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We investigate quarkonium mass spectra in external constant magnetic fields by using QCD sum rules.
We first discuss a general framework of QCD sum rules necessary for properly extracting meson spectra
from current correlators computed in the presence of strong magnetic fields, that is, a consistent treatment
of mixing effects caused in the mesonic degrees of freedom. We then implement operator product
expansions for pseudoscalar and vector heavy-quark current correlators by taking into account external
constant magnetic fields as operators and obtain mass shifts of the lowest-lying bound states ηc and J=ψ in
the static limit with their vanishing spatial momenta. Comparing results from QCD sum rules with those
from hadronic effective theories, we find that the dominant origin of mass shifts comes from a mixing
between ηc and J=ψ with a longitudinal spin polarization, accompanied by other subdominant effects such
as mixing with higher excited states and continua.
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I. INTRODUCTION

It has been known for quite some time that external
magnetic fields strongly interacting with charged fermions
give rise to intriguing dynamics in vacuum, including not
only nonlinear dynamics of photons within QED [1,2]
but also an interplay with QCD. Motivated by formation of
strong electromagnetic fields in neutron stars/magnetars
[3,4] and ultrarelativistic heavy-ion collisions at the
Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC) [5–8], a number of lattice QCD
simulations and analytic calculations have shown that
strong magnetic fields modify properties of QCD vacuum
such as quark condensates [5,9–18] and gluon condensates
[19,20] and consequently modify even phase structures
[15,19,21–23] and hadron properties [5,9,24–35]. One of
the remarkable findings is a discrepancy between meson
spectra obtained from a hadronic effective model calcu-
lation and a lattice QCD simulation in strong magnetic
fields [26,27]. A lesson learned there might be the
importance of studying bound-state properties on the basis
of elementary degrees of freedom in the underlying theory,

when the magnitudes of external fields approach and go
beyond the typical scales of the theory. Especially in QCD,
this is important not only because an internal structure of a
bound state is changed but also because properties of QCD
vacuum are changed. Therefore, these observations pose a
fundamental question in QCD, i.e., how changes of QCD
vacuum are reflected in meson spectra in external fields.
In a recent paper [34], we investigated a field theoretical

approach to this issue and proposed a general framework of
the QCD sum rules (QCDSR) applied to meson spectros-
copy in external magnetic fields. This paper is supposed to
be a detailed account of our framework providing a
semianalytic method to elucidate the relation between
properties of QCD vacuum and meson spectra in external
magnetic fields. We also extend our detailed analysis to
include the results for a transversely polarized J=ψ with
respect to the direction of the external field. Historically,
the QCD sum rule was developed soon after the discovery
of J=ψ and first applied to heavy-quark systems [36–38].
The QCD sum rules remarkably predicted the small mass
splitting between ηc and J=ψ , which was subsequently
confirmed by experiments [39]. The resolution in the
results from the QCDSR was as high as the order of the
mass splitting of less than 100 MeV. This was achieved by
taking into account effects of a gluon condensate as well as
a perturbative piece in current correlators on the basis of
the operator product expansion (OPE) [40]. As shown in
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the seminal papers [38,41,42], the QCD sum rules allow for
manifestly incorporating nonperturbative effects of QCD
vacuum through expectation values of operators in the OPE
[43–45], which can be performed on an order-by-order
basis with respect to mass dimensions of the operators and
thus in a systematic manner. This structure in QCD sum
rules indicates that we could investigate how changes in
properties of QCD vacuum in the OPE manifest themselves
in hadron properties in external environments. Indeed, the
QCD sum rules at finite temperature/density [46–48] have
been applied to heavy quarkonia [49–59], light mesons
[60,61], and heavy-light mesons [62] in the last two
decades and very recently those in strong external magnetic
fields [33,34].
In particular, the heavy quarkonia have been investigated

by various methods as well as the QCD sum rules, since
dissociation of quarkonia in hot media with liberated color
degrees of freedom, the so-called “J=ψ suppression,” was
proposed as a signature of the quark-gluon plasma created
in early times after the ultrarelativistic heavy-ion collisions
[63,64]. Since then, not only the hot medium effects but
also other effects, such as the cold nuclear matter effect,
regeneration of melted charm quark pair, etc., have been
examined in theoretical and experimental studies (see, e.g.,
Ref. [65] for reviews). While the strong electric and
magnetic fields rapidly decay in the early-time dynamics
[7], they could also act on heavy quarkonia and give rise to
measurable effects [30,32] because estimates on heavy-
quarkonium formation time indicate a prompt formation in
early times [66] where the strong electromagnetic fields
still persist with large magnitudes. Estimates on formation
times given in Ref. [66] have shown that a significant
fraction of charmonium and/or bottomonium produced
in the heavy-ion collisions will be formed faster than
0.2 fm=c where the strength is still in the range from
0.1m2

π to m2
π at RHIC energies.

Motivated by these theoretical and phenomenological
aspects, we investigate ηc and J=ψ in the presence of
external magnetic fields in detail by using hadronic
effective theories and the QCD sum rules. While we focus
on charmonia in this paper, the same methods can be
applied to corresponding bottomonium states. We first give
a systematic analysis of mixing patterns among charmonia
in terms of a hadronic effective theory. We will find that
only a mixing between a ηc and a longitudinal J=ψ is
possible when charmonia are at rest, where a longitudinal
J=ψ is meant for a state with a vanishing spin component
with respect to the direction of an external magnetic field. A
level repulsion due to this mixing effect is consistent with
results in a preceding study in terms of a potential model
[32]. Bearing this in mind, we will switch to the QCD sum
rules to investigate charmonia on the basis of the funda-
mental degrees of freedom and elaborate the hadronic
spectral density Ansatz called the phenomenological side
to consistently take into account the mixing effects [34].

We will show how to distinguish nonperturbative mass
modifications from a level repulsion from the mixing effect
that can be described on the hadronic basis. We note that
our treatment of the mixing effects can be applied to
general analyses on meson spectra in terms of correlation
functions and should be applied to a very recent QCDSR
analysis on B mesons in strong magnetic fields [33] since
the B mesons are mixed with B� mesons. Our work
demonstrates how to implement mixing effects in the
QCDSR method, in particular for the heavy quark systems
where both the OPE and the phenomenological side are
well under control, and thus provides a general guideline to
include mixing effects in approaches based on correlation
functions.
Operator product expansion is then implemented up to

dimension-4 operators in which we have external magnetic
fields hFαβFμνi as operator expectation values, in addition
to a scalar gluon condensate hGa

μνGa μνi common to the
OPE in the ordinary vacuum. It is noteworthy that the
dominant effects in finite temperature/density come into
the OPE only through dimension-4 gluon condensates that
are related to the energy-momentum tensor of which the
matrix elements are well estimated both at finite temper-
ature from lattice QCD [51,52,55,56,58] and at normal
nuclear matter density from measurements in deep inelastic
scatterings [49]. Recently, it has also been shown that the
strength of the charmonium wave function at the origin
obtained from the QCDSR follows precisely that obtained
from solving the Schrödinger equation with a finite temper-
ature free energy potential extracted from lattice QCD [59].
In cases of external magnetic fields, it would become
necessary to resum all-order terms with respect to dimen-
sions of external fields hFFF � � �i when the magnitude of a
magnetic field goes beyond a separation scale in the OPE as
recently performed for a vector current correlator [2].
Based on these elaborate treatments both on the phenom-

enological and the OPE sides, results of mass modification
from the QCD sum rules are found to be consistent with
those from the mixing effects with some slight discrepancies.
We will then argue that the dispersion relation in the QCD
sum rules is saturated by the mixing-induced terms and
identify the mixing effect as the dominant origin of mass
shifts of static ηc and the longitudinal J=ψ . Then, we will
examine effects of a perturbative heavy-quark loop as a
subdominant origin of mass shifts in those states and of a
transverse J=ψ that is not involved in the mixing pattern.
This paper is organized as follows. We first examine

possible mixing patterns in terms of a hadronic effective
theory in Sec. II, followed by analyses with the use of the
QCD sum rules in the subsequent sections. After a brief
description of the QCD sum rule for heavy quarkonia in
Sec. III, we elaborate on the phenomenological side bearing
the mixing pattern in mind in Sec. IV and implement the
OPE in the presence of an external magnetic field in Sec. V.
Combining these ingredients, mass spectra of static ηc,
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longitudinal J=ψ , and transverse J=ψ from the QCD sum
rule are obtained as shown in Sec. VI A with discussion
about the role of mixing-induced terms on the phenom-
enological side and the origins of residual mass shift other
than the mixing effect in Secs. VI B and VI C, respectively.
Section VII is devoted to the summary. In the Appendix, we
provide a list of the Wilson coefficients and some details of
the calculations on the hadronic basis including calculation
of the coupling constants in the mixing effects by using
Bethe–Salpeter amplitudes of charmonia.

II. MIXING EFFECTS IN EXTERNAL
MAGNETIC FIELDS

We first examine effects of external magnetic fields on
charmonia in terms of mesonic degrees of freedom. One
should notice that even neutral mesons can be affected by
external magnetic fields through effective interaction ver-
tices and that any state can appear in the intermediate states
as long as quantum numbers are matched. We thus
investigate what mixing patterns are possible in external
magnetic fields among the low-lying charmonia, ηc, J=ψ ,
χc0, and χc1. This can be systematically discussed in terms
of a hadronic effective Lagrangian constrained by sym-
metries of the system as shown below.
We investigate mixing effects among the pseudoscalar

(ηc), vector (J=ψ), scalar (χc0), and axial-vector (χc1)
quarkonia by a hadronic effective Lagrangian approach.
An effective Lagrangian includes all the relevant three-
point vertices among two static quarkonia and a photon
(external magnetic field),

L ¼ LkinþM þ LγPV þ LγVA þ LγSA; ð1Þ

where the kinetic and mass terms are as usual given by

LkinþM ¼ −
1

2
∂μP∂μPþ 1

2
m2

PP2 −
1

2
∂μVν∂μVν þ 1

2
m2

VV2

þ ðP → SÞ þ ðV → AÞ: ð2Þ

The pseudoscalar and the vector fields are denoted by P and
Vμ, respectively, and those terms for the scalar field (S) and
the axial-vector field (Aμ) are given by the replacements
indicated in the last line. Possible interaction vertices
among those fields, and thus mixing patterns, are informed
from the Lorentz invariance and the parity and charge-
conjugation symmetries. The vertices relevant for inter-
actions among static charmonia are found to be

LγPV ¼ gPV
m0

e ~Fμνð∂μPÞVν; ð3Þ

LγVA ¼ igVAe ~FμνVμAν; ð4Þ

LγSA ¼ gSA
m1

e ~Fμνð∂μSÞAν; ð5Þ

with m0 ¼ ðmP þmVÞ=2, m1 ¼ ðmS þmAÞ=2, and dimen-
sionless effective coupling constants gPV, gVA, and gSA.
These vertices are responsible for, e.g., radiative decay
modes of quarkonia such as J=ψ → ηc þ γ.
Note that interaction vertices proportional to the field

strength tensor Fμν, such as LγVS ∝ Fμνð∂μSÞVν, do not
play a role when addressing mixing effects among the
static quarkonia in external magnetic fields and are not
shown above. Since the field strength tensor Fμν has finite
elements only in the spatial components in case of an
external magnetic field, it inevitably picks up vanishing
spatial momenta of quarkonia when contracted with the
derivatives, i.e., Fμν∂ν ¼ 0, and does not get involved in
any mixing effect addressed here. Therefore, the interaction
vertices should be proportional to the dual field strength
tensor ~Fμν as those in Eqs. (3)–(5). Note, however, that a
coupling between the vector and axial-vector mesons (4)
does not introduce any physical interaction, because the
nonvanishing component of ~Fμν picks up an unphysical
temporal component of either the vector or axial-vector field.
Following from the discussions above, we eventually

found that only two mixing patterns, one between ηc and
J=ψ and the other between χc0 and χc1, are possible when
they are at rest in external magnetic fields. These results are
summarized in Table I. Since neither χc0 nor χc1 is mixed
with ηc and J=ψ , we shall focus on ηc and J=ψ in the
present work and calculate the mass eigenstates in the
presence of the mixing effects by solving equations of
motion which follow from the effective Lagrangian (1) as

P∶ ð∂2 þm2
PÞP −

gPV
m0

e ~Fαβ∂αVβ ¼ 0; ð6Þ

V∶ ð∂2 þm2
VÞVμ þ

gPV
m0

e ~Fαμ∂αP ¼ 0: ð7Þ

To show the mixing patterns more clearly, we hereafter
assume that an external magnetic field is oriented in the
positive z direction, where the dual field strength tensor has
only two nonzero components ~F03 ¼ − ~F30 ¼ B. In this
configuration, the vector field reads Vμ ¼ ðV0;V⊥; V∥Þ
where V0, V⊥, and V∥ denote the temporal, two transverse,
and one longitudinal modes with respect to the external
magnetic field, respectively.

TABLE I. Summary of possible mixing patterns for the
quarkonia at rest in external magnetic fields. Subscripts denote
longitudinal components of the vector and the axial-vector fields
introduced in the text. Unless the components of the fields are
indicated, the mixing effect is absent.

ηc J=ψ χc0 χc1

ηc — P − V∥ – –
J=ψ V∥ − P — – –
χc0 – – — S − A∥
χc1 – – A∥ − S —
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With a vanishing spatial momentum qμ ¼ ðω; 0; 0; 0Þ,
the equations of motion (6) and (7) result in a 2 × 2 matrix
form:

�−ω2 þm2
P −i gPVm0

ωeB

i gPVm0
ωeB −ω2 þm2

V

��
P

V∥

�
¼ 0: ð8Þ

We notice that a mixing is held only between ηc and the
longitudinal J=ψ , and that the transverse J=ψ is not mixed
with ηc, as summarized in Table I. Following from the
equations of motion (8), we obtain the physical mass
eigenvalues in the presence of the mixing effect as

m2
J=ψ ;ηc

¼ 1

2

 
M2þ þ γ2

m2
0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

− þ 2γ2M2þ
m2

0

þ γ4

m4
0

s !
; ð9Þ

where M2þ ¼ m2
P þm2

V, M2
− ¼ m2

V −m2
P and γ ¼ gPVeB.

Expanding Eq. (9) up to the second order in γ and the
leading order in 1

2
ðmV −mPÞ=m0, we find

m2
J=ψ ;ηc

¼ m2
V;P �

γ2

M2
−
; ð10Þ

with eigenvectors given by

jηcÞB ¼
�
1 −

1

2

γ2

M4
−

�
jPÞ − i

γ

M2
−
jVÞ;

jJ=ψÞB ¼ −i
γ

M2
−
jPÞ þ

�
1 −

1

2

γ2

M4
−

�
jVÞ: ð11Þ

We show plots of the mass shifts in the presence of the
mixing effects in Fig. 1. The coupling constant gPV ¼ 2.095
is here obtained by fitting the radiative decay widths
measured in experiments. See Appendix A for details.
We also show that the effective coupling between ηc and

J=ψ can be obtained from the mixing amplitudes computed
by utilizing Bethe–Salpeter amplitudes [67] and that the
coupling strength agrees well with the one from the fitting
method (see Appendix B 1). In Fig. 1, we find that the mass
of ηc decreases as eB increases, while the mass of the
longitudinal mode of J=ψ (denoted by J=ψ∥) increases,
indicating a level repulsion between these mass eigenstates
in an external magnetic field. These behaviors are con-
sistent with what was obtained in the potential-model
approach [32], in which the authors found a level repulsion
between ηc and the longitudinal J=ψ by solving Schrödinger
equations in the presence of an external magnetic field.
The mixing effect found above, however, does not

exhaust possible effects of external magnetic fields on
charmonia. Since the Lagrangian (1) contains only the
minimal couplings to external magnetic fields, further mass
shifts could be caused by magnetic fields acting on the
loops and/or interactions among charmonia and more than
two photons (magnetic fields) as higher-order corrections
to the effective vertex (3). As for the loops effects, there
could be fermion loops with light nucleons (nucleon-
antinucleon loop) or with charmed baryons and boson
loops with light or charmed mesons. Among those, the
loops with light hadrons are highly suppressed due to the
OZI rule. The only relevant loop effects are those from
charmed mesons such as the D̄D loops, so we will examine
effects of the loop contribution composed of charm quarks
by the potential Nonrelativistic QCD (pNRQCD) approach
in Sec. VI C. To investigate effects of those residual
interactions as well as the mixing effect, we will in the
next section switch to the QCDSR method based on the
fundamental degrees of freedom.

III. GENERALITIES IN QCD SUM RULE FOR
HEAVY QUARKONIA

We provide a concise description of the QCD sum rule in
application to quarkonium spectroscopy [38,41–43] used to
investigate mass spectra of ηc and J=ψ in the present paper.
Those charmonium states are respectively created by
heavy-quark currents,

jP ¼ ic̄γ5c ð12Þ

jVμ ¼ c̄γμc; ð13Þ

where superscripts P and V denote pseudoscalar and vector
currents, respectively. While one can construct a sum rule
for the each channel, the following descriptions are
common to all of these channels.
Since we investigate charmonia created by the currents

(12) and (13), we should closely look at intermediate states
in a current correlator,

ΠJðqÞ ¼ i
Z

d4x eiq·xh0jT½JðxÞJð0Þ�j0i; ð14Þ

2.9
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ηc, 2nd Order

J/ψ ||, 2nd Order

FIG. 1 (color online). Mixing effects between static ηc and the
longitudinal J=ψ . Solid (dotted) lines show a level repulsion from
the mixing effects in all orders (second order) with respect to eB.
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where superscripts J denote a channel and the Lorentz
indices in the vector current are suppressed for simplicity.
While an imaginary part of the correlator is related to
charmonium spectra, computation of this quantity is by no
means easily attainable for an external momentum in the
hadron mass scale, where the system is governed by
nonperturbative effects of QCD in the strong-coupling
regime. On the other hand, the asymptotic freedom in
QCD allows for a series representation by OPE [40] with an
external hard momentum Q2 ¼ −q2 ≫ Λ2

QCD as

ΠJðQ2Þ ¼ CJ
p · 1þ

X
d

CJðdÞðQ2Þ · hOðdÞi; ð15Þ

where a summation index d corresponds to the mass
dimension of operators O. The first term CJ

p being propor-
tional to unit operator contains not only the leading-order
diagram, i.e., the bare polarization diagram, but also
perturbative corrections with respect to a small value of
the QCD coupling constant αsðQ2Þ ≪ 1. The subsequent
terms contain nonperturbative corrections, in which the
Wilson coefficients CJðdÞðQ2Þ account for the hard-scale
dynamics on the basis of a perturbative expansion while
expectation values of the operators hOðdÞi incorporate the
soft-scale dynamics [40]. When quarks and gluons carry
soft momenta in the intermediate states in the correlator, the
expectation values of the operators such as the quark
condensates hq̄qi and the gluon condensates hGa

μνGa μνi
are necessary for taking into account nonperturbative
interactions with the QCD vacuum [37,38].
The OPE works efficiently when there is a definite

separation scale, which usually resorts to an external hard
momentum Q2. The Wilson coefficient for a dimension d
operator behaves as a negative-power factor CJðdÞ∼
ðQ2Þ−d=2, and thus contributions of the higher-dimensional
operators containing nonperturbative corrections are sup-
pressed by ðQ2Þ−d=2 as the momentum scale goes to the
deep Euclidean region, Q2 → ∞, leaving perturbative
corrections in the first term in Eq. (15). In case of a
heavy-quark system, it was argued that the Wilson coef-
ficient scales as ð4m2 þQ2Þ−d=2 [53,68]. The OPE is
reliable even for a small value of Q2 since any positive
Q2 in the complex Q2 plane is distant from singularities
originated from physical degrees of freedom, i.e., poles
and thresholds of continua, owing to the large value of
heavy-quark mass m. As long as expectation values of
dimension-d operators are much smaller than the separation
scale ð4m2 þQ2Þ−d=2, one could plausibly perform the
OPE. This is the case for the OPE in the presence of
external magnetic fields expected for the early stage in
relativistic heavy ion collisions. Up to the Large Hadron
Collider energies, the magnetic field jeBj ≲ 10m2

π can be
induced by colliding nuclei [7], and thus it satisfies a
condition jeBj ≪ 4m2 þQ2. We will implement the OPE
in Secs. VA and V B.

Once the series representation by OPE (15) is obtained, it
can be related to the spectral density, namely the imaginary
part of the correlator in the physical region (q2 > 0),
through a dispersion relation

~ΠJðQ2Þ ¼ 1

π

Z
∞

0

Im ~ΠJðsÞ
sþQ2

dsþ ðsubtractionÞ: ð16Þ

We have introduced a dimensionless current correlator
~ΠJðQ2Þ normalized as follows. The dispersion relation
(16) is satisfied individually with respect to three polari-
zation modes in the vector channel, so we will investigate
spin-projected scalar correlators ~ΠV ¼ ðϵμΠVμνϵνÞ=q2
specified by polarization vectors ϵμ as shown in Sec. V B.
We will find a mass splitting among spin polarization states
in external magnetic fields. As for the pseudoscalar channel,
we have a dimensionless correlator ~ΠP ¼ ΠP=q2.
One would be still skeptical to the applicability of the

dispersion relation (16) to mass spectroscopy of bound
states, since the series representation by the OPE is related
only to an integrated spectral density which includes
contributions from not only all the poles but also continua
as a mixture. However, note that the integrand in Eq. (16) is
weighted around the lower boundary of the integral region
for a positive value of Q2, and higher-energy contribution
to the integrand is suppressed as the integral variable s goes
to infinity. This trend becomes stronger if the denominator
has a higher power, implying that the integral is eventually
dominated by the contribution from the lowest bound state
for a sufficiently large power. Therefore, we shall take
derivatives on both sides of Eq. (16) to suppress the higher-
energy contribution other than the lowet pole. Putting the
moments of the left-hand side to be

MJ
nðQ2Þ ¼ 1

n!

�
−

d
dQ2

�
n
~ΠJðQ2Þ; ð17Þ

we find the moment sum rule as

MJ
nðQ2Þ ¼ 1

π

Z
∞

0

Im ~ΠJðsÞ
ðsþQ2Þnþ1

ds: ð18Þ

The moment sum rule (18) was invoked to calculate
charmonium masses, in which the integral in Eq. (18)
was carefully examined and was indeed found to be
dominated by the lowest pole contribution as the number
of derivatives n becomes large [38,42]. Since the Wilson
coefficient for a dimension-d operator in the OPE, scaling
as ðQ2Þ−d=2 or ð4m2 þQ2Þ−d=2, has stronger dependence
on Q2 than the lower dimension terms, we notice that
contributions from higher-dimension operators, and thus
nonperturbative effects, are enhanced as the number of
derivatives becomes larger. These scaling behaviors with
respect to Q2 and n are naturally expected, because the
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dominant lowest pole contribution at large n is attributed to
nonperturbative effects while a smeared continuum is
described on the basis of a perturbative picture.
The moments of the Wilson coefficients (17) were

obtained first in a series of seminal papers [37,38], followed
by intensive calculations [41,42,69,70]. The first attempt
was made at Q2 ¼ 0 on the basis of an argument that a
convergence of the OPE is, even with vanishing Q2,
supported by a large value of charm quark mass [37,38].
However, it was shown that a better convergence is
achieved by taking a finite momentum square Q2 > 0
[41,42] and further that contributions from the higher-
dimension operators at a large value of n can be suppressed
only when Q2 is finite [71]. Therefore, the momentum
square Q2 is preferred to be taken large. However, if the
momentum square Q2 is taken to be arbitrarily large at a
fixed n, it spoils the separation of the lowest pole
contribution in Eq. (18) because the integrand is equally
suppressed over the whole integral region. This separation
would be restored, if we take a larger n as we take a large
value of Q2 so that a steeper behavior of the denominator
puts a weight on the lowest pole contribution, whereas
convergence of the OPE again becomes weaker for a large
n due to picking up strong Q2 dependence of the Wilson
coefficients for the higher-dimension operators in Eq. (17).
Therefore, one has to manage to adjustQ2 and n so that the
convergence of the OPE and the separation of the lowest
pole contribution are compatible to each other.
This point would become rather clear if one takes

simultaneous limits Q2 → ∞ and n → ∞ while maintain-
ing a constant ratio M2≔Q2=n. Following conventions in
Ref. [72], we define the limiting form of the moments (17)
as

MJ
OPEðM2Þ ¼ lim

Q2 ;n→∞
Q2=n¼M2

πðQ2Þnþ1MJ
nðQ2Þ; ð19Þ

and then, taking the same limits on the right-hand side in
Eq. (18), we find the exponential or Borel sum rule:

MJ
OPEðM2Þ ¼

Z
Im ~ΠJðsÞe− s

M2ds: ð20Þ

Equation (19) expresses the Borel transform of the corre-
lator, by which a term scaling as ð4m2 þQ2Þ−d · hOðdÞi in
the OPE (15) is transformed to be fMðd−2Þðd=2 − 1Þ!g−1
hOðdÞie−4m2=M2

. Therefore, the exponential sum rule (20)
scales by the Borel mass M2 as

X
d

M−ðd−2Þ

ðd=2 − 1Þ! hO
ðdÞi ∼

Z
Im ~ΠJðsÞe−s−4m2

M2 ds: ð21Þ

Now, it is evident that the lowest pole contribution is
efficiently separated owing to an exponential factor sup-
pressing the excited states and continua for a small Borel

mass M2, whereas the series representation by the OPE
is better convergent when M2 is sufficiently large. The
charmonium mass spectrum is reliably obtained from
the QCDSR since one can find an intermediate band of
the Borel massM2 called the “Borel window” in which the
above requirements, convergence and separation, are com-
patible to each other [72]. Analysis of the Borel window in
the exponential sum rule (20) is simpler and can be done in
a more systematic way than those with the moment sum
rule containing two parametersQ2 and n. Note also that the
Wilson coefficients are transformed to be suppressed by a
factorial of the operator dimension 1=ðd=2 − 1Þ!, and thus
the convergence of the OPE is improved. Therefore, wewill
use the exponential sum rule (20) in subsequent sections.

IV. SPECTRAL ANSATZ IN THE PRESENCE
OF MIXING EFFECTS [34]

As described in the last section, the current correlator
(14) can be expressed in two ways: the OPE in the deep
Euclidean region (Q2 ¼ −q2 ≫ 1) and the spectral density
ρJðsÞ ¼ Im ~ΠJðsÞ=π in the physical region (q2 > 0). They
are connected to each other through a dispersion relation
(16). The right-hand side of Eq. (16) is conventionally
called the “phenomenological side” because the spectral
density is parametrized in hadronic degrees of freedom.
The spectral density ρJðsÞ is often assumed to have a
perturbative continuum Im ~ΠJ

pertðsÞ=π and a single pole at
the ground-state mass δðs −m2

poleÞ. This Ansatz works
sufficiently well when the ground-state pole is well
separated from a threshold of continuum as only the
low-energy structure is important for the exponential
sum rule (20) owing to the exponential suppression of
the higher-energy part of the spectral density by the Borel
transformation. Thus, this simple Ansatz works well for
the tightly bound ground-state charmonia. One should,
however, be careful to this point in the presence of the
magnetically induced mixing discussed in Sec. II, because
it induces a ηc (longitudinal J=ψ) pole in the longitudinal
vector (pseudoscalar) current correlator. Therefore, there
would appear two adjacent poles in the low-energy region
around the ground-state pole, and they could contribute to
the Borel-transformed correlator with the same order of
magnitudes. We will find that an appropriate Ansatz in the
presence of external magnetic fields has a form1

ρJðsÞ ¼ π−1½f0δðs −m2
cc̄Þ

þθðs − s0ÞIm ~ΠJ
pertðsÞ þ Im ~ΠJ;ext

ph ðsÞ�; ð22Þ

1The “poleþ continuum” part in the vector channel is assumed
for a scalar part ~ΠV obtained from a spin projection by the
polarization vectors (59) and (60) and the normalization specified
below Eq. (16) as q−2ϵμΠV;μνϵν ¼ q−2ϵμϵνðqμqν − q2gμνÞ ~ΠV ¼
~ΠV for a static charmonia.
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where f0 is a coupling strength between the heavy-quark
current and the ground-state charmonium in vacuum which
is related to the mass and electronic decay width and found
to be 0.542 GeV2 for the vector current [42,59]. An
effective threshold s0 is fitted in the QCDSR analyses.
The last term takes into account effects of magnetic fields
as shown below.
We carefully examine the magnetically induced term

ImΠJ;ext
ph ðsÞ in the spectral Ansatz. While we will describe

calculations for the pseudoscalar channel, the same calcu-
lations are straightforwardly applied to the longitudinal
component in the vector channel. A low-energy expression
of the pseudoscalar current correlator (14) in the second
order of eB is diagrammatically represented in Fig. 2.
The first diagram, surviving in the vanishing field limit,
corresponds to the ground-state pole in Eq. (22), which is
the ηc pole in case of the pseudoscalar channel. As shown
by the other magnetically induced diagrams, we have not
only an ηc pole but also a longitudinal J=ψ pole mixed into
the pseudoscalar channel. One also finds that the longi-
tudinal J=ψ couples to the pseudoscalar current both
directly and indirectly. A direct coupling is, as shown in
Fig. 3, induced by a three-point vertex among a pseudo-
scalar current, an external magnetic field, and a longitudinal
J=ψ . An indirect coupling is obtained by replacing the
pseudoscalar current in the direct coupling by a ηc,
resulting in the hadronic coupling (3) as already discussed.
Thus, the second (third) diagram in Fig. 2 shows a process
induced solely by the indirect (direct) couplings. Those
contributions to the matrix element in Eq. (22) are given by

ΠP;ext
ph ðq2Þ ¼ jh0jJ5jJ=ψij2

q2 −m2
J=ψ

; ð23Þ

with the matrix elements

jh0jJ5jJ=ψij2 ¼ fdir þ f
jhPjJ=ψij2
ðq2 −m2

PÞ2
; ð24Þ

where a direct-coupling strength between the pseudo-
scalar current and the longitudinal J=ψ reads fdir ¼
jhVjJ5ðqÞj0ij2 and a coupling strength between the pseu-
doscalar current and a ηc is proportional to f0 as f ¼
jhPjJ5ðqÞj0ij2 ¼ f0 ·m2

0=π. The effective vertex (3) leads
to jhPjJ=ψij2 ¼ γ2 for a static charmonium in the heavy-
quark limit m0 ∼mP;V. As shown in Fig. 3, one can
calculate the direct-coupling strength fdir from two triangle

diagrams by using the Bethe–Salpeter amplitudes of the
S-wave quarkonia [67]. Led by a diagramatic calculation
performed in the heavy-quark limit in Appendix B 2, we
find the direct-coupling strength as

fdir ¼
a40Q

2
c

64
ðeBÞ2f; ð25Þ

with an electric charge of a charm quark Qc ¼ 2=3. The
Bohr radius a0 ¼ 0.811 GeV−1 is chosen to fit the root-
mean-square radius of the J=ψ obtained from the Cornell
potential model [73]. Inserting Eq. (24) into Eq. (23), we
find that the rhs in Eq. (23) can be decomposed as

ΠP;ext
ph ðq2Þ ¼ fγ2

ðq2 −m2
PÞ2ðq2 −m2

VÞ

¼ fγ2

M4
−

�
1

q2 −m2
V

−
1

q2 −m2
P

−
M2

−

ðq2 −m2
PÞ2
�
;

ð26Þ

where notations are specified below Eq. (9). Before
discussing physical meaning of these terms, there are some
comments in order. First, one can replace the J=ψ mass in
the denominator by the vacuummassmV within the second-
order corrections in eB, because the correlator (26) has
explicit second-order corrections in the numerator.
As for the longitudinal J=ψ pole induced by the direct-

coupling term, we find that its strength is much smaller than
the hadronic-coupling strength of the longitudinal J=ψ pole
in Eq. (26), because the direct-coupling strength (25) is
proportional to the small value of the Bohr radius of tightly
bound charmonia. A ratio of the direct-coupling strength
over the hadronic-coupling strength in Eq. (26) is found
to be

fdir=ðfγ2=M4
−Þ ∼ 0.0003; ð27Þ

so that one can safely neglect the contributions of the direct
couplings. We also neglect cross-terms depicted by the last
two diagrams in Fig. 2. Possible corrections to the direct-
coupling strength in a higher order of eB should be
neglected in the present framework so that the correlator
is consistently constructed within the second order in eB.
Another possible correction might be a distortion of the
S-wave wave function in an external strong magnetic field,
while in the above calculation, we inserted the Coulombic
wave function in the ordinary vacuum. However, because

FIG. 2. Diagramatic representation of the phenomenological side for the pseudoscalar channel.
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of the small ratio (27), the modification of the wave
function in strong magnetic fields would not be important,
unless the wave function is very strongly distorted by the
external magnetic fields. To estimate the order of this effect,
we should compare the magnitudes of the Coulomb force in
the potential model, κ=r2, with that of an external magnetic
field. With a strength of the Coulomb force κ ¼ 0.52 from
Ref. [73] and the Bohr radius a0 ¼ 0.811 GeV ∼ 0.16 fm
above, we have eB=ðκ=a20Þ ∼ 0.25 even for the maximal
strength eB ¼ 10m2

π [7]. This estimate indicates that
distortion of the Coulombic wave function by the external
magnetic fields will be so small that we can still neglect the
direct coupling under the modifications of the wave
function in strong magnetic fields. Similarly, finite temper-
ature/density effects in the heavy-ion collisions could act
on the direct coupling. However, these effects would be
also so small, basically because the strength fdir is propor-
tional to the Bohr radius a0, while the mixing strength
between ηc and the longitudinal J=ψ is independent of the
Bohr radius. Even if the Bohr radius becomes ten times
larger for charmonia melting in the hot medium, the ratio
shown in Eq. (27) is still of order 10−3, so one can neglect
the direct coupling compared to the hadronic mixing
between ηc and the longitudinal J=ψ .
To understand physical meaning of the terms in Eq. (26),

it is instructive to compare them with the second-order
perturbation theory performed in Sec. II. Note that, neglect-
ing the direct couplings, the pseudoscalar current is first
coupled to an ηc in any process whether the intermediate
state is an ηc or J=ψ. Therefore, by using the coupling
strength f, the current correlator may be written as

ΠP
2ndðq2Þ ¼ f

�jðPjηcÞBj2
q2 −m2

ηc

þ jðPjJ=ψÞBj2
q2 −m2

J=ψ

�
; ð28Þ

where physical masses mηc;J=ψ and corresponding wave
functions in the presence of the mixing effect have been
obtained in Eqs. (10) and (11), respectively. Now we will
find that all three terms in Eq. (26) follow from an
expansion of the rhs in Eq. (28) up to the second order
in eB. The first term in Eq. (26) corresponds to putting an
intermediate J=ψ state on mass-shell in the second
diagram in Fig. 2. This is a production of an on-shell
J=ψ from the pseudoscalar current via off-shell ηc. The

second term with a negative sign is necessary for a
conservation of the normalization of the spectral density,
because the coupling of ηc to the current must be reduced
to balance the occurrence of the coupling to J=ψ . These
interpretations are confirmed by expanding the rhs in
Eq. (28), because we obtain these two terms from
overlaps between the properly normalized unperturbed
and perturbed states, jðPjηcÞBj2 ∼ 1 − ðγ=M2

−Þ2 and
jðPjJ=ψÞBj2 ∼ ðγ=M2

−Þ2. To take into account the mixing
effect with maintaining the normalization, one should
include both single poles at ηc and J=ψ with the residues
shown in Eq. (26), giving a two-peak structure in the
spectral Ansatz. The third term has a double pole at the ηc
mass with a factor M2

− which gives an off-shellness of a
virtual J=ψ in the intermediate state. One finds that a
virtual transition to J=ψ between on-shell ηc states is
nothing but the origin of the mass shift due to the mixing
effect. Correspondingly, this term comes from an expan-
sion in Eq. (28) with respect to the mass correction
of ηc shown in Eq. (10). Therefore, we have found that,
if the double-pole term is included on the phenomeno-
logical side, it balances the corresponding effect
embedded on the OPE side performed on the basis of
the fundamental degrees of freedom, and we will obtain a
residual mass shift due to nonperturbative effects as a
result of the QCD sum rule. On the other hand, if the
double-pole term is not included, we will obtain a
resultant mass shift due to the mixing effect and the
residual effects. This observation enables us to separate
the residual effects of magnetic fields from the mixing
effect and extract effects of magnetic fields not described
in the hadronic level. We will come back to this point in
Secs. VI A and VI B with plots of mass shifts from QCD
sum rules.
Let us perform the Borel transformation of the phenom-

enological side. Inserting the ground-state pole term in
Eq. (22) into the rhs of Eq. (20), we simply find

MP;pole
ph ¼ f0e−m

2
ηc =M

2

: ð29Þ

From the second term of Eq. (22), the Borel transformation
of the perturbative continuum part is found to be

MJ;cont
ph ¼

Z
∞

s0

dse−s=M
2

Im ~ΠJ;pertðsÞ; ð30Þ

where the expression for the perturbative continuum
Im ~ΠJ;pertðsÞ is given in Ref. [43]. By inserting the mag-
netically induced part (23) into the rhs of Eq. (20), we obtain

MP;ext
ph ðM2Þ ¼ f0ðeBÞ2

�
Q2

c
a40
64

e−
m2
V

M2

þ g2PV
M4

−

�
e−

m2
V

M2 − e−
m2
P

M2 þM2
−

M2
e−

m2
P

M2

��
; ð31Þ

FIG. 3 (color online). A direct-coupling strength between the
pseudoscalar (vector) current and ηc (J=ψ) from triangle dia-
grams. Shaded vertices show form factors given by the Bethe–
Salpeter amplitudes of the S-wave quarkonia (70) and (71), while
vertices with crosses denote the currents.
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where f0 ¼ πf=m2
0 with 1=m2

0 coming from the normali-
zation of the correlator described below Eq. (16). A
corresponding formula for the longitudinal J=ψ can be
obtained by interchanging mP and mV as

M
V∥;ext
ph ðM2Þ ¼ f0ðeBÞ2

�
Q2

c
a40
64

e−
m2
P

M2

þ g2PV
M4

−

�
−e−

m2
V

M2 þ e−
m2
P

M2 −
jM2

−j
M2

e−
m2
V

M2

��
:

ð32Þ

The first terms in Eqs. (31) and (32) are the direct-coupling
terms in Eq. (24) which are, however, negligible as discussed
above. Following from a sign flip in M2

−, we find that the
double-pole contribution in the vector channel has the
opposite sign to that of the last term in Eq. (31).
One should remember that these magnetically induced

terms on the phenomenological side are not applied to the
transverse J=ψ , because any magnetically induced cou-
pling in Fig. 2 is absent for the transverse component.
Therefore, we will employ the conventional poleþ
continuum Ansatz for the transverse J=ψ .
These Ansätze on the phenomenological side will be

used to extract the charmonium mass spectra in Sec. VI A,
prior to which we need to examine the OPE in the next
section.

V. OPERATOR PRODUCT EXPANSION

In this section, we include effects of a constant external
magnetic field into a series representation of the current
correlator by the OPE (15). It should be noticed first that
interactions between quarks and a constant magnetic field
can be suitably regarded as a soft process, since a constant
external field does not cause any momentum transfer to
quarks in a vacuum polarization (see Fig. 4). A momentum
transfer is exactly zero because of a translational invariance
[74]. A constant magnetic field is thus treated as an operator
expectation value in the OPE and gives rise to additional
terms to a series in the ordinary vacuum. We compute the
Wilson coefficients of these terms for an external magnetic
field in Sec. V B, following a brief description of the OPE
in the ordinary vacuum.

A. OPE for charmonia in the ordinary vacuum

The OPE for heavy-quark systems was examined in
detail for the sake of investigating the lowest bound states
created by the various currents [37,38,41,42]. As the
higher-dimension terms in the OPE are suppressed by
negative powers of the Borel mass and the factorial factors
of the operator dimension [see Eq. (21)], a series repre-
sentation in the OPE is saturated by the first few terms.
Indeed, it was found that the vacuum charmonium mass
spectra measured in experiments are reproduced by includ-
ing the perturbative terms and the dimension-4 scalar gluon
condensate [37,42,43,72]

ΠJ
vacðQ2Þ ∼ CJ

pðQ2Þ · 1þ CJ
G0
ðQ2Þ ·G0; ð33Þ

where the superscripts J denote a channel of the currents
(12), (13). The correlator ΠV

vac and the Wilson coefficients
CV
p and CV

G0
should have two Lorentz indices in the vector

channel J ¼ V. We, however, suppress those indices as
well as the superscript J for simplicity below as in Eq. (14).
An expectation value of the scalar gluon condensate has a
form G0 ¼ hαsπ GaμνGa

μνi. Note that a heavy-quark conden-
sate hc̄ci does not contribute to the OPE (33) in the leading
order of a heavy-quark expansion Oð1=mÞ, because it is
canceled in an operator mixing with the gluon condensate
[38,75] (see also Sec. 3.3.5 in Ref. [43] for a comprehen-
sive description). Contributions from higher-dimension
gluon condensates are small enough in the ordinary
vacuum, giving stable Borel curves [71]. Such stability
is maintained even at finite temperature up to around 1.1
times the QCD phase transition temperature [51]. The
properties of charmonium extracted from such calculations
have been recently shown to be consistent with that
obtained by solving the Schrödinger equation with the
free energy potential extracted from lattice calculations
[59]. However, above this temperature, the contributions
from higher-dimensional operators cannot be neglected
[76], and a different resummation technique will be more
appropriate to calculate the OPE [47]. In our present
analysis, we include the terms up to the dimension-4 scalar
gluon condensate as in Eq. (33) since recent studies have
shown that effects of external magnetic fields on the gluon
condensate is sufficiently small as briefly discussed below
[19,20]. A summary of the Wilson coefficients is available
in Refs. [43,70].
Following the definition of the moments (17), one can

straightforwardly calculate the moments of the Wilson
coefficients in Eq. (33). This has been carried out system-
atically in various channels [41,42], and explicit forms in
their conventions are given by

Mvac
n ¼ Anð1þ αsan þ ϕbbnÞ: ð34Þ

An overall factor An corresponds to the leading-order
perturbative term in the zeroth order of the QCD coupling

FIG. 4. Diagramatic representation of corrections by an exter-
nal magnetic field. External fields and a one-loop perturbative
part correspond to the operators hFαβFγδi and the Wilson
coefficients Cαβγδ in Eq. (38), respectively.

CHARMONIUM SPECTROSCOPY IN STRONG MAGNETIC … PHYSICAL REVIEW D 91, 045025 (2015)

045025-9



constant gs. The second and third terms between the
parentheses give the next-to-leading-order perturbative
correction and the leading power correction by the scalar
gluon condensate, which are respectively proportional to
the fine structure constant in QCD, αs ¼ g2s=ð4πÞ, and the
scalar gluon condensate,

ϕb ¼
4π2G0

9ð4m2Þ2 : ð35Þ

These coefficients An, an, and bn are shown in Table 1
in Ref. [42].
A useful recipe for taking the simultaneous limits

Q2; n → ∞ in Eq. (19) was provided in the Appendix of
Ref. [72] with the help of a relation between special
functions (see also Appendix C in this paper). Following
the description therein, one obtains the Borel-transformed
Wilson coefficients to be

MvacðνÞ ¼ πe−νAðνÞ½1þ αsaðνÞ þ ϕbbðνÞ�; ð36Þ

where a dimensionless inverse Borel mass is defined by
ν ¼ 4m2=M2. The coefficients in Eq. (36) correspond
to those denoted by the same alphabets in Eq. (34).
Explicit forms of AðνÞ, aðνÞ, and bðνÞ are summarized
in appendixes of Refs. [55,72].

B. OPE in external magnetic fields

We include effects of a constant external magnetic field
into the OPE as an operator for the soft dynamics. Since the
magnitude of external fields up to the LHC energy satisfies
the condition jeBj ≪ 4m2 þQ2 discussed in Sec. III, the
OPE in an external magnetic field is thus implemented as a
sum of the conventional terms in the ordinary vacuum (33)
and those from the external magnetic field shown in
Fig. 4 as

ΠðQ2Þ ¼ ΠvacðQ2Þ þ ΠextðQ2Þ: ð37Þ

We first remark on a possible modification of the gluon
condensate hGaμνGa

μνi in the vacuum part ΠvacðQ2Þ caused
by external magnetic fields. While the light-quark con-
densates in magnetic fields at zero temperature and density
have been known to increase by a mechanism called
“magnetic catalysis” [11,16], a similar growth of a gluon
condensate at zero temperature and density was recently
observed in both lattice QCD and analytic studies [19,20].
Modification of a gluon condensate should be small, since
external magnetic fields do not directly couple to gluons
but indirectly through sea quarks. Indeed, this modification
is estimated to be less than 10% for a magnitude of external
magnetic fields around and smaller than the pion mass
squared jeBj ≲ 10m2

π. Thus, we do not take this into
account in the present work performed at zero temperature

and density, and effects of magnetic fields can be included
as additional terms as in Eq. (37).
Those additional terms ΠextðQ2Þ for an external mag-

netic field are, as mentioned below Eq. (15), suppressed by
the separation scale in heavy-quark systems. Therefore, as
far as a magnitude of an external field jeBj is small enough
to satisfy a hierarchy jeBj ≪ ð4m2 þQ2Þ, we can truncate
a series up to dimension-4 operators composed of a product
of two field strength tensors Fμν

extF
αβ
ext. Beyond this separa-

tion scale jeBj ≳ ð4m2 þQ2Þ, one has to resum all the
terms being proportional to products of an arbitrary number
of the field strength tensors. This resummation can be
performed by utilizing the proper-time method [77] which
has been applied to a vector current correlator (see Ref. [2]
for a recent calculation and references therein). Here, we
examine effects of magnetic fields in a region jeBj≲ 10m2

π

where higher-order terms in jeBjn are suppressed by
jeBjn=ð4m2þQ2Þn∼ð10m2

πÞn=ð4m2þQ2Þn≪1. Therefore,
it is sufficient to include only dimension-4 operators
without those higher-dimension operators.
Corrections by the dimension-4 operators are diagram-

matically shown in Fig. 4 and have two insertions of
external field lines denoted by the wavy lines. Inserted
external fields and a one-loop part correspond to an
expectation value of the dimension-4 operator and the
Wilson coefficient, respectively. We have three diagrams in
total. One is a diagram with an insertion on the each quark
line (first diagram), and the other two are diagrams with
two insertions on either of the quark lines (second dia-
gram). The latter two diagrams provide the same contri-
butions, resulting in a factor of 2.
One of suitable gauges for computation of the diagrams

in external fields is the Fock–Schwinger gauge also known
as the fixed-point gauge [70,77,78]. Within this gauge, a
gauge field for an external constant field is expressed by the
field strength tensor Aμ

ext ¼ xνF
νμ
ext=2, and thus a general

form of Πext in the OPE (37) is decomposed into the
operator part and its coefficient,

ΠextðqÞ ¼ Cαβγδ ·
αem
π

hFαβFγδi; ð38Þ

where the Wilson coefficient Cαβγδ has Lorentz indices
resulting from a trace of the gamma matrices, and the fine
structure constant is defined by αem ¼ e2=ð4πÞ ∼ 1=137.
Note again that the correlator Πext and thus Cαβγδ are
supposed to have additional two Lorentz indices in case of
the vector channel, which are suppressed for simplicity.
Calculation for the Wilson coefficient in Eq. (38) can be

performed in the same way as that for the dimension-4
(color singlet) gluon condensate hαsπ Ga

μνGaμνi up to a color
factor and replacement of the coupling constants. Since the
dimension-4 scalar gluon condensate [41,42] and twist-2
gluon condensate [49,53] have been known for some time,
we confirm and apply them after taking care of the color
factors. To make use of the preceding calculations, it is
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useful to decompose the tensor structure in Eq. (38).
An antisymmetric property of the field strength tensor
leads to decomposition of the right-hand side in Eq. (38) as

ΠextðqÞ ¼ αem
π

½C0hFαβFαβi þ Cαβ
2 hFαγFβ

γiTS�; ð39Þ

where a subscript “TS” denotes the traceless symmetic part.
Parity-odd operators hFαβ

~Fαβi and hFαγ
~Fβ

γi would con-
tribute if Cαβγδ contained the completely antisymmetric
tensor ϵμνσρ. However, this is not the case because Cαβγδ is a
parity-even quantity containing an even number of γ5. The
first and second terms would be called scalar and twist-2
terms as in the case of gluon condensates, respectively.
While the twist-2 gluon condensate vanishes in the ordinary
vacuum because of Lorentz symmetry, we have a non-
vanishing contribution of the twist-2 term for external fields
in Eq. (39) because externally applied electromagnetic
fields break Lorentz symmetry as in the cases of finite
temperature and/or density [49,51–53,55,76]. With the
decomposed form (39), we can apply preceding calcula-
tions of the Wilson coefficients as shown below.
Prior to going into explicit forms of the Wilson coef-

ficients, let us specify a configuration of an external
magnetic field. An expectation value of the field strength
tensor is given by that of an externally applied classical
field,

hFαβi ¼ Fαβ
ext: ð40Þ

Here, we assume an external magnetic field extending into
the positive third direction, of which the field strength
tensor is specified by F21

ext ¼ −F12
ext ¼ B with all the other

vanishing elements. In this configuration, an expectation
value of the scalar operator in Eq. (39) reads

F0≔
αem
π

hFαβFαβi ¼ αem
π

· 2B2: ð41Þ

As for the twist-2 operator, we find

αem
π

hFαγFβ
γiTS ¼

αem
π

�
Fαγ
extF

β
extγ −

1

4
Fδγ
extF

ext
δγ g

αβ

�

¼ F2ðgαβ∥ − gαβ⊥ Þ; ð42Þ

with an operator expectation value

F2 ¼
αem
π

�
−
1

2
B2

�
: ð43Þ

A tensor structure in Eq. (42) is expressed by the metric
tensors in the longitudinal and transverse subspaces gμν∥ ¼
diagð1; 0; 0;−1Þ and gμν⊥ ¼ diagð0;−1;−1; 0Þ, where the
directions are meant with respect to the external magnetic
field.

Including the external-field part Πext in Eq. (39), we can
write down a corresponding part in the moment Mn ¼
Mvac

n þMext
n as

Mext
n ¼ Anðϕext

b bextn þ ϕext
c cextn Þ: ð44Þ

The leading-order perturbative part An is, as in Eq. (34),
extracted as an overall factor, and the first and second terms
correspond to the scalar and twist-2 terms. In those terms,
the magnetic field strengths are included as

ϕext
b ¼ κ

4π2F0

9ð4m2Þ2 ¼
Q2

c

12

�
eB
m2

�
2

; ð45Þ

ϕext
c ¼ κ

4π2F2

3ð4m2Þ2 ¼ −
Q2

c

16

�
eB
m2

�
2

: ð46Þ

One should note that the definitions (45) and (46) are the
same as those for the scalar and twist-2 gluon condensates
(see Eq. (35) and also, e.g., Eqs. (13) and (14) in Ref. [55]),
up to a color factor κ ¼ Q2

c · Tr½1color�=Tr½tata� ¼ 6Q2
c with

the Gell-Mann matrix ta normalized to be Tr½tatb� ¼ δab=2
and the electric charge of charm quarkQc ¼ 2=3 in the unit
of jej. Since this color factor has been already taken into
account in Eqs. (45) and (46), we find a correspondence
between the Wilson coefficients for the scalar gluon
condensate ϕb in Eq. (34) and external field ϕext

b in Eq. (44)
to be

bextn ¼ bn: ð47Þ
Thus, the moment bextn for an external magnetic field is the
same as that for the scalar gluon condensate bn summarized
in Table 1 in Ref. [42].
We shall proceed to examining the last piece cextn from

the twist-2 Wilson coefficients. The general forms of the
Wilson coefficients for the twist-2 gluon condensate were
calculated both in the pseudoscalar and the vector channels
[49]. One can apply those expressions to the present cases
in external magnetic fields by replacing the expectation
value of the operator as�

αs
π
GαγGβ

γ

�
TS

→ κ
αem
π

hFαγFβ
γiTS; ð48Þ

where the configuration on the right-hand side was speci-
fied in Eq. (42). After making the replacement above, one
performs the Borel transform.
Below, the twist-2 term Π2 ¼ Cαβ

2 hFαγFβ
γiTS in Eq. (39)

will be calculated and then Borel transformed through
Eqs. (17) and (19). Those results will be represented by a
longitudinal momentum qμ∥ ¼ ðq0; 0; 0; q3Þ, transverse
momentum qμ⊥ ¼ ð0; q1; q2; 0Þ, dimensionless momentum
square ξ ¼ y=4 ¼ Q2=ð4m2Þ, and the Feynman integrals

JnðyÞ ¼
Z

1

0

1

f1þ xð1 − xÞygn dx: ð49Þ
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1. Pseudoscalar channel

First, we compute the twist-2 Wilson coefficients for the
pseudoscalar current (12), of which the general form has
been given for the gluon condensate in Eq. (9) in Ref. [49].
Carrying out the replacement (48) in the expression therein,
we obtain the twist-2 term in Eq. (39) as

ΠP
2 ¼

�
4π2

3

�−1
ϕext
c ðq2∥ − q2⊥Þξ−2χP ð50Þ

χP ¼ 1

2
þ 1

3
ð1 − yÞJ1 −

1

6
J2 −

2

3
J3: ð51Þ

As mentioned below Eq. (16), we define a dimensionless
correlator ~Π2 ¼ Π2=q2 for the pseudoscalar channel, of
which the expression, for a static charmonium carrying a
vanishing spatial momentum q ¼ ðω; 0; 0; 0Þ, is found
to be

~ΠP
2 ¼ q−2ΠP

2 ¼
�
4π2

3

�−1
ϕext
c ξ−2χP: ð52Þ

2. Vector channel

Next, we examine the twist-2 term for the vector current
(13), of which a general tensor form has been given in
Eq. (7) in Ref. [49]. Since the vector current correlator has
the two Lorentz indices, we will project them onto the
longitudinal and transverse components corresponding to
the spin polarization states of a vector meson J=ψ . While
mass spectra of those spin states are degenerated in cases of
static charmonia at finite temperature and/or density, a
longitudinal polarization is distinguished from the other
two transverse polarizations in external magnetic fields.
Carrying out the replacement (48) in Eq. (7) of Ref. [49]

and contracting the Lorentz indices between the operator
(42) and the remaining parts, we obtain

ΠVμν
2 ¼

�
4π2

3

�−1
ϕext
c ξ−2

× ½−2χV1 ðPμν
∥ − Pμν

⊥ Þ þ q−2ðq2∥ − q2⊥ÞχV0Pμν�; ð53Þ

where the coefficient functions are given by

χV0 ¼ −
2

3
þ 2J1 − 2J2 þ

2

3
J3; ð54Þ

χV1 ¼ 1

2
þ
�
1 −

1

3
y

�
J1 −

3

2
J2; ð55Þ

and the projection operators are introduced as

Pμν ¼ q2gμν − qμqν; ð56Þ

Pμν
∥ ¼ q2∥g

μν
∥ − qμ∥q

ν
∥; ð57Þ

Pμν
⊥ ¼ q2⊥g

μν
⊥ − qμ⊥qν⊥: ð58Þ

The spin polarizations of a vector meson are specified by
polarization vectors,

ϵμ ¼ ð0; 0; 0; 1Þ; ð59Þ
~ϵμ ¼ ð0; n; 0Þ; ð60Þ

where n denotes a unit vector in the transverse plane
(jnj ¼ 1). We find simple relations ϵμg

μν
∥ ¼ ϵν, ~ϵμg

μν
⊥ ¼ ~ϵν

and ϵμg
μν
⊥ ¼ ~ϵμg

μν
∥ ¼ 0 and some more for a static char-

monium carrying q ¼ ðω; 0; 0; 0Þ as

ϵμPμνϵν ¼ ϵμP
μν
∥ ϵν ¼ ~ϵμPμν ~ϵν ¼ −ω2; ð61Þ

ϵμP
μν
⊥ ϵν ¼ ~ϵμP

μν
∥ ~ϵν ¼ ~ϵμP

μν
⊥ ~ϵν ¼ 0: ð62Þ

Therefore, the spin projection of the dimensionless corre-
lator is carried out for the longitudinal polarization as

~ΠV∥
2 ¼ q−2 · ϵμðΠVμν

2 Þϵν
¼
�
4π2

3

�−1
ϕext
c ξ−2ð−χV0 þ 2χV1 Þ; ð63Þ

and for the transverse polarization as

~ΠV⊥
2 ¼ q−2 · ~ϵμðΠVμν

2 Þ~ϵν
¼
�
4π2

3

�−1
ϕext
c ξ−2ð−χV0 Þ: ð64Þ

Now that we have the Wilson coefficients obtained in
Eqs. (52), (63), and (64), their moments and the simulta-
neous limits Q2; n → ∞ can be found straightforwardly.
Similarly to the vacuum part (36), the external-field part of
the Borel-transformed correlator is found to be2

MOPEðνÞ ¼ πe−νAðνÞ½1þ αsaðνÞ
þðϕb þ ϕext

b ÞbðνÞ þ ϕext
c cextðνÞ�; ð65Þ

where we have bextðνÞ ¼ bðνÞ according to Eq. (47), and
explicit forms of cextðνÞ are summarized in Appendix C.
The Borel-transformed Wilson coefficients AðνÞ, aðνÞ,
and bðνÞ were obtained in Ref. [72] and are listed in
the appendixes in Refs. [55,72]. By using the Borel-
transformed OPE (65), we will obtain charmonium spectra
in the external magnetic field in the next section.

2The vacuum OPE in the vector channel has been performed
for a scalar part ~ΠV

vac in ΠV;μν
vac ¼ ðqμqν − q2gμνÞ ~ΠV

vac. This result
can be applied to the present case, because we need the exactly
same quantity q−2ϵμΠ

V;μν
vac ϵν ¼ ~ΠV

vac for a static J=ψ in both the
polarization modes specified by the vectors (59) and (60). This
normalization is consistent with that on the phenomenological
side (22).

CHO et al. PHYSICAL REVIEW D 91, 045025 (2015)

045025-12



VI. RESULTS AND DISCUSSIONS

In this section, we show charmonium mass spectra
obtained from QCD sum rule analyses and then examine
roles of magnetically induced mixing terms on the phe-
nomenological side discussed in Sec. IV by comparing the
results with those from the hadronic effective theory shown
in Sec. II. We also investigate effects of a perturbative
heavy-quark loop in an external magnetic field as a
subdominant origin of mass modifications.

A. Mass shifts from QCD sum rules

By means of the exponential sum rule (20), we will
investigate charmonium mass spectra by plugging in the
phenomenological side elaborated in Sec. IV and all
the necessary Wilson coefficients involved in the Borel-
transformed correlator (65). Accumulating the OPE (65)
and the spectral Ansatz on the phenomenological side
shown in Eqs. (29)–(32), the exponential sum rule (20) is
expressed as (ν ¼ 4m2

c=M2)

MJ
OPEðνÞ ¼ MJ;pole

ph ðνÞ þMJ;cont
ph ðνÞ þMJ;ext

ph ðνÞ: ð66Þ

Note that the above expression is for ηc and the longitudinal
J=ψ (J ¼ P;V∥) which have the magnetically induced
terms on the phenomenological side. Since the transverse
J=ψ does not have those terms, we employ the conven-
tional spectral Ansatz as

MV⊥
OPEðνÞ ¼ MV⊥;pole

ph ðνÞ þMV⊥;cont
ph ðνÞ: ð67Þ

Inserting these results into the Borel-transformed
dispersion relation (66), the mass of the lowest-lying pole
can be evaluated from an equation,

m2
cc̄ðM2Þ ¼ −

∂
∂ð1=M2Þ ln½MOPE −Mcont

ph −Mext
ph �; ð68Þ

where the last term on the rhs, namely the magnetically
induced term, is understood to be absent (Mext

ph ¼ 0) in the
case of the transverse J=ψ .
Note that a mass from the QCD sum rule should be

independent of a parameter M2 introduced in the Borel
transformation. Therefore, one has to examine a stability of
the results with respect to variation of M2. Some examples
of theM2 dependence of the charmonium masses which are
obtained from Eq. (68) and called the Borel curves are
shown in Fig. 5. As discussed below Eq. (21), a range of
M2 should satisfy two competing conditions for a con-
vergence of the OPE and a pole dominance on the
phenomenological side. We require less than 30% contri-
bution from the dimension-4 operators to the OPE and
more than 70% lowest-pole dominance in the dispersion
integrals (66) and (67), which specifies a Borel window
M2

min < M2 < M2
max. The effective threshold parameter s0

is so tuned to make the Borel curve the least sensitive to
M2. In the case of charmonia in vacuum, the Borel curve
has a minimum mmin at M2 ¼ M2

0 > M2
min for s0 ¼ ∞ and

becomes flatter in M2 > M2
0 as s0 is decreased. Thus, we

evaluate the optimized threshold in M2
0 < M2 < M2

max for
each value of the magnetic field strength eB, giving theM2

dependence of the mass about and less than 10 MeVas seen
in Fig. 5. Finally, we average the value of the mass over the
same range in the Borel curve and calculate the variance to
estimate a systematic error. Details of the systematic
framework are described in Ref. [57].
In the QCDSR analyses, we employ parameters

αsð8m2
cÞ¼0.24, mcðp2¼−2m2

cÞ¼1.26GeV and hαsπ G2i¼
ð0.35GeVÞ4 and obtain the vacuum mass of J=ψ and ηc to
be 3.092 GeV and 3.025 GeV, respectively. To compare
results from the QCDSR with those from the effective
Lagrangian (3), we insert these vacuum masses into mP;V in
Eq. (10). To evaluate the magnetically induced terms on the
phenomenological side, we inserted the effective coupling
gPV ¼ 2.095 obtained in Appendix Awhich was employed
in Eq. (10) as well.
Figure 6 displays the results from the QCDSR. We first

focus on ηc and the longitudinal J=ψ shown by red and blue
curves, respectively. Corresponding Borel curves at eB ¼ 0

and eB ¼ 5m2
π are also shown in Fig. 5. To obtain these

results, we included the phenomenological side shown on
the rhs in Eq. (66) for ηc and the longitudinal J=ψ , but not
the double-pole term responsible for the mixing effect in
Mext

ph [see Eqs. (31) and (32)]. The role of this term and the
appropriate choice of the phenomenological side are dis-
cussed below in detail. We compare the results from the
QCDSR with those from the hadronic effective theory (10)
shown by dashed and dashed-dotted lines. Remarkably,
we find a perfect agreement between the results from
the two approaches in a relatively weak-field region
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2
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FIG. 5 (color online). Borel curves for J=ψ and ηc at eB ¼ 0
and eB ¼ 5m2

π . s0 is optimized such that mðM2Þ is the least
sensitive to the variation of M2.
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eB < 0.1 GeV2. This agreement indicates that the mag-
netically induced terms in Eqs. (31) and (32) are essential
ingredients to obtain physically meaningful results in the
QCDSR. In this framework, the level repulsion from the
mixing effect is simply understood as a consequence of
a relative sign of the single-pole terms. In Eq. (31) for ηc,
we have e−m

2
V=M

2 − e−m
2
P=M

2

< 0 owing to the vacuum mass
difference, while the corresponding terms in (32) for the
longitudinal J=ψ have an opposite sign, i.e., e−m

2
P=M

2−
e−m

2
V=M

2

> 0. Therefore, those terms act on masses of ηc
and the longitudinal J=ψ to shift them in the opposite
directions in Eq. (68).
While we obtained a precise agreement in the weak-field

region, we find a slight deviation between the results from
the QCDSR and the hadronic effective theory as the
magnitude of the magnetic field increases. Moreover, we
find a slight upward mass shift of the transverse J=ψ shown
by a green curve in Fig. 6, although the transverse J=ψ is
not mixed with any other lowest-lying charmonium as
discussed in Sec. II. Therefore, these deviations would
imply some subdominant origins of the mass shifts other
than the mixing effect, because the results from the QCDSR
contain all the effects implemented in the OPE on the basis
of the fundamental degrees of freedom as well as the
mixing effect in the hadronic level. In the next section, we
will argue that these effects can be separated from the
mixing effect with the help of an appropriate choice of
the phenomenological side.

B. Roles of magnetically induced mixing terms
on the phenomenological side

In this section, we show QCDSR analyses in two cases
by employing (i) the conventional phenomenological side
without any magnetically induced term Mext

ph and (ii) a
phenomenological side with all the terms inMext

ph including

the double-pole term shown in Eqs. (31) and (32).
Comparing those analyses with the one in the last section
carried out with the two single poles, we will examine the
role of each term inMext

ph . In Figs. 7 and 8, we show results
for the ηc and longitudinal J=ψ in the cases (i) and (ii) with
open symbols and the results in the last section with filled
symbols.
First, the red (blue) line denoted as “Single Poles” in

Fig. 7 (Fig. 8) reminds us of the results shown in the last
section where we included the single pole of the mixing
partner J=ψ (ηc) in addition to the ηc (J=ψ) pole, without
the double pole responsible for the mixing effect discussed
below Eq. (28). One should note that, without the double
pole on the phenomenological side, all the information of
the mass shift encoded in the OPE is reflected in the
obtained masses, while, including the double pole, the
mixing effect encoded in the OPE will be balanced and
canceled by the double-pole term on the phenomenological
side. Therefore, the results without the double-pole term
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FIG. 6 (color online). Mass of the charmonium states from the
QCD sum rules (closed symbols with solid lines) and the effective
Langrangian (10) (dashed line for ηc and dash-dotted line for
J=ψ) as functions of eB.
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FIG. 7 (color online). Mass of ηc from the QCD sum rule with
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show the total mass shifts including the mixing effects as
well as other nonperturbative effects from the fundamental
degrees of freedom. They are the final results from the
QCDSR analysis in the present work.
Second, the black curves include neither the magneti-

cally induced single pole nor the double pole. In this case,
obtained mass shifts would be artificial ones, because
contributions to the spectral density from both the ηc
and longitudinal J=ψ poles are attributed to a unique pole
assumed as in the conventional QCD sum rules. This leads
to an average of the ηc and J=ψ masses. Therefore, the mass
of ηc (J=ψ) shown by the black curve deviates from the red
(blue) curve toward the mass of the mixing partner J=ψ
(ηc). We conclude that the single pole of the mixing partner
has to be included into the spectral Ansatz on the
phenomenological side to subtract the contaminating con-
tribution from the mixing partner and to avoid the mis-
leading results due to the averaging.
Finally, the green curves show mass shifts obtained by

including all the terms induced by the external magnetic
fields. In this analysis, the averaging of masses discussed
for the black curves is successfully avoided by including
the single pole of the mixing partner, and the mixing effect is
subtracted by including the double-pole term which balances
the corresponding contributions on the OPE side. Therefore,
the green curves show the residual mass shifts caused by
nonperturbative effects other than the mixing effect.
The roles of the magnetically induced terms are clear

now. On the basis of the above analyses, we conclude
that the dominant origin of the mass shifts in the ηc and
longitudinal J=ψ comes from the mixing between those
states as seen in comparison between the sum rule results
with implementation of the single poles (red and blue
curves) and those from the hadronic effective theory
(dashed and dash-dotted lines) and that the residual mass
shifts are small in the cases of charmonia. Nevertheless,
there are small mass shifts not described by the mixing
effect, and the small mass shift in the transverse J=ψ shown
in the last section is not involved in the mixing effect.
We will then discuss a possible origin of these residual
mass shifts in the next section.

C. Further mixing effects with “continuum”

While we have examined mixing patterns among the
charmonium states, any other intermediate state could be
contained in the physical spectral density as long as a
quantum number is matched. Therefore, as a discussion
about possible origins of the residual mass shifts found in
the last section, we shall consider interactions between an
external magnetic field and a perturbative heavy-quark
loop, which are diagrammatically shown in Fig. 9. As in the
preceding section, we assume a static charmonium carrying
a momentum q ¼ ð2m − ϵ0; 0; 0; 0Þ with ϵ0 being the
binding energy. In Fig. 9, a heavy quark and antiquark
pair is coupled to the heavy-quark currents with form

factors given by Bethe–Salpeter amplitudes. The Bethe–
Salpeter amplitude was obtained in the ladder approxima-
tion and the heavy-quark limit [67] and describes S-wave
quarkonia in the ordinary vacuum. By using the projection
operators

P� ¼ 1

2
ð1� γ0Þ; ð69Þ

the Bethe–Salpeter amplitudes for ηc and J=ψ are, respec-
tively, given by

Γ5ðp; p − qÞ ¼
�
ϵ0 þ

p2

m

� ffiffiffiffiffiffiffiffi
mcc̄

Nc

r
ψ1SðpÞPþγ5P−; ð70Þ

Γμðp; p − qÞ ¼
�
ϵ0 þ

p2

m

� ffiffiffiffiffiffiffiffi
mcc̄

Nc

r
ψ1SðpÞPþγμP−; ð71Þ

where ψ1SðpÞ is a ground-state wave function of the S-wave
bound state and mcc̄ is a mass of ηc and J=ψ , which is
degenerated in the heavy-quark limit. The number of the
color degrees of freedom is Nc ¼ 3.
We shall evaluate a self-energy of the charmonium

caused by an external magnetic field acting on a heavy-
quark loop (Fig. 9). Since there are two diagrams (a) and (b)
to be taken into account, the self-energy is obtained as a
sum of those contributions:

−iΣ ¼ −2iΣðaÞ − iΣðbÞ: ð72Þ

By using the quark propagators with insertions of external
magnetic fields shown in (B1) and (B2), amplitudes of
those diagrams are written down as

−iΣðaÞ ¼ −
Z

d4p
ð2πÞ4 Tr½Γðp; p − qÞS0ðp − qÞ

× Γ†ðp − q; pÞS2ðpÞ�; ð73Þ

−iΣðbÞ ¼ −
Z

d4p
ð2πÞ4 Tr½Γðp; p − qÞS1ðp − qÞ

× Γ†ðp; p − qÞS1ðpÞ�; ð74Þ

where Γ represents the Bethe–Salpeter amplitude (70) or
(71) depending on the channels and S0 is the free

FIG. 9 (color online). A heavy-quark loop as a self-energy of
the charmonia in external magnetic fields. Shaded vertices show
form factors given by the Bethe–Salpeter amplitudes.
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propagator of quarks S0ðp − qÞ ¼ i=ðp − q −mþ iεÞ. In
the above expressions, overall minus signs on the right-
hand side are associated with a fermion loop, and the QED
coupling constants are included in the propagators with
external-field insertions.
We computed the amplitudes (73) and (74) in the heavy-

quark limit. Following from descriptions in Appendix B 3,
we find the self-energies to be

Σ5 ¼ σ; ð75Þ

Σij ¼ σðgij∥ − gij⊥Þ: ð76Þ

We obtained a negative scalar quantity σ given by

σ ¼ −
ðQemBÞ2
2m2

Z
d3p
ð2πÞ3 jψ1SðpÞj2

�
2þ 4m

ϵ0 þ p2=m

�
; ð77Þ

which contains a square of the wave function ψ1S and an
electric charge Qem ¼ 2=3jej and mass “m” of the quarks
interacting with an external magnetic field. We found that
the self-energy in the vector channel is finite only in the
spatial components ði; j ¼ 1; 2; 3Þ and that all the others
vanish (Σ00 ¼ Σ0i ¼ Σi0 ¼ 0). Since the metrics in the
subspaces distinguish the longitudinal and transverse
directions as introduced below (43), we find a mass
splitting between the longitudinal and transverse modes
of J=ψ in external magnetic fields as shown in a plot
below.
Mass shifts of ηc and J=ψ due to the self-energies (75)

and (76) can be as usual obtained from alternate insertions
of the self-energies and the free propagators. Inserting the
self-energy Σ5 and the free propagator

D5
0ðqÞ ¼

i
q2 −m2

P

; ð78Þ

we obtain a resummed propagator,

D5ðqÞ ¼ D5
0ðqÞ þD5

0ðqÞð−iΣ5ÞD5
0ðqÞ þ � � �

¼ i
q2 −m2

P − σ
; ð79Þ

and thus a mass shift of ηc to be

m2
PðBÞ ¼ ðmvac

P Þ2 þ σ: ð80Þ

As for J=ψ, inserting a free propagator in the nonrelativistic
limit ðjqj ≪ mVÞ

Dij
0 ðqÞ ¼

−iðgij − qiqj=m2
VÞ

q2 −m2
V

∼
−igij

q2 −m2
V

; ð81Þ

the resummed propagator is obtained as

DijðqÞ ¼ Dij
0 ðqÞ þDis

0 ðqÞðþiΣstÞDtj
0 ðqÞ þ � � �

¼ −igij∥
q2 −m2

V − σ
þ −igij⊥
q2 −m2

V þ σ
: ð82Þ

Therefore, we find the polarization-dependent mass shifts
given by

m2
V∥ðBÞ ¼ ðmvac

V Þ2 þ σ ð83Þ

m2
V⊥ðBÞ ¼ ðmvac

V Þ2 − σ: ð84Þ

To estimate magnitudes of the mass shifts, we evaluate σ
in Eq. (77) assuming a Coulombic wave function,

ψ1SðpÞ ¼
8π1=2a3=20

ðða0pÞ2 þ 1Þ2 ; ð85Þ

where the Bohr radius is related to the binding energy as
a20 ¼ ðϵ0mÞ−1 and the wave function is normalized asR d3p

ð2πÞ3 jψSðpÞj2 ¼ 1. Inserting the Coulombic wave function

into Eq. (77), the momentum integral is carried out as
Z

d3p
ð2πÞ3

�
4m

ϵ0 þ p2=m

�
jψ1SðpÞj2 ¼

5

2
ðma0Þ2; ð86Þ

and we obtain the σ as a function of the Bohr radius,

σ ¼ −
ðQemBÞ2
2m2

�
2þ 5

2
ðma0Þ2

�
: ð87Þ

The Bohr radius is related to a mean-square-root radius of a
Coulombic bound state as hr2i ¼ 3a20, where the mean-
square-root radius was estimated as a typical size of the
S-wave charmonium by fitting the experimental data in
terms of the Cornell potential model [73]. Inserting a valueffiffiffiffiffiffiffiffi
hr2i

p
¼ 0.47 fm obtained in Ref. [73] and the vacuum

masses of charmonia into Eqs. (80), (83), and (84), we
show the mass shifts due to the self-energies in Fig. 10.
Clearly, we find a mass splitting of the longitudinal and
transverse J=ψ . The heavy-quark loop acts to decrease the
longitudinal J=ψ mass, while we have found an increasing
longitudinal J=ψ mass in the mixing effect. Varying a value
of hr2i as indicated by colored stripes, we confirm that the
magnitudes of mass shifts only weakly depend on a value
of hr2i. To show cooperative effects of the heavy-quark
loop and the mixing between ηc and the longitudinal J=ψ ,
we replace the vacuum masses in Eqs. (80) and (83) by
those from the mixing effects (10). The resultant masses are
as precise as the second order in eB. In Fig. 11, we find that
the mixing effect overwhelms the effect of the heavy-quark
loop on the longitudinal J=ψ , showing an increasing
behavior of the longitudinal J=ψ mass with an increasing
eB. Comparing Fig. 10 with the results from QCDSR, we
find a qualitative agreement in all three of the charmonium
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states. The slightly increasing mass of the transverse J=ψ
is well reproduced by the heavy-quark loop effect. While
we need more detailed information of the physical spectral
density to include resonance structures and so on, this
agreement implies that the perturbative heavy-quark loop
is one of the subdominant origins of the mass shifts in
external magnetic fields.

VII. SUMMARY

We investigated effects of strong magnetic fields on the
mass spectra of S-wave charmonium states, i.e., ηc and
J=ψ , and elaborated the Ansatz for the spectral density in
the QCD sum rule method, the so-called phenomenological
side, to consistently manipulate mixing effects in external
magnetic fields. We implemented quadratic terms in the
order of magnetic fields for the spectral Ansatz and

discussed a role of each term on the basis of a partial
fraction decomposition (26) and numerical analyses. With
an appropriate form of the spectral Ansatz obtained in the
present work, we found that the mass shifts of static ηc and
the longitudinal J=ψ precisely agree with those obtained
from an effective Lagrangian approach, indicating that the
dominant effect of magnetic fields comes from a level
repulsion between those two states. As for the transverse
J=ψ , we obtained an increasing mass with respect to an
increasing magnitude of a magnetic field, while the trans-
verse J=ψ is not mixed with any state.
This behavior of the transverse J=ψ and residual mass

shifts of ηc and the longitudinal J=ψ imply the existence of
some other effects not fully described by the mixing effect
in leading-order effective Lagrangian in mesonic degrees
of freedom. We examined effects of a mixing effect with
higher states and continuum. This was carried out by
approximating the intermediate states as a perturbative
heavy-quark loop with two insertions of external magnetic
fields. We found that this effect gives rise to a splitting
between the longitudinal and transverse J=ψ and indeed an
increasing mass of the transverse J=ψ , while we need more
precise information of the spectral density for the higher
state and continua to reach a fully conclusive result.
While the residual mass shift, other than the mixing

effect, is found to be small for the charmonia, our analysis
indicates that one has to take into account effects of the
magnetic fields on the phenomenological side consistently
to the OPE side. An interesting application would be the
QCDSR analysis on light and heavy-light mesons. For
instance, a peculiar behavior of the ρ meson spectrum
observed in strong magnetic fields by lattice QCD simu-
lations [26,27] might be related to changes of QCD vacuum
properties in the strong magnetic field limit as mentioned in
the Introduction. As the OPE for such a light meson
manifestly includes vacuum expectation values, e.g., a
quark condensate hq̄qi, one could investigate how the
vacuum properties are reflected in light-meson spectra by
the QCDSR method, where one would expect a larger
nonperturbative effect than in charmonia. The elaborate
treatment of the mixing effect is necessary even in any other
methods involving the spectral density by means of the
correlation functions in constant magnetic fields. A general
framework discussed in the present work allows for
extracting nonperturbative effects of magnetic fields on
QCD bound states and will shed light on deeper under-
standing of the interplay between QCD and QED on the
basis of the fundamental degrees of freedom.
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APPENDIX A: MIXING STRENGTH FROM
EXPERIMENTAL DATA SETS

Here, we determine the coupling constant gPV which gives
strength of mixing effects between pseudoscalar and vector
mesons. We calculate radiative decay widths in a reaction
J=ψ → γηc by employing the effective vertex (3) and read
off the coupling constant by fitting the experimental data.
With the interaction Lagrangian (3), we obtain an

invariant amplitude,

MPV ¼ hγPjLγPVjVi
¼ −

egPV
m0

ϵμναβk
μ
γ ϵνγpα

Vϵ
β
V: ðA1Þ

A momentum and polarization vector of the photon (vector
meson) are denoted as kμγ and ϵμγ (p

μ
V and ϵμV), respectively.

Summing the polarizations of the photon and averaging
those of the vector meson, we find

1

3

X
sV

X
sγ

jMPVj2 ¼
2

3

�
egPV
m0

�
2

m2
V ~p2; ðA2Þ

where a magnitude of the center-of-mass momentum in the
final state is given by ~p ¼ ðm2

V −m2
PÞ=ð2mVÞ. Integrating

over the phase-space volume in the two-body final state, the
decay width is then obtained to be

Γ½V → γP� ¼ ~p
8πm2

V

1

3

X
sV

X
sγ

jMPVj2

¼ 1

12

e2g2PV ~p3

πm2
0

: ðA3Þ

By fitting the measured radiative decay width, we obtain
the coupling constant gPV as

gPV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12πe−2 ~p−3m2

0Γexp½V → γP�
q

: ðA4Þ

Substituting the measured value Γexp½J=ψ → γηc� ¼
1.579 keV, we obtain the coupling strength:

gPV ¼ 2.095: ðA5Þ

APPENDIX B: MIXING STRENGTHS AND
SELF-ENERGY FROM THE

BETHE–SALPETER AMPLITUDES

By using the Bethe–Salpeter amplitudes of the S-wave
quarkonia (70) and (71) obtained in the heavy-quark limit
[67], we can also investigate interactions between those
quarkonia and external magnetic fields. We provide a
calculation of a coupling strength in the mixing between
ηc and the longitudinal J=ψ from triangle diagrams
(Fig. 12), that between the pseudoscalar (vector) current
and the longitudinal J=ψ (ηc) from triangle diagrams shown
in Fig. 3, and the self-energies of the quarkonia (Fig. 9).
In Appendix B 1, we will find a coupling constant in the
mixing between ηc and J=ψ , of which the simple expres-
sion agrees with the one obtained in the leading-order
pNRQCD calculation [79] and of which the value is in
good agreement with the one obtained by fitting the
experimentally measured radiative decay width in
Appendix A. In Appendix B 2, we show a mixing strength
between a current and a charmonium used for constructing
the phenomenological side of the QCD sum rule in Sec. IV.
In Appendix B 3, we describe some details in calculation of
the self-energy of ηc and J=ψ shown in Sec. VI C.
Interactions between quarks and external magnetic fields

are taken into account by employing the Fock–Schwinger
gauge throughout this section. In this gauge, quark propa-
gators with one and two insertions of constant external
fields are expressed as [43]

S1ðpÞ ¼ −
i
4
QemFαβ

1

ðp2 −m2 þ iεÞ2
× fσαβðpþmÞ þ ðpþmÞσαβg; ðB1Þ

S2ðpÞ ¼ −
1

4
Q2

emFαβFμν
1

ðp2 −m2 þ iεÞ5
× ðpþmÞffαβμν þ fαμβν þ fαμνβgðpþmÞ; ðB2Þ

where Qem denotes an electromagnetic charge of a quark
and the gamma matrix structures are given by

σαβ ¼ i
2
½γα; γβ�; ðB3Þ

fαβμν ¼ γαðpþmÞγβðpþmÞγμðpþmÞγν: ðB4Þ

1. Mixing strength between ηc and J=ψ

We compute the triangle diagrams in Fig. 12 and then
read off the effective coupling constant in the mixing
between pseudoscalar and vector quarkonia in an external
magnetic field. Calculations of the diagrams are performed
in the heavy-quark limit, and the final result is found to be
independent of the quark mass in the leading order. Also,
note that the coupling constant is independent of the wave
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functions of charmonia although the Bethe–Salpeter ampli-
tudes contain the wave functions (see Eqs. (70) and (71)).
Let us call the triangle diagrams with clockwise and

counterclockwise ordering of vertices diagrams (a) and (b),
respectively. We compute a sum of those diagrams

iMμ ¼ iMμ
a þ iMμ

b; ðB5Þ

which are written down as

iMμ
a ¼ −

Z
d4p
ð2πÞ4 Tr½Γ†

5ðp − q; pÞS1ðpÞ

× Γμðp; p − qÞS0ðp − qÞ�; ðB6Þ

iMμ
b ¼ −

Z
d4p
ð2πÞ4 Tr½Γ†

5ðpþ q; pÞS0ðpþ qÞ

× Γμðp; pþ qÞS1ðpÞ�: ðB7Þ

First, we shall evaluate diagram (a) by carrying out the
momentum integral. One of the integrals with respect to the
zeroth component can be carried out as a contour integral
with a path enclosed either upward or downward in the
complex p0 plane. One finds that two poles are enclosed
inside the contour in the each case and that one of the two
pole contributions is suppressed by an inverse quark mass
in the heavy-quark limit. Enclosing the contour upward for
a simplicity of the calculation, we pick up the leading
contribution from the pole located on

p̄0
a ¼ q0 − ϵp−q ≃m −

�
ϵ0 þ

p2

2m

�
; ðB8Þ

where ϵ0 is a binding energy as mentioned in the beginning
of Sec. VI C and the approximate equality is valid in the
heavy-quark limit. At this pole, we have a residue obtained
from the limiting values,

lim
p0→p̄0

a

ðp0 − p0
aÞS0ðp − qÞ ∼ −P−; ðB9Þ

lim
p0→p̄0

a

S1ðpÞ ∼ −
i
4
QemFαβ

σαβPþ þ Pþσαβ

2mðϵ0 þ p2=mÞ2 ; ðB10Þ

and thus the integral in diagram (a) is evaluated as

iMμ
a ¼ 2Qem

~F0μ

Z
d3p
ð2πÞ3 jψ1SðpÞj2: ðB11Þ

Similarly, we evaluate diagram (b) by maintaining the
leading pole contribution with the contour enclosed down-
ward. Picking up the pole at

p̄0
b ¼ −q0 þ ϵp−q ≃ −mþ

�
ϵ0 þ

p2

2m

�
; ðB12Þ

we have

lim
p0→p̄0

b

ðp0 − p0
bÞS0ðpþ qÞ ∼ Pþ ðB13Þ

lim
p0→p̄0

b

S1ðpÞ ∼ −
i
4
QemFαβ

σαβP− þ P−σ
αβ

2mðϵ0 þ p2=mÞ2 ðB14Þ

and then find that diagram (b) provides the same contri-
bution as that of diagram (a),

iMμ
b ¼ iMμ

a: ðB15Þ

Therefore, we obtain the sum of two triangle diagrams as

iMμ ¼ 2 × 2Qem
~F0μ

Z
d3p
ð2πÞ3 jψ1SðpÞj2

¼ 4Qem
~F0μ: ðB16Þ

Note that the second line follows from a normalization of
the wave function

Z
d3p
ð2πÞ3 jψ1SðpÞj2 ¼ 1; ðB17Þ

and thus the amplitude is independent of the wave
functions. We obtain the mixing amplitude between the
pseudoscalar and the longitudinal (transverse) mode of the
vector state by contracting with the polarization vector ϵμ

(~ϵμ) [see Eqs. (59) and (60)]. When an external magnetic
field is applied in the positive third direction ð ~F30 ¼
− ~F03 ¼ BÞ, we find an amplitude for the longitudinal
mode as

iMμϵ
μ ¼ 4Qem

~F0μϵμ ¼ 4QemB; ðB18Þ
while an amplitude for the transverse modes vanishes,

iMμ ~ϵ
μ ¼ 0: ðB19Þ

As a wrap up, we found that only the longitudinal mode
of the vector state can mix with the pseudoscalar state in an
external magnetic field and that an effective vertex of the
interaction among a photon, the pseudoscalar state, and the
longitudinal mode of the vector state is given by

FIG. 12 (color online). An effective coupling strength from
triangle diagrams. Shaded vertices show form factors given by the
Bethe–Salpeter amplitudes.
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LγPV ¼ 4Qem

m0

~Fμνð∂μPÞVν: ðB20Þ

The coupling constant depends only on an electric charge
of a heavy quark and is given by gPV ¼ 8=3≃ 2.66
(gPV ¼ 4=3≃ 1.33) for the transition between ηc and
J=ψ (ηb and ϒ). This is consistent with the value obtained
by fitting the measured radiative decay width (A5), but
slightly overestimated. We also note that we can calculate
the radiative decay widths in J=ψ → ηc þ γ and ϒ → ηb þ
γ by using an effective vertex (B20), resulting in expres-
sions consistent with those from the leading-order calcu-
lation by pNRQCD [79]. The overestimate mentioned
above was improved, owing to subleading terms in
pNRQCD [79].

2. Direct-mixing strength

We compute the direct-coupling strength between the
heavy-quark current and charmonium depicted in Fig. 3.
Amplitudes of theses two diagrams are written down
similarly to Eqs. (B6) and (B7) as

iMμ
a ¼ −

Z
d4p
ð2πÞ4 Tr½iγ5S1ðpÞ

× Γμðp; p − qÞS0ðp − qÞ�; ðB21Þ

iMμ
b ¼ −

Z
d4p
ð2πÞ4 Tr½iγ5S0ðpþ qÞ

× Γμðp; pþ qÞS1ðpÞ�: ðB22Þ

We evaluate the energy integrals in the above as in the
calculation in Appendix B 1 and obtain

iMμ
a ¼ iMμ

b

¼ −iQem

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ncmcc̄

p
2m

~F0μ

Z
d3p
ð2πÞ3

ψ1SðpÞ
ϵ0 þ p2=m

: ðB23Þ

We find that only the longitudinal J=ψ having a polariza-
tion vector ϵμ is directly created from the pseudoscalar
current in the presence of external magnetic fields, since the
above amplitude is proportional to ~F0μ. Assuming a
Coulombic wave function (85) for J=ψ, we find the
direct-coupling strength as

fdir ¼
				 − 2iQem

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ncmcc̄

p
2m

~F0μϵμ

4π1=2a3=20 ϵ1=20

				
2

¼ f
a40ðQemBÞ2

64
; ðB24Þ

where f is a coupling strength between the heavy-quark
currents and the charmonia in the ordinary vacuum without
external magnetic fields. This strength follows from the
square of an amplitude,

iM ¼ −
Z

d4p
ð2πÞ4 Tr½γS0ðpÞΓðp; p − qÞS0ðp − qÞ�;

ðB25Þ

with γ and Γ meaning iγ5 and Γ5 (γμ and Γμ) appearing in a
coupling between the pseudoscalar (vector) current and ηc
(J=ψ). By performing the integrals as in the above
computations, we find in both channels

f ¼ 4mcc̄Nc

πa30
: ðB26Þ

3. Heavy-quark loop

We evaluate the self-energy of charmonia in an magnetic
field shown in Fig. 9. Diagrammatic calculation is per-
formed in the heavy-quark limit and thus proceeds in a
similar way to the calculation in the previous sections.
We shall first examine diagram (a) in Fig. 9, the

amplitude of which is written down in Eq. (73). We carry
out an integral with respect to the zeroth component of a
loop momentum p with a contour enclosed upward. We
pick up the leading contribution from a pole located on

p̄0 ¼ q0 − ϵp−q ≃m − ϵ0 −
p2

2m
; ðB27Þ

providing a residue given by

Resp0¼p̄0 ½Γðp; p − qÞS0ðp − qÞΓ†ðp − q; pÞS2ðpÞ�
¼ ½Γðp; p − qÞð−P−ÞΓ†ðp − q; pÞð lim

p0→p̄0
S2ðpÞÞ�;

ðB28Þ

where we use the projection operators (69) which have
properties utilized below, P�P∓ ¼ 0, P2

� ¼ P� and
γ0P� ¼ P�γ0 ¼ �P�. A limiting expression of the quark
propagator with two insertions is given by

lim
p0→p̄0

S2ðpÞ ∼
1

4
Q2

emFαβFμν
1

ðϵ0 þ p2=mÞ5
× Pþff0αβμν þ f0αμβν þ f0αμνβgPþ ðB29Þ

with f0αβμν ¼ γαPþγβPþγμPþγν. Commuting the gamma
matrices as γαPþ ¼ g0α þ P−γ

α, we find

Pþf0αβμνPþ ¼ g0αg0βg0μg0νPþ; ðB30Þ

and thus that the amplitude ΣðaÞ is proportional to the
vanishing (0,0) component of the field strength tensors.
Therefore, the contribution from diagram (a) vanishes in
the leading order in the heavy-quark limit, so we have
found in both pseudoscalar and vector states
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ΣðaÞ ∼ 0; ðB31Þ

and thus Σ ∼ ΣðbÞ.
We shall proceed to examining diagram (b), the ampli-

tude of which is written down in Eq. (74). As in the
calculation of diagram (a), we enclose a contour downward
and pick up a residue at the same pole (B27). One would,
however, have to compute a residue at a double pole,
because the quark propagator with an insertion S1ðp − qÞ
has a double-pole structure. The residue is thus obtained by
operating a derivative as

Resp0¼p̄0 ½Γðp; p − qÞS1ðp − qÞΓ†ðp − q; pÞS1ðpÞ�

¼ lim
p0→p̄0

�
Γðp; p − qÞSðp − qÞΓ†ðp − q; pÞ d

dp0
S1ðpÞ

þ Γðp; p − qÞ
�

d
dp0

Sðp − qÞ
�
Γ†ðp − q; pÞS1ðpÞ

�
;

ðB32Þ

where a shorthand notation is introduced as Sðp − qÞ ¼
ðp0 − p̄0Þ2S1ðp − qÞ. Some ingredients necessary for
obtaining the residue follow from operation of the limits
and derivatives, for the first term in Eq. (B32), as

lim
p0→p̄0

d
dp0

S1ðpÞ ¼ −
i
4
QemFαβ

1

ð2mÞ2ðϵ0 þ p2=mÞ3
× ½ðϵ0 þ p2=mÞðσαβγ0 þ γ0σαβÞ
þ 4mðσαβPþ þ PþσαβÞ� ðB33Þ

lim
p0→p̄0

Sðp − qÞ ¼ −
i
4
QemFαβ

1

2m
fσαβP− þ P−σ

αβg

ðB34Þ

and, for the second term, as

lim
p0→p̄0

d
dp0

Sðp − qÞ ¼ −
i
4
QemFαβ

1

ð2mÞ2
× ½σαβðγ0 þ 2P−Þ þ ðγ0 þ 2P−Þσαβ�

ðB35Þ

lim
p0→p̄0

S1ðpÞ ∼ −
i
4
QemFαβ

fσαβPþ þ Pþσαβg
2mðϵ0 þ p2

mÞ
2

: ðB36Þ

Substituting the limiting behaviors of the propagators
(B33) and (B36) into Eq. (B32), we find a self-energy of
ηc as

−iΣðbÞ ¼ i
Q2

em

16m2
FμνFαβTr½P−σ

μνP−σ
αβ�

×
Z

d3p
ð2πÞ3 jψ1SðpÞj2

�
2þ 4m

ðϵ0 þ p2=mÞ
�

ðB37Þ

and a self-energy of J=ψ as

−iΣðbÞλσ ¼ i
Q2

em

16m2
FμνFαβΦλσ

μναβ

×
Z

d3p
ð2πÞ3 jψ1SðpÞj2

�
2þ 4m

ðϵ0 þ p2=mÞ
�
:

ðB38Þ
A trace of the gamma matrices is given by Φλσ

μναβ ¼
Tr½ðPþγλP−ÞσμνðP−γ

σPþÞσαβ�. Carrying out the traces,
we obtain the self-energies (75) and (76) for ηc and
J=ψ , respectively. External magnetic fields do not give
rise to a self-energy of the unphysical mode of J=ψ , since
the Bethe–Salpeter amplitude vanishes for a temporal mode
(λ; σ ¼ 0) when the charmonium is at rest.
We comment on the second-order Stark effect caused by

external electric fields [80–82]. This term can be obtained
by including the higher-dimensional operator correction
to the Bethe–Salpheter equation in (70) and (71) that is
proportional to the external electric field operator and
the wave function (see the second paper in Ref. [67]).
The effective four-point vertex between the charmonium,
external field, charm, and anticharm is given as [67]

Mνμ
4 ¼ ig

ffiffiffiffiffiffiffiffi
mcc̄

Nc

r �∂ψ1S

∂pα

�
Fνα
E PþΓμP−; ðB39Þ

where Γμ is γμ or iγ5 for J=ψ or ηc, respectively. Also, the
subscript E in the field strength tensor means that only the
electric part of the field strength tensor is taken.
Substituting this into the J=ψ self-energy,

Σ ¼ −i
Z

d4p
ð2πÞ4 Tr½M0μ

4 S0ðp − qÞM†0
4 μS0ðpÞ�

¼ −
2mV

18

Z
∞

0

dp2

				 ∂ψ1S

∂p
				
2 p
ϵþ p2=m

�
α

π
E2

�
; ðB40Þ

which gives the second-order Stark effect formula for the
external gauge field [54]. The same formula is obtained for ηc.
It has been found that the leading-order effect on

charmonia by external fields is due to external electric
field and that effects of magnetic field are subleading in the
heavy-quark expansion [82]. We find that the self-energies
in magnetic fields (B37)–(B38) are also suppressed by a
factor of 1=m2 compared to the second-order Stark effect
formula (B40). Inserting a field strength tensor of an
electric field given by temporal components, F0i ¼
−Fi0 ¼ Ei, the trace parts in Eqs. (B37) and (B38)
identically vanish when any of the Lorentz indices, α, β,
μ, or ν, takes temporal component because of simple
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identities P�σ0iP� ¼ σ0iP∓P� ¼ 0, showing that there is
no additional term contributing to the second-order Stark
effect formula.

APPENDIX C: BOREL-TRANSFORMED
WILSON COEFFICIENTS

In this Appendix, we provide a table of the twist-2
Wilson coefficients cextn and cextðνÞ which are obtained by
carrying out the Borel transform of ~Π2 shown in Sec. V B.
The moments cextn are typically represented by the Gauss

hypergeometric function 2F1ða; b; c; ρÞ which is, in con-
ventions in Refs. [41,42], defined by

2F1ða;b; c;ρÞ ¼
1

Bða;c− aÞ
×
Z

1

0

dtta−1ð1− tÞc−a−1ð1− ρtÞ−b; ðC1Þ

where the beta function Bðx; yÞ is related to the gamma
function as Bðx; yÞ ¼ ΓðxÞ · ΓðyÞ=Γðxþ yÞ. Hereafter, we
suppress the subscripts as Fða; b; c; ρÞ ¼ 2F1ða; b; c; ρÞ for
simplicity. Following from the definition of the Borel
transform (17), we obtained a useful formula,

ð−1Þn
n!

dn

dξn
ðξ−βJkðξÞÞ

¼ ð−1Þβ ffiffiffi
π

p
2

Γðnþ kþ βÞ
ΓðkÞΓðnþ β þ 3

2
Þ

× ð1 − ρÞnþ1F

�
nþ 1;

3

2
− k; nþ β þ 3

2
; ρ

�
; ðC2Þ

for general integers β and k. Relevant variables are

ξ ¼ Q2

4m2
; ðC3Þ

ρ ¼ ξ

1þ ξ
; ðC4Þ

ν ¼ 4m2

M2
¼ nð1 − ρÞ; ðC5Þ

and the Borel mass M2 ¼ Q2=n is maintained being a
constant in the infinite limits (19). In these limits, the
Whittaker function

Gðb; c; νÞ ¼ 1

ΓðcÞ
Z

∞

0

e−ttc−1ðνþ tÞ−bdt ðC6Þ

is related to a limiting behavior of the hypergeometric
function as

Fðb;l;lþ c; ρÞ !
½n→∞�

lbGðb; c; νÞ; ðC7Þ

so that the Borel-transformed Wilson coefficients cextðνÞ
can be obtained analytically and represented by the

Whittaker function [72]. The Wilson coefficients bn and
bðνÞ appearing below are shown in Ref. [42] and
Refs. [55,72], respectively.

1. Pseudoscalar channel (P)

cP;ext
n ¼ 4

3

�
bn − 4nðnþ 1Þð1 − ρÞFðnþ 1;− 1

2
; nþ 3

2
; ρÞ

Fðn; 1
2
; nþ 3

2
; ρÞ

�

ðC8Þ

cP;extðνÞ ¼ ν

2Gð1
2
; 3
2
; νÞ
�
−G
�
−
3

2
;
3

2
; ν

�

þ6G

�
−
1

2
;
3

2
; ν

�
− 8G

�
−
1

2
;
1

2
; ν

��
ðC9Þ

2. Vector channel (V)

a. Longitudinal mode ðV∥Þ

c
V∥;ext
n ¼ 4nðnþ 2Þð1 − ρÞ

3ð2nþ 5ÞFðn; 1
2
; nþ 5

2
; ρÞ

×

�
4

nþ 2
F

�
nþ 1;

1

2
; nþ 5

2
; ρ

�

−3ðnþ 3Þðnþ 4ÞF
�
nþ 1;−

1

2
; nþ 7

2
; ρ

�

−ðnþ 3Þðnþ 4ÞF
�
nþ 1;−

3

2
; nþ 7

2
; ρ

��

ðC10Þ

cV∥;extðνÞ ¼ 2ν

3Gð1
2
; 5
2
; νÞ
�
8G

�
1

2
;
3

2
; ν

�
−3G

�
−
1

2
;
5

2
; ν

�

−G

�
−
3

2
;
5

2
; ν

��
ðC11Þ

b. Transverse mode ðV⊥Þ

cV⊥;ext
n ¼ 4nðnþ 2Þð1 − ρÞ

3ð2nþ 5ÞFðn; 1
2
; nþ 5

2
; ρÞ

×

�
6F

�
nþ 1;

1

2
; nþ 7

2
; ρ

�

þ6ðnþ 3ÞF
�
nþ 1;−

1

2
; nþ 7

2
; ρ

�

−ðnþ 3Þðnþ 4ÞF
�
nþ 1;−

3

2
; nþ 7

2
; ρ

��

ðC12Þ
cV⊥;extðνÞ ¼ 2ν

3Gð1
2
; 5
2
; νÞ
�
6G

�
1

2
;
5

2
; ν

�

þ6G

�
−
1

2
;
5

2
; ν

�
− G

�
−
3

2
;
5

2
; ν

��
ðC13Þ
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