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The equivalence between thermal field theory and the Boltzmann transport equation is investigated at
higher orders in the context of quantum electrodynamics. We compare the contributions obtained from the
collisionless transport equation with the high temperature limit of the one-loop thermal Green’s function.
Our approach employs the representation of the thermal Green’s functions in terms of forward scattering
amplitudes. The general structure of these amplitudes clearly indicates that the physics described by the
leading high temperature limit of quantum electrodynamics can be obtained from the Boltzman transport
equation. We also present some explicit examples of this interesting equivalence.

DOI: 10.1103/PhysRevD.91.045023 PACS numbers: 11.10.Wx, 11.15.-q

I. INTRODUCTION

This paper is about hard thermal loop (HTL) amplitudes
in finite temperature QED. This has been the subject of
many investigations not only in QED but also in non-
Abelian gauge theories and gravity. These HTL amplitudes
have loop momenta of the order of the temperature, T,
which is considered large compared with all the external
momenta. In the case of non-Abelian gauge field theories, it
is possible to sum all the amplitudes in terms of a closed
form expression for the effective action [1–3]. Similarly, in
gravity, closed form expressions for the static and the long
wavelenght limits of the effective action have been obtained
[4,5]. The main motivation for these investigations is
the search for a consistent thermal field theory in the
perturbative regime.
It is well known that the thermal effective action in

QED has a leading temperature behavior proportional to T2

which arises only from the contribution of the photon
polarization tensor. All the other thermal amplitudes are
either subleading or they vanish as a consequence of the
neutrality of the plasma. On the other hand, it is also known
that the HTL amplitudes can be generated using the
Boltzmann transport equation. This approach has been used
in scalar, non-Abelian gauge theories and gravity [6–8].
When we adopt the Boltzmann transport equation

approach, in the case of QED, we realize that there is
ground for considering some more general possibilities for
the thermal amplitudes (although restricted to the semi-
classical limit). First, since the plasma does not need to be
neutral, amplitudes with an odd number of external photons
can be generated. Second, amplitudes which are not simply
proportional to a power of T (like the T2 behavior of the
two-photon amplitude) are also generated. (This is the key
distinction between the non-Abelian and Abelian theories,
since in the former, each amplitude generated by the
Boltzmann transport equation formalism is proportional
to the same power of T.) Furthermore, all these contribu-
tions are generated from a manifestly gauge invariant

effective action, simply because, as we will see, the
Boltzmann transport equation formalism yields an effective
action which is expressed in terms of the electromagnetic
field tensor Fμν.
However, it is not known if the same n-photon ampli-

tudes can also be obtained from a first principle approach,
like QED at finite temperature. Our main goal in the present
work is to investigate this issue using the imaginary time
formalism [9–11]. The main motivation of this investiga-
tion is to extend the concept of HTL amplitudes including
all the contributions which arise from the Boltzmann
transport equation approach. In fact, considering that the
Boltzmann transport equation formalism is a classical limit,
it is important to understand how it relates with the high
temperature limit of QED at finite temperature. As a first
step toward this goal, we investigate in the present paper the
n-photon amplitudes in both formalisms.
In the next section, we review the Boltzmann transport

equation approach and derive the effective action and the
corresponding thermal amplitudes. We obtain an implicit
expression for all the thermal amplitudes and compute
some explicit examples. In Sec. III we consider the thermal
Green’s functions in QED at finite temperature. We review
how the thermal Green’s functions can be expressed in
terms of forward scattering amplitudes. Then, using the
HTL limit, we argue that the leading behavior of each of
these forward scattering amplitudes agrees with the results
obtained in Sec. II. The agreement is explicitly verified up
to the four photon function. Finally, in Sec. IV we discuss
the main results.

II. THERMAL AMPLITUDES FROM THE
BOLTZMANN TRANSPORT EQUATION

Let us consider the semiclassical description of a QED
plasma in terms of a distribution

fðx; k; eÞ ¼ 1

ð2πÞ3 2θðk0Þδðk
2 −m2ÞFðx; k; eÞ; ð2:1Þ
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where x ¼ ðt; ~xÞ and k ¼ ðk0; ~kÞ are the four-vectors of
position and momenta. The Dirac delta and theta functions
impose the conditions k ¼ ðm=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
; m~v=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Þ for

on-shell, positive energy, particles of charge e and mass m.
Let us now assume that the collisions between the

particles are neglectable. Then, when an external electro-
magnetic field is present, the trajectory followed by the
particles is determined by the equations of motion

m
dxμ

dτ
¼ kμ; m

dkμ
dτ

¼ eFμνkν; ð2:2Þ

where Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field
tensor and τ is the proper time. As a result, the distribution
function satisfies the equation

d
dτ

fðx; k; eÞ ¼ ∂f
∂xμ

dxμ

dτ
þ ∂f
∂kμ

dkμ
dτ

¼ 0: ð2:3Þ

We remark that the right-hand side of the previous equation
does not vanish when the effect of collisions is taken into
account. Using Eqs. (2.2), we obtain the Boltzmann
transport equation

k · ∂fðx; k; eÞ ¼ −F · ∂kfðx; k; eÞ; ð2:4Þ
where ∂k is the partial derivative in relation to the four
momentum kα and we have defined

F α ¼ eFαβkβ: ð2:5Þ

This covariant form of the Boltzmann transport equation
has been previously obtained in more general cases of non-
Abelian gauge fields and also noncommutative gauge
theories [6,12–17].
Let us now consider the current which is produced when

the plasma interacts with the external field. This can be
expressed in terms of the distribution functions for the
negative or the positive charge carriers (e.g. positrons or
electrons) as

�Jμ ¼ �eC
Z

d4kkμfðx; k;�eÞ: ð2:6Þ

where C takes into account the degrees of freedom
associated with the charged particles (C ¼ 2 for an electron
in 3þ 1 dimensions). The total current in a plasma would
be given by

Jμ ¼ þJμ þ −Jμ: ð2:7Þ

Of course one could think of other possible scenarios such
that the net charge of the plasma does not vanish. For this
reason, it is convenient to consider �Jμ separately.
If we now perform the replacement k → −k in Eq. (2.4),

we obtain

k · ∂fðx;−k; eÞ ¼ þF · ∂kfðx;−k; eÞ: ð2:8Þ

On the other hand, if we make e → −e, we get

k · ∂fðx; k;−eÞ ¼ þF · ∂kfðx; k;−eÞ: ð2:9Þ

This shows that we can choose fðx; k;−eÞ ¼ fðx;−k; eÞ.
Therefore, we can, alternatively, express Eq. (2.6) as

�Jμ ¼ �eC
Z

d4kkμfðx;�k; eÞ; ð2:10Þ

so that the charge conjugation is equivalent to reversing the
sign of the thermal particle momentum.
Let us now consider the general relation that must exist

between the current and the thermal effective action of
electromagnetic fields interacting with a thermal plasma.
This relation can be simply written as

�Γtransp ¼
Z

d4x�JμðAÞAμðxÞ; ð2:11Þ

where we have made explicit the dependence of �Jμ on the
external field Aμ, which follows from the substitution of the
solution of Eq. (2.4) into Eq. (2.10).
In the most trivial scenario, when the external field is

switched off, and the system is in thermal equilibrium,
Eq. (2.4) is satisfied by

fðx; k; eÞ ¼ fð0ÞðkÞ ¼ 1

ð2πÞ3 2θðk0Þδðk
2 −m2ÞFð0Þðk0Þ:

ð2:12Þ

The equilibrium distribution Fð0Þðk0Þ depends on the
statistics of the particles. In the case of electrons and
positrons,

Fð0Þðk0Þ ¼ NFðk0Þ ¼
1

exp ðk0=TÞ þ 1
; ð2:13Þ

which is the Fermi–Dirac distribution [for our present
purposes, Fð0Þðk0Þ could be any x-independent distribu-
tion]. Then, the partial currents are given by

�Jμ ¼ �Jð0Þμ ¼ � eC
ð2πÞ3

Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j~kj2 þm2

q

× NF

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~kj2 þm2

q �
kμ; ð2:14Þ

and the corresponding effective actions are
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�Γð1Þ
transp ¼ � eC

ð2πÞ3
Z

d4x
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~kj2 þm2

q

× NF

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~kj2 þm2

q �
kμAμðxÞ: ð2:15Þ

Introducing the four-vector K ¼ ð1; ~k=j~kjÞ, we can write

�Γð1Þ
transp ¼ � CeT3Ið1Þðm̄Þ

ð2πÞ3

×
Z

d4x
Z

dΩKμAμðxÞ; ð2:16Þ

where
R
dΩ denotes the integration over the directions of

K̂ ¼ ~k=j~kj and we have introduced

IðnÞðm̄Þ≡
Z

∞

0

u4−nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ m̄2

p du

e
ffiffiffiffiffiffiffiffiffiffi
u2þm̄2

p
þ 1

; m̄≡m
T

ð2:17Þ

[together with the powers of the temperature, the integrals
IðnÞðm̄Þ give the full temperature dependence for the
contribution of order n]. Since

R
dΩKi ¼ 0, we finally

obtain

�Γð1Þ
transp ¼ � eCT3

2π2
Ið1Þ

Z
d4xA0ðxÞ: ð2:18Þ

Of course, in the case of a neutral plasma, the sum of the
two partial contributions vanishes,

Γð1Þ
transp ¼ þΓð1Þ

transp þ −Γð1Þ
transp ¼ 0: ð2:19Þ

As we will see, this simple property will remain true for all
odd powers of the external field [see Eq. (2.25)].
In the presence of a general external field, the solution of

the Boltzmann transport equation can be quite involved.
Here we consider external field configurations which can
be dealt with using a perturbative approach. In these cases a
formal solution of the Eq. (2.4) can be written as

fðnÞðx;�k; eÞ ¼
�
∓ 1

k · ∂ F · ∂k

�
n
fð0ÞðkÞ; ð2:20Þ

so that each fðnÞ is of order n in powers of the external field
and the complete phase space distribution can be expressed
as fðx; k; eÞ ¼ fð0ÞðkÞ þ fð1Þðx; k; eÞ þ � � �. It is convenient
to write Eq. (2.20) in a more explicitly iterative fashion as

fðnÞðx;�k; eÞ ¼ ∓e
1

k · ∂ Fαβkβ
∂
∂kα f

ðn−1Þðx;�k; eÞ;
ð2:21Þ

where n ¼ 1; 2;…. From these solutions, and using
Eqs. (2.10) and (2.11), we can obtain the corresponding
partial effective actions, defined order by order in terms of
the phase space distributions, as follows:

�ΓðnÞ
transp ¼ �eC

Z
d4x

Z
d4kAμkμfðn−1Þðx;�k; eÞ:

ð2:22Þ
In principle, the effective action is completely determined
by this direct procedure starting from the knowledge of
fð0Þ, which can be chosen, for instance, as given by
Eqs. (2.12) and (2.13).
The nontrivial effects of the external field interacting

with the plasma will be manifest when we consider the
second or higher order contributions in Eq. (2.22) (n ≥ 2).
To derive the explicit dependence on the external field, let
us look at the details of the integrand in Eq. (2.22).
Substituting Eq. (2.21) into Eq. (2.22), we obtain

�ΓðnÞ
transp ¼ −e2C

Z
d4x

Z
d4kAμkμ

1

k · ∂ k
βFαβ

×
∂
∂kα f

ðn−2Þðx;�k; eÞ: ð2:23Þ

Performing an integration by parts in the momentum
integral yields

�ΓðnÞ
transp ¼ e2C

Z
d4x

Z
d4kAμ

�
δαμ

1

k · ∂ −
kμ∂α

ðk · ∂Þ2
�

kβFαβfðn−2Þ

¼ e2C
Z

d4x
Z

d4kAμðδαμkλ∂λ − kμ∂αÞ

×
1

ðk · ∂Þ2 k
βFαβfðn−2Þ; ð2:24Þ

where the derivative of ∂=∂kα acting on kβ produces a
vanishing contribution as a consequence of the antisym-
metry of the electromagnetic tensor field. Performing an
integration by parts in the configuration space integral and
using again the antisymmetry of the electromagnetic tensor
field, we obtain

�ΓðnÞ
transp ¼ e2C

Z
d4x

Z
d4kFμ2ν2

1

ðk · ∂Þ2 F
μ1ν1

× kμ1kμ2ην1ν2f
ðn−2Þðx;�k; eÞ ð2:25Þ

(from this result one can easily verify that, for odd

n, þΓðnÞ
transp þ −ΓðnÞ

transp ¼ 0).
This form of the effective action encodes a number of

interesting features. First, since Eq. (2.25) is expressed
directly in terms of Fμν [notice that fðn−2Þ is implicitly
dependent on Fμν as a solution of (2.21)], gauge invariance
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is explicitly manifested at any given order. Second, it is
straightforward to obtain any higher order contributions by
successive substitutions of Eq. (2.21) into Eq. (2.25). These
properties can be concisely summarized by expressing the
external fields in terms of Fourier components so that the
effective actions can be written as

�ΓðnÞ
transp ¼

1

n!

Z
d4p1

ð2πÞ4
d4p2

ð2πÞ4…
d4pn

ð2πÞ4
× ~Aμ1ðp1Þ… ~AμnðpnÞ
× �Πtransp

μ1μ2…μnðp1; p2;…; pnÞ
× ð2πÞ4δðp1 þ � � � þ pnÞ; ð2:26Þ

where �Πtransp
μ1μ2…μnðp1; p2;…; pnÞ are the thermal ampli-

tudes associated with the Boltzmann transport equation

formalism. Then, from the gauge invariance of �ΓðnÞ
transp

under ~Aμi → ~Aμi þ ~Λpμi
i , we conclude that the thermal

amplitudes must satisfy the Ward identities

pμi
i Π

transp
μ1μ2…μnðp1; p2;…; pnÞ ¼ 0: ð2:27Þ

Notice that in the case of non-Abelian gauge theories
the corresponding Ward identities would relate
Πtransp

μ1μ2…μnðp1; p2;…; pnÞ with Πtransp
μ1μ2…μn−1ðp1; p2;…; pn−1Þ

so that all the amplitudes would have the same leading high
temperature behavior. On the other hand, in the Abelian

theory, each contribution �ΓðnÞ
transp to the effective action is

individually gauge independent, and the corresponding
amplitudes are not all proportional to the same power of
the temperature. This can be simply understood by power
counting the momentum dependence of successive terms
obtained from Eq. (2.21). Furthermore, from the general
form of Eq. (2.25), one can easily see that all the amplitudes
will be functions of degree zero in the external momenta p.
As an example, let us now compute the explicit form of

the two-photon amplitude (thermal self-energy). Making
n ¼ 2 in Eq. (2.25), one readily obtains

�Γð2Þ
transp ¼ e2C

Z
d4x

Z
d4kFμ2ν2

1

ðk · ∂Þ2 F
μ1ν1

× kμ1kμ2ην1ν2f
ð0Þ: ð2:28Þ

Using Eqs. (2.12) and (2.13),

�Γð2Þ
transp ¼

e2T2Ið2Þðm̄ÞC
ð2πÞ3

Z
d4x

×
Z

dΩFμ2ν2
Kμ1Kμ2ην1ν2
ðK · ∂Þ2 Fμ1ν1 : ð2:29Þ

Expressing the external fields in terms of Fourier compo-
nents, we obtain

�Γð2Þ
transp ¼

e2T2Ið2Þðm̄ÞC
ð2πÞ3

Z
d4p
ð2πÞ4

×
Z

dΩ
~Fμ2ν2Kμ1Kμ2ην1ν2

~Fμ1ν1

ðK · pÞ2 ; ð2:30Þ

where

~Fμiνi ≡ ðpμiηνiμ − pνiημiμÞAμ: ð2:31Þ

Inserting (2.31) into (2.30) and comparing the resulting
expression with (2.26), we obtain the following result for
the two-photon amplitude:

�Πtransp
μν ¼ −

2e2T2Ið2Þðm̄ÞC
ð2πÞ3

Z
dΩ

×

�
ημν −

Kμpν þ Kνpμ

K · p
þ p2KμKν

ðK · pÞ2
�
: ð2:32Þ

This particular example of the two-photon function illus-
trates the general structure of all n-photon functions, which,
as we will see, can be expressed in terms of an angular

integral over the directions of K̂ ≡ ~k=j~kj, the integrand
being a rank n tensor which depends on Kμ as well as the
external momenta. The same structure has been previously
obtained for the leading high temperature limit of non-
Abelian as well as noncommutative gauge theories [16].
Iterating Eq. (2.21) one more time, Eq. (2.25) yields

�ΓðnÞ
transp ¼ ∓e3C

Z
d4x

Z
d4kFμ2ν2

kμ1kμ2ην1ν2
ðk · ∂Þ2 Fμ1ν1

×

�
kβ

1

k · ∂ F
αβ ∂
∂kα

�
fðn−3Þðx;�k; eÞ: ð2:33Þ

Performing an integration by parts in the momentum
integral, the result can be cast in the form

�ΓðnÞ
transp ¼ �e3C

Z
d4x

Z
d4kFμ1ν1

∂λ1

ðk · ∂Þ3 F
μ2ν2

∂λ2∂λ3

ðk · ∂Þ3 F
μ3ν3ην1ν2T

3
μ1μ2μ3ν3λ1λ2λ3

fðn−3Þðx;�k; eÞ; ð2:34Þ

where

T3
μ1μ2μ3ν3λ1λ2λ3

¼ 2kμ1kμ2kμ3kλ2kλ3ηλ1ν3 − ½kμ1kμ3kλ1kλ2kλ3ημ2ν3 þ μ1↔μ2� þ kμ1kμ2kμ3kλ1kλ2ηλ3ν3 : ð2:35Þ

F. T. BRANDT, R. B. FERREIRA, AND J. F. THUORST PHYSICAL REVIEW D 91, 045023 (2015)

045023-4



It is then straightforward to obtain the three-point ampli-
tudes. Similarly to the previous cases, we now consider
n ¼ 3 in the Eq. (2.34) and express the external fields in
terms of Fourier components. Comparing the resulting
expression with Eq. (2.26), we obtain the result

�Πtransp
μ1μ2μ3 ¼ � 6e3TIð3Þðm̄ÞC

ð2πÞ3
Z

dΩAμ1μ2μ3 ; ð2:36Þ

where the explicit result for Aμ1μ2μ3 is given in Appendix.
Using this iterative approach, we have also computed the

explicit result for the four-photon amplitude. Since the
calculation is straightforward, but rather involved, we have
made use of computer algebra. The result has been
compared with the one obtained using the high temperature
limit of thermal field theory, as we describe in the next
section.
It is clear that, in general, the iterative procedure will

produce a result for the n-photon function which is
proportional to

ð�eÞnT4−nIðnÞðm̄ÞC
ð2πÞ3

Z
dΩAμ1μ2…μn ð2:37Þ

so that each thermal amplitude has a simple temperature
dependence given by the factor T4−nIðnÞðm̄Þ.

III. HARD THERMAL LOOPS IN QED

In this section we consider the QED n-photon ampli-
tudes in the usual thermal field theory setting [9–11].
Furthermore, we chose the imaginary time formalism,
which, as it will be seen, is the most direct approach to
obtain the thermal amplitudes in the present context. Also,
to fully describe a plasma under the influence of an external
electromagnetic fields, the external energies in these dia-
grams have to be analytically continued to continuous
values, after the Matsubara sums have been performed.
This prescription extends the imaginary time formalism to a
nonequilibrium regime under the influence of external
fields.
Let us consider the one-loop diagram, shown in Fig. 1.

Once we compute this basic diagram, the n-point one-
particle-irreducible (1PI) amplitudes can be obtained as the
sum of certain permutations of the pairs ðpi; μiÞ, so that the
bosonic symmetry is satisfied. In the imaginary time
formalism, the contribution of this basic diagram can be
written as

Gμ1μ2…μn ¼ −T
Z

d3k
ð2πÞ3

X
k0¼iωn

fμ1μ2…μnðk0; ~kÞ; ð3:1Þ

where

fμ1μ2…μnðk0; ~kÞ ¼
1

k20 − j~kj2 −m2

1

ðk0 þ p10Þ2 − ð~kþ ~p1Þ2 −m2
� � � tμ1μ2…μnðk;p1;…; pnÞ

ðk0 − pn0Þ2 − ð~k − ~pnÞ2 −m2
ð3:2Þ

and we have taken into account the minus sign associated
with the fermion loop. The factor tμ1μ2…μnðk;p1;…; pnÞ
is a shorthand notation for all the contributions to the
numerator which arises, for instance, from the traces of
Dirac matrices and coupling constant factors. The quan-
tities ωn ¼ ð2nþ 1ÞπT are the fermionic Matsubara
frequencies. Using the identity [9–11]

T
X∞
n¼−∞

fðk0 ¼ iωnÞ ¼
1

2πi

I
C
dk0fðk0Þ

×
1

2

�
tanh

�
1

2
βk0

��
; ð3:3Þ

it is straightforward to show that the temperature dependent
part of (3.1) can be written as

Gtherm
μ1μ2…μn ¼

Z
d3k
ð2πÞ3

Z
i∞þδ

−i∞þδ

dk0
2πi

NFðk0Þ

× ½fμ1μ2…μnðk0; ~kÞ þ fμ1μ2…μnð−k0; ~kÞ�: ð3:4Þ

Making the change of variables ~k → −~k in the second term
inside the bracket and using the shorthand notation

k + p
1 k + p

1
+ p

2

k + p
1

+ p
2+ p

3k

...
k −p

n

FIG. 1. One-loop amplitude which contributes to the effective
action. The solid and wavy lines represent fermions and photons
respectively. The external momenta are denoted by pi, i ¼ 1;…n,
and k denotes the loop momenta. The symmetrized amplitude
which contributes to the effective action is obtained by adding all
the permutations of ðn − 1Þ external photon lines and dividing the
result by ðn − 1Þ!.
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fμ1μ2…μnðk0; ~kÞ ¼ fμ1μ2…μnðkÞ, we can write the thermal
contribution of the n-photon diagram in terms of two
components, as

Gtherm
μ1μ2…μn ¼ þGtherm

μ1μ2…μn þ −Gtherm
μ1μ2…μn ; ð3:5Þ

where

�Gtherm
μ1μ2…μn ¼

Z
d3k
ð2πÞ3

Z
i∞þδ

−i∞þδ

dk0
2πi

NFðk0Þ

× fμ1μ2…μnð�kÞ: ð3:6Þ

This separation in two components is the first necessary
step in order to compare the field theory formalism with the
results obtained in the previous section.
Closing the contour of the k0 integration in Eq. (3.6) in

the right-hand side of the complex plane and taking into
account the poles from the denominator of Eq. (3.2), we
obtain

�Gtherm
μ1μ2…μn ¼ −

Z
d3k
ð2πÞ3

NFð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~kÞ2 þm2

q
Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~kÞ2 þm2

q

×
X
cycl

An
μ1μ2…μnð�k; p1;…; pnÞ; ð3:7Þ

where the quantities An
μ1μ2…μn denote on-shell

(k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~kÞ2 þm2

q
) forward scattering amplitudes, as

depicted in Fig. 2, and
P

cycl. denotes the sum of all cyclic
permutations of the pairs ðpi; μiÞ, as we will explain soon.
At this point, we analytically continue the result

to the Minkowski space-time, so that the amplitudes
An
μ1μ2…μnðk;p1; p2;…; pnÞ can be computed using the zero

temperature QED Feynman rules. In this way, we obtain
from Fig. 2 the result (an extra minus sign arises from the
analytic continuation)

A1
μ1 ¼ −etrðγα1γμ1Þkα1 ¼ −4ekμ1 ð3:8aÞ

An
μ1…μn ¼ −enðtrγα1γμ1…γαnγμnÞ

×
kα1…ðkþ sn−1Þαn

ðp2
1 þ 2k · p1Þ…ðs2n−1 þ 2k · sn−1Þ

; ð3:8bÞ

where

sn−1 ≡ p1 þ p2 þ � � � þ pn−1; n ≥ 2: ð3:9Þ
We remark that, as a consequence of the on-shell condition,
all the even powers of m cancel. Also the terms propor-
tional to odd powers of m vanish simply because they are
proportional to the trace of an odd number of gamma
matrices, which is zero when the space-time dimension is
even (in an odd-dimensional space-time, there would be
induced Chern–Simons terms proportional to the odd
powers of m). This way of expressing the n-photon
amplitudes in terms of traces of 2n gamma matrices is
convenient in order to carry a computer algebra calculation.
The particular set of forward scattering amplitudes given

by Eq. (3.8) includes the ones which arise from the residue
of the pole of 1=k2 in Eq. (3.2). It is straightforward to show
that the corresponding contributions associated with each
pole of Eq. (3.2) produce a result which is given by a cyclic
permutation of the pairs ðpi; μiÞ. In this way, the final result
can be expressed as the sum

P
cycl. in Eq. (3.7). This

representation of one-loop 1PI diagrams in terms of
forward scattering amplitudes of on-shell thermal particles
has been derived in various other physical systems such as
non-Abelian gauge theories and gravity [18–21]. As a
result, in all these cases, it is natural to think in terms of a
physical scenario where on-shell thermal particles of
momentum k are scattered by the external photons of
momenta pi, i ¼ 1;…; n, as advanced by Barton [22]. This
is clearly in tune with the Boltzmann transport equation
approach of the previous section.
The full contribution to the 1PI thermal Green’s func-

tions can now be obtained adding all the ðn − 1Þ! permu-
tations of the basic result in Eq. (3.7). Then, taking into
account that

P
perm
ðn−1Þ

P
cycl ¼

P
perm
n
, we can express the 1PI

amplitudes as

�Πtherm
μ1μ2…μn ¼ −

Z
d3k
ð2πÞ3

NFð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~kÞ2 þm2

q

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~kÞ2 þm2

q

×
X
perm
n

An
μ1μ2…μnð�k; p1;…; pnÞ; ð3:10Þ

and the corresponding effective actions are

�ΓðnÞ
therm ¼ 1

ðn − 1Þ!
Z

d4p1

ð2πÞ4
d4p2

ð2πÞ4 …
d4pn

ð2πÞ4
× ~Aμ1ðp1Þ ~Aμ2ðp2Þ… ~AμnðpnÞ
× �Πtherm

μ1μ2…μnðp1; p2;…; pnÞ
× ð2πÞ4δðp1 þ � � � þ pnÞ: ð3:11Þ

[We remark that, due to the symmetry of the basic diagram
in Fig. 1, the sum of the ðn − 1Þ! permutations of external

p
1

p
2

p
nk .. .k + k + p

1
+ k −

µ µµµp
1

p
3p

2
p

n1 2 3 n

FIG. 2. Diagram representing the forward scattering amplitude
An
μ1μ2…μnðk; p1;…; pnÞ. A trace over the product of gamma

matrices is to be understood.
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legs produces completely bosonic symmetric ampli-
tudes �Πtherm

μ1…μnðp1;…; pnÞ.]
In the previous section, we have seen that all the effective

actions (2.26) have a simple temperature dependence of the
form T4−nIðnÞðm̄Þ, as a result of Eq. (2.37). On the other
hand, the thermal field theory effective actions (3.11) have
a more complicated temperature dependence. From a
physical point of view, we expect that the Boltzmann
transport equation approach is restricted to the high
temperature limit, when the system approaches a classical
limit. This indicates that in the thermal field theory
description we have to consider the limit when T is high
compared with the energy-momentum scale of the external
field. This amounts to consider the so-called hard thermal
loop approximation, which in turn implies that the inte-
gration in (3.10) is dominated by the region where
kμ ≫ piμ. Denoting the HTL limit of �Πtherm

μ1…μnðp1;…; pnÞ
by �Πhtl

μ1…μnðp1;…; pnÞ, the equivalence of the two effec-
tive actions would then imply that

�Πhtl
μ1…μnðp1;…; pnÞ ¼

1

n
�Πtransp

μ1…μnðp1;…; pnÞ: ð3:12Þ

In QED this is a well-known result for the leading T2

contribution to the two-photon amplitude. (In the case of
non-Abelian gauge theories, it can be proved that all the
HTL n-gluon functions, which have the same T2 behavior,
can be generated using the Boltzmann transport equation
approach [23].) Our main goal here is to investigate the
validity of this equivalence also for all other n-photon
amplitudes, which have each a distinct dependence on T, in
the HTL approximation.
Using the explicit expression for the on-shell momentum

kμ ¼ j~kjKμ, with K ¼ ð1; ~k=j~kjÞ, Eq. (3.10) yields

�Πhtl
μ1μ2…μn ¼ −

1

ð2πÞ3
Z

∞

0

j~kj2dj~kjNFð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~kÞ2 þm2

q
Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~kÞ2 þm2

q

×
Z
dΩ

X
perm
n

An
μ1μ2…μnð�j~kjK; p1;…; pnÞ:

ð3:13Þ

In the hard thermal loop approximation, the denominators
of the forward scattering amplitudes in (3.13) can be
expanded using

1

s2nþ2k · sn
¼ 1

j~kj
1

2K · sn
−

1

j~kj2
s2n

ð2K · snÞ2
þ��� : ð3:14Þ

When combined with the momentum dependence of the
numerators, as shown in Eq. (3.8), the resulting expression
for the forward scattering amplitudes in Eq. (3.13) can be
expressed as

An
μ1μ2…μnð�j~kjK; p1;…; pnÞ
¼ �j~kjAn

1μ1μ2…μn
þ An

2μ1μ2…μn

� 1

j~kj
An
3μ1μ2…μn

þ 1

j~kj2
An
4μ1μ2…μn

� � � � : ð3:15Þ

Let us first consider the simplest case, namely the one-
photon amplitude. In this case the forward scattering
amplitude is exactly given by

A1
μð�uTKÞ ¼ ∓euTtrKγμ ¼ ∓4euTKμ; ð3:16Þ

where uT ≡ j~kj. Using Eq. (3.10) we obtain the following
result for the partial thermal one-photon amplitudes:

�Πtherm
μ ¼ � 2eT3Ið1Þðm̄Þ

ð2πÞ3
Z

dΩKμ: ð3:17Þ

Comparing this result with the left-hand side of Eq. (3.12)
(for n ¼ 1), which can be easily obtained from Eq. (2.16),
we can see that Eq. (3.12) is satisfied provided that C ¼ 2,
which is the correct result for fermions in 3þ 1
dimensions.
Next, let us consider the more interesting cases when

n ≥ 2. As we have seen in the previous section, the
Boltzmann transport equation approach produces
ðn ≥ 2Þ-photon amplitudes which are proportional to
T4−nIðnÞðm̄Þ. On the other hand, Eq. (3.15) seems to yield,
for each thermal amplitude, when substituted in Eq. (3.13),
several other terms proportional to higher powers of T.
Therefore, a necessary condition to have the equivalence
(3.12), is that contributions proportional to higher powers
of T should vanish. For instance, the term proportional
to T3Ið1Þðm̄Þ, in the two-photon function, as well as the
terms proportional to T3Ið1Þðm̄Þ and T2Ið2Þðm̄Þ in the
three-photon function, and so on, should vanish.
All the contributions proportional to T3Ið1Þðm̄Þ, which

would contribute to (3.13), come from the first term in
Eq. (3.15). From the HTL procedure above described, one
can see that An

1μ1μ2…μn
must have the highest degree in K,

being proportional to

Kα1Kα2…Kαn

ðK ·p1Þ½K · ðp1þp2Þ�…½K · ðp1þp2þpn−1Þ�
: ð3:18Þ

After performing the sum over all the cyclic permutations
and using momentum conservation, it is straightforward to
show that the resulting expression vanishes. More formally,
we have the following necessary condition for the equiv-
alence high-temperature QED and the Boltzmann transport
equation formalism of the previous section:

X
cycl

An
1μ1μ2…μn

ðK; p1;…; pnÞ ¼ 0; n ≥ 2: ð3:19Þ
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We remark that this is a property of individual diagrams
which is true at the level of the forward scattering
amplitudes [one does not need to add the ðn − 1Þ!
permutations to cancel these so-called superleading T3

contributions]. Of course for a neutral plasma, the sum
þΠhtl

μ1μ2…μn þ −Πhtl
μ1μ2…μn would vanish trivially, since the

terms which are proportional to any odd power of T are also
odd in k. However, in the present context, it is important to
check the behavior of the individual components (for both
even and odd n), in order to properly compare with the
Boltzmann transport equation results of the previous
section.
Since Eq. (3.19) already eliminates the T3 contribution to

the two-photon function, only the second term in Eq. (3.15)
may contribute to leading order, producing a T2 contribu-
tion. A straightforward calculation yields (p1 ¼ p and
p2 ¼ −p)

A2
2μ1μ2…μn

¼2e2
�
ημν−

KμpνþKνpμ

K ·p
þp2KμKν

ðK ·pÞ2
�
: ð3:20Þ

Inserting Eq. (3.20) into Eq. (3.13), we obtain

�Πhtl
μν ¼−

2e2T2Ið2Þðm̄Þ
ð2πÞ3

×
Z

dΩ
�
ημν−

KμpνþKνpμ

K ·p
þp2KμKν

ðK ·pÞ2
�
: ð3:21Þ

Comparing Eq. (3.21) with Eq. (2.32), we can see that
(3.12) is satisfied for C ¼ 2, which is the correct result for
fermions in 3þ 1 dimensions.
Up to this point, the thermal field theory calculations

have been performed without using any computer algebra
tool. If we go further and try to verify Eq. (3.12) for
n ¼ 3; 4;…, the calculation starts to become much more
involved. Therefore, to proceed up to at least n ¼ 4, we
have employed the FeynCalc computer algebra tool [24].
At the three-photon order, there would be in principle

contributions from A3
2, which would give rise to a con-

tribution proportional to T2. This would invalidate the
equivalence of the Boltzmann transport equation approach
with thermal field theory. However, a straightforward
calculation yields

A3
2μ1μ2μ3

¼ 2e3Kμ3

K · p3

�
ημ1μ2 −

Kμ1p1μ2 þ Kμ2p1μ1

K · p1

þ ðp1Þ2Kμ1Kμ2

ðK · p1Þ2
�
− ðμ1; p1Þ↔ðμ3; p3Þ; ð3:22Þ

which is manifestly antisymmetric. Therefore, the sum of
its permutations vanish trivially. [It is remarkable how
Eq. (3.22) is simply related to the tensor structure of
Eq. (3.21). Indeed, if we contract it with p3μ3 , we obtain a

relation which resembles the Lorentz structure of the
non-Abelian gauge theory, without the antisymmetric
color factor].
We are then left with a leading contribution to the three-

photon function which is of order T as in the case of the
Boltzmann transport equation approach. With the help of
computer algebra, the resulting expression for A3

3μ1μ2μ3
can

be computed in a straightforward way. After performing the
permutations of the external photon lines, we obtain
complete agreement with (3.12), when using Eqs. (2.36)
and (A1).
The next and more interesting n ¼ 4-photon order can be

dealt with similarly to the previous cases, although the
calculation becomes much more involved. A straightfor-
ward computer algebra calculation shows that, besides the
cancellation of the contribution proportional to T3, the other
contributions due to A4

2μ1…μ4
and A4

3μ1…μ4
also vanish after

we add the permutations. Finally, the remaining result is also
in agreementwith (3.12) as in the previous cases. This shows
that, up to the four-photon order, we have full agreement
with the Boltzmann transport equation approach.
The previous results show that equivalence between

thermal field theory and the Boltzmann transport equation
approach is verified at the level of the forward scattering
amplitudes, in the HTL limit, so that it is not necessary to
explicitly perform the angular integrations in Eq. (3.13).

IV. DISCUSSION

In this work we have investigated the equivalence
between the high temperature limit of thermal field theory
and the Boltzmann transport equation. Specifically, we have
argued that both approaches produce the same n-photon
thermal amplitudes. This is indicated by the general form
derived for the amplitudes, as well as from the explicit
calculations up to n ¼ 4. Furthermore, we have considered
the more general cases when the plasma may not be neutral,
so that the amplitudeswith odd values ofn are nonvanishing.
This equivalence implies that the quantities An

p in Eq. (3.15)
such that p < n should vanish. Only the contribution with
p ¼ n can be interpreted as arising from the classical limit of
finite temperature QED. On the other hand, the p > n
contributions represent quantum corrections which are not
described by the Boltzmann transport equation.
A similar equivalence is well known in the case of non-

Abelian gauge theories as well as gravity and also in the
particular case of the two-photon amplitude in QED. In the
case of non-Abelian theories, it has been useful in order to
derive a closed form for the gauge invariant hard thermal
loop effective action [23]. Our analysis shows that all the
results obtained from the Boltzmann transport equation can
be identified with a more general HTL limit of the thermal
Green’s functions in QED. Consequently, the gauge invari-
ant effective action, rather than being proportional to a
single power of the temperature, will have a more general
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dependence on T as can be seen from the form of the
thermal amplitudes in Eq. (2.37). We remark that the
electron mass is not being neglected so that the amplitudes
with n ≥ 4 are well defined functions of m=T.
Once the equivalence with the Boltzmann transport

equation is established, a full resumation of the
thermal effects in QED, to all orders in the external field,
would require a further investigation, taking into
account the gauge invariant effective actions as given by
Eq. (2.25). The resulting effective action would be relevant
to describe a low density plasma in an external field with

frequencies which are small compared with the
temperature.
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APPENDIX:

Here we present the result for the integrand of the three-
photon amplitude (2.36):

Aμ1μ2μ3 ¼
X
perm
3

�
−
Kμ3Kμ2Kμ1p2 · p3p1

2

ðK · p3Þ2ðK · p1Þ2
−
2Kμ3Kμ2Kμ1p1 · p3p2 · p3

ðK · p3Þ3K · p1

þ Kμ3Kμ2p1μ1p2 · p3

ðK · p3Þ2K · p1

þ 2Kμ3Kμ2p3μ1p2 · p3

ðK · p3Þ3

þ Kμ3Kμ1p3μ2K · p2p1
2

ðK · p3Þ2ðK · p1Þ2
−
Kμ3Kμ1p3μ2p1 · p2

ðK · p3Þ2K · p1

þ Kμ3Kμ1p1μ2p2 · p3

ðK · p3Þ2K · p1

þ 2Kμ3Kμ1p3μ2K · p2p1 · p3

ðK · p3Þ3K · p1

−
Kμ3p1μ1p3μ2K · p2

ðK · p3Þ2K · p1

þ Kμ3p2μ1p3μ2

ðK · p3Þ2
−
Kμ3ημ1μ2p2 · p3

K · p3
2

−
2Kμ3p3μ1p3μ2K · p2

ðK · p3Þ3
þ Kμ2Kμ1p2μ3p1

2

K · p3ðK · p1Þ2
þ Kμ2Kμ1p2μ3p1 · p3

ðK · p3Þ2K · p1

þ Kμ2Kμ1p1μ3p2 · p3

ðK · p3Þ2K · p1

−
Kμ2p1μ1p2μ3

K · p3K · p1

−
Kμ2p3μ1p2μ3

ðK · p3Þ2
−
Kμ2p2 · p3ημ1μ3

ðK · p3Þ2
−
Kμ1K · p2p1

2ημ2μ3
K · p3ðK · p1Þ2

−
Kμ1p2μ3p1μ2

K · p3K · p1

þ Kμ1p1 · p2ημ2μ3
K · p3K · p1

−
Kμ1K · p2p3μ2p1μ3

ðK · p3Þ2K · p1

−
Kμ1K · p2p1 · p3ημ2μ3

ðK · p3Þ2K · p1

þ K · p2p1μ1ημ2μ3
K · p3K · p1

−
p2μ1ημ2μ3
K · p3

þ p2μ3ημ1μ2
K · p3

þ K · p2p3μ1ημ2μ3
ðK · p3Þ2

þ K · p2p3μ2ημ1μ3
ðK · p3Þ2

�
: ðA1Þ

A similar but much more involved expression has been obtained for the four-photon amplitude, using computer algebra. In
all the cases, we have obtained agreement between the results derived using either the Boltzmann transport equation or the
high temperature limit of thermal field theory.
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