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Complex linear effective theory and supersymmetry breaking vacua
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We calculate the low-energy effective action of massless and massive complex linear superfields coupled
to a massive U(1) vector multiplet. Our calculations include superspace higher-derivative corrections
and therefore go beyond previous results. Among the superspace higher derivatives, we find that terms that
lead to a deformation of the auxiliary field potential and may break supersymmetry are also generated. We
show that the supersymmetry breaking vacua can only be trusted if there exists a hierarchy between the
higher-order terms. A renormalization group analysis shows that generically a hierarchy is not generated by

the quantum corrections.
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I. INTRODUCTION

Supersymmetric theories (see, for example, Refs. [1,2])
are candidates for describing physics beyond the electro-
weak scale. Despite their many virtues, the observed
elementary particle spectrum signals that we live in a
vacuum in which supersymmetry has to be broken, thus
leading to a lift of the mass degeneracy of the fermionic and
bosonic states. In a quantum field theory, to understand the
true vacuum structure, one has to take into account the
quantum corrections, which in principle will include all
the terms allowed by the symmetries.

For chiral models, the effective Kéhler potential and
superpotential are well known [3-6]. Effective theories
will also include higher-dimension operators that contain
superspace higher derivatives. The possible effect of these
superspace higher derivatives on the vacuum structure
was initially investigated in Ref. [7], but no conventional
supersymmetry breaking was found. Indeed, as has been
shown in Refs. [8-10], even though new branches exist,
they have to be sustained by nontrivial background fluxes.
The specific higher-derivative superspace operators used in
Refs. [7-10] were shown to be generated by perturbation
theory in the work of Refs. [4,5,11], but they were
also related to effective actions originating from a more
fundamental theory [12—16]. Note that models of this sort
have also been used to describe supersymmetric Skyrmions
[17-20]. In Ref. [21], linear and complex linear multiplets
have also been studied, and the resulting theories have a
new broken branch admitting nonlinear supersymmetry. In
these theories, there are examples in which no background
flux is needed to sustain the broken branch.

Another important aspect of supersymmetric theories is
the various existing supermultiplets. The most common in
use are the chiral multiplet and the gauge multiplet. The
gauge multiplet is somehow unique. The same is not true
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for the chiral multiplet; there exist other supermultiplets
with the same on-shell field content. These superfields are
classically equivalent but with different quantum proper-
ties. In fact, the role of the variant [22,23] scalar multiplets
has been little appreciated. It is possible that matter fields
are not accommodated into a chiral multiplet, but rather
into a complex linear multiplet, for example, and the same
goes for the supersymmetry breaking sector.

The quantum properties of complex linear supermultiplets
have been studied before [24-27], and it was shown that
the general quantization procedure is rather involved. If one
solves the constraints by introducing prepotentials, oneis faced
with a theory with a gauge symmetry that needs to be fixed. In
the Batalin-Vilkovisky formalism, this leads to an infinite
tower of ghosts. However, as was shown in Ref. [25], if the
complex linear superfield prepotentials appear only through
their field strengths (i.e., the superfields themselves), the
ghosts decouple, and one may ignore many of the complica-
tions originating in the infinite ghost sector. In Ref. [25], the
effective Kihler potential of the sigma model defined in terms
of chiral superfields or its dual defined in terms of complex
linear superfields was shown to remain dual at one loop. In this
work, we go beyond the known results about the effective
Kihler potential, and we calculate all the one-loop corrections
that also include superspace higher derivatives.

Superspace higher derivatives of complex linear multip-
lets have an intriguing effect: they deform the auxiliary
field potential in such a way that the auxiliary field
equations of motion have more than one solution, and
the new solutions lead to vacua in which supersymmetry is
spontaneously broken. Recently, the structures of various
theories with this possibility were presented [21]. The
standard property is the auxiliary structure

- 1 _
Lo = —FF + 2—sz2F2, (1)
leading to new nonsupersymmetric vacua when the

auxiliary field F is integrated out. Indeed, on top of the
standard solution
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F=0 (2)

now exists a second solution to the equations of motion
of F,

FF = f2, 3)

which implies supersymmetry breaking. Moreover, in a
generic study on supersymmetric effective theories, one
should take into account these terms since they deform the
auxiliary field potential and thus have an indispensable
effect on the scalar potential as well. It is then clear that
an effective theory should not be restricted to the evaluation
of the form of the effective Kéhler potential only but also
to the evaluation of the superspace higher-derivative
operators, which are always generated.

Our work is organized as follows. In the next section, we
review the basic formalism about classical and quantum
superfields and present the scalar multiplets variant pic-
tures. In Sec. III, we work with a massless complex linear
multiplet coupled to a massive U(1), which we integrate
out, and calculate the low-energy effective theory and the
deformation in the auxiliary field potential. In Sec. IV, we
work with a massive complex linear multiplet coupled to a
massive U(1), and by integrating out the massive sector, we
calculate the low energy effective theory and study the
vacuum structure and the flow of the supersymmetry
breaking operators under the renormalization group. We
conclude with a short discussion in Sec. V.

II. SHORT REVIEW OF SUPERFIELD METHODS

Here, we review known results in four-dimensional,
N = 1 superspace concerning some classical and quantum
properties, which we will use throughout our work. For our
conventions, one may consult Ref. [1].

A. Scalar multiplets and hypermultiplets

In supersymmetric field theories, there exist different
ways of introducing physical scalar fields into supermul-
tiplets. These different ways and their equivalences can
be understood in terms of dualities between the various
superfields. For example, a chiral superfield is defined by
the condition

D;®=0 (4)

and has bosonic components
D] =z, (5)
D*®| = G. (6)

A free chiral superfield is described by the Lagrangian
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L— / 050, (7)

which leads to the superspace equations of motion
D?*® = 0. (8)

On the other hand, a complex linear superfield [22] is
defined by the condition

D= =0, 9)

with superspace Lagrangian
L= —/d“HiZ, (10)

for the free theory. The bosonic components of the complex
linear are

3| =A, (11)
D3| =F, (12)
D;D,z| = P, (13)

Note that this multiplet can be consistently coupled to
supersymmetric Yang—Mills theories [25,26].

The equivalence between the two can be understood by
using the Lagrangian

Lawa = = / d*O%% + / d*OZP + / 0L (14)

for a chiral superfield ® but an unconstrained X. Then,
integrating out ¢ gives a complex linear condition (9) on X,
and the dual Lagrangian (14) becomes (10), but integrating
out X, we find

S =9, (15)

and after we plug back into Eq. (14), we recover the
Lagrangian (7). For this reason, the chiral multiplet is
commonly used: it is classically equivalent to the linear
super multiplet, and it is simpler to deal with. The
propagators of the chiral and the complex linear superfields
are given by

__ D?D?

O S 50-9), (16)
_ D*D?
3 [1+ 7 ]54(9—9'). (17)
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Because of the structure of the complex linear multiplet,
it is only possible that it acquires a mass in tandem with a
chiral multiplet [23]. This is done by modifying the
complex linear constraint to

DS = md. (18)

The way to understand the constraint is by dualizing the
massive chiral superfield Lagrangian

L= /d4e<i><1> —%/dzé@z —%/ 22032, (19)

For an unconstrained superfield X and a chiral ®, we have
Liyal = — / d*oXT + / d*ozd + / d*0L ®

—% / 203> —% / 2032, (20)

Then, by the equations of motion for %, we go to Eq. (19).
But the equations of motion for ¢ give (18)

DY = m®.

If on top of these, we use the X equation of motion ¥ = ®
and find

DS = m3, (21)

which is the equation of motion for a massive chiral
superfield; in other words, this is a chiral superfield in
the disguise of a complex linear [2]. Thus, it is not possible
to have a pure massive complex linear because it will
always be, in fact, a relabeling of the massive chiral
multiplet. It is then clear that the condition (18) indeed
represents a massive complex linear, but it is not possible
to solve this condition in terms of X alone, as we did before,
thus completely disposing of the chiral. To have a truly
massive complex linear superfield, the chiral one has to stay
in the picture as well. The consistent way to write the
massive Lagrangian is

L=~ / d*o%x + / d*00d, (22)

with the condition (18) for X. The mass terms are not
manifest in Eq. (22), but they are of course there in the
component form [23]. Imposing the condition (18) via a
Lagrange multiplier [28] also makes the mass terms appear
in superspace, and then one can find the standard propa-
gators for the massive theory,

- D*D?
P —
P

2000, (23)

PHYSICAL REVIEW D 91, 045024 (2015)

- D*D?
X 1+ ———|540-6), 24
IR L )

and the extra propagators due to the mass terms,

- mD?

P 50-0), 25
gy Mt i 5HO-9) (26)
" p?+m? ’

Note that this is, in fact, an A" = 2 hypermultiplet [28,29].

Finally, it is interesting what happens to a supersym-
metry breaking theory with a linear superpotential under
the duality. We start from

Ez/d“@@@—f/dzmb—f/aﬂ@(i), (27)
which leads to the equations of motion for @,
D*® = f, (28)
and for the auxiliary field specifically,
G=/. (29)
signaling supersymmetry breaking. On the other hand,

it is again possible to dualize this Lagrangian. For an
unconstrained superfield £ and a chiral ¢, we have

£dual == —/d4922+/d462¢’+/d462(i)
—f/d29q>—f/d29<i>. (30)

Then, by the equations of motion for X, we go to Eq. (27).
But the equations of motion for ® give [30]

D’s = f, (31)

and the duality Lagrangian (30) becomes
L= —/d“QiZ. (32)

The Lagrangian (32) with the constraint (31) implies
supersymmetry breaking. Nevertheless, if one turns to
components, all auxiliary fields get a vanishing vacuum
expectation value. This peculiarity is resolved by turning
back to Eq. (30). Combining the equations of motion for @,
which are Eq. (31), with the X equations of motion

S =, (33)
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one can see again that Eq. (31) is, in fact, a relabeling of the
chiral superfield supersymmetry breaking (28). Thus, the
constraint (31) already contains the information of super-
symmetry breaking originating by an underlying chiral
superfield of which the auxiliary field G indeed gets a
vacuum expectation value (vev) from Eq. (29).

Mechanisms to break supersymmetry by a complex
linear have recently been found, in which, indeed, the
auxiliary field of the complex linear superfield gets a vev
and signals supersymmetry breaking. Consider the
Lagrangian [21]

_ 1 _
L=- / d*0x% +8_f2 / d*0D*ED, SDYEDX. (34)
The scalar auxiliary sector of this theory reads
- 1 -
Lp=—FF+—F*F?, 35
F =+ 2f2 ( )

leading to the equations of motion
F(FF - f?)=0. (36)
The equation (40) on top of the supersymmetric solution
F=0 (37)
has a second solution,
FF = f2, (38)

which signals supersymmetry breakdown. It has been
shown that for models of this sort [21] the goldstino will
be one of the previously auxiliary fermion fields of the
theory, which propagates only in the broken branch. Its
supersymmetry transformation is

54~ (F)e. (39)

One may also assume the existence of superspace higher
derivatives of higher dimension on top of Eq. (34), for
example,

- 1 _ 1 -
EF:_FF+2_J('2F2F2+]¢T4F3F3+’ (40)
and investigate if the solution (38) is still valid even though
it has been found by ignoring the 1/’ term. There are two
limiting cases in which conclusions can be drawn. First,
consider

Ll /5y
T

In this case, Eq. (40) becomes

(41)
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1 \*
gF__Efz+fz<_/> el (42)

which means that it is inconsistent to consider the solution
(38) since the terms we ignored are larger than the terms we
took into account in order to find the solution. The other
limiting case is the existence of a large hierarchy between
the two scales

1 1
—>>—<—>i<<1. (43)

o

(: 2f2 f2 ; SIRIIRIN (44)

and thus the higher-order terms are highly suppressed and
may be safely ignored. In fact, in a generic effective theory,
higher-order terms as in Eq. (40) will also be generated,
and the verification or not of the hierarchy (43) is a clear
signal for the existence or not of the new vacua. Of course,
depending on the mechanism responsible for the generation
of these superspace higher derivatives, one will in principle
find different results.

B. Gauge multiplets and gauging
A massive U(1) vector multiplet is described by the

Lagrangian
L= /dZGW"W,, +H.c. +;M2/d49V2, (45)
with V =V and
W, =iD?D,V. (46)

The bosonic components of this multiplet are

V|=C, (47)
D?V| =N, (48)
1.~
5 [Déz’ Da]V| = Aaén (49)
1 N2
5 DD D,V| =D. (50)

One may imagine that the massive U(1) in Eq. (45) has
acquired a mass via a gauge-invariant mechanism, for
example, in interaction with a real linear multiplet L, as
described in Refs. [31,32]. In that case, we have the
Lagrangian
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L= / d*0W*W, + H.c.
—%/d“eLGLM/d“HLV, (51)
which is invariant under
V = Vil —iA, (52)

due to

/ d*OLA = / d*0LA = 0, (53)

for a chiral superfield A and real linear L. Note that by
dimensional analysis [V]=0 and [L] =1, and thus,
indeed, [M] = 1. One can then rewrite Eq. (51) as

1
L :/dﬁewaWaJrH.c. —E/cz‘*em2
+M/d4€LV+/d4€L(S+§), (54)

where now L is real but otherwise unconstrained and S is a
chiral multiplet that renders L linear on shell. Since now L
is unconstrained, we can integrate it out to find

L= / d2OW*W, + H.c.
1 i}
+ 5/ d*O(MV + S + 5)2, (55)

which, after a redefinition of V of the form (52) with
A =S, becomes Eq. (45). Here, the vector superfield has
eaten the real linear and became massive.

Since in the Lagrangian (45) we have a massive U(1),
it is possible to invert the propagator without gauge
fixing. We will nevertheless introduce a gauge-fixing term
parametrized by £,

Lo = —f/d“&DzVDZV, (56)
which gives the final Lagrangian
L= /JZGW“WO, +H.c. = é/ d*0D*vD*v
Ly 409172
+§M dov-, (57)

and the propagator of the massive vector superfield is

PHYSICAL REVIEW D 91, 045024 (2015)
1 DD?D &l D*D? + D*D?
Vvl - 2 2 7 T3 12 2
p-+M= p p-+&M P
x 540 —0). (58)

One can now have three different forms for the propagator,
depending on the value of &:
(1) For no gauge fixing (¢ = 0), the propagator becomes

1 DD?D 1 D?D?*+ D*D?
Vvl - 2 2 —tas 2
p-+M p M P
X 54(9 -0). (59)

(i1) In the Feynman gauge (£ = 1), it becomes

1

VV: ————

5'0-9). (60)

(iii) In the Landau gauge (¢ = o), it becomes

1 DD*D

VV: ———m———
p2 +M2 pZ

sO-0). (61

We will perform our calculations in the Feynman gauge.
Note that in the Landau gauge (61) and the Feynman
gauge (60) it is consistent to set M =0, but for the
propagator without gauge fixing (59), taking the limit
M — 0 results in a singularity, as expected.

The gauging of a chiral multiplet is well known to be

L= / d*0de" @, (62)

where the vector transforms as shown in Eq. (52) and the
chiral superfield transforms as

P - @ =, (63)

for a chiral A. It is easy to verify that the transformed
superfield is still chiral,
D&@l = D(-,,(eiACI)) =0. (64)

The gauging of the complex linear is
L= —/d“é’ievZ, (65)
but note that the gauge transformation of X is again
T > Y =ity (66)

where A is still chiral. It is easy to verify that the trans-
formed superfield remains “complex linear,”

045024-5



FOTIS FARAKOS AND RIKARD VON UNGE
DY = D*(eA%) = 'AD*(Z) = 0. (67)

On the other hand, a transformation of the form
Yo Y =83 (68)

for a complex linear S would violate the complex linearity
of the X superfield due to the fact that
D?S" #0, forn> 1. (69)

A transformation (68) would also lead to a second
complication. The invariance of Eq. (65) would require

V- V+iS-iS. (70)
But the field strength of the gauge superfield
W, =iD*D,V (71)
is not invariant under Eq. (70) since

iD’>D,(—iS +iS) # 0. (72)

III. GAUGED MASSLESS COMPLEX
LINEAR AND MASSIVE U(1)

We start with a model of a massless complex linear
coupled to a massive U(1). We calculate the effective low-
energy theory for the scalar multiplet by integrating out
the massive vector superfield. We find that the effective
theory on top of the corrections to the Kihler potential also
contains superspace higher derivatives that lead to the
deformations of the auxiliary potential.

Our theory has the form in superspace of

L=~ / d*0Zed" T + / d*0W*W, + H.c.
_ 1
—¢& / d49D2VD2V+§M2 / da*ov?, (73)

which is easily shown to be classically equivalent to a
gauged chiral superfield theory coupled to a massive vector
superfield by gauging the Lagrangian (14) for the dual
superfields having opposite U(1) charge. Here, the gauge
transformation for X is

T — ey, (74)

The model (73) gives rise to the vertices shown in Figs. 1
and 2 [up to O(¢?)]. The renormalizability is understood in
terms of gauge invariance, and the no tree-level supersym-
metry breaking is understood by a straightforward compo-
nent expansion. Indeed, the scalar nonderivative sector of
the Lagrangian (73) is

PHYSICAL REVIEW D 91, 045024 (2015)

FIG. 1. Vertex due to gauging.

FIG. 2. Vertex due to gauging.

L =—FF + NN + D(-gAA + M?>C) + (1 — ¢{)D?,
(75)

which has no other vacuum than
(F) =(N)= (D) =0. (76)

To calculate the vacuum structure of the tree-level theory
[Eq. (75)], we have written the gauge-invariant terms in
the Wess—Zumino gauge. Of course, when calculating the
radiative corrections, one should not turn to the W-Z gauge
for the quantum fluctuations even though it is possible
to do so for the background vector superfield (see, for
example, Ref. [3]).

To find the low-energy effective theory for X, we work
in two steps:

(1) We write down the one-loop corrections to the

vertices.

(2) Then, we integrate out the massive vector superfield.

Here, we will keep terms up to

(%) )

since this is the scale in which the auxiliary field potential
deformation comes in. Because of the massless complex
linear multiplet, the diagrams under consideration will have
infrared divergences, and thus we will calculate the loop
momenta integrals with an IR cutoff.

A: IR cutoff. (78)

Moreover, since for the moment we are only interested in
finding contributions to the scalar potential, we will set the

045024-6
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FIG. 3. One-loop correction to the XV vertex.

external momenta to zero or, equivalently, impose the
condition

9,5 = 0,5 =0, (79)

which is allowed by supersymmetry.

The one-loop corrections to the VI vertex are given by
the diagrams in Figs. 3, 4, and 5 with corresponding terms
in the effective theory:

3
-9 4955
z 16”2A(€)/d6 %

7 A2+ M2 4055 D2 )2
+ 16”2M21n< e >/d 0xED2D2V,
g -
Ly == Afe) / 0SSV,
g -
Ls=-T_ Ae) / FOSEV. (80)
167

The factor A(e) contains the poles due to the UV
divergencies and finite terms:

N b))

by
FIG. 4. One-loop correction to the XV vertex.

Y

FIG. 5. One-loop correction to the =XV vertex.
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2 2
Ale) =§+1—y+ln(47r)—ln<A%M). (81)

We have introduced the renormalization scale y in order for
g to remain dimensionless,

€/2

g = u'?g, (82)

during the regularization. Then, we have the diagram
shown in Fig. 6, which represents a vertex containing
the tree-level vertex (1) along with the loop corrections
(3-5) and can be written in the effective theory as

Ly = / d49(—giVZ) + ﬁg(a) + ﬁg(b) + ,Cz(c)

—/d49(—giVZ

3 2 2
g A+ M\ o nmn
I SSD2DV ), 83
+16rc2M2n< A2 ) (83)

where we have absorbed the finite parts of the loop
corrections to the tree-level vertex by redefining g. Since
we want to integrate out the vector superfield, the leading
diagrams to this order due to the vertex corrections, relevant
to our results, are shown in the Figs. 7 and 8 and lead to the
effective interactions

g 4 052502
L, =——— [ d*652%
! 2M2/

4 2 2
q AN+ M - _
e ln< x ) / dOD*(25) D2 (25)

(84)

+

and

by

FIG. 6. Tree-level and one-loop corrections to the ZZV vertex.

> D
1%
5 Y
FIG. 7. Effective interactions from integrating out V.
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by by ,
X Dy

by by

FIG. 8. Effective interactions from integrating out V.

g* 1 s
£8 - —K/d49WZ323 (85)

The one-loop corrections to the four sigma vertex terms
are given by the diagrams in Figs. 9, 10, and 11, with
corresponding terms

b))

)

FIG. 11. The one-loop correction to the Z?¥? vertex.
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4

g —
Lo=— [ gtox25?
* T R2(M? + A%) /

4 2 2
g 4 A+ M
+3277.'2M4/d 9{ln<—A2

M2
(A2 M)
4

g 452572
U A— 1) 5>
10 16;12(M2+A2)/

4 2 2

g 4 AN+ M

#odm(
+32ﬂ'2M4/ {n< A2

}DZ(ZE)DZ(ZE),

M? o
- (A2 + Mz)}D2(22)D2(22) (86)
and
qg' -

Gathering the quantum corrections up to order 1/M?*,
we have for X

Lyey =—T / d0EE — P / d'ox?s* - Q / EAIRDW

+R / d*0D?* (LX) D*(XX)
+S / d*0D%(£2)D2(22), (88)
with
T =1+0(4), (89)
P = % + O(g"), (90)
0= 9 L oy 91
=i H O o1
and

g4 A2+M2
:16n2M4{2ln< A2 ) A2+M2}

4 2 2
g A+ M
= 3eM {m( A2 ) (A2 +M2)} +0(g)-

92)

We see that superspace higher derivatives of a similar
form as those introduced in Ref. [21] are indeed generated
by quantum corrections. The scalar sector of the
Lagrangian (88) is

045024-8
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Eiﬁi}? = — FF[T + 4PAA + 9QA%A?]
+ F?F?R, (93)
where the impact of the superspace higher derivatives on

the auxiliary field’s effective potential is manifest.

IV. GAUGED MASSIVE HYPERMULTIPLET
AND MASSIVE U(1)

A massive complex linear X is defined by the super-
symmetric condition

D% = m®, (94)

where ® is a chiral superfield. Thus, £ acquires a mass m

in tandem with the chiral multiplet ® [23]. It is, in fact,

equivalent to a massive N = 2 hypermultiplet [28]. In a

gauged U(1) model, both X and ® transform with the same
charge:

T — ey, O — NP, (95)

We employ the following superspace Lagrangian:
£=- / PSS + / P05 D
+ / d*OW*W,(V) + H.c.
-¢ / d*0D*VD?V + %M2 / da*ov?.  (96)
The scalar nonderivative component sector of theory (96) is

L =-FF + NN + D(gzz — gAA + M*C)
+ (1 = &)D? — m?zz — mAG — mAG + GG, (97)
with a supersymmetric vacuum
(F) = (G) = (N) = (D) = 0. (98)
We now turn to the quantum corrections. A way to
rewrite the complex linear multiplet constraint is by
splitting X into a background field %, and the quantum
fluctuations ¢ as follows:
X=2%)+o. (99)
For the gauge multiplet, we consider no background field,
V=0+V, (100)

and for the chiral superfield, we have

PHYSICAL REVIEW D 91, 045024 (2015)

O =0+¢, (101)
where

D*c = Mg (102)
and

D*3%, = 0. (103)

Here, we have set the hypermultiplet mass equal to the
vector multiplet mass for simplicity, and we will keep it like
this. This is not merely technical, since if these masses
originate from the same physics, they will also be of the
same order.

A. Propagator renormalization

The corrections to the vector propagator due to ¢ loops
are given by the diagrams in Figs. 12 and 13 and contribute
to the effective theory as

2
g 4 4 2 1
=—— [ d0 | dkV(-k)| -M"——k
Ly 32;;2/ / V( )( 6

+%B(€)DQD2DQ) V(k),
Ly = 35—; &0 / RV (—k)M2(B(e) + 1)V (),
(104)
where
Ble) = % —y 4 In(47) - In (%) (105)

Corrections due to ¢ loops are given by the diagrams shown
in Figs. 14 and 15 and contribute to the effective theory as

FIG. 12.  One-loop correction to the vector propagator from the
o superfield.

V(=k) V(k)

FIG. 13. One-loop correction to the vector propagator from the
o superfield.
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FIG. 14. One-loop correction to the vector propagator from the
@ superfield.

i
AS)

V(=k) V(k)

FIG. 15. One-loop correction to the vector propagator from the
@ superfield.

2 1
L= / 40 / &k (=) 2B(e)M? + M2 - L1
32 6

1 _
+5 B(e)D“DzDaV(k)> ,

Lis=— g; / &0 / V(=) M2(B(e) + 1)V (k).

32
(106)

There is finally a mixed-loop diagram shown in Fig. 16,
contributing to the effective theory as

L= [ a0 / d*kV(—k) (25(6)1\42—%1(2) V(k).

3272
(107)

Summing up the different contributions, one gets

L=Lp+Lis+Liu+Lis+ L

33; / a'o / d*kV(~k)B(e)D*D*D,V (k).  (108)

It is gratifying to see that the quadratic divergencies cancel
and that the contribution is purely transversal as it should be
for gauge invariance.

For the background complex linear, we have the diagram
in Fig. 17,

PHYSICAL REVIEW D 91, 045024 (2015)

FIG. 16. One-loop correction to the vector propagator from the
¢ and o superfields.

FIG. 17. One-loop correction to the background superfield.

FIG. 18. One-loop correction to the X,%,V vertex.

Lin= —%; / 0 / I (=K) <B(6)M2 —ék2>i(k),

(109)

which will give us the X, wave function renormalization.

B. Vertices and integrating out

We now wish to integrate out all the massive fluctuations
and find the low-energy effective theory for the background
field X,. Again, we consider the gauge coupling ¢ to be
small. Note also that, now the complex linear superfield is
massive, there will be no IR divergence.

The one-loop corrections to the VEX vertex are given by
the diagrams in Figs. 18 and 19 with corresponding terms
in the effective theory,

1

3 6 3

3
g = 1 1
Ly = 322 M2 / d49/ d*pexiZiZn <M2 +2M?*B(e) =z pt == p1P2 — —P%> Vs

g 4 4 < 1 1 ad _ 1 1 a@
+32ﬂ2M2/d 9/d PextZ1 22 <— <6P1 +—P5> DyD,Vs — (8])2 +§p5> DaD,;,Vs)

3
g o < _
+32E2M2/d“e/d4pext<§2122{02,1)2}v5>,

(110)
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2

b

FIG. 19. One-loop correction to the Z,Z,V vertex.

3
g —
Lig= _732”2M2/d49/d4pext2122v5

1 1 1
X (Mz—gp%—gplpz—gp%) (111)
where
.. = (21)* d'p; 112
Pext = (27)*6 Zpi H W' (112)

Here, p; are the external momenta, and the subscript i on
the superfields implies their momentum, for example,

T = /d4x20(x,9,9)e‘i"pf. (113)

In the above diagrams (and the subsequent), we have
calculated the external momenta contribution in the limit

2
Pext

"2 < 1.

(114)

We also have the diagrams shown in Figs. 23 and 24,
which lead to the terms

Lo = /d“& —gZ0VZg) + Lig + Lig + Laog + Lo

PHYSICAL REVIEW D 91, 045024 (2015)
N}

P

FIG. 20. Tree-level and one-loop corrections to the £ T,V
vertex.

P 1 E-1
Vv
22 Ed
FIG. 21. Effective interactions due to integrating out V.

3
g - 1
LZOZW/d49/d4pex12122VS <—M28(€)+6P%>,

(115)

3
g - 1
Ly :w—zw/d49/d4pext2122vﬁ <—MZB(€)+6P%>-

(116)

Then, we have a diagram shown in Fig. 20, which
represents a vertex containing the tree-level vertex (1) along
with the loop corrections (18—24) and can be written in the
effective theory as

6 6

(
4 S g 4 4 s (1, 1, 1.5
d@(—gZOVZOH—W d*0 | d*peXiX, —P1+—P2+§{D,D} Vs

3 . )
g = 1 ax _ 1 1 aa _
+ 302 M2 / d49/ d* pexiZiZ, (— <€ P+ —Ps) DyD,Vs— <g D2+ §P5> DaDo',V5>

3
_ g _ (1 1 1._ _
- / d*0(—gZ,VZ,) +W / d*o / d* pexiZi1Z, <6 pi+— p§+—DDZD> Vs

3
g S 1 aa D
+ /d49/d4pext2122 <_E(pl - P2) [Da’Da]Vs)

3272 M>

6 2

(117)

where we have absorbed the finite parts of the loop corrections by redefining g. Since we want to integrate out the
vector superfield, the leading diagrams to this order due to the vertex corrections, relevant to our results, are shown in

Figs. 21 and 22 and lead to the effective interactions
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gz g4 o B .

4M4/d49/d4pext2 5,55, {(p1 + p2)* + (p3 + pa)*}

g' = 1 1 1 _
+ 322 M* / d49/ d* pexiZiZ, <E pi+ EP% + Ep% + Epi) (23%y)

1 . _ _
64 2M4/d49/d pextz 22( 12( pZ)aa[Dade](23Z4)>

g v .
+64ﬂ2M4/d46/d4pext2324 <—E(P3 = p4) [Dade](2122)> (118)
and
7
£24: 6M4/d402323 (119)

The one-loop corrections to the X3¥3 vertex are given by the diagrams in Figs. 25, 26, and 27, for which we have

EU i[)

Z0 E[)

FIG. 22. Effective interactions due to integrating out V. 5
4

23
FIG. 25. One-loop correction to the £3¥3 vertex.

b >3

Yo

FIG. 23. One-loop correction to the X,%,V vertex.

FIG. 26. One-loop correction to the ¥3¥2 vertex.

2o
!
14 Vs
B o
5 S .,
FIG. 24.  One-loop correction to the ZZ)V vertex. FIG. 27. One-loop correction to the £3¥3 vertex.
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2
120

4
g _ (2 | 3 1
Los =5 / d“H/ d* PexiZi 2y (—M2 —2g (PLHPE+ P+ pd) =55 (P4 p2)* =5 (P14 p3)?

3 48

1. 1 R W
JrgDzD2 ~8 (P2 + P4)*[Dag, Da]) 232y,

(120)

1

4
. g 4 4 2 1 2 1 2 1 2 1 1 2 1_2 > - =
£26_32ﬂ2M4/d9/dp“'x‘zle(M — 5P PP — G P Py~ 1y P3P — 15 PA T DPD? | 505,

4
g e 1, I
Ly = _W/d49/d4pext21222324<M2_6p%_6plp4_6p%)s

leading to the effective interactions

4
g - (2 1
Los + Log + Ly7 = D2M / d40/d4pext2122 <§M2 -

1. 1 . _ .
+=D?D* = —(py + p4)™[Dy. D&])‘Zal&-

3 48

Now, we can calculate the leading contributions to the
off-shell effective potential of the theory. As we see, it
receives contributions both from the effective Kéhler
potential but also from the deformation of the auxiliary
field potential. Gathering the relevant quantum corrections,
we have for the background superfield X,

Ly, et = =T' / d*0Zyz, - P / d*ox3s?

-9 / d*oz3sd + R/ / d*OD*(ZyZy) D?*(ZZy)

+ S / d*oD*(23)D*(23), (124)
with
T =1+0(g), (125)
g 4
'=—— 1+ O(¢"), 126
P =L+ 0l (126)
g 6
=—— 1+ 0O(g"), 127
o =2t o) (127)
and for the superspace higher-derivative operators
74"
R = —"—+ O(¢%), 128
02207 T 99 (128)

(121)

(122)

23 1
(Pt + 3+ P3+ Pi)——== (P14 P2)* — = (p1 + p3)?

120 60
(123)
qg* 6
)
= o5 T O (129)

Note that in the Lagrangian (124) various superspace
higher derivatives have been generated radiatively.

C. Vacuum structure

Let us focus on the scalar nonderivative sector of
Lagrangian (124), which reads

L5 = = FoFo[T' 4 4P'AoAg + 9Q'ATAG] + FRFGR'.
(130)

We see that the effective theory has an intriguing similarity

to the models of Ref. [21]. Indeed, the equation of motion

for F, has two solutions:
(i) Standard branch:

(131)
(ii)) Broken branch:

FQFO - [T/ + 4P/AOAQ + 9Q/A%A(2)]

= (132)

The scalar potential of the broken branch will have the
form

1

V=ir

[T+ 4P'AgA, + 9Q'AZAT],

(133)
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leading to a positive vacuum energy, and a supersymmetry
breaking scale

T’ B 962 M*

FoFy) = ——="——71—
<0 0> 2R/ 7g4

(134)

Note that in this new vacuum |F,| has a dependence on
M?/g?, which gives rise to the question of higher-order
corrections. In other words, this solution can only be trusted
if there exists a hierarchy between the leading superspace
higher derivatives and the subsequent ones. If one naively
estimates the one-loop contribution to higher point func-
tions such as the six- and eight-point graphs of Figs. 28
and 29, one sees that the minimum of the potential is
shifted. Namely, the contribution from the 2n-point dia-
gram to the effective potential of the auxiliary field goes as

(135)

Higher-order diagram.

PHYSICAL REVIEW D 91, 045024 (2015)

’FF .
Lp=M*h <9M4 ) —FF, (136)

but from Eq. (135), we see that the higher-order terms do
not satisfy the hierarchy criterion (43) required for reliable
results on supersymmetry breaking, and a complete knowl-
edge of the form of Eq. (136) would in principle be
required.

Even though we do not have an exact form for the
higher-order corrections, we can still ask if generically
supersymmetry is broken in the low-energy limit by
studying the renormalization group flow. We can draw
reliable results if we study a generic term of the form

/ d*0,9)(DX)?*(D £)*(D*ZD*T), (137)

which could arise from the quantum corrections, in which
the dimension of AU) is —4(j + 1).
Let us define the bare action as

£bare = /d49(VbDaD2DaVb +M%V%}—Zbib —gbeZbib)

= / d*9(Z,VD*D*D,V +M?*V?
—Zs38—Z,gVIT), (138)
from which we find
4
Zo=1-2
€
2
ZV — 1 - —a,
€
4
Z,=1-2, (139)
€
with
2
g
= 140
T 3 (140)
Since the bare coupling
ZZ
= u° - 141
ap H aZ%ZV ( )
is independent of the scale x, we have
dlna
=—+2a+ O(a?), 142
dinp €+ 2a+ O(a?) (142)

giving f, = 2a. Similarly, we find
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(143)

The bare action for the higher-dimension operators is
defined as

/ d*02)) (Dx,)*(DL,)2(D*L, D5, ). (144)

The wave function renormalization gives us a relation
between the bare and the renormalized A,

A = A0 (2g)=i2, (145)

In terms of the dimensionless parameter ) =

/1(j>ﬂ(j+1)<4_€), we have

/1(()1) = A (Zg) I 2l D) (146)
which gives
dln’i(j)—4('+1)+4('+2) (147)
diny / / “

We now want to study the emergence of the hierarchy.

This translates into comparing (A)i to (/W))m in the
low-energy limit. We find

d (1 1 . j
120y - —— _1n(x) \ = .
dlnu{4n“ T ESTIL )} j+1”

From formula (148), we conclude that, even though the
quantum corrections generate the superspace higher deriv-
atives responsible for supersymmetry breaking, they do
not generate the required hierarchy between the leading
and the subsequent terms, and thus the solution leading to the
broken branch cannotbe trusted. In other words, the quantum
corrections alone cannotlead to the supersymmetry breaking.
Our results show that in the case in which supersymmetry is
broken by the mechanism of Ref. [21], these superspace
higher derivatives have to be related to the underlying theory
or rely on some other mechanism to be generated.

Note that in a different setup in which S, <0 in
formula (142) the model would have the opposite behavior

(148)

PHYSICAL REVIEW D 91, 045024 (2015)

in the low energy, leading to a hierarchy and a reliable
supersymmetry breaking branch.

V. DISCUSSION

In this work, we have studied low-energy effective
theories for complex linear superfields. We have calculated
the quantum corrections to the effective action including
also the superspace higher-derivative terms on top of the
usual corrections to the Kdhler potential. This was done by
calculating tree-level and one-loop quantum corrections
and then integrating out the massive sector.

Our motivation was related to the properties of such
operators concerning supersymmetry breaking. We under-
lined that a hierarchy between the higher-dimension oper-
ators is essential for the supersymmetry breaking vacua
to be consistent. Turning to the effective theory, we have
verified that indeed these operators are generated by the
radiative corrections. On the other hand, the required
hierarchy between the leading terms and the subsequent
ones sufficient for supersymmetry breaking was not found.
This led us to conclude that if supersymmetry is broken by
the specific superspace higher derivatives these terms have
to originate from the underlying theory or another mecha-
nism with different IR properties for the beta function.

We close with a comment on the case in which one does
not integrate out the massive modes. In such a case, the
auxiliary field deformation terms for all the multiplets have
to be taken into account. The theory, after the radiative
corrections are introduced, would be of the form (e.g., for a
complex linear and a vector superfield)

-1 1 -
EDDZ—FF+WD4+WF2F2-~

(149)
The study of the vacuum structure of a theory like Eq. (149)
is left for future work.
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