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We calculate the low-energy effective action of massless and massive complex linear superfields coupled
to a massive U(1) vector multiplet. Our calculations include superspace higher-derivative corrections
and therefore go beyond previous results. Among the superspace higher derivatives, we find that terms that
lead to a deformation of the auxiliary field potential and may break supersymmetry are also generated. We
show that the supersymmetry breaking vacua can only be trusted if there exists a hierarchy between the
higher-order terms. A renormalization group analysis shows that generically a hierarchy is not generated by
the quantum corrections.
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I. INTRODUCTION

Supersymmetric theories (see, for example, Refs. [1,2])
are candidates for describing physics beyond the electro-
weak scale. Despite their many virtues, the observed
elementary particle spectrum signals that we live in a
vacuum in which supersymmetry has to be broken, thus
leading to a lift of the mass degeneracy of the fermionic and
bosonic states. In a quantum field theory, to understand the
true vacuum structure, one has to take into account the
quantum corrections, which in principle will include all
the terms allowed by the symmetries.
For chiral models, the effective Kähler potential and

superpotential are well known [3–6]. Effective theories
will also include higher-dimension operators that contain
superspace higher derivatives. The possible effect of these
superspace higher derivatives on the vacuum structure
was initially investigated in Ref. [7], but no conventional
supersymmetry breaking was found. Indeed, as has been
shown in Refs. [8–10], even though new branches exist,
they have to be sustained by nontrivial background fluxes.
The specific higher-derivative superspace operators used in
Refs. [7–10] were shown to be generated by perturbation
theory in the work of Refs. [4,5,11], but they were
also related to effective actions originating from a more
fundamental theory [12–16]. Note that models of this sort
have also been used to describe supersymmetric Skyrmions
[17–20]. In Ref. [21], linear and complex linear multiplets
have also been studied, and the resulting theories have a
new broken branch admitting nonlinear supersymmetry. In
these theories, there are examples in which no background
flux is needed to sustain the broken branch.
Another important aspect of supersymmetric theories is

the various existing supermultiplets. The most common in
use are the chiral multiplet and the gauge multiplet. The
gauge multiplet is somehow unique. The same is not true

for the chiral multiplet; there exist other supermultiplets
with the same on-shell field content. These superfields are
classically equivalent but with different quantum proper-
ties. In fact, the role of the variant [22,23] scalar multiplets
has been little appreciated. It is possible that matter fields
are not accommodated into a chiral multiplet, but rather
into a complex linear multiplet, for example, and the same
goes for the supersymmetry breaking sector.
The quantum properties of complex linear supermultiplets

have been studied before [24–27], and it was shown that
the general quantization procedure is rather involved. If one
solvestheconstraintsbyintroducingprepotentials,oneisfaced
with a theorywith a gauge symmetry that needs to be fixed. In
the Batalin-Vilkovisky formalism, this leads to an infinite
tower of ghosts. However, as was shown in Ref. [25], if the
complex linear superfield prepotentials appear only through
their field strengths (i.e., the superfields themselves), the
ghosts decouple, and one may ignore many of the complica-
tions originating in the infinite ghost sector. In Ref. [25], the
effectiveKähler potential of the sigmamodel defined in terms
of chiral superfields or its dual defined in terms of complex
linear superfieldswas shown to remaindual at one loop. In this
work, we go beyond the known results about the effective
Kähler potential, andwe calculate all the one-loop corrections
that also include superspace higher derivatives.
Superspace higher derivatives of complex linear multip-

lets have an intriguing effect: they deform the auxiliary
field potential in such a way that the auxiliary field
equations of motion have more than one solution, and
the new solutions lead to vacua in which supersymmetry is
spontaneously broken. Recently, the structures of various
theories with this possibility were presented [21]. The
standard property is the auxiliary structure

Laux ¼ −FF̄ þ 1

2f2
F2F̄2; ð1Þ

leading to new nonsupersymmetric vacua when the
auxiliary field F is integrated out. Indeed, on top of the
standard solution
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F ¼ 0 ð2Þ

now exists a second solution to the equations of motion
of F,

FF̄ ¼ f2; ð3Þ

which implies supersymmetry breaking. Moreover, in a
generic study on supersymmetric effective theories, one
should take into account these terms since they deform the
auxiliary field potential and thus have an indispensable
effect on the scalar potential as well. It is then clear that
an effective theory should not be restricted to the evaluation
of the form of the effective Kähler potential only but also
to the evaluation of the superspace higher-derivative
operators, which are always generated.
Our work is organized as follows. In the next section, we

review the basic formalism about classical and quantum
superfields and present the scalar multiplets variant pic-
tures. In Sec. III, we work with a massless complex linear
multiplet coupled to a massive Uð1Þ, which we integrate
out, and calculate the low-energy effective theory and the
deformation in the auxiliary field potential. In Sec. IV, we
work with a massive complex linear multiplet coupled to a
massiveUð1Þ, and by integrating out the massive sector, we
calculate the low energy effective theory and study the
vacuum structure and the flow of the supersymmetry
breaking operators under the renormalization group. We
conclude with a short discussion in Sec. V.

II. SHORT REVIEW OF SUPERFIELD METHODS

Here, we review known results in four-dimensional,
N ¼ 1 superspace concerning some classical and quantum
properties, which we will use throughout our work. For our
conventions, one may consult Ref. [1].

A. Scalar multiplets and hypermultiplets

In supersymmetric field theories, there exist different
ways of introducing physical scalar fields into supermul-
tiplets. These different ways and their equivalences can
be understood in terms of dualities between the various
superfields. For example, a chiral superfield is defined by
the condition

D̄ _αΦ ¼ 0 ð4Þ

and has bosonic components

Φj ¼ z; ð5Þ

D2Φj ¼ G: ð6Þ

A free chiral superfield is described by the Lagrangian

L ¼
Z

d4θΦ̄Φ; ð7Þ

which leads to the superspace equations of motion

D̄2Φ̄ ¼ 0: ð8Þ

On the other hand, a complex linear superfield [22] is
defined by the condition

D̄2Σ ¼ 0; ð9Þ

with superspace Lagrangian

L ¼ −
Z

d4θΣ̄Σ; ð10Þ

for the free theory. The bosonic components of the complex
linear are

Σj ¼ A; ð11Þ

D2Σj ¼ F; ð12Þ

D̄ _βDαΣj ¼ Pα _β: ð13Þ

Note that this multiplet can be consistently coupled to
supersymmetric Yang–Mills theories [25,26].
The equivalence between the two can be understood by

using the Lagrangian

Ldual ¼ −
Z

d4θΣ̄Σþ
Z

d4θΣΦþ
Z

d4θΣ̄ Φ̄ ð14Þ

for a chiral superfield Φ but an unconstrained Σ. Then,
integrating out Φ gives a complex linear condition (9) on Σ,
and the dual Lagrangian (14) becomes (10), but integrating
out Σ, we find

Σ̄ ¼ Φ; ð15Þ

and after we plug back into Eq. (14), we recover the
Lagrangian (7). For this reason, the chiral multiplet is
commonly used: it is classically equivalent to the linear
super multiplet, and it is simpler to deal with. The
propagators of the chiral and the complex linear superfields
are given by

Φ̄Φ∶
D2D̄2

p2
δ4ðθ − θ0Þ; ð16Þ

Σ̄Σ∶
�
1þ D̄2D2

p2

�
δ4ðθ − θ0Þ: ð17Þ
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Because of the structure of the complex linear multiplet,
it is only possible that it acquires a mass in tandem with a
chiral multiplet [23]. This is done by modifying the
complex linear constraint to

D̄2Σ ¼ mΦ: ð18Þ

The way to understand the constraint is by dualizing the
massive chiral superfield Lagrangian

L ¼
Z

d4θΦ̄Φ −
m
2

Z
d2θΦ2 −

m
2

Z
d2θ̄Φ̄2: ð19Þ

For an unconstrained superfield Σ and a chiral Φ, we have

Ldual ¼ −
Z

d4θΣ̄Σþ
Z

d4θΣΦþ
Z

d4θΣ̄ Φ̄

−
m
2

Z
d2θΦ2 −

m
2

Z
d2θ̄Φ̄2: ð20Þ

Then, by the equations of motion for Σ, we go to Eq. (19).
But the equations of motion for Φ give (18)

D̄2Σ ¼ mΦ:

If on top of these, we use the Σ equation of motion Σ̄ ¼ Φ
and find

D̄2Σ ¼ mΣ̄; ð21Þ

which is the equation of motion for a massive chiral
superfield; in other words, this is a chiral superfield in
the disguise of a complex linear [2]. Thus, it is not possible
to have a pure massive complex linear because it will
always be, in fact, a relabeling of the massive chiral
multiplet. It is then clear that the condition (18) indeed
represents a massive complex linear, but it is not possible
to solve this condition in terms of Σ alone, as we did before,
thus completely disposing of the chiral. To have a truly
massive complex linear superfield, the chiral one has to stay
in the picture as well. The consistent way to write the
massive Lagrangian is

L ¼ −
Z

d4θΣ̄Σþ
Z

d4θΦ̄Φ; ð22Þ

with the condition (18) for Σ. The mass terms are not
manifest in Eq. (22), but they are of course there in the
component form [23]. Imposing the condition (18) via a
Lagrange multiplier [28] also makes the mass terms appear
in superspace, and then one can find the standard propa-
gators for the massive theory,

Φ̄Φ∶
D2D̄2

p2 þm2
δ4ðθ − θ0Þ; ð23Þ

Σ̄Σ∶
�
1þ D̄2D2

p2 þm2

�
δ4ðθ − θ0Þ; ð24Þ

and the extra propagators due to the mass terms,

Σ̄Φ∶
mD̄2

p2 þm2
δ4ðθ − θ0Þ; ð25Þ

Φ̄Σ∶
mD2

p2 þm2
δ4ðθ − θ0Þ: ð26Þ

Note that this is, in fact, an N ¼ 2 hypermultiplet [28,29].
Finally, it is interesting what happens to a supersym-

metry breaking theory with a linear superpotential under
the duality. We start from

L ¼
Z

d4θΦ̄Φ − f
Z

d2θΦ − f
Z

d2θ̄ Φ̄; ð27Þ

which leads to the equations of motion for Φ,

D̄2Φ̄ ¼ f; ð28Þ

and for the auxiliary field specifically,

G ¼ f; ð29Þ

signaling supersymmetry breaking. On the other hand,
it is again possible to dualize this Lagrangian. For an
unconstrained superfield Σ and a chiral Φ, we have

Ldual ¼ −
Z

d4θΣ̄Σþ
Z

d4θΣΦþ
Z

d4θΣ̄ Φ̄

− f
Z

d2θΦ − f
Z

d2θ̄ Φ̄ : ð30Þ

Then, by the equations of motion for Σ, we go to Eq. (27).
But the equations of motion for Φ give [30]

D̄2Σ ¼ f; ð31Þ

and the duality Lagrangian (30) becomes

L ¼ −
Z

d4θΣ̄Σ: ð32Þ

The Lagrangian (32) with the constraint (31) implies
supersymmetry breaking. Nevertheless, if one turns to
components, all auxiliary fields get a vanishing vacuum
expectation value. This peculiarity is resolved by turning
back to Eq. (30). Combining the equations of motion for Φ,
which are Eq. (31), with the Σ equations of motion

Σ̄ ¼ Φ; ð33Þ

COMPLEX LINEAR EFFECTIVE THEORY AND … PHYSICAL REVIEW D 91, 045024 (2015)

045024-3



one can see again that Eq. (31) is, in fact, a relabeling of the
chiral superfield supersymmetry breaking (28). Thus, the
constraint (31) already contains the information of super-
symmetry breaking originating by an underlying chiral
superfield of which the auxiliary field G indeed gets a
vacuum expectation value (vev) from Eq. (29).
Mechanisms to break supersymmetry by a complex

linear have recently been found, in which, indeed, the
auxiliary field of the complex linear superfield gets a vev
and signals supersymmetry breaking. Consider the
Lagrangian [21]

L ¼ −
Z

d4θΣΣ̄þ 1

8f2

Z
d4θDαΣDαΣD̄ _αΣ̄D̄ _αΣ̄: ð34Þ

The scalar auxiliary sector of this theory reads

LF ¼ −FF̄ þ 1

2f2
F2F̄2; ð35Þ

leading to the equations of motion

FðFF̄ − f2Þ ¼ 0: ð36Þ

The equation (40) on top of the supersymmetric solution

F ¼ 0 ð37Þ

has a second solution,

FF̄ ¼ f2; ð38Þ

which signals supersymmetry breakdown. It has been
shown that for models of this sort [21] the goldstino will
be one of the previously auxiliary fermion fields of the
theory, which propagates only in the broken branch. Its
supersymmetry transformation is

δλ ∼ hFiϵ: ð39Þ

One may also assume the existence of superspace higher
derivatives of higher dimension on top of Eq. (34), for
example,

LF ¼ −FF̄ þ 1

2f2
F2F̄2 þ 1

f04
F3F̄3 þ � � � ; ð40Þ

and investigate if the solution (38) is still valid even though
it has been found by ignoring the 1=f0 term. There are two
limiting cases in which conclusions can be drawn. First,
consider

1

f
≲ 1

f0
↔

f
f0

≳ 1: ð41Þ

In this case, Eq. (40) becomes

LF ¼ −
1

2
f2 þ f2

�
f
f0

�
4

þ � � � ; ð42Þ

which means that it is inconsistent to consider the solution
(38) since the terms we ignored are larger than the terms we
took into account in order to find the solution. The other
limiting case is the existence of a large hierarchy between
the two scales

1

f
≫

1

f0
↔

f
f0

≪ 1: ð43Þ

Then, Eq. (40) becomes

LF ¼ −
1

2
f2 þ f2

�
f
f0

�
4

þ � � � ; ð44Þ

and thus the higher-order terms are highly suppressed and
may be safely ignored. In fact, in a generic effective theory,
higher-order terms as in Eq. (40) will also be generated,
and the verification or not of the hierarchy (43) is a clear
signal for the existence or not of the new vacua. Of course,
depending on the mechanism responsible for the generation
of these superspace higher derivatives, one will in principle
find different results.

B. Gauge multiplets and gauging

A massive Uð1Þ vector multiplet is described by the
Lagrangian

L ¼
Z

d2θWαWα þ H:c:þ 1

2
M2

Z
d4θV2; ð45Þ

with V ¼ V̄ and

Wα ¼ iD̄2DαV: ð46Þ

The bosonic components of this multiplet are

Vj ¼ C; ð47Þ

D2Vj ¼ N; ð48Þ

1

2
½D̄ _α; Dα�Vj ¼ Aα _α; ð49Þ

1

2
DαD̄2DαVj ¼ D: ð50Þ

One may imagine that the massive Uð1Þ in Eq. (45) has
acquired a mass via a gauge-invariant mechanism, for
example, in interaction with a real linear multiplet L, as
described in Refs. [31,32]. In that case, we have the
Lagrangian
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L ¼
Z

d2θWαWα þ H:c:

−
1

2

Z
d4θL2 þM

Z
d4θLV; ð51Þ

which is invariant under

V → V þ iΛ̄ − iΛ; ð52Þ

due to

Z
d4θLΛ ¼

Z
d4θLΛ̄ ¼ 0; ð53Þ

for a chiral superfield Λ and real linear L. Note that by
dimensional analysis ½V� ¼ 0 and ½L� ¼ 1, and thus,
indeed, ½M� ¼ 1. One can then rewrite Eq. (51) as

L ¼
Z

d2θWαWα þ H:c: −
1

2

Z
d4θL2

þM
Z

d4θLV þ
Z

d4θLðSþ S̄Þ; ð54Þ

where now L is real but otherwise unconstrained and S is a
chiral multiplet that renders L linear on shell. Since now L
is unconstrained, we can integrate it out to find

L ¼
Z

d2θWαWα þ H:c:

þ 1

2

Z
d4θðMV þ Sþ S̄Þ2; ð55Þ

which, after a redefinition of V of the form (52) with
Λ ¼ iS, becomes Eq. (45). Here, the vector superfield has
eaten the real linear and became massive.
Since in the Lagrangian (45) we have a massive Uð1Þ,

it is possible to invert the propagator without gauge
fixing. We will nevertheless introduce a gauge-fixing term
parametrized by ξ,

LGF ¼ −ξ
Z

d4θD2VD̄2V; ð56Þ

which gives the final Lagrangian

L ¼
Z

d2θWαWα þ H:c: − ξ

Z
d4θD2VD̄2V

þ 1

2
M2

Z
d4θV2; ð57Þ

and the propagator of the massive vector superfield is

VV∶
�
−

1

p2 þM2

DD̄2D
p2

þ ξ−1

p2 þ ξ−1M2

D2D̄2 þ D̄2D2

p2

�

× δ4ðθ − θ0Þ: ð58Þ

One can now have three different forms for the propagator,
depending on the value of ξ:

(i) For no gauge fixing (ξ ¼ 0), the propagator becomes

VV∶
�
−

1

p2 þM2

DD̄2D
p2

þ 1

M2

D2D̄2 þ D̄2D2

p2

�

× δ4ðθ − θ0Þ: ð59Þ
(ii) In the Feynman gauge (ξ ¼ 1), it becomes

VV∶ −
1

p2 þM2
δ4ðθ − θ0Þ: ð60Þ

(iii) In the Landau gauge (ξ ¼ ∞), it becomes

VV∶ −
1

p2 þM2

DD̄2D
p2

δ4ðθ − θ0Þ: ð61Þ

We will perform our calculations in the Feynman gauge.
Note that in the Landau gauge (61) and the Feynman
gauge (60) it is consistent to set M ¼ 0, but for the
propagator without gauge fixing (59), taking the limit
M → 0 results in a singularity, as expected.
The gauging of a chiral multiplet is well known to be

L ¼
Z

d4θΦ̄eVΦ; ð62Þ

where the vector transforms as shown in Eq. (52) and the
chiral superfield transforms as

Φ → Φ0 ¼ eiΛΦ; ð63Þ

for a chiral Λ. It is easy to verify that the transformed
superfield is still chiral,

D̄ _αΦ0 ¼ D̄ _αðeiΛΦÞ ¼ 0: ð64Þ

The gauging of the complex linear is

L ¼ −
Z

d4θΣ̄eVΣ; ð65Þ

but note that the gauge transformation of Σ is again

Σ → Σ0 ¼ eiΛΣ; ð66Þ

where Λ is still chiral. It is easy to verify that the trans-
formed superfield remains “complex linear,”
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D̄2Σ0 ¼ D̄2ðeiΛΣÞ ¼ eiΛD̄2ðΣÞ ¼ 0: ð67Þ

On the other hand, a transformation of the form

Σ → Σ0 ¼ eiSΣ ð68Þ

for a complex linear S would violate the complex linearity
of the Σ superfield due to the fact that

D̄2Sn ≠ 0; for n > 1: ð69Þ

A transformation (68) would also lead to a second
complication. The invariance of Eq. (65) would require

V → V þ iS̄ − iS: ð70Þ

But the field strength of the gauge superfield

Wα ¼ iD̄2DαV ð71Þ

is not invariant under Eq. (70) since

iD̄2Dαð−iSþ iS̄Þ ≠ 0: ð72Þ

III. GAUGED MASSLESS COMPLEX
LINEAR AND MASSIVE Uð1Þ

We start with a model of a massless complex linear
coupled to a massive Uð1Þ. We calculate the effective low-
energy theory for the scalar multiplet by integrating out
the massive vector superfield. We find that the effective
theory on top of the corrections to the Kähler potential also
contains superspace higher derivatives that lead to the
deformations of the auxiliary potential.
Our theory has the form in superspace of

L ¼ −
Z

d4θΣ̄egVΣþ
Z

d2θWαWα þ H:c:

− ξ

Z
d4θD2VD̄2V þ 1

2
M2

Z
d4θV2; ð73Þ

which is easily shown to be classically equivalent to a
gauged chiral superfield theory coupled to a massive vector
superfield by gauging the Lagrangian (14) for the dual
superfields having opposite Uð1Þ charge. Here, the gauge
transformation for Σ is

Σ → eigΛΣ: ð74Þ

The model (73) gives rise to the vertices shown in Figs. 1
and 2 [up to Oðg2Þ]. The renormalizability is understood in
terms of gauge invariance, and the no tree-level supersym-
metry breaking is understood by a straightforward compo-
nent expansion. Indeed, the scalar nonderivative sector of
the Lagrangian (73) is

L ¼ −FF̄ þ NN̄ þ Dð−gAĀþM2CÞ þ ð1 − ξÞD2;

ð75Þ

which has no other vacuum than

hFi ¼ hNi ¼ hDi ¼ 0: ð76Þ

To calculate the vacuum structure of the tree-level theory
[Eq. (75)], we have written the gauge-invariant terms in
the Wess–Zumino gauge. Of course, when calculating the
radiative corrections, one should not turn to the W-Z gauge
for the quantum fluctuations even though it is possible
to do so for the background vector superfield (see, for
example, Ref. [3]).
To find the low-energy effective theory for Σ, we work

in two steps:
(1) We write down the one-loop corrections to the

vertices.
(2) Then, we integrate out the massive vector superfield.

Here, we will keep terms up to

O
�

1

M4

�
; ð77Þ

since this is the scale in which the auxiliary field potential
deformation comes in. Because of the massless complex
linear multiplet, the diagrams under consideration will have
infrared divergences, and thus we will calculate the loop
momenta integrals with an IR cutoff.

Λ∶ IR cutoff: ð78Þ

Moreover, since for the moment we are only interested in
finding contributions to the scalar potential, we will set the

FIG. 1. Vertex due to gauging.

FIG. 2. Vertex due to gauging.
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external momenta to zero or, equivalently, impose the
condition

∂aΣ ¼ ∂aΣ̄ ¼ 0; ð79Þ

which is allowed by supersymmetry.
The one-loop corrections to the VΣΣ̄ vertex are given by

the diagrams in Figs. 3, 4, and 5 with corresponding terms
in the effective theory:

L3 ¼
g3

16π2
AðϵÞ

Z
d4θΣΣ̄V

þ g3

16π2M2
ln

�
Λ2 þM2

Λ2

�Z
d4θΣΣ̄D2D̄2V;

L4 ¼ −
g3

16π2
AðϵÞ

Z
d4θΣΣ̄V;

L5 ¼ −
g3

16π2
AðϵÞ

Z
d4θΣΣ̄V: ð80Þ

The factor AðϵÞ contains the poles due to the UV
divergencies and finite terms:

AðϵÞ ¼ 2

ϵ
þ 1 − γ þ lnð4πÞ − ln

�
Λ2 þM2

μ2

�
: ð81Þ

We have introduced the renormalization scale μ in order for
g to remain dimensionless,

g → μϵ=2g; ð82Þ

during the regularization. Then, we have the diagram
shown in Fig. 6, which represents a vertex containing
the tree-level vertex (1) along with the loop corrections
(3–5) and can be written in the effective theory as

L3 ¼
Z

d4θð−gΣ̄VΣÞ þ L2ðaÞ þ L2ðbÞ þ L2ðcÞ

¼
Z

d4θ
�
−gΣ̄VΣ

þ g3

16π2M2
ln

�
Λ2 þM2

Λ2

�
ΣΣ̄D2D̄2V

�
; ð83Þ

where we have absorbed the finite parts of the loop
corrections to the tree-level vertex by redefining g. Since
we want to integrate out the vector superfield, the leading
diagrams to this order due to the vertex corrections, relevant
to our results, are shown in the Figs. 7 and 8 and lead to the
effective interactions

L7 ¼ −
g2

2M2

Z
d4θΣ2Σ̄2

þ g4

16π2M4
ln

�
Λ2 þM2

Λ2

�Z
d4θD2ðΣΣ̄ÞD̄2ðΣΣ̄Þ

ð84Þ

and

FIG. 3. One-loop correction to the ΣΣ̄V vertex.

FIG. 4. One-loop correction to the ΣΣ̄V vertex.

FIG. 5. One-loop correction to the ΣΣ̄V vertex.

FIG. 6. Tree-level and one-loop corrections to the ΣΣ̄V vertex.

FIG. 7. Effective interactions from integrating out V.
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L8 ¼ −
g4

6

Z
d4θ

1

M4
Σ3Σ̄3: ð85Þ

The one-loop corrections to the four sigma vertex terms
are given by the diagrams in Figs. 9, 10, and 11, with
corresponding terms

L9 ¼
g4

32π2ðM2 þ Λ2Þ
Z

d4θΣ2Σ̄2

þ g4

32π2M4

Z
d4θ

�
ln

�
Λ2 þM2

Λ2

�

−
M2

ðΛ2 þM2Þ
�
D2ðΣΣ̄ÞD̄2ðΣΣ̄Þ;

L10 ¼
g4

16π2ðM2 þ Λ2Þ
Z

d4θΣ2Σ̄2

þ g4

32π2M4

Z
d4θ

�
ln

�
Λ2 þM2

Λ2

�

−
M2

ðΛ2 þM2Þ
�
D2ðΣ̄2ÞD̄2ðΣ2Þ ð86Þ

and

L11 ¼ −
g4

16π2ðM2 þ Λ2Þ
Z

d4θΣ2Σ̄2: ð87Þ

Gathering the quantum corrections up to order 1=M4,
we have for Σ

LΣ;eff ¼ − T
Z

d4θΣ̄Σ − P
Z

d4θΣ2Σ̄2 −Q
Z

d4θΣ3Σ̄3

þR
Z

d4θD2ðΣΣ̄ÞD̄2ðΣΣ̄Þ

þ S
Z

d4θD2ðΣ̄2ÞD̄2ðΣ2Þ; ð88Þ

with

T ¼ 1þOðg2Þ; ð89Þ

P ¼ g2

2M2
þOðg4Þ; ð90Þ

Q ¼ g4

6M4
þOðg6Þ ð91Þ

and

R ¼ g4

16π2M4

�
2 ln

�
Λ2 þM2

Λ2

�
−

M2

ðΛ2 þM2Þ
�
þOðg6Þ;

S ¼ g4

32π2M4

�
ln

�
Λ2 þM2

Λ2

�
−

M2

ðΛ2 þM2Þ
�
þOðg6Þ:

ð92Þ

We see that superspace higher derivatives of a similar
form as those introduced in Ref. [21] are indeed generated
by quantum corrections. The scalar sector of the
Lagrangian (88) is

FIG. 9. One-loop correction to the Σ2Σ̄2 vertex.

FIG. 10. One-loop correction to the Σ2Σ̄2 vertex.

FIG. 11. The one-loop correction to the Σ2Σ̄2 vertex.

FIG. 8. Effective interactions from integrating out V.
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Lscalar
Σ;eff ¼ − FF̄½T þ 4PAĀþ 9QA2Ā2�

þ F2F̄2R; ð93Þ

where the impact of the superspace higher derivatives on
the auxiliary field’s effective potential is manifest.

IV. GAUGED MASSIVE HYPERMULTIPLET
AND MASSIVE Uð1Þ

A massive complex linear Σ is defined by the super-
symmetric condition

D̄2Σ ¼ mΦ; ð94Þ

where Φ is a chiral superfield. Thus, Σ acquires a mass m
in tandem with the chiral multiplet Φ [23]. It is, in fact,
equivalent to a massive N ¼ 2 hypermultiplet [28]. In a
gauged Uð1Þ model, both Σ and Φ transform with the same
charge:

Σ → eigΛΣ; Φ → eigΛΦ: ð95Þ

We employ the following superspace Lagrangian:

L ¼ −
Z

d4θΣ̄egVΣþ
Z

d4θΦ̄egVΦ

þ
Z

d2θWαWαðVÞ þ H:c:

− ξ

Z
d4θD2VD̄2V þ 1

2
M2

Z
d4θV2: ð96Þ

The scalar nonderivative component sector of theory (96) is

L ¼ − FF̄ þ NN̄ þ Dðgzz̄ − gAĀþM2CÞ
þ ð1 − ξÞD2 −m2zz̄ −mAḠ −mĀGþ GḠ; ð97Þ

with a supersymmetric vacuum

hFi ¼ hGi ¼ hNi ¼ hDi ¼ 0: ð98Þ

We now turn to the quantum corrections. A way to
rewrite the complex linear multiplet constraint is by
splitting Σ into a background field Σ0 and the quantum
fluctuations σ as follows:

Σ ¼ Σ0 þ σ: ð99Þ

For the gauge multiplet, we consider no background field,

V ¼ 0þ V; ð100Þ

and for the chiral superfield, we have

Φ ¼ 0þ φ; ð101Þ

where

D̄2σ ¼ Mφ ð102Þ

and

D̄2Σ0 ¼ 0: ð103Þ

Here, we have set the hypermultiplet mass equal to the
vector multiplet mass for simplicity, and we will keep it like
this. This is not merely technical, since if these masses
originate from the same physics, they will also be of the
same order.

A. Propagator renormalization

The corrections to the vector propagator due to σ loops
are given by the diagrams in Figs. 12 and 13 and contribute
to the effective theory as

L12 ¼
g2

32π2

Z
d4θ

Z
d4kVð−kÞ

�
−M2 −

1

6
k2

þ 1

2
BðϵÞDαD̄2Dα

�
VðkÞ;

L13 ¼
g2

32π2

Z
d4θ

Z
d4kVð−kÞM2ðBðϵÞ þ 1ÞVðkÞ;

ð104Þ

where

BðϵÞ ¼ 2

ϵ
− γ þ lnð4πÞ − ln

�
M2

μ2

�
: ð105Þ

Corrections due to φ loops are given by the diagrams shown
in Figs. 14 and 15 and contribute to the effective theory as

FIG. 12. One-loop correction to the vector propagator from the
σ superfield.

FIG. 13. One-loop correction to the vector propagator from the
σ superfield.
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L14 ¼
g2

32π2

Z
d4θ

Z
d4kVð−kÞ

�
2BðϵÞM2 þM2 −

1

6
k2

þ 1

2
BðϵÞDαD̄2DαVðkÞ

�
;

L15 ¼ −
g2

32π2

Z
d4θ

Z
d4kVð−kÞM2ðBðϵÞ þ 1ÞVðkÞ:

ð106Þ
There is finally a mixed-loop diagram shown in Fig. 16,

contributing to the effective theory as

L16 ¼ −
g2

32π2

Z
d4θ

Z
d4kVð−kÞ

�
2BðϵÞM2 −

1

3
k2
�
VðkÞ:

ð107Þ
Summing up the different contributions, one gets

L ¼ L12 þ L13 þ L14 þ L15 þ L16

¼ g2

32π2

Z
d4θ

Z
d4kVð−kÞBðϵÞDαD̄2DαVðkÞ: ð108Þ

It is gratifying to see that the quadratic divergencies cancel
and that the contribution is purely transversal as it should be
for gauge invariance.
For the background complex linear, we have the diagram

in Fig. 17,

L17 ¼ −
g2

16π2

Z
d4θ

Z
d4kΣð−kÞ

�
BðϵÞM2 −

1

6
k2
�
Σ̄ðkÞ;

ð109Þ

which will give us the Σ0 wave function renormalization.

B. Vertices and integrating out

We now wish to integrate out all the massive fluctuations
and find the low-energy effective theory for the background
field Σ0. Again, we consider the gauge coupling g to be
small. Note also that, now the complex linear superfield is
massive, there will be no IR divergence.
The one-loop corrections to the VΣΣ̄ vertex are given by

the diagrams in Figs. 18 and 19 with corresponding terms
in the effective theory,

L18 ¼
g3

32π2M2

Z
d4θ

Z
d4pextΣ1Σ̄2

�
M2 þ 2M2BðϵÞ − 1

3
p2
1 −

1

6
p1p2 −

1

3
p2
2

�
V5

þ g3

32π2M2

Z
d4θ

Z
d4pextΣ1Σ̄2

�
−
�
1

6
p1 þ

1

3
p5

�
α _α

D̄ _αDαV5 −
�
1

6
p2 þ

1

3
p5

�
α _α

DαD̄ _αV5

�

þ g3

32π2M2

Z
d4θ

Z
d4pext

�
1

2
Σ1Σ̄2fD2; D̄2gV5

�
; ð110Þ

FIG. 15. One-loop correction to the vector propagator from the
φ superfield.

FIG. 16. One-loop correction to the vector propagator from the
φ and σ superfields.

FIG. 17. One-loop correction to the background superfield.

FIG. 14. One-loop correction to the vector propagator from the
φ superfield.

FIG. 18. One-loop correction to the Σ0Σ̄0V vertex.
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L19 ¼ −
g3

32π2M2

Z
d4θ

Z
d4pextΣ1Σ̄2V5

×

�
M2 −

1

6
p2
1 −

1

6
p1p2 −

1

6
p2
2

�
; ð111Þ

where

Z
d4pext ¼ ð2πÞ4δ

�X
i

pi

�Y
i

Z
d4pi

ð2πÞ4 : ð112Þ

Here, pi are the external momenta, and the subscript i on
the superfields implies their momentum, for example,

Σi ¼
Z

d4xΣ0ðx; θ; θ̄Þe−ixpi : ð113Þ

In the above diagrams (and the subsequent), we have
calculated the external momenta contribution in the limit

p2
ext

M2
≪ 1: ð114Þ

We also have the diagrams shown in Figs. 23 and 24,
which lead to the terms

L20¼
g3

16π2M2

Z
d4θ

Z
d4pextΣ1Σ̄2V5

�
−M2BðϵÞþ1

6
p2
1

�
;

ð115Þ

L21¼
g3

16π2M2

Z
d4θ

Z
d4pextΣ1Σ̄2V5

�
−M2BðϵÞþ1

6
p2
2

�
:

ð116Þ

Then, we have a diagram shown in Fig. 20, which
represents a vertex containing the tree-level vertex (1) along
with the loop corrections (18–24) and can be written in the
effective theory as

L22 ¼
Z

d4θð−gΣ̄0VΣ0Þ þ L18 þ L19 þ L20 þ L21

¼
Z

d4θð−gΣ̄0VΣ0Þ þ
g3

32π2M2

Z
d4θ

Z
d4pextΣ1Σ̄2

�
1

6
p2
1 þ

1

6
p2
2 þ

1

2
fD2; D̄2g

�
V5

þ g3

32π2M2

Z
d4θ

Z
d4pextΣ1Σ̄2

�
−
�
1

6
p1 þ

1

3
p5

�
α _α

D̄ _αDαV5 −
�
1

6
p2 þ

1

3
p5

�
α _α

DαD̄ _αV5

�

¼
Z

d4θð−gΣ̄0VΣ0Þ þ
g3

32π2M2

Z
d4θ

Z
d4pextΣ1Σ̄2

�
1

6
p2
1 þ

1

6
p2
2 þ

1

2
D̄D2D̄

�
V5

þ g3

32π2M2

Z
d4θ

Z
d4pextΣ1Σ̄2

�
−

1

12
ðp1 − p2Þα _α½Dα; D̄ _α�V5

�
; ð117Þ

where we have absorbed the finite parts of the loop corrections by redefining g. Since we want to integrate out the
vector superfield, the leading diagrams to this order due to the vertex corrections, relevant to our results, are shown in
Figs. 21 and 22 and lead to the effective interactions

FIG. 19. One-loop correction to the Σ0Σ̄0V vertex. FIG. 20. Tree-level and one-loop corrections to the Σ0Σ̄0V
vertex.

FIG. 21. Effective interactions due to integrating out V.
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L23 ¼ −
g2

2M2

Z
d4θΣ2

0Σ̄2
0 þ

g4

64π2M4

Z
d4θ

Z
d4pextΣ1Σ̄2D̄D2D̄ðΣ3Σ̄4Þ

þ g2

4M4

Z
d4θ

Z
d4pextΣ1Σ̄2Σ3Σ̄4fðp1 þ p2Þ2 þ ðp3 þ p4Þ2g

þ g4

32π2M4

Z
d4θ

Z
d4pextΣ1Σ̄2

�
1

12
p2
1 þ

1

12
p2
2 þ

1

12
p2
3 þ

1

12
p2
4

�
ðΣ3Σ̄4Þ

þ g4

64π2M4

Z
d4θ

Z
d4pextΣ1Σ̄2

�
−

1

12
ðp1 − p2Þα _α½Dα; D̄ _α�ðΣ3Σ̄4Þ

�

þ g4

64π2M4

Z
d4θ

Z
d4pextΣ3Σ̄4

�
−

1

12
ðp3 − p4Þα _α½Dα; D̄ _α�ðΣ1Σ̄2Þ

�
ð118Þ

and

L24 ¼ −
g4

6M4

Z
d4θΣ3

0Σ̄3
0: ð119Þ

The one-loop corrections to the Σ2
0Σ̄2

0 vertex are given by the diagrams in Figs. 25, 26, and 27, for which we have

FIG. 22. Effective interactions due to integrating out V.

FIG. 23. One-loop correction to the Σ0Σ̄0V vertex.

FIG. 24. One-loop correction to the Σ0Σ̄0V vertex.

FIG. 25. One-loop correction to the Σ2
0Σ̄2

0 vertex.

FIG. 26. One-loop correction to the Σ2
0Σ̄2

0 vertex.

FIG. 27. One-loop correction to the Σ2
0Σ̄2

0 vertex.
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L25 ¼
g4

32π2M4

Z
d4θ

Z
d4pextΣ1Σ̄2

�
2

3
M2 −

1

48
ðp2

1 þ p2
2 þ p2

3 þ p2
4Þ −

23

120
ðp1 þ p2Þ2 −

1

60
ðp1 þ p3Þ2

þ 1

6
D̄2D2 −

1

48
ðp2 þ p4Þα _α½Dα; D̄ _α�

�
Σ3Σ̄4; ð120Þ

L26 ¼
g4

32π2M4

Z
d4θ

Z
d4pextΣ1Σ3

�
M2 −

1

12
p2
1 −

1

12
p1p2 −

1

12
p2
2−

1

12
p2
3 −

1

12
p3p4 −

1

12
p2
4 þ

1

6
D̄2D2

�
Σ̄2Σ̄4;

ð121Þ

L27 ¼ −
g4

32π2M4

Z
d4θ

Z
d4pextΣ1Σ̄2Σ3Σ̄4

�
M2 −

1

6
p2
1 −

1

6
p1p4 −

1

6
p2
4

�
; ð122Þ

leading to the effective interactions

L25 þ L26 þ L27 ¼
g4

32π2M4

Z
d4θ

Z
d4pextΣ1Σ̄2

�
2

3
M2 −

1

48
ðp2

1 þ p2
2 þ p2

3 þ p2
4Þ−

23

120
ðp1 þ p2Þ2 −

1

60
ðp1 þ p3Þ2

þ 1

3
D̄2D2 −

1

48
ðp2 þ p4Þα _α½Dα; D̄ _α�

�
Σ3Σ̄4: ð123Þ

Now, we can calculate the leading contributions to the
off-shell effective potential of the theory. As we see, it
receives contributions both from the effective Kähler
potential but also from the deformation of the auxiliary
field potential. Gathering the relevant quantum corrections,
we have for the background superfield Σ0

LΣ0;eff ¼ −T 0
Z

d4θΣ̄0Σ0 − P0
Z

d4θΣ2
0Σ̄2

0

−Q0
Z

d4θΣ3
0Σ̄3

0 þR0
Z

d4θD2ðΣ0Σ̄0ÞD̄2ðΣ0Σ̄0Þ

þ S0
Z

d4θD2ðΣ̄2
0ÞD̄2ðΣ2

0Þ; ð124Þ

with

T 0 ¼ 1þOðg2Þ; ð125Þ

P0 ¼ g2

2M2
þOðg4Þ; ð126Þ

Q0 ¼ g4

6M4
þOðg6Þ; ð127Þ

and for the superspace higher-derivative operators

R0 ¼ 7g4

192π2M4
þOðg6Þ; ð128Þ

S0 ¼ g4

192π2M4
þOðg6Þ: ð129Þ

Note that in the Lagrangian (124) various superspace
higher derivatives have been generated radiatively.

C. Vacuum structure

Let us focus on the scalar nonderivative sector of
Lagrangian (124), which reads

Lscalar
Σ0;eff

¼ − F0F̄0½T 0 þ 4P0A0Ā0 þ 9Q0A2
0Ā

2
0� þ F2

0F̄
2
0R

0:

ð130Þ
We see that the effective theory has an intriguing similarity
to the models of Ref. [21]. Indeed, the equation of motion
for F0 has two solutions:

(i) Standard branch:

F0 ¼ 0: ð131Þ

(ii) Broken branch:

F0F̄0 ¼
1

2R0 ½T 0 þ 4P0A0Ā0 þ 9Q0A2
0Ā

2
0�: ð132Þ

The scalar potential of the broken branch will have the
form

V ¼ 1

4R0 ½T 0 þ 4P0A0Ā0 þ 9Q0A2
0Ā

2
0�2; ð133Þ
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leading to a positive vacuum energy, and a supersymmetry
breaking scale

hF0F̄0i ¼
T 0

2R0 ¼
96π2M4

7g4
: ð134Þ

Note that in this new vacuum jF0j has a dependence on
M2=g2, which gives rise to the question of higher-order
corrections. In other words, this solution can only be trusted
if there exists a hierarchy between the leading superspace
higher derivatives and the subsequent ones. If one naively
estimates the one-loop contribution to higher point func-
tions such as the six- and eight-point graphs of Figs. 28
and 29, one sees that the minimum of the potential is
shifted. Namely, the contribution from the 2n-point dia-
gram to the effective potential of the auxiliary field goes as

ð−1ÞnM4

�
g2FF̄
M4

�
n

: ð135Þ

The auxiliary field potential will have a generic form,

LF ¼ M4h

�
g2FF̄
M4

�
− FF̄; ð136Þ

but from Eq. (135), we see that the higher-order terms do
not satisfy the hierarchy criterion (43) required for reliable
results on supersymmetry breaking, and a complete knowl-
edge of the form of Eq. (136) would in principle be
required.
Even though we do not have an exact form for the

higher-order corrections, we can still ask if generically
supersymmetry is broken in the low-energy limit by
studying the renormalization group flow. We can draw
reliable results if we study a generic term of the form

Z
d4θλðjÞðDΣÞ2ðD̄ Σ̄Þ2ðD2ΣD̄2Σ̄Þj; ð137Þ

which could arise from the quantum corrections, in which
the dimension of λðjÞ is −4ðjþ 1Þ.
Let us define the bare action as

Lbare¼
Z

d4θðVbDαD̄2DαVbþM2
bV

2
b−ΣbΣ̄b−gbVbΣbΣ̄bÞ

¼
Z

d4θðZVVDαD̄2DαVþM2V2

−ZΣΣΣ̄−ZαgVΣΣ̄Þ; ð138Þ

from which we find

ZΣ ¼ 1 −
4α

ϵ
;

ZV ¼ 1 −
2α

ϵ
;

Zα ¼ 1 −
4α

ϵ
; ð139Þ

with

α ¼ g2

32π2
: ð140Þ

Since the bare coupling

αb ¼ μϵα
Z2

α

Z2
ΣZV

ð141Þ

is independent of the scale μ, we have

d ln α
d ln μ

¼ −ϵþ 2αþOðα2Þ; ð142Þ

giving βα ¼ 2α. Similarly, we find

FIG. 28. Higher-order diagram.

FIG. 29. Higher-order diagram.
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1

M
dM
d ln μ

¼ αþOðα2Þ: ð143Þ

The bare action for the higher-dimension operators is
defined asZ

d4θλðjÞb ðDΣbÞ2ðD̄Σ̄bÞ2ðD2ΣbD̄2Σ̄bÞj: ð144Þ

The wave function renormalization gives us a relation
between the bare and the renormalized λ,

λðjÞb ¼ λðjÞðZΣÞ−j−2: ð145Þ

In terms of the dimensionless parameter ~λðjÞ ¼
λðjÞμðjþ1Þð4−ϵÞ, we have

λðjÞ0 ¼ ~λðjÞðZΣÞ−j−2μðjþ1Þðϵ−4Þ; ð146Þ
which gives

d ln ~λðjÞ

d ln μ
¼ 4ðjþ 1Þ þ 4ðjþ 2Þα: ð147Þ

We now want to study the emergence of the hierarchy.

This translates into comparing ðλð0ÞÞ14 to ðλðjÞÞ 1
4ðjþ1Þ in the

low-energy limit. We find

d
d ln μ

�
1

4
lnðλð0ÞÞ − 1

4ðjþ 1Þ lnðλ
ðjÞÞ

�
¼ j

jþ 1
α: ð148Þ

From formula (148), we conclude that, even though the
quantum corrections generate the superspace higher deriv-
atives responsible for supersymmetry breaking, they do
not generate the required hierarchy between the leading
and the subsequent terms, and thus the solution leading to the
brokenbranchcannotbe trusted. Inotherwords, thequantum
correctionsalonecannot leadto thesupersymmetrybreaking.
Our results show that in the case in which supersymmetry is
broken by the mechanism of Ref. [21], these superspace
higher derivatives have to be related to the underlying theory
or rely on some other mechanism to be generated.
Note that in a different setup in which βα < 0 in

formula (142) the model would have the opposite behavior

in the low energy, leading to a hierarchy and a reliable
supersymmetry breaking branch.

V. DISCUSSION

In this work, we have studied low-energy effective
theories for complex linear superfields. We have calculated
the quantum corrections to the effective action including
also the superspace higher-derivative terms on top of the
usual corrections to the Kähler potential. This was done by
calculating tree-level and one-loop quantum corrections
and then integrating out the massive sector.
Our motivation was related to the properties of such

operators concerning supersymmetry breaking. We under-
lined that a hierarchy between the higher-dimension oper-
ators is essential for the supersymmetry breaking vacua
to be consistent. Turning to the effective theory, we have
verified that indeed these operators are generated by the
radiative corrections. On the other hand, the required
hierarchy between the leading terms and the subsequent
ones sufficient for supersymmetry breaking was not found.
This led us to conclude that if supersymmetry is broken by
the specific superspace higher derivatives these terms have
to originate from the underlying theory or another mecha-
nism with different IR properties for the beta function.
We close with a comment on the case in which one does

not integrate out the massive modes. In such a case, the
auxiliary field deformation terms for all the multiplets have
to be taken into account. The theory, after the radiative
corrections are introduced, would be of the form (e.g., for a
complex linear and a vector superfield)

L ⊃ D2 − FF̄ þ 1

M4
D4 þ 1

M4
F2F̄2 � � � ð149Þ

The study of the vacuum structure of a theory like Eq. (149)
is left for future work.
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