined currents and the “nc” currents considered
previously.

A. Variation of the action

Defining covariant currents requires some care as not all
components of the background fields nμ, gμν and vμ are
independent. Since the geometry is constrained to satisfy
nμvμ ¼ 1 and gμνnν ¼ 0, an arbitrary variation is not
allowed. Rather, the most general change may be para-
metrized in terms of an arbitrary δnμ, a transverse velocity
perturbation δuμnμ ¼ 0 and a transverse metric perturba-
tion δhμνnν ¼ 0,

δnμ δvμ ¼ −vμvλδnλ þ δuμ

δgμν ¼ −vμδnν − δnμvν − δhμν: ð102Þ

δnμ, δuμ and δhμν are then completely independent and the
currents defined by
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δW ¼
Z
d3x

ffiffiffi
g

p
e−Φ

�
1

2
Tμνδhμν þ jμδ ~Aμ − εμδnμ −pμδuμ

�
;

ð103Þ

where Tμν and pμ are fixed to be transverse:

Tμνnν ¼ 0 pμvμ ¼ 0: ð104Þ
The only new current in this collection is pμ. We shall find
that it is related to the momentum density of the system and
is completely fixed by the vμ independence of the effective
action.
Under spacetime diffeomorphisms, the background

fields change as

δnμ ¼ −nλ∇μξ
λ þ Tλ

μνnλξν

δgμν ¼ ∇μξν þ∇νξμ þ ðTμ
λ
ν þ Tν

λ
μÞξλ

δvμ ¼ −ξλ∇λvμ þ vλ∇λξ
μ − Tμ

νλvνξλ

δ ~Aμ ¼ −ξλ∇λ
~Aμ − ~Aλ∇μξ

λ þ Tλ
μν
~Aλξ

ν; ð105Þ

where we have exchanged the coordinate derivatives
appearing in (93) and (95) for covariant derivatives.
These immediately give expressions for δuμ ¼ Pμ

νδvν

and δhμν ¼ −Pμ
λPν

ρδgλρ. Gauge transformations are of
course unchanged:

δ ~Aμ ¼ ∇μα: ð106Þ
Proceeding as before, we find the Ward identities

corresponding to gauge invariance and diffeomorphism
invariance are

ð∇μ −GμÞjμ ¼ 0

∇νðpμvνÞ þ pν∇μvν þ ð∇ν −GνÞTμ
ν

− nμð∇ν − GνÞεν ¼ ~Fμνjν −Gμνε
ν; ð107Þ

where we have defined the following notation: ~Fμν ¼
ðd ~AÞμν is the Newton-Cartan analogue of the electromag-
netic field strength and Gμν ¼ ðdnÞμν is similarly a “tor-
sional field strength.”
Equations (107) are unfamiliar enough to deserve a few

comments. We first observe that current conservation no
longer takes the form ∇μjμ ¼ 0, but rather ð∇μ −GμÞjμ ¼
0 as discussed in Sec. VI A. To bring the second equation
into a more enlightening form, we first project it onto
spatial slices by raising the index

∇νðpμvνÞ þ pν∇μvν þ ð∇ν −GνÞTμν ¼ ~Fμ
νjν − Gμ

νε
ν:

ð108Þ
This simply expresses momentum conservation in the
presence of external forces. ~Fμ

νjν is of course the usual

Lorentz force, but along with the pμ terms, also makes
contributions to the momentum current due to the modifi-
cations necessary to make ~Aμ covariant. For now, merely note
that the torsion also exerts a “Lorentz force,” but one that
couples to the energy current rather than the charge current.
Finally, projecting (107) onto vμ, we obtain the Newton-

Cartan analogue of the work-energy equation:

ð∇μ −GμÞεμ ¼ − ~Fμνvμjν þGμνvμεμ −
1

2
τμνTμν: ð109Þ

The first two terms on the right-hand side represent the work
done on the system by the external fields in a frame moving
with velocity vμ. In the case that vμ represents a fluid
velocity, the physics of the final term is relatively clear: it
accounts for energy dissipated due to viscous forces.

B. Comparison with the noncovariant approach

Unfortunately, the currents defined in (103) differ from
the standard currents Tij

nc, ε
μ
nc and jμnc found in the non-

covariant Ward identities. To see how, express δnμ, δhμν,

δuμ and δ ~Aμ, in terms of δΦ, δCi, δgij, δvi and δAμ and set
(103) equal to

δW¼
Z

d3x
ffiffiffi
g

p
e−Φ

�
1

2
Tij
ncδgijþ jμncδAμþ ε0ncδΦþ εincδCi

�
:

ð110Þ

The absence of δvi terms is equivalent to the vμ independ-
ence of the original action. This procedure then completely
fixes pμ to be

pμ ¼ mjμ −
g − 2s

4
εμν∇νðnλjλÞ: ð111Þ

So long as pμ takes this value, the identities (107) are

guaranteed to be independent of changes to vμ and ~Aμ that
leave Aμ fixed, despite appearances to the contrary. Note
that since jμ ¼ gμνjν, the ith component of jμ is not
ji ¼ gijjj, but rather ji − vij0.
The remaining relationships are

Tij
nc ¼ Tij þmeΦðvijj þ vjji − j0vivjÞ

þ g − 2s
4

eΦðj0Ωgij − 2vðiεjÞkeΦ∂kðe−Φj0ÞÞ

ε0nc ¼ e−Φε0 þmeΦ
�
jivi −

1

2
j0v2

�

εinc ¼ e−Φεi þ Tijvj þ eΦvivjpj þ
1

2
meΦjiv2

þ g − 2s
4

ðΩji þ εijvjeΦ∂0ðe−Φj0ÞÞ
jμnc ¼ jμ; ð112Þ
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where Ω ¼ εij∂ivj. Importantly, note that it is the non-
covariant currents that are vi independent. The covariant
versions will change with the choice of vi, but the above
combinations will not.
For nonvanishing charge density, one convenient choice

is vi ¼ ji=j0. We then have

Tij
nc ¼ meΦj0vivj þ Tij jμnc ¼ jμ

ε0nc ¼
1

2
meΦj0v2 þ e−Φε0

εinc ¼
1

2
meΦj0viv2 þ e−Φεi þ Tijvj; ð113Þ

where we have taken g ¼ 2 s ¼ 1 for simplicity. We thus
see that in this frame the covariant currents have a clear
physical interpretation: Tij and εμ are the internal stress and
energy currents of the system, that is, the currents that do
not arise due to the motion of material from one place to
another.
Let’s express the covariant Ward identities in terms of the

noncovariant currents to check their vi independence. First
decompose the Newton-Cartan field strength ~Fμν into the
usual electromagnetic field strength plus the modifications
necessary to make a spacetime tensor:

~Fμν ¼ Fμν þ
�

0 mð∂0ðeΦvjÞ þ 1
2
∇jðeΦv2ÞÞ þ g−2s

2
∇jΩÞ

−mð∂0ðeΦviÞ þ 1
2
∇iðeΦv2ÞÞ − g−2s

2
∇iΩÞ mð∇iðeΦvjÞ −∇jðeΦviÞÞ

�
: ð114Þ

We also require the formula

Tμ
ν ¼

�
0 −vkTkj

0 Ti
j

�
; ð115Þ

which follows from the transverseness of the stress tensor.
Then expanding out the 0th and ith components of (107),
we obtain

1ffiffiffi
g

p ∂0ð
ffiffiffi
g

p
e−Φj0ncÞ þ∇iðe−ΦjincÞ ¼ 0

1ffiffiffi
g

p ∂0ð
ffiffiffi
g

p
ε0ncÞ þ eΦ∇iðe−ΦεincÞ ¼ Eijinc −

1

2
Tij
nc _gij

eΦffiffiffi
g

p ∂0

� ffiffiffi
g

p �
mji −

g − 2s
4

εij∇jðe−Φj0Þ
��

þ eΦ∇jðe−ΦTnci
jÞ

¼ j0ncEi þ εijj
j
ncBþ ε0nc∇iΦ: ð116Þ

The result is independent of vi and in perfect agreement
with the noncovariant Ward identities found previously.

VIII. CONCLUSION

In this paper we have proposed a new approach to
studying the FQH effect. The effort here has been essen-
tially formal and will serve as the foundation of later work
where physical consequences are addressed. We’ve shown
that by a special choice of spin and gyromagnetic ratio, a
smooth massless limit is obtained and we exactly integrate
out all higher Landau levels. This choice can always be
made by virtue of a translation formula that tells one how to
convert results for one g and s to any other value.
Furthermore, we have derived the complete set of Ward

identities that follow from spacetime symmetries in

arbitrary backgrounds. These Ward identities are the usual
fluid equations of motion: stress conservation and the
work-energy equation, which can be viewed as the conse-
quence of a spacetime symmetry as in relativity. Finally, a
covariant treatment of these Ward identities is then devel-
oped that makes that symmetry manifest.
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APPENDIX A: FROM RELATIVISTIC TO
NONRELATIVISTIC CONSERVATION

EQUATIONS

In this appendix, we motivate the conservation laws (41),
(42) and (43) from the relativistic point of view. This also
makes the physical significance of the dilaton field Φ
clearer: it arises as the relativistic lapse function. We begin
with the relativistic continuity equation and conservation of
stress-energy,

∇μjμ ¼ 0 ∇μTν
μ ¼ Fνμjμ; ðA1Þ

with the metric ansatz

gμν ¼
�
−e−2Φ 0

0 gij

�
: ðA2Þ

The Christoffel symbol is then
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Γ0
00 ¼ − _Φ; Γ0

ij ¼
1

2
e2Φ _gij; Γk

00 ¼ −e−2Φgkl∂lΦ

Γ0
0i ¼ −∂iΦ; Γk

0i ¼
1

2
gkl _gli;

Γk
ij ¼

1

2
gklð∂iglj þ ∂jgil − ∂lgijÞ:

Plugging this in, we find the continuity equation reads

∂μð
ffiffiffi
g

p
e−ΦjμÞ ¼ 0; ðA3Þ

whereas the time and space components of stress-energy
conservation are

1ffiffiffi
g

p ∂0ð
ffiffiffi
g

p
T0

0Þ þ∇iT0
i þ e−2ΦT0

i∂iΦ −
1

2
Tij _gij ¼ F0μjμ

ðA4Þ

1ffiffiffi
g

p
e−Φ

∂0ð
ffiffiffi
g

p
e−ΦTj

0Þ þ eΦ∇iðe−ΦTj
iÞ þ T0

0∂jΦ ¼ Fjμjμ:

ðA5Þ

To bring this into a form closer to that which appears in
the main text, we define the energy density ε0nc, energy flux
εinc and momentum density pi

nc as

T0
μ ¼ −εμ Tj

0 ¼ pj:

The conservation equations (A4) and (A5) now read

1ffiffiffi
g

p ∂0ð
ffiffiffi
g

p
ε0Þ þ eΦ∇iðe−ΦεiÞ ¼ −F0μjμ −

1

2
Tij _gij ðA6Þ

eΦffiffiffi
g

p ∂0ð
ffiffiffi
g

p
e−ΦpjÞ þ eΦ∇iðe−ΦTj

iÞ ¼ Fjμjμ þ ε0∇jΦ;

ðA7Þ

matching our noncovariant Ward identities. Of course, the
momentum and energy currents are not independent in a
relativistic theory, but they are in the nonrelativistic case.

APPENDIX B: CURRENT REDEFINITIONS—
NONCOVARIANT VERSION

In Sec. II we remarked that how we choose to couple the
system to curved geometry is largely arbitrary for flat space
physics. For example, one can imagine adding additional
curvature terms to the microscopic action. In curved
geometry, we would of course have different dynamics,
but the flat space equations of motion would be unchanged.
At the same time, nonminimal couplings would in general
alter the definition of the stress tensor, even in flat space.
However, there is another class of modifications that do

not affect the dynamics even in a curved background. This

freedom has great utility: it allows us to choose the parity
breaking couplings g and s at will. In particular, we may
always choose g ¼ 2 and s ¼ 1. The LLL limit then exists
and upon taking m → 0, the momentum density vanishes.
We now demonstrate how this works in detail.
Let’s begin with s. Consider, as above, a theory of a

single field ψ with charge 1 and spin s so that the covariant
derivative takes the form

Dμψ ¼ ð∂μ − iAμ þ isωμÞψ : ðB1Þ

Assuming that Aμ and ωμ only appear in the action in this
way, we may absorb part of ωμ into Aμ:

ð∂μ − iAμ þ isωμÞψ ¼ ð∂μ − iA0
μ þ is0ωμÞψ

where A0
μ ¼ Aμ þ ðs0 − sÞωμ: ðB2Þ

The dynamics of the system is unchanged, but the point of
view different; we now have a new spin and externally
applied electromagnetic field.
For simplicity take Φ ¼ 0, Ci ¼ 0. We have two effec-

tive actions, Ss and Ss0 , satisfying

Ws½Aμ; gij� ¼ Ws0 ½Aμ þ ðs0 − sÞωμ; gij�: ðB3Þ

Under a metric perturbation, choose a gauge where δeai ¼
1
2
δgijeaj and δeai ¼ 1

2
δgijeaj . The perturbed spin connection

is then

δω0 ¼
1

4
εjk _g

kiδgij δωi ¼ −
1

2
εjk∇jδgik: ðB4Þ

Setting

Z
d3x

ffiffiffi
g

p
e−Φ

�
1

2
Tij
ncδgij þ jμncδAμ

�

¼
Z

d3x
ffiffiffi
g

p
e−Φ

�
1

2
T 0ij
ncδgij þ j0μncδA0

μ

�
; ðB5Þ

we find a relation between the stress tensors defined in the
two different pictures:

jμnc ¼ j0μnc Tij
nc ¼ T 0ij

nc þ ðs0kði∇kj
0jÞ
nc þ 1

2
ðs0 − sÞ_gkðiεjÞk j00nc:

ðB6Þ

We are free to choose the spin however we like, so long as
we use this stress tensor and the modified electromagnetic
field (B2).
The same procedure allows us to redefine g as well,

though the formulas are more cumbersome. Recall the full
microscopic action for arbitrary g and s is
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Sgs ¼
Z

d3x
ffiffiffi
g

p
e−Φ

�
i
2
eΦψ†D

↔

0ψ −
1

2m

�
gij þ ig

2
εij

�

× ð ~DiψÞ†ð ~DjψÞ − λjψ j4
�
: ðB7Þ

Wemust briefly work outside of GTC, at least to first order,
since our modifications will affect the energy current.
Explicitly accounting for all appearances of the vector
potential in the microscopic action we have

S ¼
Z

d3x
ffiffiffi
g

p
e−Φ

�
i
2
eΦψ† ~∂

↔

0ψ −
1

2m
~∂iψ

† ~∂iψ −
i
2m

�
~Ai − s ~ωi þ g

4
εijð _Cj − ~∂jΦÞ

�
ψ† ~∂

↔

iψ

þ eΦ
�
A0 − sω0 þ g

4m
e−ΦðF − εijð ~Ai − s ~ωiÞð _Cj − ~∂jΦÞÞ −

1

2m
e−Φð ~Ai − s ~ωiÞð ~Ai − s ~ωiÞ

�
jψ j2 − λjψ j4

�
; ðB8Þ

where for convenience we have defined F ¼ iεij ~Di
~Dj ¼

ðB − s
2
Rþ εijðEi − s

2
RiÞCjÞ. Here ~Ai denotes not the modi-

fied vector potential but Ai þ CiA0. R and Ri are the
curvature equivalents of the magnetic and electric fields:

2ð∂μων − ∂νωμÞ ¼
�

0 −Rj

Ri εijR

�
: ðB9Þ

R is simply the spatial Ricci scalar and Ri ¼ εjk∇j _gik
measures change in the geometry with time.
We seek a transformation that sends the third and fourth

terms of (B8) to themselves but with g → g0 and s → s0.
The algebra is somewhat prohibitive, but is greatly sim-
plified if we only work to leading order in Ci and Φ, which
gives us enough information to access the currents at least
for the torsionless case. The transformation

A0
0 ¼ A0 þ ðs0 − sÞω0 þ

g − g0

4m
e−ΦF

−
g0ðg0 − gÞ

16m
e−Φð∇i _Ci −∇2ΦÞ

A0
i ¼ Ai þ ðs0 − sÞωi þ

g − g0

4
εjið _Cj − ~∂jΦÞ

−
g − g0

4m
e−ΦFCi ðB10Þ

does the trick. WhenΦ ¼ 0, the electric and magnetic fields
in the new picture are

B0 ¼ Bþ 1

2
ðs0 − sÞR

E0
i ¼ Ei þ

1

2
ðs0 − sÞRi þ

g − g0

4m
∇iB: ðB11Þ

We have shown then that at the level of the effective
action, we have

Wgs½gij;Φ; Ci; Aμ� ¼ Wg0s0 ½gij;Φ; Ci; A0
μ�: ðB12Þ

To relate the one-point correlators in the two conventions,
proceed as before. Set

Z
d3x

ffiffiffi
g

p
e−Φ

�
1

2
Tij
ncδgij − εμncδnμ þ jμncδAμ

�

¼
Z

d3x
ffiffiffi
g

p
e−Φ

�
1

2
T 0ij
ncδgij − ε0μncδnμ þ j0μncδA0

μ

�
:

ðB13Þ
The resulting translation formulas for Φ ¼ 0 are

j0nc ¼ j00nc

jinc ¼ j0inc þ
g − g0

4m
εij∇jj00nc

ε0nc ¼ ε00nc −
g − g0

4
εij∇ij0jnc −

g − g0

4m
Bj00nc þ

g0ðg0 − gÞ
16m

∇2j00nc

εinc ¼ ε0inc −
1

2
ðs0ij _gjkj0knc þ

g − g0

4
εij∂0j0jnc −

g − g0

4m

�
Bj0inc þ εij

�
Ej −

s
2
Ri

�
j00nc

�

−
g − g0

8m
sðgijgkl − gilgjlÞ_gkl∇jj00nc −

g0ðg0 − gÞ
16m

1ffiffiffi
g

p ∂0ð
ffiffiffi
g

p ∇ij00ncÞ

Tij
nc ¼ T 0ij

nc þ ðs0kði∇kj
0jÞ
nc þ s0 − s

2
_gkðiεjÞkj00nc −

g − g0

4m
ðBj00ncgij þ sð∇i∇j − gij∇2Þj00ncÞ: ðB14Þ
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If we merely restricted ourselves to the microscopic
action (19), the translation formulas are superfluous since
we know the explicit form of the classical action for all g
and s. Rather, their power derives from the equality of the
full quantum partition functions for which we may not have
this knowledge. One can imagine computing correlation
functions for some convenient choice (such as g ¼ 2, s ¼ 1
for LLL physics). W ¼ W0 then ensures that regardless of
that choice we are actually describing the same physics as
for the true values of g and s, and there is a precise map that
can be used to determine the physical correlation functions.
(B14) is that map for one-point correlators. One may
similarly derive a map for two-point correlators, etc., using
the method above.

APPENDIX C: CURRENT REDEFINITIONS—
COVARIANT VERSION

The same manipulations above may be carried out for
the covariant currents as well. To begin, we recall that the
microscopic action (19) may be written using Newton-
Cartan geometry as

S ¼
Z

d3x
ffiffiffi
g

p
e−Φ

�
i
2
vμψ†D

↔

μψ

−
1

2m

�
gμν þ ig

2
εμν

�
Dμψ

†Dνψ − λjψ j4
�
; ðC1Þ

where we have suppressed the volume element and
Dμ ¼ ∇μ − i ~Aμ þ is ~ωμ. Here ~ωμ ¼ 1

2
ϵabeaν∇μebν is the

spin connection associated to a transverse zweibein
gμν ¼ δabeaμebν and ~Aμ is the modified vector potential.

By the same method as above, we find that the
substitution,

~A0
μ ¼ ~Aμ þ ðs0 − sÞ ~ωμ þ

g0 − g
4

εμνGν

þ g − g0

4m
nμ

�
~F þ gþ g0

8
GνGν −

g0

4
∇νGν

�
; ðC2Þ

sends the action to itself but with new parity breaking
parameters g0 and s0. Here ~F ¼ εμν∇μð ~Aν − s ~ωνÞ. We may
now derive the action with respect to δnμ, δhμν and δ ~Aμ to
find how our field redefinition has affected the stress,
energy and charge currents. For brevity, we cite the result
only in the flat case Φ = 0, Ci ¼ 0, gij ¼ δij:

jμ ¼ j0μ þ g − g0

4m
εμν∇νn0

εμ ¼ ε0μ −
1

4
ðs0μντνλj0λ −

g − g0

4
~Bj0μ þ g0 − g

2
ελ½μ∇νðvν�j0λÞ

−
g − g0

4m

�
εμν ~Fνλvλn0 −

1

4
sτ̄μν∇νn0

�

−
ðg − g0Þg0

32m
ðτ̄μν∇νn0νð∇μ∇ν − gμν∇2Þn0Þ

Tμν ¼ T 0μν þ ðs0λðμgνÞρ∇λj0ρ

−
g − g0

4m
ð ~Bn0μν þ sð∇μ∇ν − gμν∇2Þn0Þ; ðC3Þ

where τ̄μν is the trace reversed shear and n ¼ nμjμ.
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