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We study a Skyrme-type model with a potential term motivated by Bose–Einstein condensates (BECs),
which we call the BEC Skyrme model. We consider two flavors of the model: the first is the Skyrme model,
and the second has a sixth-order derivative term instead of the Skyrme term, both with the added BEC-
motivated potential. The model contains toroidally shaped Skyrmions, and they are characterized by two
integers P and Q, representing the winding numbers of two complex scalar fields along the toroidal and
poloidal cycles of the torus, respectively. The baryon number is B ¼ PQ. We find stable Skyrmion
solutions for P ¼ 1; 2; 3; 4; 5 withQ ¼ 1, while for P ¼ 6 andQ ¼ 1, it is only metastable. We further find
that configurations with higher Q > 1 are all unstable and split into Q configurations with Q ¼ 1. Finally
we discover a phase transition, possibly of first order, in the mass parameter of the potential under study.
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I. INTRODUCTION

Half a century has passed since Skyrme proposed [1] that
Skyrmions characterized by the topological charge
π3ðS3Þ≃ Z describe nucleons in the pion effective field
theory or the chiral Lagrangian [2], where the Skyrme term,
i.e. quartic in derivatives, is needed to stabilize Skyrmions
against shrinkage. Although nucleons are now known to be
bound states of quarks, the idea of the Skyrme model is still
attractive. In fact, the Skyrme model is still valid as a low-
energy description of QCD, has only a small number of
parameters, and is, for instance, used also in holographic
QCD [3,4].
Meanwhile in condensed matter physics, considerable

efforts have been made recently to realize stable three-
dimensional Skyrmions in two-component Bose–Einstein
condensates (BECs) [5–8] (see Ref. [9] for a review of two-
component BECs). In Ref. [8], the creation of a Skyrmion
is proposed to be a consequence of the annihilation of a
brane and an antibrane [10]. At strong coupling, these
systems reduce to the SU(2) principal chiral model, but the
existence of Skyrmions is elusive due to the lack of the
Skyrme term (or an even higher-order derivative term) [11].
One interesting feature in these systems is that a potential
term, breaking the SU(2) symmetry, is present, which
deforms the (would-be) Skyrmion to the shape of a torus
[5]. Consequently, the Skyrmion can be interpreted [5,8,12]
as a vorton [13–16], that is, a vortex ring in the first
component with the second component flowing inside
said ring.
In this paper, we consider a Skyrme-like model with a

potential term in the form V ¼ m2jϕ1j2jϕ2j2 which was
introduced in our previous papers [17,18] and is motivated
by two-component BECs [5,6,8], where we use a notation

of two complex scalar fields ϕ1ðxÞ and ϕ2ðxÞ with the
constraint jϕ1j2 þ jϕ2j2 ¼ 1 along the lines of two-
component BECs. For higher-derivative terms needed to
stabilize Skyrmion, we consider either the conventional
fourth-order derivative term, i.e. the Skyrme term, or a
sixth-order derivative term, which is the baryon charge
density squared (see, e.g., Refs. [18–20]); for a short-term
notation, we will call the first case the 2þ 4 model and the
second case the 2þ 6 model. We construct stable
Skyrmions which were elusive in two-component BECs
in the absence of the Skyrme term or other higher-order
derivative terms and find that they take the shape of a torus
as two-component BECs. We find that the most general
solutions are characterized by two integers P and Q,
representing the winding numbers of the scalar fields ϕ1

and ϕ2 along the toroidal and poloidal cycles of the torus,
respectively, and show that the baryon number or the
Skyrmion number of π3ðS3Þ≃ Z is B ¼ PQ (which is
also known as the linking number). We explicitly construct
stable Skyrmion solutions with P ¼ 1; 2; 3; 4; 5 andQ ¼ 1,
yielding the baryon numbers B ¼ 1; 2; 3; 4; 5. We also
construct the P ¼ 6, Q ¼ 1 solution and find that it is
metastable, i.e. is energetically prone to decay into two
B ¼ 3 objects. This turns out to be the case for both the
2þ 4 and the 2þ 6 models.
The energy and baryon charge distributions of the

configuration of P ¼ 1 are spherically symmetric in the
2þ 4 model, whereas in the 2þ 6 model, it is a deformed
ball (with a hint of a toruslike shape). The configurations
with P > 1 are all of toroidal shapes (for both models)
when the mass is bigger than a certain critical mass. This is
in contrast to the conventional Skyrmions (i.e. without our
BEC-motivated potential) for which the configuration of
B ¼ 1 is spherically symmetric, that of B ¼ 2 is toroidal,
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and those of B > 1 have energy distributions with some
point symmetry. We compare our B ¼ 2 solutions in the
2þ 4 and 2þ 6 models to those of the conventional model
(i.e. without the BEC-motivated potential) and find that the
energy distribution of the solution in the 2þ 6 model is a
surface of a torus while the energy distributions of the
solutions in the 2þ 4 model and the conventional model
are solid torii, i.e. filled torii.
Although the classification of our solutions is given by

the integers P and Q, we find that configurations with Q >
1 are unstable; that is, a configuration with ðP;QÞ decays
into Q copies of the ðP; 1Þ configuration.
We also note that our configurations can be identified as

global analogs of vortons [13–15], that is, twisted closed
global vortex strings as in two-component BECs [21].
While vortices in this model are global vortices so that
straight vortices have divergent energy per unit length, a
closed string has finite energy because of cancellation of
vorticity. A vortex in the field ϕ1 traps the field ϕ2 in its
core and has the U(1) phase modulus of ϕ2. The integers Q
and P are identified with the winding numbers of the vortex
of the ϕ1 field and of the ϕ2 field along the ring inside
the vortex core, respectively. The identification of the
Skyrmions with global vortex rings also explains why
configurations with higher Q > 1 are unstable. This is
because Q is the winding number of the vortex in the field
ϕ1, and a global vortex with higher winding is unstable to
decay as two global vortices repel each other.
Finally we discover a first-order phase transition between

the configuration (local minimum) where the Skyrmions
have a (discrete) point symmetry and the toroidal configu-
ration (another local minimum) at some critical mass,
mcritical. For concreteness we carry out this investigation
at B ¼ 3 where the Skyrmion has tetrahedral symmetry
for m < mcritical and has axial symmetry (i.e. it is a torus)
for m > mcritical. For m < mcritical the toroidal state is
metastable, and for m > mcritical the tetrahedral state is
metastable. For sufficiently large m ∼ 2mcritical, the tetrahe-
dral solution becomes unstable, and thus for large m, only
the torus exists.
This paper is organized as follows. In Sec. II, we present

our model and explain the symmetries and topological
structures of the model. In Sec. III, we construct a domain
wall and a global vortex which serve as constituents of the
torus. Finally, in Sec. IV, we construct toroidal Skyrmions
which are the strings wrapped up on a circle, and we further
study their stability. The phase transition between the
Skyrmions with point symmetry and with axial symmetry
is studied in Sec. V. Section VI is devoted to a summary and
discussions. In Appendix A, we show that solutions
with P ¼ 1; 2 and Q ¼ 2 are unstable to decay into two
configurations of P ¼ 1; 2 and Q ¼ 1. In Appendix B, we
compare our B ¼ 2 solutions in the 2þ 4 and 2þ 6models
and that in the conventional models (i.e. without the BEC-
motivated potential).

II. A SKYRME-LIKE MODEL WITH
BEC-MOTIVATED POTENTIAL

We consider the SU(2) principal chiral model with the
addition of the Skyrme term and a sixth-order derivative
term in d ¼ 3þ 1 dimensions. In terms of the SU(2)-
valued field UðxÞ ∈ SU(2), the Lagrangian which we are
considering is given by

L ¼ f2π
16

trð∂μU†∂μUÞ þ L4 þ L6 − VðUÞ; ð1Þ

where we use the mostly negative metric and the higher-
derivative terms are given by

L4 ¼
κ

32e2
trð½U†∂μU;U†∂νU�2Þ; ð2Þ

L6 ¼
c6

36e4f2π
ðϵμνρσtr½U†∂νUU†∂ρUU†∂σU�Þ2: ð3Þ

The symmetry of the Lagrangian forV ¼ 0 is ~G ¼ SUð2ÞL ×
SUð2ÞR acting on U as U → U0 ¼ gLUg†R. The requirement
of a finite-energy configuration, however, spontaneously
breaks this symmetry down to ~H ≃ SUð2ÞLþR, which in
turn acts as U → U0 ¼ gUg† so that the target space is
~G= ~H ≃ SUð2ÞL−R. The conventional potential term, i.e. the
pion mass term, is V ¼ m2

πtrð212 −U − U†Þ, which breaks
the symmetry ~G to SUð2ÞLþR explicitly.
In this paper, it will prove convenient to use the notation

where we express the field U in terms of two complex
scalar fields, ϕT ¼ ðϕ1ðxÞ;ϕ2ðxÞÞ, as

U ¼
�
ϕ1 −ϕ�

2

ϕ2 ϕ�
1

�
; ð4Þ

subject to the constraint

detU ¼ jϕ1j2 þ jϕ2j2 ¼ 1: ð5Þ

We further rescale the lengths to be in units of 2=ðefπÞ and
energy to be in units of fπ=ð2eÞ, for which we can write the
static Lagrangian density as

−L ¼ 1

2
∂iϕ

†∂iϕ

þ κ

4

�
ð∂iϕ

†∂iϕÞ2 −
1

4
ð∂iϕ

†∂jϕþ ∂jϕ
†∂iϕÞ2

�

þ c6
4
ðϵijkϕ†∂iϕ∂jϕ

†∂kϕÞ2 þ Vðϕ;ϕ�Þ: ð6Þ

The full symmetry ~G is not manifest in terms of ϕ, where
only SUð2ÞL is manifest but SUð2ÞR is not. The U(1)
subgroup generated by σ3 in SUð2ÞR, however, is manifest
and acts on ϕ as ϕ → eiαϕ, constituting a U(2) group
with SUð2ÞL.
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The target space (the vacuum manifold with m ¼ 0)
M ≃ SUð2Þ≃ S3 has a nontrivial homotopy group

π3ðMÞ ¼ Z; ð7Þ
which admits Skyrmions as usual. The baryon number (the
Skyrme charge) of B ∈ π3ðS3Þ is defined as

B ¼ −
1

24π2

Z
d3xϵijktrðU†∂iUU†∂jUU†∂kUÞ

¼ 1

24π2

Z
d3xϵijktrðU†∂iU∂jU†∂kUÞ

¼ 1

4π2

Z
d3xϵijkϕ†∂iϕ∂jϕ

†∂kϕ: ð8Þ

Instead of the conventional potential term, we consider
here a potential term motivated by two-component BECs,
given by

Vðϕ;ϕ�Þ ¼ m2

8
½1 − ðϕ†σ3ϕÞ2� ¼

1

2
m2jϕ1j2jϕ2j2; ð9Þ

see the Appendix of Ref. [17] for a relation to BECs. With
this potential, the full symmetry ~G is explicitly broken
down to

G ¼ Uð1Þ × Oð2Þ≃ Uð1Þ0 × ½Uð1Þ3 ⋊ ðZ2Þ1;2�: ð10Þ

Here, each group is defined as

Uð1Þ0∶ ϕ → eiαϕ; ð11Þ
Uð1Þ3∶ ϕ → eiβσ3ϕ; ð12Þ

ðZ2Þ1;2∶ eiðπ=2Þσ1;2ϕ; ð13Þ

where Uð1Þ3 acts on Z2 so that they are a semidirect
product denoted by ⋊. The vacua of the potential in
Eq. (9) are

⊙∶ ϕT ¼ ðeiα; 0Þ;
⊗ ∶ ϕT ¼ ð0; eiβÞ; ð14Þ

and the unbroken symmetry H is

H⊙ ¼ Uð1Þ0−3∶ ϕ → eiαe−iασ3ϕ;

H⊗ ¼ Uð1Þ0þ3∶ ϕ → eiαeþiασ3ϕ; ð15Þ
for the ⊙ and the ⊗ vacuum of Eq. (14), respectively.
Therefore, the vacuum manifold (or the moduli space of
vacua) is given by

M≃ G=H ¼ Uð1Þ0 × ½Uð1Þ3 ⋊ ðZ2Þ1;2�
Uð1Þ0�3

≃ SOð2Þ0∓3 ⋊ ðZ2Þ1;2 ¼ Oð2Þ: ð16Þ
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FIG. 1 (color online). Vortex profiles and energy densities for solutions without the Skyrme term κ ¼ 0 (blue curve) and with the
Skyrme term κ ¼ 1 (dotted red curve) for m ¼ 1 (left panels) and m ¼ 4 (right panels).
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The nontrivial homotopy groups of the vacuum
manifold are

π0ðMÞ ¼ Z2; π1ðMÞ ¼ Z; ð17Þ

admitting domain walls and vortices, respectively.

By means of the Hopf map ~n ¼ ϕ†~σϕ, the principal
chiral SU(2) model can be mapped to the O(3) nonlinear
sigma model with ~n2 ¼ 1 or equivalently the CP1 model.
The potential term in Eq. (9) is mapped to V ¼ m2

8
ð1 − n23Þ,

which is referred to as the Ising-type potential in ferro-
magnets [22]. The CP1 model with the same potential is
often called the massive CP1 model [23–26]. This map can
be obtained by coupling a U(1) gauge field to ϕ with
common U(1) charges and subsequently taking the strong
gauge coupling limit e → ∞.

III. DOMAIN WALLS AND VORTICES

In this section, we will review the constituents which will
be used in the next section in modified or compacti-
fied forms.

A. Domain walls

In d ¼ 1þ 1 dimensions, a(n) (anti)kink solution inter-
polating between the two vacua in Eq. (14) is given by

z

x

y

FIG. 2 (color online). The two cycles of the torus. The toroidal
and poloidal cycles are denoted by α and β, respectively. The ⊙
and ⊗ denote the vacua in Eq. (14), respectively. The U(1)
modulus is twisted P and Q times along the cycles α and β,
respectively.

FIG. 3 (color online). Isosurfaces showing the solutions for the 2þ 4 model, i.e. for κ ¼ 1 and c6 ¼ 0, at constant baryon charge
density equal to half its maximum value. The color represents the phase of the scalar field ϕ2, and the lightness is given by jℑðϕ1Þj. The
calculations are done on an 813 cubic lattice with the relaxation method.
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ϕT ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�2mðx−XÞ

p ðeiα; e�mðx−XÞþiβÞ; ð18Þ

with X ∈ R being the translational modulus of the kink.
Here α and β are not moduli of the kink but moduli of the
vacua in Eq. (14). Note that this solution is (statically) exact
in the form given above, even in the presence of the Skyrme
or sixth-order derivative term [this can easily be understood
as the Skyrme (sixth-order derivative) term is nonzero only
when a solution nontrivially depends on two (three) spatial
coordinates]. Once waves on top of this static solution are
considered, the higher-order derivative terms must be taken
into account; see, e.g., Ref. [27].

In the static case, the kink can trivially be extended to a
domain line in d ¼ 2þ 1 dimensions and to a domain wall
in d ¼ 3þ 1 dimensions, with a one- and two-dimensional
world volume, respectively.
By the Hopf map, the solution (18) is mapped to a kink

in the massive CP1 model [23,24,28]. In that case, the
phase difference β − α becomes a modulus of the kink.
In the ð3þ 1Þ-dimensional case, we can think of our

toroidal objects in Sec. IV as a domain wall wrapped up on
a torus with its S1 moduli twisted in both world volume
directions. It will, however, prove convenient to take a
different point of view, as we shall see, namely to consider
first a vortex string which is then wrapped up on a circle. In

FIG. 4 (color online). Baryon charge density for solutions in the 2þ 4 model, i.e. with κ ¼ 1 and c6 ¼ 0, at xz slices (for y ¼ 0) and
xy slices (for z ¼ 0). yz slices are omitted as they are identical to the xz slices by rotational symmetry of the torus. The calculations are
done on an 813 cubic lattice with the relaxation method.
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the next subsection, we therefore review the (global)
vortex.

B. Vortices

In d ¼ 2þ 1 dimensions the model allows for global
vortices. The vortices of ϕ1 trap or localize ϕ2 in their
cores, and they carry a U(1) modulus being the phase of ϕ2.
We will now review the global vortex in the nonlinear

sigma model with the potential (9); see Ref. [17]. The
vortex can be constructed using the Ansatz

ϕT ¼ ðsin fðrÞeiφþiα; cos fðrÞeiβÞ; ð19Þ
where r ∈ ½0;∞Þ;φ ∈ ½0; 2πÞ are polar coordinates in a
plane. The constant, α, can be absorbed by a redefinition of

the coordinate φ, while the constant β is a U(1) modulus.
This simplifies the Lagrangian density to [17]

−L ¼ 1

2
f2r þ

1

2r2
sin2f þ κ

2r2
sin2ðfÞf2r þ

1

8
m2sin2ð2fÞ;

ð20Þ

for which the equation of motion reads [17]

frr þ
1

r
fr −

1

2r2
sin 2f þ κ

r2
sin2f

�
frr −

1

r
fr

�

þ κ

2r2
sinð2fÞf2r −

1

4
m2 sin 4f ¼ 0: ð21Þ

FIG. 5 (color online). Energy density for solutions in the 2þ 4model, i.e. with κ ¼ 1 and c6 ¼ 0, at xz slices (for y ¼ 0) and xy slices
(for z ¼ 0). yz slices are omitted as they are identical to the xz slices by rotational symmetry of the torus. The calculations are done on an
813 cubic lattice with the relaxation method.
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The boundary conditions for the vortex system are given by

fð0Þ ¼ 0; fð∞Þ ¼ π

2
: ð22Þ

We show numerical solutions in Fig. 1 for m ¼ 1; 4 and
κ ¼ 0; 1. By the Hopf map, they can (topologically) be
mapped to lumps.

In d ¼ 3þ 1 dimensions, these vortices are extended to
vortex strings or cosmic strings. They are global analogs of
Witten’s superconducting strings [29]. We may call them
superflowing cosmic strings. Once extended to ð3þ 1Þ-
dimensional spacetime, the strings bear a U(1) modulus,
which we can parametrize as

ϕT ¼ ðsin fðrÞeiφ; cos fðrÞeiζðzÞÞ: ð23Þ

In the next section, we will compactify these strings on a
circle which requires a nontrivial twist of the modulus ζ.

IV. TOROIDAL SKYRMIONS
IN 3þ 1 DIMENSIONS

In this section we will consider a closed vortex string, i.e.
the vortex string wound up on a circle and thus forming a
toruslike object. Such a closed vortex string is unstable
unless its U(1) modulus is twisted along the string (viz. it is
topologically trivial otherwise).

TABLE I. Numerically integrated baryon charge and energy
(mass) for the solutions in the 2þ 4 model. Stability is observed
for the first five solutions, while P ¼ 6 is only energetically
metastable.

B Bnumerical Enumerical=B

1 0.9995 93.3151� 0.0297
2 1.9994 85.2782� 0.0223
3 2.9985 84.0152� 0.0200
4 3.9981 83.6919� 0.0516
5 4.9959 84.1664� 0.0312
6 5.9921 84.7335� 0.0204

FIG. 6 (color online). Isosurfaces showing the solutions for the 2þ 6 model, i.e. for κ ¼ 0 and c6 ¼ 1, at constant baryon charge
density equal to half its maximum value. The color represents the phase of the scalar field ϕ2, and the lightness is given by jℑðϕ1Þj. The
calculations are done on an 813 cubic lattice with the relaxation method.
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In the final configuration, the U(1) modulus is twisted P
times along the toroidal (α) cycle of the torus, and the
global string winds Q times “along” the poloidal (β) cycle
of the torus; see Fig. 2.
The torus-shaped solution requires us to study the full

partial differential equation numerically, for which we

will use the relaxation method on a cubic square lattice.
Because of the topological nature of the objects we study,
it is sufficient to employ Neumann conditions on the
boundary of the lattice whereas the initial condition is
very important. For the initial configuration, we will use
the Ansatz

ϕT ¼ ðsin ½cos−1fsin fðrÞ sin θg�eiQtan−1ðtan fðrÞ cos θÞ; cos ½cos−1fsin fðrÞ sin θg�eiPϕÞ; ð24Þ
where r ∈ ½0;∞Þ, θ ∈ ½0; π�, φ ∈ ½0; 2πÞ and fðrÞ is an appropriately chosen monotonically decreasing function satisfying
the boundary conditions

fðr → 0Þ → π; fðr → ∞Þ → 0: ð25Þ

FIG. 7 (color online). Baryon charge density for solutions in the 2þ 6 model, i.e. with κ ¼ 0 and c6 ¼ 1, at xz slices (for y ¼ 0) and
xy slices (for z ¼ 0). yz slices are omitted as they are identical to the xz slices by rotational symmetry of the torus. The calculations are
done on an 813 cubic lattice with the relaxation method.
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The baryon number (Skyrme charge) of π3ðS3Þ≃ Z for the
configuration given in Eq. (24) is

B ¼ 1

4π2

Z
d3xϵijkϕ†∂iϕ∂jϕ

†∂kϕ

¼ −
1

2π2

Z
∞

0

dr
Z

π

0

dθ
Z

2π

0

dϕ sin θPQf0ðrÞsin2fðrÞ

¼ −
PQ
π

Z
∞

0

dr∂r½fðrÞ − sin fðrÞ cos fðrÞ�

¼ PQ: ð26Þ

Although we seemingly have two quantum numbers to dial
in the configuration, it will prove convenient to think about

thewinding numberQ as that of the global vortex. This may
suggest that Q > 1 will be unstable as global vortices repel
with a force ∼1=d, where d (here) is the separation distance
between two strings. We confirm this expectation by
numerically solving the equations and we find for Q > 1,
for a wide range of parameters, that the relaxation method
always splits up the object into Q individual strings, each
with a P-wound U(1) phase. For details, see Appendix A.
We can therefore study the numerical solutions with

baryon numberB ¼ P, for which the Ansatz (24) reduces to

ϕT ¼ ðcos fðrÞ þ i sin fðrÞ cos θ; sin fðrÞ sin θeiPϕÞ: ð27Þ
This is exactly the axially symmetric generalization of the
hedgehogAnsatz, and this is just what we need (note that for

FIG. 8 (color online). Energy density for solutions in the 2þ 6model, i.e. with κ ¼ 0 and c6 ¼ 1, at xz slices (for y ¼ 0) and xy slices
(for z ¼ 0). yz slices are omitted as they are identical to the xz slices by rotational symmetry of the torus. The calculations are done on an
813 cubic lattice with the relaxation method.
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Skyrmions without our BEC-motivated potential, this
Ansatz is only appropriate for B ¼ 1; 2 while for B > 2
the axial symmetry no longer yields the minimum-energy
configuration). We will study two cases in turn: in the first
we turn on only the fourth-order derivative term, i.e. κ ¼ 1
and c6 ¼ 0, while in the second case, we switch off the
fourth-order but use the sixth-order derivative term,
i.e. κ ¼ 0 and c6 ¼ 1. We will call them the 2þ 4 model
and the 2þ 6 model, respectively.
In Figs. 3, 4, and 5, we show solutions for case of the

2þ 4model (κ ¼ 1 and c6 ¼ 0) with massm ¼ 4. In Fig. 3
is shown the three-dimensional isosurfaces at half the

maximum value of the baryon charge density. The color
scheme used is chosen such that the U(1) phase, argϕ2, is
mapped to the hue while the lightness is given by the
absolute value of the imaginary part of the vortex con-
densate: jℑðϕ1Þj. In Figs. 4 and 5 are shown the baryon
charge density and energy density, at two different cross
sections cutting through the origin of the torus, respectively.
In this case, they are practically identical, which means that
the energy density is located where the baryon charge is.
As a check on our numerical precision, we calculate the

baryon charge density and integrate it numerically; see Table I.
As already explained, our Skyrmionic torii are only stable for
Q ¼ 1, but to study whether they are stable for higher P > 1,
we need to compare the energy of the configurations. In
Table I we calculate the energy per B ¼ P and find that the
energy drops for the first four torii, viz.P ¼ 1; 2; 3; 4, but then
it starts to increase slightly. The increase is so small that the
P ¼ 5 solution is still energetically stable (also taking into
account the numerical accuracy) while P ¼ 6 is only meta-
stable [30]. That is, the energy of the P ¼ 6 solution is larger
than two times that of the P ¼ 3 solution, and hence it is
bound to decay. Here we have not studied the potential barrier
for the decay and thus cannot calculate its lifetime.
Next we will turn to the case of the 2þ 6model, i.e. with

only sixth-order derivative terms (κ ¼ 0 and c6 ¼ 1) and

FIG. 9 (color online). Isosurfaces showing the solutions for the 2þ 4 model, B ¼ 3 and various values of the mass parameter, m, and
the tetrahedral Ansatz (29) as the initial guess for the relaxation. The color represents the phase of the scalar field ϕ2, and the lightness is
given by jℑðϕ1Þj. The calculations are done on an 813 cubic lattice with the relaxation method.

TABLE II. Numerically integrated baryon charge and energy
(mass) for the solutions in the 2þ 6 model. Stability is observed
for the first five solutions, while P ¼ 6 is only energetically
metastable.

B Bnumerical Enumerical=B

1 0.9999 100.8613� 0.0410
2 1.9998 89.7184� 0.0532
3 2.9995 87.3095� 0.1871
4 3.9981 87.5179� 0.0721
5 4.9970 87.5560� 0.0901
6 5.9939 88.1414� 0.1145
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again with a mass ofm ¼ 4. Numerical solutions are shown
in Figs. 6, 7, and 8. As in the previous case, we show the
three-dimensional isosurfaces of the baryon charge density
at half the maximum value in Fig. 6. In Figs. 7 and 8 are
shown the baryon charge density and energy density,
respectively, at two different cross sections cutting the
torus through the origin. Notice that the energy densities for
these solutions are somewhat more complex than their
respective baryon charge densities. This is one difference
between the 2þ 6 model and the 2þ 4 model. The second
difference is that in this case the torus shape is vaguely
visible already for P ¼ 1, whereas for the previous case,
P ¼ 1 has (unbroken) spherical symmetry. Let us also
comment on the circular shape of the torus for the ðP;QÞ ¼
ð6; 1Þ solution along the toroidal direction in Fig. 6; this
flattening out of the circle is not aligned with the lattice but
is at almost 45° to the lattice axis. Since the small P
solutions do possess almost perfect circular symmetry, we
believe that this is not a lattice effect but instead signals
metastability of the string; for high enough B ¼ P, the
string wants to collapse and break up. The same effect can
also be observed in the ðP;QÞ ¼ ð6; 1Þ solution in Fig. 8 on
the xy slice where the energy density displays four distinct
wave tops around the toroidal cycle.
We again check the numerical precision by numerically

evaluating the total baryon charge; see Table II. As for the
stability of the higher P > 1 solutions, we numerically

evaluate the energy (mass) of the solutions and again
find that the energy decreases as P is increased, for the
first few solutions, but this time only for the first three
P ¼ 1; 2; 3, and then it starts to increase slightly. The first

FIG. 10 (color online). Isosurfaces showing the solutions for the 2þ 4model, B ¼ 3 and various values of the mass parameter,m, and
the toroidal Ansatz (27) as the initial guess for the relaxation. The color represents the phase of the scalar field ϕ2, and the lightness is
given by jℑðϕ1Þj. The calculations are done on an 813 cubic lattice with the relaxation method.
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FIG. 11 (color online). Energies of numerical solutions of which
the initial guesses are tetrahedrals (blue line) and torii (red line) with
varying mass m. For small m ≤ 1 the tetrahedral Ansatz gives
tetrahedral solutions. At m ≳ 1.5 the tetrahedral Ansatz gives rise to
solutions that are heavier than thatwith the toroidalAnsatz, suggesting
a first-order phase transition. For large m≳ 3 both series give torii.
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five solutions are all energetically stable, while P ¼ 6 is
only metastable.

V. TRANSITION TO TOROIDAL SKYRMIONS

In this section we study the transition from the normal
Skyrmion of higher charge (i.e. with m ¼ 0) to the toroidal
Skyrmion (i.e. with m sufficiently large). For concreteness
we study the transition in the normal Skyrme model (κ ¼ 1
and c6 ¼ 0) and for B ¼ 3 where the transition is very
visible (as opposed to for instance B ¼ 1 and B ¼ 2).
When the potential is turned off, the B ¼ 3 Skyrmion in the
normal Skyrme model is of tetrahedral shape [31]. Turning
on the potential (9), vortonlike Skyrmions become the
lowest-energy state for a sufficiently large mass parameter,
m. To find the critical mass necessary for obtaining torii or
global strings in the Skyrme model, we vary the mass
parameter and repeat the numerical calculation. We are
using the relaxation method to find numerical solutions.
One weakness of this method is that it only finds the nearest
local minimal-energy solution, as opposed to the global
one. For this reason we make two series of numerical

calculations. One starts from the tetrahedral solution, of
which the initial guess is [32]

n ¼
�
Rþ R̄
1þ RR̄

sin f;
iðR̄ − RÞ
1þ RR̄

sin f;
1 − RR̄
1þ RR̄

sin f; cos f

�
;

ð28Þ

where R is the rational map Ansatz and for B ¼ 3 the
tetrahedral Ansatz is [32]

R ¼ z3 −
ffiffiffi
3

p
izffiffiffi

3
p

iz2 − 1
; z ¼ tan

�
θ

2

�
eiϕ; ð29Þ

where θ;ϕ are angles on the 2-sphere. The other series of
numerical solutions uses the initial guess provided by the
torus Ansatz of Eq. (27).
Figures 9 and 10 show the two series of numerical

solutions starting from the tetrahedral and toroidal initial
guess, respectively. It is observed that form≳ 3 both series
converge to a flat torus. The difference in the colors is due
to a permutation in the fields n3 and n2. The two flat torii

FIG. 12 (color online). Isosurfaces showing the solutions for the 2þ 4 model, for B ¼ 3 and various values of the mass parameter,m,
and the tetrahedral Ansatz (29) as the initial guess for the relaxation. The colored isosurface and the magenta shadow show the isosurface
at half and a quarter of the maximal value of the baryon charge density, respectively. The color represents the phase of the scalar field ϕ2,
and the lightness is given by jℑðϕ1Þj. The calculations are done on an 813 cubic lattice with the relaxation method.
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for m ¼ 4 are physically the same and are not shown in
Figs. 9 and 10, but can be seen in Fig. 3.
To determine which state is the lowest-energy state, we

also compare the energies for the two series of numerical
solutions. In Fig. 11 we show the energies of the two series
of numerical solutions: the blue solid line shows the
solution of which the initial guess is the tetrahedral
Ansatz, and the red dashed line has the torus Ansatz
as the initial guess. We see that for m≲ 1.5 the tetrahedral
is the lowest-energy state. Our calculation indicates that
a first-order phase transition takes place around
m ¼ mcritical ∼ 1.5, where the tetrahedral state rises above
that of the toroidal one. For m≳ 3 both Ansätze give a flat
torus after relaxation has found a solution. Thus, the
tetrahedral state either becomes unstable or slowly merges
together with that of the toroidal one. The instability sets in
for m between 3 and 4. To check that the phase transition
around m ∼ 1.5 really takes place, we have run the
solutions with an exceptionally long relaxation time and
found solutions with a very high accuracy (the equations of
motion are satisfied at every spatial position better than
10−4 and about 10−5 on average). Indicative of the two
different states crossing around the critical mass,
mcritical ∼ 1.5, is that the two different solutions have almost
exactly the same energy.
To see that the numerical solutions form between 1 and 2

are actually tetrahedral in nature as opposed to bent torii,
we show the solutions with colored isosurfaces at half the
maximal value as well as at a quarter of the maximal value
of the baryon charge density in Fig. 12. It is observed that
there is a cloud connecting the solution between the string
at antipodal points. For sufficiently large m ∼ 2mcritical, the
tetrahedral solution becomes unstable, and thus for large m
only the torus exists.

VI. SUMMARY AND DISCUSSION

We have studied Skyrmion solutions in the BEC Skyrme
model, which is a Skyrme model with the potential term
motivated by two-component BECs. We have constructed
stable Skyrmion solutions for P ¼ 1; 2; 3; 4; 5 and Q ¼ 1,
yielding the baryon numbers B ¼ 1; 2; 3; 4; 5 as well as a
metastable solution for P ¼ 6 and Q ¼ 1 (B ¼ 6). We
suspect that higher baryon charged solutions will all be
metastable. The energy and baryon charge distributions of
the configurations with P > 1 are all of toroidal shape.
They are vortex rings of the field ϕ1, with the field ϕ2

trapped in their cores, where the phase of the field ϕ2

winds P times along the ring. We have found that
configurations with charge ðP;QÞ decay into Q rings of
charge ðP; 1Þ. This string splitting can be understood as the
repulsion of global vortex strings. Finally we have dis-
covered a first-order phase transition between Skyrmions
with a discrete point symmetry and axial (toroidal)
symmetry.

In two-component BECs, one can introduce a Rabi
oscillation term γðϕ1ðxÞ�ϕ2ðxÞ þ c:c:Þ, known as a
Josephson term in superconductors, in the Lagrangian.
Introduction of this term deforms the Skyrmions inside a
domain wall [25,28,33,34]. What deformation this term
introduces for toroidal Skyrmions in the BEC Skyrme
model remains as a future problem. On the other hand, if we
introduce the potential term V ∼ ϕ1 þ ϕ�

1 [17], our con-
figurations will become P sine-Gordon kinks on a vortex
ring, which is a ð3þ 1Þ-dimensional analog of Ref. [35], in
which sine-Gordon kinks on a domain wall ring were
constructed in 2þ 1 dimensions.
Two-component BECs are known to admit a stable

composite soliton, viz. a D-brane soliton, that is, a domain
wall on which vortices end from both sides [36], originally
found in the massive CP1 model [37,38]. The (BEC)
Skyrme model discussed in this paper has the same
potential term and is expected to admit such a D-brane
soliton. A configuration made of a domain wall and an anti-
domain wall stretched by lump strings in the massive CP1

model was considered in Ref. [39], in which it was
discussed that such a configuration is unstable to decay,
resulting in the creation of Hopfions. Therefore, the same
mechanism should work also in the (BEC) Skyrme model
discussed in this paper creating Skyrmions from brane
annihilation, as was discussed for two-component
BECs [8].
The Bogomol’nyi–Prasad–Sommerfield Skyrme model,

proposed recently [19], consists of only the sixth-order
derivative term as well as appropriate potentials. This
model admits exact solutions with compact support. By
choosing the potential of the BEC Skyrme model in this
paper, we may be able to construct exact solutions of
Skyrmions with toroidal shape.
The Skyrmions with the charge ðP;QÞ are related

through the Hopf map to ðP;QÞ Hopfions [40,41] in the
Ising Faddeev–Skyrme (FS) model [39], that is, the FS
model [42,43] with an Ising-type potential term admitting
two discrete vacua. The domain wall in the BEC Skyrme
model is mapped to a domain wall with a U(1) modulus
interpolating between these two vacua [23,24,27], and a
global vortex is mapped to a lump or baby Skyrmion
[44,45]. This model also admits a twisted domain-wall tube
with the U(1) modulus twisted along the cycle of the tube
[35] as a baby-Skyrmion string. The original FS model
without said potential term is known to admit Hopfions, i.e.
solitons with Hopf charge π3ðS2Þ≃ Z [15,43,46–50], and,
in particular, Hopfions with Hopf charge 7 or higher were
found to have knot structures [48–50]. The ðP;QÞ
Hopfions in the Ising FS model are not knots but
toroidal domain walls characterized by two integers
ðP;QÞ, where the U(1) modulus of the domain wall is
twisted P and Q times along the toroidal and poloidal
cycles of the torus, respectively. In this case, some
configurations with Q > 1 were found to be stable [41],
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unlike our case of Skyrmions for which all configurations
forQ > 1 are unstable. This is because there is no repulsion
between lumps.
If we consider compactifying space to R2 × S1, we have

another solution in addition to the one studied here, in
which the vortex string extends along the S1 direction and
has P twists on its U(1) modulus. The corresponding
solution for the case of the Hopfion was discussed in
Ref. [51]. Skyrmions in the conventional model on S2 × S1

were discussed in Ref. [52].
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APPENDIX A: STRING SPLITTING FOR Q > 1

In this section we show that the relaxation of the
ðP;QÞ ¼ ðP; 2Þ torus splits into two separate ðP;QÞ ¼
ðP; 1Þ objects for P ¼ 1; 2. For concreteness we carry out
the calculations in the 2þ 6 model (κ ¼ 0 and c6 ¼ 1). In
Figs. 13 and 14 are shown the ð1; 2Þ → 2 × ð1; 1Þ and

FIG. 13 (color online). Isosurfaces showing an initial configuration with ðP;QÞ ¼ ð1; 2Þ (B ¼ 2) in 2þ 6 model (κ ¼ 0, c6 ¼ 1 and
m ¼ 4) which after some finite relaxation time splits the Skyrmion into two separate Skyrmions of charge 1, i.e. ðP;QÞ ¼ ð1; 1Þ. The
isosurfaces show constant baryon charge density equal to half its maximum value. The color represents the phase of the scalar field ϕ2,
and the lightness is given by jℑðϕ1Þj. The calculation is carried out on an 813 cubic lattice with the relaxation method.
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ð2; 2Þ → 2 × ð2; 1Þ string splittings as function of relaxa-
tion time τ, respectively.

APPENDIX B: COMPARISON OF TORUS
AND SKYRMION

In this section we will compare the case of ðP;QÞ ¼
ð2; 1Þ and thus baryon number 2 and m ¼ 4, where
the Skyrmion is a torus, with the case of m ¼ 0, which
is just the normal B ¼ 2 Skyrmion and also in the
form of a torus. We will make the comparison for

both the 2þ 4 model and the 2þ 6 model. In
Figs. 15 and 16 are shown the comparison for the
2þ 4 and 2þ 6 models, respectively. For the 2þ 4

model, the main difference is the size (and in turn the
total mass) of the two solutions. For the 2þ 6 model,
differences are evident both in the baryon charge
density slices (middle row) and the energy density slices
(bottom row). For the BEC Skyrmion in the 2þ 6 model,
the torus is more hollow with respect to its potential-less
counterpart.

FIG. 14 (color online). Isosurfaces showing an initial configuration with ðP;QÞ ¼ ð2; 2Þ (B ¼ 4) in the 2þ 6 model
(κ ¼ 0, c6 ¼ 1 and m ¼ 4) which after some finite relaxation time splits the Skyrmion into two separate Skyrmions of charge 2,
i.e. ðP;QÞ ¼ ð2; 1Þ. The isosurfaces show constant baryon charge density equal to half its maximum value. The color represents the
phase of the scalar field ϕ2, and the lightness is given by jℑðϕ1Þj. The calculation is carried out on an 813 cubic lattice with the relaxation
method.
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FIG. 15 (color online). Comparison between the BEC Skyrmion in the 2þ 4 model (m ¼ 4) on the left and the normal Skyrmion
(m ¼ 0) on the right. From top to bottom is shown the isosurface of the baryon density at half maximum, the baryon density at xz and xy
slices through the origin of the torus, and finally similar energy density slices.

SVEN BJARKE GUDNASON AND MUNETO NITTA PHYSICAL REVIEW D 91, 045027 (2015)

045027-16



[1] T. H. R. Skyrme, A unified field theory of mesons and
baryons, Nucl. Phys. 31, 556 (1962); A nonlinear field
theory, Proc. R. Soc. A 260, 127 (1961).

[2] G. S. Adkins, C. R. Nappi, and E.Witten, Static properties of
nucleons in theSkyrmemodel,Nucl. Phys.B228, 552 (1983).

[3] T. Sakai and S. Sugimoto, Low energy hadron physics in
holographic QCD, Prog. Theor. Phys. 113, 843 (2005);
More on a holographic dual of QCD, Prog. Theor. Phys.114,
1083 (2005).

[4] H. Hata, T. Sakai, S. Sugimoto, and S. Yamato, Baryons
from instantons in holographic QCD, Prog. Theor. Phys.
117, 1157 (2007).

[5] J. Ruostekoski and J. R. Anglin, Creating Vortex Rings and
Three-Dimensional Skyrmions in Bose-Einstein Conden-
sates, Phys. Rev. Lett. 86, 3934 (2001); R. A. Battye,
N. R. Cooper, and P. M. Sutcliffe, Stable Skyrmions in
Two-Component Bose-Einstein Condensates, Phys. Rev.
Lett. 88, 080401 (2002).

[6] U. A. Khawaja and H. T. C. Stoof, Skyrmions in a ferro-
magnetic Bose-Einstein condensate, Nature (London) 411,
918 (2001); Skyrmion Physics in Bose-Einstein Ferromag-
nets, Phys. Rev. A 64, 043612 (2001); C. M. Savage and J.
Ruostekoski, Energetically Stable Particle-Like Skyrmions
in a Trapped Bose-Einstein Condensate, Phys. Rev. Lett. 91,

FIG. 16 (color online). Comparison between the BEC Skyrmion in the 2þ 6model (m ¼ 4) on the left and the “normal” Skyrmion in
the 2þ 6 model (m ¼ 0) on the right. From top to bottom is shown the isosurface of the baryon density at half maximum, the baryon
density at xz and xy slices through the origin of the torus, and finally similar energy density slices.

BARYONIC TORII: TOROIDAL BARYONS IN A … PHYSICAL REVIEW D 91, 045027 (2015)

045027-17

http://dx.doi.org/10.1016/0029-5582(62)90775-7
http://dx.doi.org/10.1098/rspa.1961.0018
http://dx.doi.org/10.1016/0550-3213(83)90559-X
http://dx.doi.org/10.1143/PTP.113.843
http://dx.doi.org/10.1143/PTP.114.1083
http://dx.doi.org/10.1143/PTP.114.1083
http://dx.doi.org/10.1143/PTP.117.1157
http://dx.doi.org/10.1143/PTP.117.1157
http://dx.doi.org/10.1103/PhysRevLett.86.3934
http://dx.doi.org/10.1103/PhysRevLett.88.080401
http://dx.doi.org/10.1103/PhysRevLett.88.080401
http://dx.doi.org/10.1038/35082010
http://dx.doi.org/10.1038/35082010
http://dx.doi.org/10.1103/PhysRevA.64.043612
http://dx.doi.org/10.1103/PhysRevLett.91.010403


010403 (2003); J. Ruostekoski, Stable Particlelike Solitons
with Multiply-Quantized Vortex Lines in Bose-Einstein
Condensates, Phys. Rev. A 70, 041601 (2004); S. Wuster,
T. E. Argue, and C. M. Savage, Numerical Study of the
Stability of Skyrmions in Bose-Einstein Condensates, Phys.
Rev. A 72, 043616 (2005); I. F. Herbut and M. Oshikawa,
Stable Skyrmions in Spinor Condensates, Phys. Rev. Lett.
97, 080403 (2006); A. Tokuno, Y. Mitamura, M. Oshikawa,
and I. F. Herbut, Skyrmion in Spinor Condensates and
its Stability in Trap Potentials, Phys. Rev. A 79, 053626
(2009).

[7] T. Kawakami, T. Mizushima, M. Nitta, and K. Machida,
Stable Skyrmions in SU(2) Gauged Bose-Einstein
Condensates, Phys. Rev. Lett. 109, 015301 (2012).

[8] M. Nitta, K. Kasamatsu, M. Tsubota, and H. Takeuchi,
Creating Vortons and Three-Dimensional Skyrmions
from Domain Wall Annihilation with Stretched Vortices
in Bose-Einstein Condensates, Phys. Rev. A 85, 053639
(2012).

[9] K. Kasamatsu, M. Tsubota, and M. Ueda, Vortices in
multicomponent Bose-Einstein condensates, Int. J. Mod.
Phys. B 19, 1835 (2005).

[10] H. Takeuchi, K. Kasamatsu, M. Tsubota, and M. Nitta,
Tachyon Condensation Due to Domain-Wall Annihilation in
Bose-Einstein Condensates, Phys. Rev. Lett. 109, 245301
(2012); H. Takeuchi, K. Kasamatsu, M. Nitta, and M.
Tsubota, Vortex formations from domain wall annihilations
in two-component Bose-Einstein condensates, J. Low
Temp. Phys. 162, 243 (2011); H. Takeuchi, K. Kasamatsu,
M. Tsubota, and M. Nitta, Tachyon condensation and brane
annihilation in Bose-Einstein condensates: Spontaneous
symmetry breaking in restricted lower-dimensional
subspace, J. Low Temp. Phys. 171, 443 (2013).

[11] It has also been proposed that a stable three-dimensional
Skyrmion can exist as a ground state in the SU(2)-
symmetric case, by introducing “artificial” non-Abelian
gauge fields [7].

[12] M. A. Metlitski and A. R. Zhitnitsky, Vortex rings in two-
component Bose-Einstein condensates, J. High Energy
Phys. 06 (2004) 017.

[13] R. L. Davis and E. P. S. Shellard, The physics of vortex
superconductivity. 2, Phys. Lett. B 209, 485 (1988);
“Cosmic vortons”, Nucl. Phys. B323, 209 (1989).

[14] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other
Topological Defects, Cambridge Monographs on
Mathematical Physics (Cambridge University Press,
Cambridge, England, 2000).

[15] E. Radu and M. S. Volkov, Stationary ring solitons in field
theory—Knots and vortons, Phys. Rept. 468, 101 (2008).

[16] J. Garaud, E. Radu, and M. S. Volkov, Stable Cosmic
Vortons, Phys. Rev. Lett. 111, 171602 (2013).

[17] S. B. Gudnason and M. Nitta, Incarnations of Skyrmions,
Phys. Rev. D 90, 085007 (2014).

[18] S. B. Gudnason and M. Nitta, Effective field theories on
solitons of generic shapes, arXiv:1407.2822.

[19] C. Adam, J. Sanchez-Guillen, and A. Wereszczynski, A
Skyrme-type proposal for baryonic matter, Phys. Lett. B
691, 105 (2010); A BPS Skyrme Model and Baryons at
Large Nc, Phys. Rev. D 82, 085015 (2010).

[20] S. B. Gudnason and M. Nitta, Baryonic Sphere: A Spherical
Domain Wall Carrying Baryon Number, Phys. Rev. D 89,
025012 (2014).

[21] Strictly speaking, there is a supercurrent or a superflow due
to the trapped field along the ring of the vorton. This can be
achieved by rotating the phase of the trapped field linearly in
time as ϕ2 ∼ eizþiαt with z being the coordinate along the
string. In the case of BECs, such a time dependence is
automatic in the presence of the phase gradient along the
string because of the first derivative in time in the non-
relativistic Lagrangian.

[22] M. Kobayashi and M. Nitta, Non-Relativistic Nambu-
Goldstone Modes Associated with Spontaneously Broken
Space-Time and Internal Symmetries, Phys. Rev. Lett. 113,
120403 (2014).

[23] E. R. C. Abraham and P. K. Townsend, Q kinks, Phys. Lett.
B 291, 85 (1992); More on Q kinks: A (1þ 1)-dimensional
analog of dyons, Phys. Lett. B 295, 225 (1992).

[24] M. Arai, M. Naganuma, M. Nitta, and N. Sakai,
Manifest supersymmetry for BPS walls in N ¼ 2 nonlinear
sigma models, Nucl. Phys. B652, 35 (2003); A Garden of
Quanta, edited by (World Scientific, Singapore, 2003).

[25] M. Nitta, Josephson Vortices and the Atiyah-Manton
Construction, Phys. Rev. D 86, 125004 (2012).

[26] M. Nitta, Defect Formation from Defect-Anti-Defect
Annihilations, Phys. Rev. D 85, 101702 (2012).

[27] A. E. Kudryavtsev, B. M. A. Piette, and W. J. Zakrzewski,
Skyrmions and domain walls in (2þ 1) dimensions,
Nonlinearity 11, 783 (1998); D. Harland and R. S. Ward,
Walls and Chains of Planar Skyrmions, Phys. Rev. D 77,
045009 (2008).

[28] M. Nitta, Correspondence between Skyrmions in 2þ 1 and
3þ 1 Dimensions, Phys. Rev. D 87, 025013 (2013);
Matryoshka skyrmions, Nucl. Phys. B872, 62 (2013).

[29] E. Witten, Superconducting strings, Nucl. Phys. B249, 557
(1985).

[30] The question of stability may also depend on the coefficients
of the higher-derivative terms and the mass.

[31] R. A. Battye and P. M. Sutcliffe, Symmetric Skyrmions,
Phys. Rev. Lett. 79, 363 (1997).

[32] C. J. Houghton, N. S. Manton, and P. M. Sutcliffe, Rational
maps, monopoles and Skyrmions, Nucl. Phys. B510, 507
(1998).

[33] S. B. Gudnason and M. Nitta, Domain Wall Skyrmions,
Phys. Rev. D 89, 085022 (2014).

[34] J. Garaud and E. Babaev, Skyrmionic state and stable
half-quantum vortices in chiral p-wave superconductors,
Phys. Rev. B 86, 060514 (2012).

[35] M. Kobayashi and M. Nitta, Sine-Gordon kinks on a domain
wall ring, Phys. Rev. D 87, 085003 (2013).

[36] K. Kasamatsu, H. Takeuchi, M. Nitta, and M. Tsubota,
Analogues of D-branes in Bose-Einstein condensates,
J. High Energy Phys. 11 (2010) 068; K. Kasamatsu, H.
Takeuchi, and M. Nitta, D-brane solitons and boojums in
field theory and Bose-Einstein condensates, J. Phys.
Condens. Matter 25, 404213 (2013); K. Kasamatsu,
H. Takeuchi, M. Tsubota, and M. Nitta, Wall-Vortex
Composite Solitons in Two-Component Bose-Einstein
Condensates, Phys. Rev. A 88, 013620 (2013).

SVEN BJARKE GUDNASON AND MUNETO NITTA PHYSICAL REVIEW D 91, 045027 (2015)

045027-18

http://dx.doi.org/10.1103/PhysRevLett.91.010403
http://dx.doi.org/10.1103/PhysRevA.70.041601
http://dx.doi.org/10.1103/PhysRevA.72.043616
http://dx.doi.org/10.1103/PhysRevA.72.043616
http://dx.doi.org/10.1103/PhysRevLett.97.080403
http://dx.doi.org/10.1103/PhysRevLett.97.080403
http://dx.doi.org/10.1103/PhysRevA.79.053626
http://dx.doi.org/10.1103/PhysRevA.79.053626
http://dx.doi.org/10.1103/PhysRevLett.109.015301
http://dx.doi.org/10.1103/PhysRevA.85.053639
http://dx.doi.org/10.1103/PhysRevA.85.053639
http://dx.doi.org/10.1142/S0217979205029602
http://dx.doi.org/10.1142/S0217979205029602
http://dx.doi.org/10.1103/PhysRevLett.109.245301
http://dx.doi.org/10.1103/PhysRevLett.109.245301
http://dx.doi.org/10.1007/s10909-010-0294-0
http://dx.doi.org/10.1007/s10909-010-0294-0
http://dx.doi.org/10.1007/s10909-012-0816-z
http://dx.doi.org/10.1088/1126-6708/2004/06/017
http://dx.doi.org/10.1088/1126-6708/2004/06/017
http://dx.doi.org/10.1016/0370-2693(88)91178-1
http://dx.doi.org/10.1016/0550-3213(89)90594-4
http://dx.doi.org/10.1016/j.physrep.2008.07.002
http://dx.doi.org/10.1103/PhysRevLett.111.171602
http://dx.doi.org/10.1103/PhysRevD.90.085007
http://arXiv.org/abs/1407.2822
http://dx.doi.org/10.1016/j.physletb.2010.06.025
http://dx.doi.org/10.1016/j.physletb.2010.06.025
http://dx.doi.org/10.1103/PhysRevD.82.085015
http://dx.doi.org/10.1103/PhysRevD.89.025012
http://dx.doi.org/10.1103/PhysRevD.89.025012
http://dx.doi.org/10.1103/PhysRevLett.113.120403
http://dx.doi.org/10.1103/PhysRevLett.113.120403
http://dx.doi.org/10.1016/0370-2693(92)90122-K
http://dx.doi.org/10.1016/0370-2693(92)90122-K
http://dx.doi.org/10.1016/0370-2693(92)91558-Q
http://dx.doi.org/10.1016/S0550-3213(03)00009-9
http://dx.doi.org/10.1103/PhysRevD.86.125004
http://dx.doi.org/10.1103/PhysRevD.85.101702
http://dx.doi.org/10.1088/0951-7715/11/4/002
http://dx.doi.org/10.1103/PhysRevD.77.045009
http://dx.doi.org/10.1103/PhysRevD.77.045009
http://dx.doi.org/10.1103/PhysRevD.87.025013
http://dx.doi.org/10.1016/j.nuclphysb.2013.03.003
http://dx.doi.org/10.1016/0550-3213(85)90022-7
http://dx.doi.org/10.1016/0550-3213(85)90022-7
http://dx.doi.org/10.1103/PhysRevLett.79.363
http://dx.doi.org/10.1016/S0550-3213(97)00619-6
http://dx.doi.org/10.1016/S0550-3213(97)00619-6
http://dx.doi.org/10.1103/PhysRevD.89.085022
http://dx.doi.org/10.1103/PhysRevB.86.060514
http://dx.doi.org/10.1103/PhysRevD.87.085003
http://dx.doi.org/10.1007/JHEP11(2010)068
http://dx.doi.org/10.1088/0953-8984/25/40/404213
http://dx.doi.org/10.1088/0953-8984/25/40/404213
http://dx.doi.org/10.1103/PhysRevA.88.013620


[37] J. P. Gauntlett, R. Portugues, D. Tong, and P. K. Townsend,
D-Brane Solitons in Supersymmetric Sigma Models, Phys.
Rev. D 63, 085002 (2001); M. Shifman and A. Yung,
Domain Walls and Flux Tubes in N ¼ 2 SQCD: D-Brane
Prototypes, Phys. Rev. D 67, 125007 (2003).

[38] Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai, All Exact
Solutions of a 1=4 Bogomol’nyi-Prasad-Sommerfield Equa-
tion, Phys. Rev. D 71, 065018 (2005); M. Eto, Y. Isozumi,
M. Nitta, K. Ohashi, and N. Sakai, Solitons in the Higgs
phase: The Moduli matrix approach, J. Phys. A 39, R315
(2006); M. Eto, Y. Isozumi, M. Nitta, and K. Ohashi, 1=2,
1=4 and 1=8 BPS equations in SUSY Yang-Mills-Higgs
systems: Field theoretical brane configurations, Nucl. Phys.
B752, 140 (2006).

[39] M. Nitta, Knots from Wall–Anti-Wall Annihilations with
Stretched Strings, Phys. Rev. D 85, 121701 (2012).

[40] M. Kobayashi and M. Nitta, arXiv:1304.4737.
[41] M. Kobayashi and M. Nitta, Torus knots as Hopfions, Phys.

Lett. B 728, 314 (2014).
[42] L. D. Faddeev, Princeton Report No. IAS-75-QS70.
[43] L. D. Faddeev and A. J. Niemi, Knots and particles, Nature

(London) 387, 58 (1997).
[44] B. M. A. Piette, B. J. Schroers, and W. J. Zakrzewski, Multi-

solitons in a two-dimensional Skyrme model, Z. Phys. C 65,

165 (1995); Dynamics of baby skyrmions, Nucl. Phys.
B439, 205 (1995).

[45] T. Weidig, The baby Skyrme models and their multi-
skyrmions, Nonlinearity 12, 1489 (1999).

[46] H. J. de Vega, Closed Vortices and the HOPF Index in
Classical Field Theory, Phys. Rev. D 18, 2945 (1978); A.
Kundu and Y. P. Rybakov, Closed vortex type solitons with
Hopf index, J. Phys. A 15, 269 (1982).

[47] J. Gladikowski and M. Hellmund, Static Solitons with
Nonzero Hopf Number, Phys. Rev. D 56, 5194 (1997).

[48] R. A. Battye and P. M. Sutcliffe, Knots as Stable Soliton
Solutions in a Three-Dimensional Classical Field Theory,
Phys. Rev. Lett. 81, 4798 (1998); Solitons, links and knots,
Proc. R. Soc. A 455, 4305 (1999).

[49] J. Hietarinta and P. Salo, Ground State in the
Faddeev-Skyrme Model, Phys. Rev. D 62, 081701
(2000).

[50] P. Sutcliffe, Knots in the Skyrme-Faddeev model, Proc. R.
Soc. A 463, 3001 (2007).

[51] M. Kobayashi and M. Nitta, Winding Hopfions on R2 × S1,
Nucl. Phys. B876, 605 (2013).

[52] F. Canfora, F. Correa, and J. Zanelli, Exact Multi-Soliton
Solutions in the Four Dimensional Skyrme Model, Phys.
Rev. D 90, 085002 (2014).

BARYONIC TORII: TOROIDAL BARYONS IN A … PHYSICAL REVIEW D 91, 045027 (2015)

045027-19

http://dx.doi.org/10.1103/PhysRevD.63.085002
http://dx.doi.org/10.1103/PhysRevD.63.085002
http://dx.doi.org/10.1103/PhysRevD.67.125007
http://dx.doi.org/10.1103/PhysRevD.71.065018
http://dx.doi.org/10.1088/0305-4470/39/26/R01
http://dx.doi.org/10.1088/0305-4470/39/26/R01
http://dx.doi.org/10.1016/j.nuclphysb.2006.06.026
http://dx.doi.org/10.1016/j.nuclphysb.2006.06.026
http://dx.doi.org/10.1103/PhysRevD.85.121701
http://arXiv.org/abs/1304.4737
http://dx.doi.org/10.1016/j.physletb.2013.12.002
http://dx.doi.org/10.1016/j.physletb.2013.12.002
http://dx.doi.org/10.1038/387058a0
http://dx.doi.org/10.1038/387058a0
http://dx.doi.org/10.1007/BF01571317
http://dx.doi.org/10.1007/BF01571317
http://dx.doi.org/10.1016/0550-3213(95)00011-G
http://dx.doi.org/10.1016/0550-3213(95)00011-G
http://dx.doi.org/10.1088/0951-7715/12/6/303
http://dx.doi.org/10.1103/PhysRevD.18.2945
http://dx.doi.org/10.1088/0305-4470/15/1/035
http://dx.doi.org/10.1103/PhysRevD.56.5194
http://dx.doi.org/10.1103/PhysRevLett.81.4798
http://dx.doi.org/10.1098/rspa.1999.0502
http://dx.doi.org/10.1103/PhysRevD.62.081701
http://dx.doi.org/10.1103/PhysRevD.62.081701
http://dx.doi.org/10.1098/rspa.2007.0038
http://dx.doi.org/10.1098/rspa.2007.0038
http://dx.doi.org/10.1016/j.nuclphysb.2013.08.012
http://dx.doi.org/10.1103/PhysRevD.90.085002
http://dx.doi.org/10.1103/PhysRevD.90.085002

