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We discuss the physical implications of formulating the Standard Model (SM) in terms of the
superconnection formalism involving the superalgebra suð2=1Þ. In particular, we discuss the prediction of
the Higgs mass according to the formalism and point out that it is ∼170 GeV, in clear disagreement with
experiment. To remedy this problem, we extend the formalism to the superalgebra suð2=2Þ, which extends
the SM to the left-right symmetric model (LRSM) and accommodates a ∼126 GeV Higgs boson. Both the
SM in the suð2=1Þ case and the LRSM in the suð2=2Þ case are argued to emerge at ∼4 TeV from
an underlying theory in which the spacetime geometry is modified by the addition of a discrete extra
dimension. The formulation of the exterior derivative in this model space suggests a deep connection
between the modified geometry, which can be described in the language of noncommutative geometry, and
the spontaneous breaking of the gauge symmetries. The implication is that spontaneous symmetry breaking
could actually be geometric/quantum gravitational in nature. The nondecoupling phenomenon seen in the
Higgs sector can then be reinterpreted in a new light as due to the mixing of low energy (SM) physics and
high energy physics associated with quantum gravity, such as string theory. The phenomenology of a TeV
scale LRSM is also discussed, and we argue that some exciting discoveries may await us at the LHC, and
other near-future experiments.
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I. INTRODUCTION AND OVERVIEW

A. The Higgs mass and beyond the standard
model physics

The Standard Model (SM) of particle physics is a
phenomenally successful phenomenological theory whose
last building block associated with the Higgs sector has
finally been detected [1,2]. The discovery of the Higgs
boson with a mass of ∼126 GeV is made even more
significant by the lack of discovery (so far) of any new
particle associated with supersymmetry (SUSY), techni-
color, or any other beyond the Standard Model (BSM)
scenario which have been proposed as solutions to the
hierarchy problem. This apparent failure of existing BSM
models may simply be an indication that, while one of the
approaches is actually correct, the corresponding model is
not sophisticated enough to accurately represent Nature,
and that further refinements would eventually lead to a
successful theory. Another point of view may be that the
Higgs mass and the lack of new particles are pointing to the
limitations of existing BSM paradigms such as SUSY
and technicolor, and that new ideas to guide BSM model
building should be rigorously searched for. Since no stone

should be left unturned, this search should include reassess-
ments of old ideas as well.

B. The superconnection formalism

In a previous paper [3], we investigated the possibility of
reviving the superconnection formalism first discussed in
1979 by Ne’eman [4], Fairlie [5,6], and others [7–9]. The
original observation of Ne’eman was that the SUð2ÞL ×
Uð1ÞY gauge fields and the Higgs doublet in the SM could
be embedded into a single suð2=1Þ superconnection
[10,11] with the SUð2ÞL ×Uð1ÞY gauge fields constituting
the even part of the superconnection and the Higgs doublet
ϕ constituting the odd part, to wit:

J ¼ i

"
W − 1ffiffi

3
p B · 12×2

ffiffiffi
2

p
ϕffiffiffi

2
p

ϕ† − 2ffiffi
3

p B

#
; ð1Þ

where W ¼ Wiτi. This embedding predicts sin2 θW ¼ 1=4
as well as the Higgs quartic coupling, the latter leading to a
prediction of the Higgs mass [12–14]. The leptons and
quarks could also be embedded into irreducible represen-
tations of suð2=1Þ [15–18], thereby fixing their electroweak
quantum numbers in a natural fashion. Fairlie started from
a 6-dimensional gauge-Higgs unified theory reduced to
four dimensions and arrived at a similar observation.1
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Subsequently, suggestions have been made to incorporate
QCD into the formalism by extending the superalgebra
to suð5=1Þ [20–22].
Though the appearance of the suð2=1Þ superconnection

suggested an underlying “internal” SUð2=1Þ supersym-
metry, gauging this supersymmetry to obtain the super-
connection proved problematic as discussed inRefs. [23,24].
For instance, the Higgs doublet is a boson whereas an
SUð2=1Þ supersymmetry would demand the off-diagonal
scalar components of the superconnection be fermionic with
the wrong spin-statistics. Interpreting these degrees of free-
dom as ghosts would render the model nonunitary, and
though attempts have been made to deal with this problem
[25,26] the issue has never been completely resolved. It is
also clear that the quarks and leptons placed in SUð2=1Þ
representations cannot all be fermions [25,27]. The SUð2=1Þ
supersymmetry must also be broken by hand to give
the gauge boson kinetic terms the correct signs [28].
Due to these, and various other problems, interest in the
approach waned.

C. Connection to noncommutative geometry

It was subsequently recognized, however, that the
appearance of a superconnection does not necessarily
require the involvement of the familiar boson↔fermion
supersymmetry. This development follows the 1990 paper
of Connes and Lott [29] who constructed a new description
of the SM using the framework of noncommutative
geometry (NCG) in which the Higgs doublet appears as
part of the Yang-Mills field (i.e. connection) in a spacetime
with a modified geometry. The full Yang-Mills field in this
approach was described by a superconnection, the off-
diagonal elements of which were required to be bosonic.
The NGC-superconnection approach to the SM was

studied by many authors and a vast literature on the subject
exists, e.g. Refs. [30–55] to give just a representative list.2

Though these works differ from each other in detail, the
basic premise is the same. The models are all of the Kaluza-
Klein type in which the extra dimension is discrete and
consists of only two points. In other words, the model
spacetime consists of two 3þ 1 dimensional “branes.” In
such a setup, the connection must be generalized to connect
not just points within each brane, but also to bridge the gap
between the two. If the left-handed fermions live on one
brane and the right-handed fermions on the other, then the
connections within each brane, i.e. the even part of the
superconnection, will involve the usual SM gauge fields
which couple to fermions of that chirality. In contrast, the
connection across the gap, i.e. the odd part of the super-
connection, connects fermions of opposite chirality and can
be identified with the Higgs doublet.

In this approach, both the even and odd parts of the
superconnection are bosonic, the Z2-grading of the super-
algebra resulting not from fermionic degrees of freedom but
from the existence of the two branes (on which the chirality
γ5 provides the Z2-grading operator), and the definition
of the generalized exterior derivative d in the discrete
direction.3 That is, the superconnection emerges from the
“geometry” of the discrete extra dimension.
In algebraic geometry, the geometric properties of a

manifold M are studied via the algebraic properties of the
commutative algebra of smooth functions C∞ðMÞ defined
on it. If this algebra is allowed to be noncommutative
in general, one has a NCG [29,57–64]. In the discrete
extra dimension case, one usually starts with the algebra
A ¼ C∞ðMÞ ⊗ ðC ⊕ HÞ, and the fermions on the branes
are required to lie in representations of this algebra. Gauge
transformations correspond to the unitary inner automor-
phisms of the algebra,4 which in this case is Uð1Þ × SUð2Þ.
The exterior derivative d is defined via

dα ¼ ½D; α�s; α ∈ A; ð2Þ

where ½·; ·�s is the supercommutator, and the operator D
includes the usual exterior derivative acting on the C∞ðMÞ
part of the algebra, as well as a “matrix derivative”
[36,37,40] which acts on the C ⊕ H part. QCD can be
included in the model by extending the algebra to
A ¼ C∞ðMÞ ⊗ ðC ⊕ H ⊕ M3ðCÞÞ, where M3ðCÞ is the
algebra of 3 × 3 matrices with elements in C. Indeed,
Connes et al. have shown that the entire SM can be
rewritten in the NCG language [29,61].
The extra-discrete-dimension interpretation of the super-

connection model also solves the problem that the pre-
diction sin2 θW ¼ 1=4 is not stable under renormalization
group running and can only be imposed at one scale
[65,66]. That scale can be interpreted as the scale at which
the SM with sin2 θW ¼ 1=4 emerges from the underlying
discrete extra dimension model. The same scale should also
characterize the separation of the two branes in the discrete
direction. Given the current experimental knowledge of the
SM, this scale turns out to be ∼4 TeV [3], suggesting a
phenomenology that could potentially be explored at the
LHC, as well as the existence of a new fundamental scale
of nature at those energies. We will have more to say about
this later.
These developments notwithstanding, a definitive recipe

for constructing a NCG Kaluza-Klein model for a given
algebra still seems to be in the works. Different authors use
different definitions of the exterior derivative d, which,
naturally, lead to different Higgs sectors and different
predictions. In the spectral SM of Connes et al. [59–64],

2See Ref. [56] for a collection of lectures from 1999 by various
authors.

3Since d2 ¼ 0, the exterior derivative is intrinsically fermionic.
4The unitary condition renders the resulting gauge theory

anomaly free [51].
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for instance, the prediction for the Uð1Þ × SUð2Þ × SUð3Þ
gauge couplings are of the SOð10Þ grand unified theory
(GUT) type, pushing up the scale of emergence to the GUT
scale. The spectral SM is not particularly predictive either:
the fermionic masses and mixings must all be put in by
hand into the operator D. Thus, the NCG-superconnection
approach still has much to be desired and further develop-
ment is called for.
Despite the still incomplete nature of the NCG-super-

connection approach, one can still make predictions and
assessments based on the SM which we assume to emerge
from it at the emergence scale. We have already commented
on the fact that the prediction sin2 θW ¼ 1=4 leads to an
emergence scale of ∼4 TeV. The suð2=1Þ superconnection
also predicts the Higgs quartic coupling at that scale, from
which in turn one can predict the Higgs boson mass to be
∼170 GeV. As discussed in Ref. [3], lowering this pre-
diction down to ∼126 GeV requires the introduction of
extra scalar degrees of freedom which modify the renorm-
alization group equations (RGE) of the Higgs couplings.
Those degrees of freedom would be available, for instance,
if the suð2=1Þ superconnection were extended to suð2=2Þ.
The extra-discrete-dimensional suð2=2Þ model shares the
same prediction for sin2 θW as the suð2=1Þ version, and
therefore the same scale (∼4 TeV) at which an effective
SUð2ÞL×SUð2ÞR×Uð1ÞB−L gauge theory can be expected
to emerge. Thus, explaining the Higgs mass within the
NCG-superconnection formalism seems to demand an
extension of the SM gauge group.
Curiously, Connes et al.’s spectral SM with a GUT

emergence scale also predicts the Higgs mass to be
∼170 GeV. Lowering this to ∼126 GeV requires the
introduction of extra scalar degrees of freedom as discussed
above [63,64]. See also Refs. [67,68]. Here too, the Higgs
mass seems to suggest that the SM gauge group needs to
be extended to SUð2ÞL × SUð2ÞR × Uð1ÞB−L, or including
the QCD sector, to SUð2ÞL × SUð2ÞR × SUð4Þ.
Thus, the NCG-superconnection formalism already

requires the extension of the SM gauge group to that of
the left-right symmetricmodel (LRSM), or that of Pati-Salam
[69].5 In this paper, we will take a look at some of the
phenomenological consequences of aNCG-superconnection
motivated LRSM, in anticipation of the start of the upgraded
LHC program in 2015, and various experiments at the
intensity frontier which will be able to constrain new physics
via rare decay processes.
This paper is organized as follows. In Sec. II, we first

review the suð2=1Þ superconnection approach to the SM.
We follow the bottom-up approach of Ne’eman et al.
[4,13,39], Coquereaux et al. [36], and Haussling et al. [37],
in which we start with the superconnection and build up

the theory around it. This review goes into some peda-
gogical detail, and also shows where the Higgs mass
prediction of ∼170 GeV comes from. In Sec. III, we
extend the formalism developed in Sec. II to the suð2=2Þ
superconnection into which the LRSM gauge group
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L is embedded. Again, the
model is reviewed in some detail to clearly present the
assumptions that go into its construction, and the resulting
predictions including that of the Higgs mass. Section IV
discusses how fermion masses and mixings can be incor-
porated into the model. Section V discusses whether the
new particles predicted by the suð2=2Þ superconnection
motivated LRSM are accessible at the LHC and other
experiments. Section VI concludes with a summary of
what was discovered, review of remaining questions, and
some speculation on what all this could mean. The review
of the spectral SM of Connes et al. is relegated to a
subsequent paper [71].

II. THE suð2=1Þ SUPERCONNECTION
FORMALISM OF THE STANDARD MODEL

We begin by reviewing the suð2=1Þ superconnection
formalism of Ne’eman et al. [4,13,39], supplemented
by the matrix derivative of Coquereaux et al. [36] and
Haussling et al. [37], and some of our own observations.
This will be done in some detail to dispel many mis-
conceptions that exist concerning the formalism, while at
the same time expose its weaknesses. For a pedagogical
introduction to superconnections, we point the reader to
Ref. [11] by Sternberg.

A. Superalgebras

Let K be a field such as R or C. A superalgebra A over K
is a vector space over K with a direct sum decomposition

A ¼ A0 ⊕ A1; ð3Þ
together with a bilinear multiplication A × A → A such that

Ai · Aj ⊆ AðiþjÞmod2: ð4Þ
The subscripts 0 and 1 of A0 and A1 are known as the
“grading” of each space and its elements. The above
relation indicates that when two elements of A are
multiplied together, the gradings of the elements add as
elements of the group Z2. Consequently, superalgebras are
also known as Z2-graded algebras. If we call the elements
of A0 and A1 respectively “even” and “odd,” then
Ai · Aj ⊆ AðiþjÞmod2 means that

even · even ¼ even;

even · odd ¼ odd;

odd · even ¼ odd;

odd · odd ¼ even: ð5Þ
5Coincidentally, the analysis of possible string compactifica-

tions by Dienes [70] also finds frequent occurrence of the
Pati-Salam group.
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Some texts use the symbols þ and − instead of 0 and 1 for
the Z2-gradings

A ¼ Aþ ⊕ A−; ð6Þ
so that

Ai · Aj ⊆ Aij; ð7Þ
in which case Eq. (5) can also be written

þ ·þ ¼ þ;

þ · − ¼ −;
− ·þ ¼ −;
− · − ¼ þ; ð8Þ

and the analogy with regular multiplication is manifest.
In this text, however, we will stick to 0 and 1 for notational
convenience.

B. The commutative superalgebra of differential forms

Consider the vector space of differential forms ΩðMÞ on
the manifold M, which decomposes as

ΩðMÞ ¼ Ω0ðMÞ ⊕ Ω1ðMÞ; ð9Þ
where

Ω0ðMÞ ¼ ⨁
n¼even

ΩnðMÞ;

Ω1ðMÞ ¼ ⨁
n¼odd

ΩnðMÞ: ð10Þ

Here, ΩnðMÞ is the vector space of n-forms on M. Ω0ðMÞ
is the vector space of even-order differential forms,
while Ω1ðMÞ is the vector space of odd-order differential
forms. ΩðMÞ ¼ Ω0ðMÞ ⊕ Ω1ðMÞ is a superalgebra under
the wedge product ∧ since, clearly,

ΩiðMÞ ∧ ΩjðMÞ ⊆ ΩiþjðMÞ ð11Þ
implies

ΩiðMÞ ∧ ΩjðMÞ ⊆ ΩðiþjÞmod2ðMÞ: ð12Þ

Furthermore, for any a; b ∈ ΩðMÞ with definite gradings
jaj and jbj, we have

a ∧ b ¼ ð−1Þjajjbjb ∧ a; ð13Þ
that is,

a ∧ b − ð−1Þjajjbjb ∧ a ¼ 0: ð14Þ
For generic superalgebras, when

a · b − ð−1Þjajjbjb · a ¼ 0; ð15Þ

the superalgebra is said to be commutative. Thus,ΩðMÞ is a
commutative superalgebra.

C. The Lie superalgebra suð2=1Þ
Formally, a Lie superalgebra is a superalgebra whose

product a · b satisfies the relations

a · b ¼ −ð−1Þjajjbjb · a;

a · ðb · cÞ ¼ ða · bÞ · cþ ð−1Þjajjbjb · ða · cÞ: ð16Þ
Elements of the real Lie superalgebra suðN=MÞ are repre-
sented by ðN þMÞ × ðN þMÞ supertraceless Hermitian
matrices of the form [17,18]

H¼
�
HðNÞ θ

θ† HðMÞ

�
¼

�
HðNÞ 0

0 HðMÞ

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

H0

þ
�
0 θ

θ† 0

�
|fflfflfflffl{zfflfflfflffl}

H1

; ð17Þ

where HðNÞ and HðMÞ are, respectively, N × N and M ×M
Hermitian matrices and constitute the even (grading 0) part
of the superalgebra, while θ (θ†) is an N ×M (M × N)
matrix and constitutes the odd (grading 1) part. The
“supertrace” of H is defined as

STrH ¼ TrHðNÞ − TrHðMÞ; ð18Þ

and the elements of suðN=MÞ all have vanishing supertrace.
Note that the traceless parts of HðNÞ and HðMÞ respectively
generate SUðNÞ and SUðMÞ, while the nonvanishing
trace part generates Uð1Þ. Therefore, the even part of the
suðN=MÞ superalgebra generates SUðNÞ × SUðMÞ ×Uð1Þ
upon exponentiation.
The product of X; Y ∈ suðN=MÞ in the matrix repre-

sentation is given by

1

i
½X; Y� if jXjjYj ¼ 0;

fX; Yg if jXjjYj ¼ 1; ð19Þ
where ½�; �� and f�; �g respectively denote the standard
commutator and anticommutator between two matrices.
Note that the factor of i−1 for the jXjjYj ¼ 0 case is
necessary to render the product Hermitian. Reference [37]
denotes the two cases collectively as

1

i
½X; Y�s ð20Þ

where ½X; Y�s is the “supercommutator.” Given the even-
odd decompositions X ¼ X0 þ X1 and Y ¼ Y0 þ Y1, it is
defined as [37]

½X; Y�s ¼ ½X0 þ X1; Y0 þ Y1�s
¼ ½X0; Y0� þ ½X0; Y1� þ ½X1; Y0� þ ifX1; Y1g: ð21Þ
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In the literature, the supercommutator is also defined as

½X; Y�s ¼ XY − ð−1ÞjXjjYjYX; ð22Þ

which when written out explicitly reads

½X; Y�s ¼ ½X0 þ X1; Y0 þ Y1�s
¼ ½X0; Y0� þ ½X0; Y1� þ ½X1; Y0� þ fX1; Y1g: ð23Þ

Though we will be using the first definition to express
multiplication in Lie superalgebras, we will also have a
use for the latter definition later in the text, so we request
the reader to keep in mind that the i in front of the
anticommutator terms may or may not be there depending
on the context. It is straightforward to check that both
definitions of the supercommutator satisfy Eq. (16), that is,

½X; Y�s ¼ −ð−1ÞjXjjYj½Y; X�s;
½X; ½Y; Z�s�s ¼ ½½X; Y�s; Z�s þ ð−1ÞjXjjYj½Y; ½X; Z�s�s: ð24Þ

Let us look at a specific case. The Lie superalgebra
suð2=1Þ is the algebra of 3 × 3 supertraceless Hermitian
matrices, the basis for which can be chosen as

λs1 ¼

2
640 1 0

1 0 0

0 0 0

3
75; λs2 ¼

2
640 −i 0

i 0 0

0 0 0

3
75; λs3 ¼

2
641 0 0

0 −1 0

0 0 0

3
75;

λs4 ¼

2
640 0 1

0 0 0

1 0 0

3
75; λs5 ¼

2
640 0 −i
0 0 0

i 0 0

3
75; λs6 ¼

2
640 0 0

0 0 1

0 1 0

3
75;

λs7 ¼

2
640 0 0

0 0 −i
0 i 0

3
75; λs8 ¼

1ffiffiffi
3

p

2
64−1 0 0

0 −1 0

0 0 −2

3
75: ð25Þ

These are the usual suð3ÞGell-mann matrices except for the
eighth (λs8) due to the requirement of vanishing supertrace.
Of these, λs1; λ

s
2; λ

s
3; λ

s
8 span the even part of the superalgebra

while λs4; λ
s
5; λ

s
6; λ

s
7 span the odd part. They close under

commutation and anticommutation relations as [4]

1

i
½λsi ; λsj� ¼ 2fijkλsk;

½λsi ; λs8� ¼ 0;

1

i
½λsi ; λsm� ¼ 2fimlλ

s
l ;

1

i
½λs8; λsm� ¼

2

3
f8mlλ

s
l ;

fλsm; λsng ¼ 2dmnkλ
s
k −

ffiffiffi
3

p
δmnλ

s
8; ð26Þ

where i; j; k denote the even indices 1,2,3,8 and m; n; l
denote the odd indices 4,5,6,7. The f’s and the d’s are the

same as the suð3Þ structure constants defined in Ref. [72].
Note that the odd matrices close into the even ones under
anticommutation (instead of commutation), which is the
main difference from the suð3Þ case. Note also that we have
chosen to normalize the above matrices, including λs8, in the
usual way

TrðλsaλsbÞ ¼ 2δab; ð27Þ
and not via the supertrace.

D. Tensor product of superalgebras

If A and B are superalgebras, then the tensor product
A ⊗ B is also a superalgebra under the multiplication

ða ⊗ bÞ · ða0 ⊗ b0Þ≡ ð−1Þjbjja0jða · a0Þ ⊗ ðb · b0Þ; ð28Þ
where a; a0 ∈ A and b; b0 ∈ B. In constructing this product,
elements of A and B are assumed to (super)commute; cf.
Eq. (15). The grading of the element a ⊗ b ∈ A ⊗ B is
given by

ja ⊗ bj ¼ jaj þ jbj mod 2; ð29Þ
and the even-odd decomposition A ⊗ B ¼ ðA ⊗ BÞ0 ⊕
ðA ⊗ BÞ1 is

ðA ⊗ BÞ0 ¼ ðA0 ⊗ B0Þ ⊕ ðA1 ⊗ B1Þ;
ðA ⊗ BÞ1 ¼ ðA0 ⊗ B1Þ ⊕ ðA1 ⊗ B0Þ; ð30Þ

where A ¼ A0 ⊕ A1 and B ¼ B0 ⊕ B1.
In particular, the tensor product of a commutative

superalgebra of differential forms ΩðMÞ and a Lie super-
algebra L is again a Lie superalgebra with product

½a ⊗ X; b ⊗ Y�S ¼ ð−1ÞjXjjbjða ∧ bÞ ⊗ ½X; Y�s; ð31Þ
where a; b ∈ ΩðMÞ and X; Y ∈ L. The tensor product
ΩðMÞ ⊗ L is the space of L valued differential forms.

E. Superconnection

Just as the gauge connection in QCD is given by
G ¼ i

P
8
a¼1Gaλa, where Ga ¼ Gμ

adxμ are one-forms
corresponding to the gluon fields, we construct the
suð2=1Þ superconnection J using the λs matrices as6

J ¼ i
X8
a¼1

Jaλsa

¼ i
X

i¼1;2;3;8

Jiλsi þ i
X

m¼4;5;6;7

Jmλsm: ð32Þ

For the terms multiplying the even suð2=1Þ matrices, we
make the identifications Ji ¼ Wi ði ¼ 1; 2; 3Þ and J8 ¼ B,

6We take the elements of suð2=1Þ to be Hermitian, but the
superconnection J and the supercurvature F , to be defined in
Sec. II F, are taken to be anti-Hermitian.
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where Wi ¼ Wμ
i dxμ and B ¼ Bμdxμ are respectively the

one-form fields corresponding to the SUð2ÞL and Uð1ÞY
gauge fields. The terms multiplying the odd suð2=1Þ
matrices are identified with zero-form fields corresponding
to the Higgs doublet:

J4∓iJ5 ¼
ffiffiffi
2

p
ϕ�; ð33Þ

J6 − iJ7 ¼
ffiffiffi
2

p
ϕ0; ð34Þ

J6 þ iJ7 ¼
ffiffiffi
2

p
ϕ0�: ð35Þ

Then, the superconnection can be written as

J ¼ i

"
W − 1ffiffi

3
p B · 12×2

ffiffiffi
2

p
ϕffiffiffi

2
p

ϕ† − 2ffiffi
3

p B

#
; ð36Þ

where, W ¼ Wiτi (where τi are the Pauli matrices), and

ϕ ¼
�
ϕþ

ϕ0

�
: ð37Þ

Note that the superconnection J is an odd element of
ΩðMÞ ⊗ suð2=1Þ, where M is the ð3þ 1Þ dimensional
spacetime manifold. Though ϕ by itself is a zero-form, the
superconnection J as a whole is actually a generalized
one-form, the odd grading of λsm (m ¼ 4; 5; 6; 7) supplying
the extra grading associated with every application of the
exterior derivative operator.
Note also that the one-formsWi¼Wμ

i dxμ and B¼Bμdxμ
are dimensionless, so the zero-form ϕ which appears
together with them in the superconnection must also be
dimensionless. To give ϕ its usual mass dimension of one,
some authors replace ϕ with ϕ=μ, where μ is a mass scale.
However, for notational simplicity we will not do this.
We request the reader to assume that, not just ϕ, but all
dimensionful quantities are multiplied by the appropriate
(but invisible) powers of μ to make them dimensionless,
e.g. Bν → Bν=μ, dxν → μdxν. In particular, the Hodge
dual should not change the dimension of the operand:
�1 ¼ μ4d4x, �ðμdxνÞ ¼ 1

6
μ3εκλμνdxκ ∧ dxλ ∧ dxμ, etc.

Once all the dust has settled, the powers of μ will disappear
from the final expression for the action, and we will then be
free to think of all quantities to have their usual dimensions.
As stated in the Introduction, we are considering a

model space consisting of two 3þ 1 dimensional branes
separated by a gap. We interpret the even part of the
superconnection J as connecting points within the two
3þ 1 dimensional branes, the one-from W − 1ffiffi

3
p B · 12×2

acting on the left-handed brane, and the one-from − 2ffiffi
3

p B

acting on the right. The zero-form
ffiffiffi
2

p
ϕ connects the

left-handed brane to the right, and
ffiffiffi
2

p
ϕ† the right-handed

brane to the left.

F. Supercurvature

1. Extension of the exterior derivative

In usual differential geometry the curvature of the
connection ω is given by ðdωÞ þ ω ∧ ω, and in QCD
the curvature of the gauge connection G is given by
FG ¼ ðdGÞ þ 1

2
½G;G�. We would like to calculate the

supercurvature from the superconnection J via the analo-
gous expression

F ¼ ðdSJ Þ þ 1

2
½J ;J �S; ð38Þ

where dS is the extension of the usual exterior derivative
operator d to the superalgebra ΩðMÞ ⊗ suð2=1Þ. Let us
define what it is.
The exterior derivative operator d ¼ dxμ ∧ ∂μ is a map

from ΩiðMÞ to Ωiþ1ðMÞ:

ΩiðMÞ⟶d
Ωiþ1ðMÞ; ð39Þ

or in terms of the Z2-grading decomposition
ΩðMÞ ¼ Ω0ðMÞ þ Ω1ðMÞ, it maps from one grading to
the other:

Ω0ðMÞ⟷d
Ω1ðMÞ: ð40Þ

Since it changes theZ2 grading of differential forms by 1, it
carries the grading of 1 itself. Its characteristic properties
are that it satisfies the super-Leibniz rule

dða ∧ bÞ ¼ ðdaÞ ∧ bþ ð−1Þjaja ∧ ðdbÞ ð41Þ
and that it is nilpotent

d2 ¼ 0: ð42Þ
The extension dS operating on ΩðMÞ ⊗ suð2=1Þ should

also be a grading-switching operator

½ΩðMÞ ⊗ suð2=1Þ�0⟷
dS ½ΩðMÞ ⊗ suð2=1Þ�1; ð43Þ

and should possess the same properties of obeying the
super-Leibniz rule and nilpotency. To this end, let us write

dS ¼ dþ dM; ð44Þ
where

Ω0ðMÞ ⊗ suð2=1Þ⟷d
Ω1ðMÞ ⊗ suð2=1Þ;

ΩðMÞ ⊗ suð2=1Þ0⟷
dM ΩðMÞ ⊗ suð2=1Þ1; ð45Þ

that is, d switches the grading of the ΩðMÞ part while
dM switches the grading of the suð2=1Þ part, and consider
the two operators separately. Since the operators them-
selves have grading 1 in ΩðMÞ ⊗ suð2=1Þ, they should
anticommute:
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ddM þ dMd ¼ 0: ð46Þ
From the model building perspective, the d operator
generates translations within each of the two 3þ 1 dimen-
sional branes while the “matrix derivative” dM [36,37]
accounts for transitions between the two branes.

2. The operator d

We define the action of the operator d on a ⊗ X ∈
ΩðMÞ ⊗ suð2=1Þ by

dða ⊗ XÞ ¼ ðdaÞ ⊗ X: ð47Þ
It is straightforward to show that d satisfies the super-
Leibniz rule given by

d
�
½a ⊗ X; b ⊗ Y�S

�
¼ ½dða ⊗ XÞ; b ⊗ Y�S
þ ð−1ÞjajþjXj½a ⊗ X;dðb ⊗ YÞ�S:

ð48Þ

Nilpotency d2ða ⊗ XÞ ¼ 0 also follows immediately from
ðd2aÞ ¼ 0. From Eqs. (41) and (47), we infer

dða ⊗ XÞ ¼ ½da − ð−1Þjajad� ⊗ X

¼ da ⊗ X − ð−1Þjajad ⊗ X

¼ da ⊗ X − ð−1ÞjajþjXja ⊗ Xd; ð49Þ
or using the second definition of the supercommutator,
Eq. (23), we can write

dða ⊗ XÞ ¼ ½d; a ⊗ X�S: ð50Þ

3. The matrix derivative dM

Let us first find an operator dM which acts on suð2=1Þ
such that

suð2=1Þ0⟷
dM suð2=1Þ1 ð51Þ

with the required properties. For X; Y ∈ suð2=1Þ, the
super-Leibniz rule demands

ðdM½X; Y�sÞ ¼ ½ðdMXÞ; Y�s þ ð−1ÞjXj½X; ðdMYÞ�s: ð52Þ

Comparing with the second line of Eq. (24), we see that
such an operator can be realized as7

ðdMXÞ ¼ i½η; X�s; ð53Þ
where η is any odd element of suð2=1Þ. It is clear that this
operator switches the grading of X.

Nilpotency is more difficult to realize and how it is
treated is an important consideration of the entire formal-
ism. It was shown in Ref. [37] that for a generic
Lie superalgebra suðN=MÞ, demanding d2MðXÞ ¼ 0 with
dM defined as above for all X ∈ suðN=MÞ leads to the
condition N ¼ M. Indeed, since η is an odd element of
suðN=MÞ it has the form

η ¼
�
0N×N ζ
ζ† 0M×M

�
ð54Þ

where ζ is an N ×M matrix. To impose ðd2MXÞ ¼ 0 we
must have

ðd2MXÞ ¼ −½η; ½η; X�s�s ¼ −i½η2; X� ¼ 0; ð55Þ
which means that

η2 ¼
�

ζζ† 0N×M

0M×N ζ†ζ

�
ð56Þ

must commute with all elements of suðN=MÞ. This requires
η2 to be a multiple of a unit matrix, that is

ζζ† ¼ v21N×N; ζ†ζ ¼ v21M×M; ð57Þ
with v2 a constant, which is possible only when N ¼ M.
Because of this, Coquereaux et al. in Ref. [36] work in

four dimensions by adding an extra row and column of
zeroes to the suð2=1Þ matrices to make them into 4 × 4
suð2=2Þ matrices. The η matrix for suð2=2Þ will have the
form of Eq. (54) with ζ a multiple of a 2 × 2 unitary matrix.
The supercommutator of η and a generic suð2=1Þ matrix
embedded into suð2=2Þ will have nonzero elements in
the fourth row and fourth column, but these are dropped
projecting the result back into suð2=1Þ.
Haussling et al. in Ref. [37] take a different approach

and work in three dimensions throughout by dropping the
fourth row and fourth column from the η matrix for
suð2=2Þ.8 Writing the first column of ζ as ξ, the η matrix
used in Ref. [37] is

η ¼
�
02×2 ξ
ξ† 0

�
; ð58Þ

where ξ†ξ ¼ v2. Since the condition N ¼ M is not met, dM
defined with this η is not nilpotent.
Thus, to define a matrix derivative for suð2=1Þ one must

either work in suð2=2Þ and project back into suð2=1Þ,
or forgo nilpotency. However, it turns out that either way
the resulting supercurvature and other physical quantities
will be the same, so we will adopt the three-dimensional
version, Eq. (58), in our definition of dM on suð2=1Þ.

7The supercommutator that appears here is that of the first
definition, Eq. (21).

8In the representation we use for suð2=2Þ in a later section, it is
more precise to say that Ref. [37] drops the third row and third
column corresponding to the right-handed neutrino.
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We extend dM acting on suð2=1Þ to dM acting on
ΩðMÞ ⊗ suð2=1Þ by defining the operation of dM on a ⊗
X ∈ ΩðMÞ ⊗ suð2=1Þ to be given by

dMða ⊗ XÞ ¼ ð−1Þjaja ⊗ ðdMXÞ; ð59Þ
which can also be written as

dMða ⊗ XÞ ¼ ½dM; a ⊗ X�S; ð60Þ
where the supercommutator here is that of Eq. (21).
It is straightforward to show that dM satisfies the super-
Leibniz rule.

4. Short note on nilpotency

At this point, we would like to bring to the reader’s
attention the fact that the statements d2M ¼ 0 and ðd2MXÞ¼ 0
are not equivalent. While the first guarantees the second,
the converse is not true. Indeed, using Eq. (24) we can
rewrite Eq. (55) as

ðd2MXÞ ¼ ½dM; ½dM; X�s�s ¼
1

2
½½dM; dM�s; X�s; ð61Þ

and we can make the identification

1

2
½dM; dM�s ¼ d2M ¼ −iη2; ð62Þ

where η2 is a nonzero even element of suðN=MÞ. For the
N ¼ M case, it becomes a multiple of the unit matrix which
constitutes the center of the superalgebra [λs15 in the case of
suð2=2Þ to be discussed later]. Thus, it is not clear whether
dM as defined here truly qualifies as a generalization of
the “exterior derivative” operator. Furthermore, whether
d2M, and consequently d2

M, can be considered to vanish or
not is an important consideration when calculating the
supercurvature as we will see in the following.

5. Derivation of F

Let us now look at the terms contributing to Eq. (38) one
by one. ðdJ Þ is simply9

ðdJ Þ ¼ i

"
dW − 1ffiffi

3
p dB · 12×2

ffiffiffi
2

p
dϕffiffiffi

2
p

dϕ† − 2ffiffi
3

p dB

#
; ð64Þ

while ðdMJ Þ is given by

ðdMJ Þ¼ i½η;J �S

¼ i

2
6664

− ffiffiffi
2

p ðξϕ†þϕξ†Þ i

�
Wξþ 1ffiffi

3
p Bξ

	

−i
�
ξ†Wþ 1ffiffi

3
p ξ†B

	
− ffiffiffi

2
p ðξ†ϕþϕ†ξÞ

3
7775: ð65Þ

To calculate supercommutator of J with itself, we
decompose J into two parts as

J ¼ i

�W− 1ffiffi
3

p B ·12×2 02×1

01×2 − 2ffiffi
3

p B

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J 10

þ i

�
02×2

ffiffiffi
2

p
ϕffiffiffi

2
p

ϕ† 0

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

J 01

; ð66Þ

where the two subscripts refer to the gradings in ΩðMÞ and
suð2=1Þ, respectively, in that order. Keeping in mind the
product rule given in Eq. (31) forΩðMÞ ⊗ suð2=1Þ, we find

½J 10;J 10�S ¼ −2i
�
εijkðWi ∧ WjÞτk 02×1

01×2 0

�
;

½J 01;J 01�S ¼ −4i
�
ϕϕ† 02×1
01×2 ϕ†ϕ

�
; ð67Þ

and10

½J 10;J 01�S¼½J 01;J 10�S

¼
ffiffiffi
2

p
i

2
6664

02×2 i

�
Wϕþ 1ffiffi

3
p Bϕ

	

−i
�
ϕ†Wþ 1ffiffi

3
p ϕ†B

	
0

3
7775:

ð68Þ
Therefore,11

9If the superconnection J is considered an element of
suð2=1Þ ⊗ ΩðMÞ instead of ΩðMÞ ⊗ suð2=1Þ, then the result
of d acting on J will be

ðdJ Þ ¼ i

�
dW − 1ffiffi

3
p dB · 12×2 − ffiffiffi

2
p

dϕ

− ffiffiffi
2

p
dϕ† − 2ffiffi

3
p dB

�
: ð63Þ

Note the minus signs on the off diagonal terms which results
when d commutes through the odd suð2=1Þ matrix multiplying
the zero-form fields. This choice is a matter of convention and
does not affect the final results.

10As mentioned in footnote 9, we are assuming that the
supercurvature is an element of ΩðMÞ ⊗ suð2=1Þ, not
suð2=1Þ ⊗ ΩðMÞ. The latter choice would reverse the signs of
½J 10;J 01�S and ½J 01;J 10�S. Again, this is a matter of convention
and does not affect the final result as long as the convention is
consistently applied.

11Instead of calculating the supercommutator 1
2
½J ;J �S as we

have done here, some papers treat the superconnection J as a
super-endomorphism of a superspace and calculate the product
J⊙J , using the Ne’eman-Sternberg rule for supermatrix multi-
plication [11,13,39]:�

A C

D B

�
⊙
�
A0 C0

D0 B0

�

¼
�
A ∧ A0 þ ð−1ÞjD0 jC ∧ D0 A ∧ C0 þ ð−1ÞjB0 jC ∧ B0

ð−1ÞjA0 jD ∧ A0 þ B ∧ D0 ð−1ÞjC0 jD ∧ C0 þ B ∧ B0

�
:

The resulting supercurvature F is not an element of
ΩðMÞ ⊗ suð2=1Þ, and the definition of the inner product of F
with itself must be changed accordingly in the calculation of the
action. However, the resulting action turns out to be the same. The
above multiplication rule is derived in Appendix A.
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½J ;J �S ¼ ½J 10;J 10�S þ ½J 10;J 01�S þ ½J 01;J 10�S þ ½J 01;J 01�S

¼ 2i

2
6664
−εijkðWi ∧ WjÞτk − 2ϕϕ† þ ffiffiffi

2
p

i

�
Wϕþ 1ffiffi

3
p Bϕ

	

− ffiffiffi
2

p
i

�
ϕ†W þ 1ffiffi

3
p ϕ†B

	
−2ϕ†ϕ

3
7775: ð69Þ

Putting everything together, the supercurvature reads as

F ¼ dJ þ dMJ þ 1

2
½J ;J �S

¼ i

2
6664
FW − 1ffiffi

3
p FB · 12×2 − 2ϕϕ† − ffiffiffi

2
p ðξϕ† þ ϕξ†Þ ffiffiffi

2
p

Dϕþ
�
iWξþ iffiffi

3
p Bξ

	
ffiffiffi
2

p ðDϕÞ† −
�
iξ†W þ iffiffi

3
p ξ†B

	
− 2ffiffi

3
p FB − 2ϕ†ϕ − ffiffiffi

2
p ðξ†ϕþ ϕ†ξÞ

3
7775

¼ i

"
FW − 1ffiffi

3
p FB · 12×2 − 2ϕ̂ϕ̂† þ ξξ†

ffiffiffi
2

p
Dϕ̂ffiffiffi

2
p ðDϕ̂Þ† − 2ffiffi

3
p FB − 2ϕ̂†ϕ̂þ v2

#
; ð70Þ

where we have introduced the shifted zero-form field

ϕ̂ ¼ ϕþ ξffiffiffi
2

p ; ð71Þ

and

Dϕ ¼ dϕþ
�
iWϕþ iffiffiffi

3
p Bϕ

	
;

Dϕ̂ ¼ dϕ̂þ
�
iWϕ̂þ iffiffiffi

3
p Bϕ̂

	
;

FW ¼ ðFWÞkτk ¼ ðdWk − ϵijkWi ∧ WjÞτk;
FB ¼ dB: ð72Þ

We have also used ξ†ξ ¼ v2.

6. Gauge transformation properties

Recall that in the case of QCD, the curvature
FG ¼ dGþ 1

2
½G;G� transforms as

FG → UFGU† ð73Þ
under SUð3Þ gauge transformations:

U ¼ exp

�
i
X8
j¼1

θjλj

�
: ð74Þ

Let us see whether the supercurvature F derived above
transforms in an analogous fashion under SUð2ÞL ×Uð1ÞY
gauge transformations generated by the even part of the
suð2=1Þ superalgebra:

U ¼ exp

�
i
X

j¼1;2;3;8

θjλ
s
j

�
¼

�
ue−iθ=

ffiffi
3

p
02×1

01×2 e−2iθ=
ffiffi
3

p
�
; ð75Þ

where

u ¼ exp

�
i
X

j¼1;2;3

θjτj

�
∈ SUð2ÞL; θ ¼ θ8: ð76Þ

The one-form gauge fields transform as

W → uWu† þ iduu†;

B → B − dθ: ð77Þ
For the zero-form field, we assume that it is the shifted field
ϕ̂ ¼ ϕþ ξ=

ffiffiffi
2

p
which transforms as

ϕ̂ → ueiθ=
ffiffi
3

p
ϕ̂: ð78Þ

The interpretation is that ξ=
ffiffiffi
2

p
is the vacuum expectation

value (VEV) of ϕ̂ and ϕ is the fluctuation around that VEV.
Then,

FW → uFWu†;

FB → FB;

Dϕ̂ → ueiθ=
ffiffi
3

p
Dϕ̂: ð79Þ

Unfortunately, the ξξ† term in the upper-left block of F is a
constant projection matrix which does not transform under
gauge transformations. This term prevents F from trans-
forming analogously to Eq. (73) as F → UFU†. Since this
transformation law would guarantee the gauge invariance
of the action, which we will derive in the next subsection,
the lack of such a law is somewhat problematic (though
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in fact, it is found that the problem cures itself in the sense
that the action derived from this supercurvature is still
manifestly gauge invariant). In the following, we trace this
problem back to the nonnilpotency of the matrix derivative
dM in suð2=1Þ. However, this can already be seen by
noticing that the problem would not exist if we could
replace ξξ† with v212×2.

7. Covariant derivative

Given d, dM, and the superconnection J , we can
construct a covariant derivative operator via

D ¼ dþ dM þ J : ð80Þ
Let α ∈ ΩðMÞ ⊗ suð2=1Þ be an object which gauge trans-
forms as α → α0 ¼ UαU†. Then, ðdαÞ transforms as

ðdαÞ → ðdα0Þ
¼ dðUαU†Þ
¼ ðdUÞαU† þUðdαÞU† þ ð−1ÞjαjUαðdU†Þ
¼ ðdUÞU†α0 þ UdU†ðα0Þ þ ð−1Þjα0jα0UðdU†Þ
¼ ðdUÞU†α0 þ UdU†ðα0Þ − ð−1Þjα0jα0ðdUÞU†

¼ ½UdU† þ ðdUÞU†; α0�S; ð81Þ
and we can see that d transforms as

d → d0 ¼ UdU† þ ðdUÞU†: ð82Þ
On the other hand, from the gauge transformation proper-
ties we introduced in Eqs. (77) and (78), we can infer that
the combination

dM þ J ¼ iηþ J

¼ i

"
W − 1ffiffi

3
p B · 12×2

ffiffiffi
2

p
ϕ̂ffiffiffi

2
p

ϕ̂† − 2ffiffi
3

p B

#
; ð83Þ

transforms as

dM þ J → UðdM þ J ÞU† − ðdUÞU†: ð84Þ

Therefore, the covariant derivativeD ¼ dþ dM þ J trans-
forms as

D → UDU†; ð85Þ

and consequently, if α → UαU† then

ðDαÞ → UðDαÞU†: ð86Þ

8. Supercurvature from the covariant derivative

The supercurvature can be defined as the supercommu-
tator of the covariant derivative with itself:

F ¼ 1

2
½D;D�S

¼ 1

2
½dS þ J ;dS þ J �S

¼ d2
S þ ðdSJ Þ þ 1

2
½J ;J �S: ð87Þ

From Eq. (85), we can infer that F gauge transforms
as F → UFU†.
In the above expression for F , it is usually assumed that

d2
S ¼ ðdþ dMÞ2 ¼ d2 þ d2

M ¼ 0; ð88Þ

and the d2
S term is dropped recovering Eq. (38). However,

we have found that the supercurvature calculated without
the first term in the suð2=1Þ case did not gauge transform as
F → UFU†. This can be understood as due to the non-
vanishing of d2

M, and the mixing of dM and J under gauge
transformations as shown in Eq. (84). Indeed, in the current
case, d2

M is represented by the matrix

d2
M ¼ −iη2 ¼ −i

�
ξξ† 0

0 v2

�
; ð89Þ

which precisely cancels the problematic terms if added to
Eq. (70):

F þd2
M

¼ i

"
FW − 1ffiffi

3
p FB · 12×2− 2ϕ̂ϕ̂† ffiffiffi

2
p

Dϕ̂ffiffiffi
2

p ðDϕ̂Þ† − 2ffiffi
3

p FB− 2ϕ̂†ϕ̂

#
: ð90Þ

Thus, keeping the d2
M term will give us a supercurvature

with the desired gauge transformation property. However,
we nevertheless argue that the d2

M term should be dropped.
In the following, we calculate the action for F of Eq. (70),
without the addition of d2

M, and find that adding d2
M will

lead to inconsistencies which we would like to avoid.
Before continuing, we note that the situation is some-

what different in the suð2=2Þ case to be considered in
Sec. III. There, the matrix derivative is nilpotent in the
sense that ðd2

MXÞ ¼ 0 for all X ∈ suð2=2Þ, and d2
M ∝ λs15 ¼

− 1ffiffi
2

p 14×4 which belongs to the center of the superalgebra.

Despite the mixing between dM and J as given in Eq. (84),
d2
M ∝ 14×4 is invariant under gauge transformations by

itself and can be dropped without any ill effects.

G. Inner product and the action

In QCD, the action is given by the inner product of the
gauge connection FG ¼ dGþ 1

2
½G;G� with itself:

SQCD ¼ 1

4
hFG; FGi: ð91Þ
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Note that FG is an element of ΩðMÞ ⊗ suð3Þ. For a; b ∈
ΩðMÞ and X; Y ∈ suð3Þ, the inner product of the elements
a ⊗ X and b ⊗ Y is given by

ha ⊗ X; b ⊗ Yi ¼ ha; biΩðMÞhX; Yisuð3Þ: ð92Þ

The inner product in suð3Þ is simply

hX; Yisuð3Þ ¼ TrðXYÞ: ð93Þ

For ΩðMÞ ¼⊕4
i¼0 ΩiðMÞ, the inner product in each of the

subspaces ΩiðMÞ is given by

hai; biiΩiðMÞ ¼
Z

�ai ∧ bi; ð94Þ

where � indicates the Hodge dual, that is,

� 1 ¼ 1

24
εκλμνdxκ ∧ dxλ ∧ dxμ ∧ dxν ¼ d4x;

� dxν ¼ 1

6
εκλμνdxκ ∧ dxλ ∧ dxμ;

� ðdxμ ∧ dxνÞ ¼ 1

2
εκλμνdxκ ∧ dxλ;

� ðdxλ ∧ dxμ ∧ dxνÞ ¼ εκλμνdxκ;

� ðdxκ ∧ dxλ ∧ dxμ ∧ dxνÞ ¼ εκλμν; ð95Þ

where we assume the metric gμν ¼ diagð1;−1;−1;−1Þ and
ε0123 ¼ 1. For a; b ∈ ΩðMÞ, we decompose a ¼ P

iai,
b ¼ P

ibi, where ai; bi ∈ ΩiðMÞ, and define

ha; biΩðMÞ ¼
X
i

hai; biiΩiðMÞ ¼
Z X

i

� ai ∧ bi: ð96Þ

In the case of FG, which is an suð3Þ valued two-form, we
can write (with a slight abuse of notation)

hFG; FGi ¼
Z

Tr½�FG ∧ FG�: ð97Þ

Note that Tr½�FG ∧ FG� is a real scalar-valued four-form
which is gauge invariant. This guarantees the Lorentz and
gauge invariance of the action SQCD.
Let us rewrite the above action in terms of the field

strength tensor. Since G ¼ iGaλa ¼ iðGa
μdxμÞλa, we have

FG ¼ dGþ 1

2
½G;G� ¼ i

2
ðGa

μνdxμ ∧ dxνÞλa;

�FG ¼ i
4
ðGb

ρσε
ρσ

κλdxκ ∧ dxλÞλb; ð98Þ

with

Ga
μν ¼ ∂μGa

ν − ∂νGa
μ þ ifabcGb

μGc
ν; ð99Þ

from which we find

�FG ∧ FG ¼ − 1

2
ðGa

μνGbμνd4xÞλaλb: ð100Þ

Recalling the normalization TrðλaλbÞ ¼ 2δab for the suð3Þ
Gell-Mann matrices, we obtain

Tr½�FG ∧ FG� ¼ −Ga
μνGaμνd4x; ð101Þ

and therefore

SQCD ¼ − 1

4

Z
Ga

μνGaμνd4x; ð102Þ

which is the more familiar form.
In an analogous fashion, let us write the action for F ,

Eq. (70), as

S ¼ 1

4
hF ;F iS: ð103Þ

Note that F is an element of ΩðMÞ ⊗ suð2=1Þ. For
a; b ∈ ΩðMÞ and X; Y ∈ suð2=1Þ, the inner product of
the elements a ⊗ X and b ⊗ Y is given by

ha⊗ X;b⊗ YiS ¼ ð−1ÞjbjjXjha;biΩðMÞhX;Yisuð2=1Þ: ð104Þ

The inner product in ΩðMÞ is the same as before. For the
inner product on suð2=1Þ, we define it to be

hX; Yisuð2=1Þ ¼ TrðXYÞ; ð105Þ

just as in suð3Þ. Note that our use of a trace instead of a
supertrace here in this definition has phenomenological
significance. First, it would break any internal SUð2=1Þ
symmetry that may exist, but maintain the diagonal
SUð2ÞL ×Uð1ÞY gauge invariance. But more significantly,
it provides all the gauge boson kinetic terms with the
correct signs, and also demand ϕ to be bosonic (commut-
ing) instead of fermionic (anticommuting) to prevent the
ϕ-dependent terms in the action from vanishing. Had a
supertrace been used, ϕ would have been required to be
fermionic.12

Unlike FG of QCD,F is a linear combination of suð2=1Þ
valued zero-, one-, and two-forms. Let us write

F ¼
X2
i¼0

F i; ð106Þ

where F i ∈ ΩiðMÞ ⊗ suð2=1Þ. Then,

12We have been unable to find any mention in the literature of
the connection between the choice of trace or supertrace in the
inner product with the bosonic or fermionic nature of ϕ. Perhaps,
this is a new observation.
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hF ;F iS ¼
Z

Tr

�X2
i¼0

�F i ∧ F i

�

¼
X2
i¼0

hF i;F iiS: ð107Þ

Explicitly, we have

F 0 ¼ i

� ð−2ϕ̂ϕ̂† þ ξξ†Þ 02×1

01×2 ð−2ϕ̂†ϕ̂þ v2Þ

�
;

F 1 ¼
ffiffiffi
2

p
i

�
02×2 ðDϕ̂Þ
ðDϕ̂Þ† 0

�
;

F 2 ¼ i

�FW − 1ffiffi
3

p FB · 12×2 02×1

01×2 − 2ffiffi
3

p FB

�
; ð108Þ

and

Tr½�F 0 ∧ F 0� ¼ −Tr
� �ð−2ϕ̂ϕ̂† þ ξξ†Þ 02×1

01×2 �ð−2ϕ̂†ϕ̂þ v2Þ

�
∧
� ð−2ϕ̂ϕ̂† þ ξξ†Þ 02×1

01×2 ð−2ϕ̂†ϕ̂þ v2Þ

�

¼ −Tr
� �ð−2ϕ̂ϕ̂† þ ξξ†Þ ∧ ð−2ϕ̂ϕ̂† þ ξξ†Þ 02×1

01×2 �ð−2ϕ̂†ϕ̂þ v2Þ ∧ ð−2ϕ̂†ϕ̂þ v2Þ

�

¼ −8
�
ϕ̂†ϕ̂ − v2

2

	
2

d4x;

Tr½�F 1 ∧ F 1� ¼ þ2Tr

�
02×2 �ðDϕ̂Þ

�ðDϕ̂Þ† 0

�
∧
�

02×2 ðDϕ̂Þ
ðDϕ̂Þ† 0

�

¼ þ2Tr

� �ðDϕ̂Þ ∧ ðDϕ̂Þ† 02×1

01×2 �ðDϕ̂Þ† ∧ ðDϕ̂Þ

�
¼ þ4ðDμϕ̂Þ†ðDμϕ̂Þd4x;

Tr½�F 2 ∧ F 2� ¼ −Tr
" �FW − 1ffiffi

3
p � FB · 12×2 02×1

01×2 − 2ffiffi
3

p � FB

#
∧
"
FW − 1ffiffi

3
p FB · 12×2 02×1

01×2 − 2ffiffi
3

p FB

#

¼ −Tr
2
64
�
�FW − 1ffiffi

3
p � FB · 12×2

	
∧
�
FW − 1ffiffi

3
p FB · 12×2

	
02×1

01×2 4
3
� FB ∧ FB

3
75

¼ −Tr
" �FW ∧ FW − 1ffiffi

3
p ð�FB ∧ FW þ �FW ∧ FBÞ þ 1

3
� FB ∧ FB · 12×2 02×1

01×2
4
3
� FB ∧ FB

#

¼ −ðFi
WμνF

iμν
W þ FBμνF

μν
B Þd4x: ð109Þ

Notice that when calculating the traces of the zero- and one-form contributions, one respectively needs to commute ϕ̂
through ϕ̂†ϕ̂ϕ̂†, and ðDϕ̂Þ through ðDϕ̂Þ†, and ϕ̂ must be bosonic to prevent the trace from vanishing.
Putting everything together, we find

S ¼ 1

4
hF ;F iS

¼
Z

d4x

�
− 1

4
ðFi

WμνF
iμν
W þ FBμνF

μν
B Þ þ ðDμϕ̂Þ†ðDμϕ̂Þ − Vðϕ̂; ϕ̂†Þ

�
; ð110Þ
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where

Fi
Wμν ¼ ∂μWi

ν − ∂νWi
μ þ 2iεijkWj

μWk
ν;

FBμν ¼ ∂μBν − ∂νBμ;

Dμϕ̂ ¼ ∂μϕ̂ − iðτ ·WμÞϕ̂ − iffiffiffi
3

p Bμϕ̂; ð111Þ

and

Vðϕ̂; ϕ̂†Þ ¼ 2

�
ϕ̂†ϕ̂ − v2

2

	
2

: ð112Þ

Note that the above action is manifestly SUð2ÞL ×Uð1ÞY
gauge invariant as required, even thoughF did not have the
desired gauge transformation property. Furthermore, the
Higgs potential is minimized when ϕ†ϕ ¼ v2=2, consistent
with our assumption that

hϕ̂i ¼ ξffiffiffi
2

p ; ð113Þ

and that ϕ is the fluctuation around it. Had we used
F þ d2

M instead of F , the Higgs potential would have been
2ðϕ̂†ϕ̂Þ2 and ϕ̂would not have developed a VEV. So for the
consistency of the formalism, we will drop the d2

M term
from our supercurvature.
The resulting model is quite interesting in that sponta-

neous symmetry breaking is built into the model from the
beginning. The ϕ field appearing in the superconnection
is already the fluctuation around a symmetry breaking
vacuum. In other words, as emphasized in Refs. [36,37],
the superconnection J already “knows” about the breaking
of the symmetry. Equation (84) suggests that the develop-
ment of the Higgs VEV can be interpreted as due to the
separation of the matrix derivative dM from the super-
connection J , which would be the consequence of the two
branes separating from each other. Thus, the spontaneous
breaking of the gauge symmetry could be the result of the
brane dynamics at work.

H. Symmetry breaking

Let us analyze the model further. We take

hϕ̂i ¼ ξffiffiffi
2

p ¼ vffiffiffi
2

p
�
0

1

�
; ð114Þ

so that

hϕ̂†τ1ϕ̂i ¼ hϕ̂†τ2ϕ̂i ¼ 0; hϕ̂†τ3ϕ̂i ¼ − v2

2
: ð115Þ

Then, the linear combinations

W� ¼ W1∓W2ffiffiffi
2

p ; Z ¼
ffiffiffi
3

p
W3 − B
2

ð116Þ

obtain masses given by

MW ¼ v; MZ ¼ 2vffiffiffi
3

p ; ð117Þ

while the linear combination

A ¼ W3 þ ffiffiffi
3

p
B

2
ð118Þ

remains massless and couples to

λs3 þ
ffiffiffi
3

p
λs8

2
¼

2
4 0 0 0

0 −1 0

0 0 −1

3
5 ¼ Q; ð119Þ

which corresponds to the electromagnetic charge.
Comparison with the SM will be made after the introduc-
tion of the coupling constant in the next subsection.

I. The coupling constants and the value of sin2θW

1. The Higgs quartic coupling and the Higgs mass

We introduce the SUð2ÞL coupling constant g by
rescaling the superconnection J , the action S, and the
matrix-derivative matrix η as

J →
g
2
J ; S →

g2

4
S; η →

g
2
η: ð120Þ

Extracting the Lagrangian from the action, we find

L ¼ − 1

4
Fi
WμνF

iμν
W − 1

4
FBμνF

μν
B

þ ðDμϕ̂Þ†ðDμϕ̂Þ − g2

2

�
ϕ̂†ϕ̂ − v2

2

	
2

; ð121Þ

with

Fi
Wμν ¼ ∂μWi

ν − ∂νWi
μ þ igεijkWj

μWk
ν;

FBμν ¼ ∂μBν − ∂νBμ;

Dμϕ̂ ¼ ∂μϕ̂ − i
g
2
ðτ ·WμÞϕ̂ − i

g

2
ffiffiffi
3

p Bμϕ̂: ð122Þ

The Higgs quartic coupling, which we normalize to

Vðϕ̂†; ϕ̂Þ ¼ λðϕ̂†ϕ̂Þ2 þ � � � ; ð123Þ

can be read off from Eq. (121) to be

λ ¼ g2

2
: ð124Þ

Rewriting the Higgs field ϕ̂ as
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ϕ̂ ¼
�

πþ
vþhþiπ0ffiffi

2
p

�
; ð125Þ

we find

Vðϕ̂†; ϕ̂Þ ¼ 1

2
ð2λv2Þh2 þ � � � ð126Þ

so the Higgs mass (at tree level) is

Mh ¼
ffiffiffiffiffi
2λ

p
v ¼ gv: ð127Þ

2. sin2θW from the coupling to Higgs boson

Since the Higgs doublet ϕ̂ has hypercharge þ1, we can
make the identification

g0 ¼ gffiffiffi
3

p ; ð128Þ

so that

Dμϕ̂ ¼ ∂μϕ̂ − i
g
2
ðτ ·WμÞϕ̂ − i

g0

2
Bμϕ̂: ð129Þ

Also, after symmetry breaking the photon field A couples to
ðg=2ÞQ, where Q is given in Eq. (119). Therefore,

e ¼ g
2
¼ g sin θW: ð130Þ

This relation can also be confirmed from the matching
condition of the gauge couplings:

1

e2
¼ 1

g2
þ 1

g02
¼ 4

g2
: ð131Þ

Thus, this formalism predicts

sin2θW ¼ g02

g2 þ g02
¼ e2

g2
¼ 1

4
: ð132Þ

Using g and g0, the masses of the W and Z we listed earlier
in Eq. (117) can be written

MW ¼ gv
2
; MZ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
v

2
; ð133Þ

while the linear combinations of W3 and B that constitute
the Z and the photon listed in Eqs. (116) and (118) can be
written

Z ¼ W3 cos θW − B sin θW;

A ¼ W3 sin θW þ B cos θW; ð134Þ

just as in the SM. Note that together with Eq. (127), this
model predicts

Mh

MW
¼ 2: ð135Þ

This is clearly problematic, since it leads to the prediction
Mh ≈ 160 GeV. However, we could argue that these tree-
level predictions are those that are valid at the scale at
which the SM emerges from the underlying NCG theory.
The question is whether renormalization group running
from this emergence scale to the electroweak scale will
cure the Higgs mass. This will be addressed in the next
subsection.

3. sin2θW from the coupling to fermions

The value of sin2 θW can also be checked by looking at
the gauge couplings of the fermions [4]. The interaction of
the leptons with the SUð2ÞL ×Uð1ÞY gauge bosons in the
SM is given by

−LSM
l ¼ g

2
ðl̄Lγ

μτilLÞWi
μ

− g0

2
ðl̄Lγ

μlL þ 2l̄Rγ
μlRÞBμ; ð136Þ

where

lL ¼
�
νL
l−
L

�
; lR ¼ l−

R: ð137Þ

In the suð2=1Þ embedding, we demand invariance only
under transformations generated by the even part of the
superalgebra, which leads to the interaction

Leven
l ¼ − g

2

X
i¼1;2;3;8

ðψ̄γμλsiψÞJiμ ð138Þ

where

ψ ¼
�
lL

lR

�
¼

� νL
l−
L

l−
R

�
ð139Þ

is a triplet under suð2=1Þ, and Jiμ is the vector field
associated with the one-form Ji ¼ Jiμdxμ. Recalling that
J1;2;3 are identified with W1;2;3 ¼ W1;2;3

μ dxμ, while J8 is
identified with B ¼ Bμdxμ, this interaction can be written
out as

−Leven
l ¼ g

2
ðl̄Lγ

μτilLÞWi
μ

−
g

2
ffiffiffi
3

p ðl̄Lγ
μlL þ 2l̄Rγ

μlRÞBμ: ð140Þ

Comparing Eqs. (136) and (140) we reproduce Eq. (128).
Here the requirement of SUð2ÞL ×Uð1ÞY gauge invari-

ance was used to determine the couplings between the even
part of the suð2=1Þ superconnection and the fermion fields.
The couplings between the odd part of the superconnection,
namely the Higgs doublet ϕ, and the fermion fields must
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reproduce the SM Yukawa couplings. How these can be
accommodated within the superconnection formalism will
be discussed in Sec. IV.

J. The emergence scale and the Higgs boson mass
from suð2=1Þ

Let us now address the prediction for the Higgs mass
including radiative corrections. In what follows we assume
the relation

M2
h

M2
W
¼ 8λ

g2
ð141Þ

to be invariant under renormalization group flow, and
follow the evolutions of the coupling constants λ and g
assuming the SM particle content below the scale at which
the SM emerges from some underlying NCG theory.
The renormalization group equation (RGE) for λ is

coupled to those of the fermion Yukawa couplings, of
which we only take that of the top quark to be relevant. The
RGE’s for λ and the top Yukawa coupling ht are [73]

μ
dht
dμ

¼ ht
ð4πÞ2

�
9

2
h2t −

�
17

12
g02 þ 9

4
g2 þ 8g2s

	�
;

μ
dλ
dμ

¼ 1

ð4πÞ2
�


12h2t − ð3g02 þ 9g2Þ
�
λ − 6h4t

þ 24λ2 þ 3

8
ðg04 þ 2g02g2 þ 3g4Þ

�
; ð142Þ

where g0, g, and gs are the Uð1ÞY , SUð2ÞL and SUð3Þc
coupling constants, respectively, and the top Yukawa
coupling ht is normalized to

mt ¼
htvffiffiffi
2

p : ð143Þ

The most recent value of the top quark mass is
mt ¼ 173.21� 0.51� 0.71 GeV [74].
We will follow Ref. [4] to find the boundary condition on

λ. To fix the scale of emergenceΛs of the suð2=1Þ structure,
we look for the scale at which the relation g ¼ ffiffiffi

3
p

g0
(i.e. sin2 θW ¼ 1=4) holds. We use the one-loop relations

1

½giðΛsÞ�2
¼ 1

½giðΛ0Þ�2
− 2bi ln

Λs

Λ0

ði ¼ 1; 2; 3Þ ð144Þ

where g1 ¼ g0, g2 ¼ g, g3 ¼ gs, and the respective
constants bi read as [75]

b1 ¼
1

16π2

�
20nf
9

þ nH
6

	
;

b2 ¼ −
1

16π2

�
− 4nf

3
− nH

6
þ 22

3

	
;

b3 ¼ −
1

16π2

�
− 4nf

3
þ 11

	
: ð145Þ

We will only need to look at the runnings of g1 and g2 to
find Λs, but will also need to look at the running of g3 in the
RGE’s listed in Eq. (142). Setting the number of fermion
families to nf ¼ 3, and the number of Higgs doublets to
nH ¼ 1, we have

b1¼
1

16π2

�
41

6

	
; b2¼

1

16π2

�
−19

6

	
; b3¼− 7

16π2
:

ð146Þ

The numerical values (MS) of the coupling constants at the
scale Λ0 ¼ MZ are given in Ref. [74] as α−11 ðMZÞ ¼ 98.36,
α−12 ðMZÞ¼29.58, and α−13 ðMZÞ¼8.45, where α−1i ¼4π=g2i .
Note that α−11 ðMZÞ=α−12 ðMZÞ ¼ 3.325. Running this ratio
up to where α−11 ðΛsÞ=α−12 ðΛsÞ ¼ 3, we find the scale of
emergence to be

Λs ≃ 4 TeV: ð147Þ
Since this is the energy where the structure associated with
suð2=1Þ emerges, the constraint Eq. (124), λ ¼ g22=2, is also
expected to hold at this energy. This predicts the Higgs
mass value as Mh ¼ 2MW ≃ 160 GeV, which should also
be interpreted as the Higgs mass value at Λs ≃ 4 TeV.
Using Eq. (142) with the boundary conditions λ ¼ g22=2 at
4 TeV and ht ¼

ffiffiffi
2

p
mt=v at MZ, we find λðMZÞ≃ 0.24

(Fig. 1) and

MhðMZÞ≃ 170 GeV: ð148Þ
Thus, the predicted Higgs mass is incorrect and it cannot be
remedied within the suð2=1Þ superconnection framework.
However, as we will show in the next section, lowering it to
126 GeV can be realized in the suð2=2Þ extension which
predicts the emergence of the left-right symmetric model
(already broken to the SM) at the TeV scale.

K. suð2=1Þ summary

In this section, we have reviewed the suð2=1Þ super-
connection formalism into which the SM is embedded in
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h t
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FIG. 1. The behavior of the top Yukawa coupling (ht), which is
represented as the dashed line, and the Higgs quartic coupling (λ).
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some detail, including some sticking points, and looked
at its predictions. The embedding enforces the relations
sin2 θW ¼ 1=4 and λ ¼ g2=2. The first is valid at the scale
of Λs ∼ 4 TeV, which we interpret as the scale at which
the suð2=1Þ formalism emerges from a yet unknown
underlying NCG theory. Assuming the second relation is
also valid at that scale, we obtain Mh ∼ 170 GeV as the
prediction for the Higgs mass.
Though the Higgs mass prediction is clearly problem-

atic, the formalism has a couple of interesting and attractive
features which deserve attention. First and foremost, we
note that the generalized exterior derivative in the discrete
direction, i.e. the matrix derivative, carries in it information
on the Higgs VEV hϕ̂i ¼ ξ=

ffiffiffi
2

p
. The zero-form field ϕ

which appears in the superconnection J is the fluctuation
of ϕ̂ around this VEV: ϕ̂ ¼ hϕ̂i þ ϕ. Thus, the SUð2ÞL ×
Uð1ÞY gauge symmetry is spontaneously broken to Uð1Þem
from the beginning, and there is, in fact, no need to shift the
field from ϕ to ϕ̂, only to shift it back again to account for
the physical degrees of freedom in the broken phase. Since
the matrix derivative is necessitated by the existence of
the discrete extra dimension, one could argue that it is the
dynamical separation of the two branes itself that broke the
symmetry and shifted the Higgs field. In other words, it is
the dynamics of the discrete geometry of the two branes
that is responsible for spontaneous symmetry breaking, and
the Higgs field is just one manifestation of the phenome-
non. This is in contrast to the usual SM point of view in
which the Higgs dynamics is independent of any dynamics
of the background geometry.
Second, since the formalism fails to predict the correct

Higgs mass, it begs an extension to a formalism that would.
This can be viewed as an advantage instead of a drawback
of the model since it points us to new directions. As we [3],
and other authors have pointed out [63,64], an additional
singlet scalar degree of freedom in the Higgs sector would
mix with the Higgs boson to brings its mass down, and a
simple way to introduce such a degree of freedom would
be to extend the SM electroweak gauge group to
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L. In the superconnection for-
malism, this gauge group can be embedded into suð2=2Þ.
Thus, despite the absence of our understanding on how
these structures arise from an underlying NCG theory, the
data already suggest an extension from suð2=1Þ to suð2=2Þ.

III. EMBEDDING OF THE LEFT-RIGHT
SYMMETRIC MODEL INTO suð2=2Þ

Given the limitations of the suð2=1Þ superconnection
model outlined above, here we explore the possibility of
using an suð2=2Þ superconnection to embed the SM
electroweak gauge fields and the Higgs field. The gauge
group embedded will be SUð2ÞL × SUð2ÞR × Uð1ÞB−L
with the same gauge couplings for SUð2ÞL and SUð2ÞR.
Thus, we are working with the left-right symmetric model
(LRSM) [76–89]. We will assume the breaking of

SUð2ÞL × SUð2ÞR ×Uð1ÞB−L down to Uð1Þem so that
the electromagnetic charge Q will be given by

Q ¼ IL3 þ IR3 þ
B − L
2

; ð149Þ

where IL3 and IR3 are respectively the third components of
the left- and right-handed isospins.
We follow the same route as in the previous section:

we will first work out the superconnection J of the
model and find that a bi-doublet scalar field Φ appears
in the odd part. The supercurvature F and action S are
derived from the superconnection J , and in the process
it is discovered that the matrix derivative dM in this
case can be made nilpotent, and as a consequence, the
supercurvature F has a simple gauge transformation
property which guarantees the gauge invariance of the
action S. To achieve the breaking of SUð2ÞL × SUð2ÞR ×
Uð1ÞB−L down to Uð1Þem, two complex triplet scalar
fields ΔL and ΔR are introduced as matter fields living,
respectively, on the left- and right-handed branes. We
find that ΔL;R can naturally be placed in an suð2=2Þ
representation, suggesting that their introduction is not
entirely ad hoc. The formalism predicts the ratios of
gauge coupling constants, and thus the value of sin2 θW ,
and the self-couplings of the Φ, but not the various
couplings involving ΔL;R in the most generic Higgs
potential [83]. However, this is sufficient to fix the scale
Λs at which the structure is expected to emerge from
an underlying NCG theory, and also suggest that the
measured Higgs mass can be accommodated within the
framework.

A. suð2=2Þ superalgebra
The superalgebra suð2=2Þ consists of 4 × 4 supertrace-

less Hermitian matrices, in which the even and odd parts
are 2 × 2 submatrices. The basis for suð2=2Þ can be chosen
to be

λs1 ¼

2
6664
0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

3
7775; λs2 ¼

2
6664
0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

3
7775;

λs3 ¼

2
6664
1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

3
7775; λs4 ¼

2
6664
0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

3
7775;

λs5 ¼

2
6664
0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

3
7775; λs6 ¼

2
6664
0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

3
7775;
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λs7 ¼

2
6664
0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

3
7775; λs8 ¼

2
6664
0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1

3
7775;

λs9 ¼

2
6664
0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

3
7775; λs10 ¼

2
6664
0 0 0 −i
0 0 0 0

0 0 0 0

i 0 0 0

3
7775;

λs11 ¼

2
6664
0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

3
7775; λs12 ¼

2
6664
0 0 0 0

0 0 0 −i
0 0 0 0

0 i 0 0

3
7775;

λs13 ¼

2
6664
0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

3
7775; λs14 ¼

2
6664
0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0

3
7775;

λs15 ¼ −
1ffiffiffi
2

p

2
6664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
7775: ð150Þ

These matrices are normalized to satisfy the orthogonality
condition

TrðλsaλsbÞ ¼ 2δab; where a; b ¼ 1; 2;…15: ð151Þ

The even elements of the superalgebra are spanned by λs1,
λs2, λ

s
3, λ

s
8, λ

s
13, λ

s
14, λ

s
15, while the odd elements are spanned

by λs4, λ
s
5, λ

s
6, λ

s
7, λ

s
9, λ

s
10, λ

s
11, λ

s
12. The only matrix different

from its suð4Þ counterpart is λs15 due to the supertraceless-
ness condition. These matrices close under commutation
and anticommutation relations as

1

i
½λsi ; λsj� ¼ 2fijkλsk;

1

i
½λsi ; λsm� ¼ 2fimlλ

s
l ;

fλsm; λsng ¼ 2dmnkλ
s
k −

ffiffiffi
2

p
δmnλ

s
15; ð152Þ

where i; j; k denote the even indices 1,2,3,8,13,14,15, while
m; n; l denote the odd indices 4,5,6,7,9,10,11,12. The f’s
and d’s are the same as the structure constants for suð4Þ:

1

i
½λa; λb� ¼ 2fabcλc;

fλa; λbg ¼ 2dabcλc þ δab; ð153Þ

where λa ¼ λsa for a ¼ 1; 2;…14, and

λ15 ¼
1ffiffiffi
2

p

2
6664
1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

3
7775: ð154Þ

B. suð2=2Þ superconnection
The superconnection J of this model is expressed

as J ¼ iJaλsa, where a ¼ 1; 2;…15. We make the identi-
fications13

J1;2;3 ¼ W1;2;3
L ; J13;14;8 ¼ W1;2;3

R ;

J4 − iJ5 ¼
ffiffiffi
2

p
ϕ0
1; J4 þ iJ5 ¼

ffiffiffi
2

p
ϕ0�
1 ;

J6 − iJ7 ¼
ffiffiffi
2

p
ϕ−
1 ; J6 þ iJ7 ¼

ffiffiffi
2

p
ϕþ
1 ;

J9 − iJ10 ¼
ffiffiffi
2

p
ϕþ
2 ; J9 þ iJ10 ¼

ffiffiffi
2

p
ϕ−
2 ;

J11 − iJ12 ¼
ffiffiffi
2

p
ϕ0
2; J11 þ iJ12 ¼

ffiffiffi
2

p
ϕ0�
2 ;

J15 ¼ WBL; ð155Þ
where Wi

L ¼ Wiμ
L dxμ, W

i
R ¼ Wiμ

R dxμ, and WBL ¼ Wμ
BLdxμ

are one-form fields while the ϕ’s are zero-form fields,
corresponding, respectively, to the SUð2ÞL × SUð2ÞR ×
Uð1ÞB−L gauge fields and the bi-doublet Higgs field14:

Φ ¼
�
ϕ0
1 ϕþ

2

ϕ−
1 ϕ0

2

�
: ð156Þ

The resulting superconnection has the form

J ¼ i

"
WL− 1ffiffi

2
p WBL · 12×2

ffiffiffi
2

p
Φffiffiffi

2
p

Φ† WR− 1ffiffi
2

p WBL · 12×2

#
; ð157Þ

where

WL ¼ Wi
Lτ

i; WR ¼ Wi
Rτ

i: ð158Þ
In this assignment, we have assumed that the ordering of
the rows of the suð2=2Þ matrix, from top to bottom,
correspond to left-handed isospin up, left-handed isospin
down, right-handed isospin up, then right-handed isospin
down. So the leptons will be placed in a four-dimensional
representation of suð2=2Þ in the order

ψ ¼
�
lL

lR

�
¼

2
64
νL
l−
L
νR
l−
R

3
75: ð159Þ

13We switch from subscripts to superscripts for the SUð2Þ
indices to make room for the subscripts L and R.

14Here, we use the subscripts 1 and 2 to label the two SUð2ÞL
doublets embedded in Φ. Some papers in the literature use
subscripts to label SUð2ÞR doublets, e.g. Refs. [82,83], so care is
necessary when comparing formulas.
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C. suð2=2Þ supercurvature
As reviewed in the discussion of the suð2=1Þ case, the

supercurvature is given by

F ¼ ðdJ Þ þ ðdMJ Þ þ 1

2
½J ;J �S; ð160Þ

where the d2
M term has been assumed not to contribute and

has been dropped.
The ðdJ Þ term is

ðdJ Þ ¼ i

"
dWL− 1ffiffi

2
p dWBL ·12×2

ffiffiffi
2

p
dΦffiffiffi

2
p

dΦ† dWR− 1ffiffi
2

p dWBL ·12×2

#
:

ð161Þ
The matrix derivative is defined with the 4 × 4 η-matrix
given by

η ¼
�
02×2 ζ
ζ† 02×2

�
; ð162Þ

where ζ is a multiple of a 2 × 2 unitary matrix,
that is ζ†ζ ¼ ζζ† ¼ v212×2. This time, the matrix

derivative is nilpotent: ðd2
MXÞ ¼ 0 for all X ∈ suð2=2Þ.

We find

ðdMJ Þ ¼ i½η;J �S

¼ i

� − ffiffiffi
2

p ðζΦ† þ Φζ†Þ þiðWLζ − ζWRÞ
−iðζ†WL −WRζ

†Þ − ffiffiffi
2

p ðζ†Φþ Φ†ζÞ

�
:

ð163Þ
To calculate the supercommutator of J with itself, we
separate it into the 1-0 and 0-1 parts as before:

J ¼ i

"
WL − 1ffiffi

2
p WBL · 12×2 02×2

02×2 WR − 1ffiffi
2

p WBL · 12×2

#
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J 10

þ i

�
02×2

ffiffiffi
2

p
Φffiffiffi

2
p

Φ† 02×2

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

J 01

: ð164Þ

We find

½J 10;J 10�S ¼ −2i
�
εijkðWi

L ∧ Wj
LÞτk 02×2

02×2 εijkðWi
R ∧ Wj

RÞτk
�
;

½J 01;J 01�S ¼ −4i
�
ΦΦ† 02×2
02×2 Φ†Φ

�
;

½J 10;J 01�S ¼ ½J 01;J 10�S
¼

ffiffiffi
2

p
i

�
02×2 þiðWLΦ − ΦWRÞ

−iðΦ†WL −WRΦ†Þ 02×2

�
: ð165Þ

Putting everything together, we obtain

F ¼ i

�FL − 1ffiffi
2

p FBL − 2ΦΦ† − ffiffiffi
2

p ðζΦ† þ Φζ†Þ ffiffiffi
2

p
DΦþ iðWLζ − ζWRÞffiffiffi

2
p ðDΦÞ† − iðζ†WL −WRζ

†Þ FR − 1ffiffi
2

p FBL − 2Φ†Φ − ffiffiffi
2

p ðζ†Φþ Φ†ζÞ

�

¼ i

�FL − 1ffiffi
2

p FBL − 2Φ̂Φ̂† þ v212×2
ffiffiffi
2

p
DΦ̂ffiffiffi

2
p ðDΦ̂Þ† FR − 1ffiffi

2
p FBL − 2Φ̂†Φ̂þ v212×2

�
; ð166Þ

where we have introduced the shifted Higgs field

Φ̂ ¼ Φþ ζffiffiffi
2

p ; ð167Þ
and

FL;R ¼ ðFL;RÞaτa ¼ ðdWi
L;R − ðWL;R ∧ WL;RÞiÞτi

¼ ðdWi
L;R − εijkWj

L;R ∧ Wk
L;RÞτi;

FBL ¼ dWBL · 12×2;

DΦ ¼ dΦþ iWLΦ − iΦWR;

DΦ̂ ¼ dΦ̂þ iWLΦ̂ − iΦ̂WR: ð168Þ
We have also used ζ†ζ ¼ ζζ† ¼ v212×2.
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D. Gauge transformation properties

The even part of suð2=2Þ generates the gauge trans-
formations in SUð2ÞL × SUð2ÞR × Uð1ÞB−L:

U ¼ exp

�
i

X
i¼1;2;3;8;13;14;15

θiλ
s
i

�

¼
�
uLe−iθ=

ffiffi
2

p
02×2

02×2 uRe−iθ=
ffiffi
2

p
�
; ð169Þ

where

uL ¼ exp

�
iðθ1τ1 þ θ2τ2 þ θ3τ3Þ

�
∈ SUð2ÞL;

uR ¼ exp

�
iðθ13τ1 þ θ14τ2 þ θ8τ3Þ

�
∈ SUð2ÞR;

θ ¼ θ15: ð170Þ

The one-form gauge fields transform as

WL → uLWLu
†
L þ iduLu

†
L;

WR → uRWRu
†
R þ iduRu

†
R;

WBL → WBL − dθ: ð171Þ

For the zero-form field, we assume that it is the shifted field
Φ̂ which transforms as

Φ̂ → uLΦ̂u
†
R: ð172Þ

ζ=
ffiffiffi
2

p
is interpreted as the VEV of Φ̂, and Φ as the

fluctuation around it. Thus,

FL → uLFLu
†
L;

FR → uRFRu
†
R;

FBL → FBL;

DΦ̂ → uLðDΦ̂Þu†R: ð173Þ

This time, the terms coming from ζ cause no problems
due to ζ†ζ ¼ ζζ† ¼ v212×2, and F can be seen to transform
as

F → UFU†: ð174Þ

E. The action

Following the same procedure as the suð2=1Þ case, we
find that the action in the suð2=2Þ case is given by

S ¼ 1

4
hF ;F iS

¼
Z

d4x

�
− 1

4
ðFi

LμνF
iμν
L þ Fi

RμνF
iμν
R þ FBLμνF

μν
BLÞ

þ Tr½ðDμΦ̂Þ†ðDμΦ̂Þ� − VðΦ̂†; Φ̂Þ
�
; ð175Þ

where

Fiμν
L ¼ ∂μWiν

L − ∂νWiμ
L þ 2iεijkWjμ

L W
kν
L ;

Fiμν
R ¼ ∂μWiν

R − ∂νWiμ
R þ 2iεijkWjμ

R W
kν
R ;

Fμν
BL ¼ ∂μWν

BL − ∂νWμ
BL;

DμΦ̂ ¼ ∂μΦ̂ − iWiμ
L τ

iΦ̂þ iWiμ
R Φ̂τ

i;

VðΦ̂†; Φ̂Þ ¼ 2Tr

��
Φ̂†Φ̂ − v2

2
12×2

	
2
�
: ð176Þ

Thus, we obtain a manifestly gauge invariant action as
required. The Higgs potential is minimized when

Φ̂†Φ̂ ¼ v2

2
12×2; ð177Þ

which is consistent with our interpretation that the VEVof
Φ̂ is given by

hΦ̂i ¼ ζffiffiffi
2

p : ð178Þ

F. Symmetry breaking

1. Breaking with the bi-doublet

It is a well-known fact that the bi-doublet Φ̂ alone
acquiring a vacuum expectation value will not break
SUð2ÞL×SUð2ÞR×Uð1ÞB−L all the way down to Uð1Þem.
Indeed, if we assume nonzero VEV’s for the (would-be)
neutral components of Φ as

hΦ̂i ¼ ζffiffiffi
2

p ¼ 1ffiffiffi
2

p
�
κ1 0

0 κ2

�
; ð179Þ

where κ1 and κ2 are in general complex, then the unitarity of
ζ demands

jκ1j ¼ jκ2j ¼ v: ð180Þ

So, up to a possible relative phase between κ1 and κ2, we
have

hΦ̂i ¼ vffiffiffi
2

p
�
1 0

0 1

�
: ð181Þ

Since Φ̂ transforms as Φ̂ → uLΦ̂u
†
R under local gauge

transformations, this VEV remains invariant under
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Uð1ÞB−L, and under the vectorial combination of SUð2ÞL
and SUð2ÞR, that is, when uL ¼ uR. Thus hΦ̂i only breaks
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L down toSUð2ÞV × Uð1ÞB−L,
providing only three massive gauge bosons.

2. Introduction of triplets

To achieve the symmetry breaking we need, we follow
Mohapatra and Senjanovic [79] and introduce the scalar
fields ΔLð3; 1; 2Þ and ΔRð1; 3; 2Þ, where the first two
numbers indicate the dimensions of the SUð2ÞL and
SUð2ÞR representations these fields belong to, and the
third number is the B − L charge. We advocate the picture
that ΔL lives on the left-handed brane while ΔR lives on the
right-handed brane as matter fields and are not part of a
generalized connection.
These triplet fields are often represented in the literature

as 2 × 2 complex traceless matrices:

ΔL;R ¼ 1ffiffiffi
2

p ðδ1L;Rτ1 þ δ2L;Rτ
2 þ δ3L;Rτ

3Þ

¼
�
δþL;R=

ffiffiffi
2

p
δþþ
L;R

δ0L;R −δþL;R=
ffiffiffi
2

p
�
; ð182Þ

where

δþþ
L;R ¼ 1ffiffiffi

2
p ðδ1L;R − iδ2L;RÞ;

δþL;R ¼ δ3L;R;

δ0L;R ¼ 1ffiffiffi
2

p ðδ1L;R þ iδ2L;RÞ: ð183Þ

These fields transform as

ΔL → eþi
ffiffi
2

p
θuLΔLu

†
L;

ΔR → eþi
ffiffi
2

p
θuRΔRu

†
R; ð184Þ

where the Uð1ÞB−L phase will be shown to correspond to
B − L ¼ 2 later.
It is instructive to rewrite the ΔL;R fields as complex

symmetric matrices:

~ΔL;R ≡ iτ2Δ�
L;R

¼
�

δ0�L;R −δ−L;R=
ffiffiffi
2

p

−δ−L;R=
ffiffiffi
2

p −δ−−L;R

�
: ð185Þ

These fields transform as

~ΔL → e−i
ffiffi
2

p
θuL ~ΔLuTL;

~ΔR → e−i
ffiffi
2

p
θuR ~ΔRuTR: ð186Þ

Let us place these fields into a single 4 × 4 matrix as

~Δ ¼
�

~ΔL 02×2
02×2 ~ΔR

�
: ð187Þ

Then under SUð2ÞL × SUð2ÞR × Uð1ÞB−L gauge transfor-
mations, Eq. (169), it transforms as

~Δ → U ~ΔUT; ð188Þ

which shows that ~Δ provides a module for an suð2=2Þ
representation. The even elements of suð2=2Þ correspond
to the gauge transformations, while the odd elements would
interchange ~ΔL and ~ΔR. Since the leptons ψ and its charge
conjugate ψc ¼ Cψ̄T transform as

ψ → Uψ ; ψc → U�ψc; ð189Þ

we can construct the gauge invariant interaction

LM ¼ yMðψ̄c ~Δ†ψ þ ψ̄ ~ΔψcÞ
¼ yM½ðlT

LCΔLiτ2lL þ lT
RCΔRiτ2lRÞ þ H:c:�; ð190Þ

which will lead to Majorana masses for the neutrinos
after symmetry breaking. Thus, the triplet scalars have a
natural place in the suð2=2Þ framework, as do Majorana
neutrinos.

3. The Higgs potential

Reverting to the original traceless matrix representation,
the Lagrangian for the ΔL;R is given by

L ¼ Tr½ðDμΔLÞ†ðDμΔLÞ þ ðDμΔRÞ†ðDμΔRÞ�
− VðΔ†

L;ΔL;Δ
†
R;ΔR; Φ̂

†; Φ̂Þ; ð191Þ

where the covariant derivatives are given by

DμΔL ¼ ∂μΔL − iWiμ
L ½τi;ΔL� − i

ffiffiffi
2

p
Wμ

BLΔL;

DμΔR ¼ ∂μΔR − iWiμ
R ½τi;ΔR� − i

ffiffiffi
2

p
Wμ

BLΔR: ð192Þ

The most general form of the Higgs potential
VðΔ†

L;ΔL;Δ†
R;ΔR; Φ̂

†; Φ̂Þ which respects the SUð2ÞL ×
SUð2ÞR ×Uð1ÞB−L gauge symmetry and the discrete
left-right symmetry under the interchanges

ΔL↔ΔR; Φ̂↔Φ̂†; ð193Þ

and is at most quartic in the fields is given in
Ref. [83] as
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V ¼ −μ21Tr½Φ†Φ� − μ22ðTr½Φ† ~Φ� þ Tr½ ~Φ†Φ�Þ − μ23ðTr½Δ†
LΔL� þ Tr½Δ†

RΔR�Þ
þ λ1ðTr½Φ†Φ�Þ2 þ λ2fðTr½Φ† ~Φ�Þ2 þ ðTr½ ~Φ†Φ�Þ2g þ λ3Tr½Φ† ~Φ�Tr½ ~Φ†Φ� þ λ4Tr½Φ†Φ�ðTr½Φ† ~Φ� þ Tr½ ~Φ†Φ�Þ
þ ρ1fðTr½Δ†

LΔL�Þ2 þ ðTr½Δ†
RΔR�Þ2g þ ρ2ðTr½ΔLΔL�Tr½Δ†

LΔ
†
L� þ Tr½ΔRΔR�Tr½Δ†

RΔ
†
R�Þ

þ ρ3Tr½Δ†
LΔL�Tr½Δ†

RΔR� þ ρ4ðTr½ΔLΔL�Tr½Δ†
RΔ

†
R� þ Tr½Δ†

LΔ
†
L�Tr½ΔRΔR�Þ

þ α1Tr½Φ†Φ�ðTr½Δ†
LΔL� þ Tr½Δ†

RΔR�Þ þ α2ðTr½Φ† ~Φ�Tr½Δ†
LΔL� þ Tr½ ~Φ†Φ�Tr½Δ†

RΔR�Þ
þ α�2ðTr½Φ† ~Φ�Tr½Δ†

RΔR� þ Tr½ ~Φ†Φ�Tr½Δ†
LΔL�Þ þ α3ðTr½ΦΦ†ΔLΔ

†
L� þ Tr½Φ†ΦΔRΔ

†
R�Þ

þ β1ðTr½ΦΔRΦ†Δ†
L� þ Tr½Φ†ΔLΦΔ

†
R�Þ þ β2ðTr½ ~ΦΔRΦ†Δ†

L� þ Tr½ ~Φ†ΔLΦΔ
†
R�Þ

þ β3ðTr½ΦΔR
~Φ†Δ†

L� þ Tr½Φ†ΔL
~ΦΔ†

R�Þ; ð194Þ

where we have denoted Φ̂ simply asΦ, and ~Φ ¼ τ2Φ�τ2. As
we can see, it is fairly complicated with 18 free parameters:
3 negative mass-squared parameters μ2i (i ¼ 1; 2; 3), 4
parameters λi (i ¼ 1; 2; 3; 4) for the quartic self-couplings
of Φ, 4 parameters ρi (i ¼ 1; 2; 3; 4) for the quartic
couplings of ΔL;R, 4 parameters αi (i ¼ 1; 2; 3 with α2
complex) that couple Φ to ΔL or ΔR, and 3 parameters βi
(i ¼ 1; 2; 3) which couple all three. The possible phase of
α2 breaks CP explicitly.
Using the identity15

Tr½ðΦ†ΦÞ2� ¼ ðTr½Φ†Φ�Þ2 − 1

2
Tr½Φ† ~Φ�Tr½ ~Φ†Φ�; ð195Þ

we can see that the Higgs potential of Eq. (176) corre-
sponds to

λ1 ¼ 2; λ3 ¼ −1; λ2 ¼ λ4 ¼ 0; ð196Þ
with

μ21 ¼ 2v2; μ22 ¼ 0: ð197Þ
We envision that the NCG theory from which the effective
suð2=2Þ model emerges will determine all the other
parameters in the potential as well. For now, we follow
Ref. [79] and simply assume that the (would-be) neutral
components of the triplets acquire VEV’s given by

hΔLi ¼
1ffiffiffi
2

p
�
0 0

vL 0

�
; hΔRi ¼

1ffiffiffi
2

p
�
0 0

vR 0

�
; ð198Þ

where we set vL ¼ 0 to avoid it from breaking SUð2ÞL.
This breaks SUð2ÞR ×Uð1ÞB−L down to Uð1ÞY . The linear
combinations

W�
R ¼ W1

R∓W2
Rffiffiffi

2
p ; Z0 ¼

ffiffiffi
2

p
W3

R −WBLffiffiffi
3

p ð199Þ

obtain masses given by

MWR
¼

ffiffiffi
2

p
vR; MZ0 ¼

ffiffiffi
6

p
vR; ð200Þ

while the linear combination

B ¼ W3
R þ ffiffiffi

2
p

WBLffiffiffi
3

p ð201Þ

remains massless and couples to

λs8 þ
ffiffiffi
2

p
λs15ffiffiffi

3
p ¼ 1ffiffiffi

3
p

2
6664
−1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 −2

3
7775 ¼ Yffiffiffi

3
p ; ð202Þ

which corresponds to the hypercharge Y embedded
in suð2=1Þ.
The presence of the VEV of Φ̂, Eq. (179), breaks the

remaining SUð2ÞL ×Uð1ÞY down to Uð1Þem. We have
noted earlier that the nilpotency of the matrix derivative
demands the unitarity of the ζ matrix, which in turn would
demand jκ1j ¼ jκ2j. If the underlying NCG requires this
condition to be maintained under the introduction of the
triplet fields, it would constitute a robust prediction of the
formalism and provide an extra condition on the emergent
LRSM. However, such a condition is phenomenologically
problematic. If we generate the quark masses via Yukawa
couplings with the bi-doublet fieldΦ, that is, the interaction
of the form

LY ¼ q̄LiðyijΦþ ~yij ~ΦÞqRj þ H:c:; ð203Þ

where yij and ~yij are the Yukawa coupling matrices, it
would lead to mass matrices of the form

ffiffiffi
2

p
Mu ¼ κ1yþ κ�2 ~y ¼ jκ1jyþ jκ2je−iα ~y;ffiffiffi

2
p

Md ¼ κ2yþ κ�1 ~y ¼ jκ2jeiαyþ jκ1j~y; ð204Þ

where α is a possible CP violating phase difference
between κ1 and κ2. The condition jκ1j ¼ jκ2j would imply

15See Appendix B for a collection of useful identities of this
type.
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Mu ¼ e−iαMd; ð205Þ

leading to both Mu and Md being diagonalized in the
same basis with the same eigenvalues. For this reason, it is
normally assumed that jκ1j ≫ jκ2j, which would provide
an explanation ofmt ≫ mb, and CKMmixing.16 Moreover,
jκ1j and jκ2j being hierarchical is also required by the
suppression of the flavor changing neutral currents (FCNC)
[83]. Therefore, we will allow for jκ1j ≠ jκ2j though the
nilpotency of the matrix derivative is destroyed.
We have seen in the suð2=1Þ case that the lack of

nilpotency of the matrix derivative could lead to the gauge
transformation property of the supercurvature F becoming
nonstandard, though otherwise it did not seem to have any
ill effects. However, it is somewhat worrisome that an
exterior derivative is not nilpotent. We conjecture a couple
of reasons why this may be permissible. First, the dynamics
necessary for the breaking of the gauge symmetries may
be accompanied by some type of “phase” transition in the
NCG from one in which the matrix derivative is nilpotent to
one in which it is not. Second, the suð2=2Þ formalism is not
a complete description of the NCG [we are yet to include
SUð3Þ color or the generational structure] and needs to be
extended to a larger superalgebra in which the matrix
derivative maintains nilpotency even after symmetry break-
ing, just as the suð2=1Þ formalism needed to be extended to
suð2=2Þ. The two possibilities we have listed here could
actually be compatible. Recalling that the exterior deriva-
tive operator d in standard differential geometry is the
dual of the boundary operator ∂ [91], d2 ≠ 0 would imply
∂2 ≠ 0, that is, the boundary of a boundary does not vanish.
That could imply the appearance of some type of singu-
larity in the geometry, which can be removed by going to
higher dimensions.
The massive gauge bosons are now linear combinations

of W�
L , Z, W

�
R , and Z0 defined in Eqs. (116) and (199).

Taking both κ1 and κ2 to be real for the moment, and setting
κþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 þ κ22

p
, they are

W�
2 ¼ W�

R cos χ −W�
L sin χ;

W�
1 ¼ W�

R sin χ þW�
L cos χ; ð206Þ

where

tan 2χ ¼ 2κ1κ2
v2R

; ð207Þ

with masses

M2
W1;2

¼ ðv2R þ κ2þÞ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4R þ 4κ21κ

2
2

q
; ð208Þ

and

Z2 ¼ Z0 cosφ − Z sinφ;

Z1 ¼ Z0 sinφþ Z cosφ; ð209Þ

where

tan 2φ ¼ 4
ffiffiffi
2

p
κ2þ

9v2R − 2κ2þ
; ð210Þ

with masses

M2
Z1

¼ ð3v2R þ κ2þÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9v4R − 2v2Rκ

2þ þ κ4þ
q

;

M2
Z2

¼ ð3v2R þ κ2þÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9v4R − 2v2Rκ

2þ þ κ4þ
q

: ð211Þ

When vR ≫ κþ, the masses are approximately

M2
W1

¼ κ2þ − 2κ21κ
2
2

v2R
þ � � � ;

M2
W2

¼ 2v2R þ κ2þ þ 2κ21κ
2
2

v2R
þ � � � ;

M2
Z1

¼ 4κ2þ
3

− 4κ4þ
27v2R

þ � � � ;

M2
Z2

¼ 6v2R þ 2κ2þ
3

þ 4κ4þ
27v2R

þ � � � : ð212Þ

The remaining massless gauge boson is

A ¼ WL þ ffiffiffi
3

p
B

2
¼ W3

L þW3
R þ ffiffiffi

2
p

WBL

2
; ð213Þ

coupled to

λs3 þ λs8 þ
ffiffiffi
2

p
λs15

2
¼

2
6664
0 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 −1

3
7775 ¼ Q: ð214Þ

For the model to be phenomenologically viable, we need
vR ≫ κþ ≈ 246 GeV to suppress the mixing between WL
and WR, and that between Z and Z0. The current exper-
imental bounds on the LRSM parameters will be discussed
in Sec. V.

G. The coupling constants and the value of sin2θW

1. Introduction of the coupling constant and
sin2θW from the coupling to triplet Higgs boson

We introduce the gauge coupling constant g by rescaling
the superconnection J , the action S, and the matrix-
derivative matrix η as in Eq. (120). The expression for
the resulting action is the same as before except with the
following replacements:

16The assumption jκ1j ≫ jκ2j is not mandatory in order to
realize mt ≫ mb. The smallness of a CP violating parameter can
be established by the interplay of sin α, jκ1j, and jκ2j [90].
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Fiμν
L ¼ ∂μWiν

L − ∂νWiμ
L þ igεijkWjμ

L W
kν
L ;

Fiμν
R ¼ ∂μWiν

R − ∂νWiμ
R þ igεijkWjμ

R W
kν
R ;

DμΦ̂ ¼ ∂μΦ̂ − i
g
2
Wiμ

L τ
iΦ̂þ i

g
2
Wiμ

R Φ̂τ
i;

VðΦ̂†; Φ̂Þ ¼ g2

2
Tr

��
Φ̂†Φ̂ − v2

2

	
2
�
: ð215Þ

Note that the gauge couplings for SUð2ÞL and SUð2ÞR are
the same. Thus, we have a left-right symmetric model
(LRSM). The ratio of the Uð1ÞB−L coupling to the
SUð2ÞL;R couplings cannot be determined from the gauge
couplings of the bi-doublet Φ̂ since it does not couple to
WBL. It can, however, be read off from the covariant
derivatives of the triplet fields which are changed to

DμΔL ¼ ∂μΔL − i
g
2
Wiμ

L ½τi;ΔL� − i
gffiffiffi
2

p Wμ
BLΔL;

DμΔR ¼ ∂μΔR − i
g
2
Wiμ

R ½τi;ΔR� − i
gffiffiffi
2

p Wμ
BLΔR: ð216Þ

Since the triplets are assigned the charge B − L ¼ 2, these
needs to be compared with the expressions

DμΔL ¼ ∂μΔL − i
g
2
Wiμ

L ½τi;ΔL� − igBLW
μ
BLΔL;

DμΔR ¼ ∂μΔR − i
g
2
Wiμ

R ½τi;ΔR� − igBLW
μ
BLΔR; ð217Þ

from which we conclude17

gBL
g

¼ 1ffiffiffi
2

p : ð218Þ

The Z0 and B fields in Eqs. (199) and (201) can then be
written as

Z0 ¼ gW3
R − gBLWBLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g2BL

p ;

B ¼ gBLW3
R þ gWBLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g2BL

p : ð219Þ

The value of g0 can then be obtained from the matching
condition associated with the breaking SUð2ÞR×
Uð1ÞB−L → Uð1ÞY :

1

g02
¼ 1

g2
þ 1

g2BL
¼ 3

g2
→

g0

g
¼ 1ffiffiffi

3
p : ð220Þ

Note also that the B field couples to ðg=2ÞðY= ffiffiffi
3

p Þ, where
Y=

ffiffiffi
3

p
is defined in Eq. (202), and the photon field of

Eq. (213) couples to ðg=2ÞQ, where Q is defined in
Eq. (214). Therefore,

g0 ¼ gffiffiffi
3

p ; e ¼ g
2
; ð221Þ

and thus sin2 θW ¼ 1=4, just as in the suð2=1Þ case.
Perhaps this is not surprising given that our suð2=1Þ
embedding is a subembedding of the suð2=2Þ embedding.
The masses of the massive gauge bosons are now

expressed as

M2
W1

¼ g2κ2þ
4

− g2κ21κ
2
2

2v2R
þ � � � ;

M2
W2

¼ g2ð2v2R þ κ2þÞ
4

þ g2κ21κ
2
2

2v2R
þ � � � ;

M2
Z1

¼ ðg2 þ g02Þκ2þ
4

− g2κ4þ
27v2R

þ � � � ;

M2
Z2

¼ g2ð9v2R þ κ2þÞ
6

þ g2κ4þ
27v2R

þ � � � ; ð222Þ

and we can see that κþ plays the role of the SM Higgs VEV
and thus κþ ≈ 246 GeV.

2. sin2 θW from the coupling to fermions

The value of sin2 θW can also be determined from the
gauge coupling of the fermions. Collecting the lepton fields
into an suð2=2Þ quartet as shown in Eq. (159), the
requirement of SUð2ÞL × SUð2ÞR ×Uð1ÞB−L gauge invari-
ance leads to the interaction

−Leven
l ¼ g

2

X
i¼1;2;3;8;13;14;15

ðψ̄γμλsiψÞJiμ

¼ g
2

�
l̄Lγμðτ ·Wμ

LÞlL þ l̄Rγμðτ ·Wμ
RÞlR

−
1ffiffiffi
2

p l̄LγμW
μ
BLlL − 1ffiffiffi

2
p l̄RγμW

μ
BLlR

�
: ð223Þ

This should be compared with the leptonic part of the
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L Lagrangian in which the
left- and right-handed leptons are assigned the representa-
tions lLð2; 1;−1Þ and lRð1; 2;−1Þ:

−L221
l ¼ l̄Lγμ

�
gL
2
τ ·Wμ

L − gBL
2

Wμ
BL

�
lL

þ l̄Rγμ

�
gR
2
τ ·Wμ

R − gBL
2

Wμ
BL

�
lR: ð224Þ

17Where this relation comes from can also seen by the
requirement that the mass of Z,

M2
Z1

≃ g2

4
κ2þ

�
1þ 4v2L=κ

2þ þOðκ2þ=v2RÞ
��

g2 þ 2g2BL
g2 þ g2BL

	
should match the SM one M2

Z ¼ ðg2 þ g02Þv2=4 at the scale
where SUð2ÞR is broken. Basically, the Weinberg angle in the

LRSM is defined as cos2 θW ¼ g2þg2BL
g2þ2g2BL

, which is matched to the

SM definition cos2θW ¼ g2

g2þg02 [82].
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Identifying g ¼ gL, we find gR ¼ g and
ffiffiffi
2

p
gBL ¼ g, leading

to the same result as above.

3. The Higgs quartic couplings and the Higgs mass

With a bi-doublet Φ̂ and two complex triplets ΔL;R, the
Higgs sector of the model has 20 degrees of freedom of
which 6 are absorbed into the massive gauge bosons, while
14 remain physical [82,83]. Of these, 4 are doubly charged,
4 are singly charged, and 6 are neutral. We identify the
observed Higgs boson with the lightest neutral member.
The masses of the physical Higgs sector particles

naturally depend on the parameters in the Higgs potential,
Eq. (194). Of these, we are aware of the self-couplings of
Φ̂, which, due to the introduction of the coupling constant
are rescaled from Eq. (196) to

λ1 ¼
g2

2
; λ3 ¼ − g2

4
; λ2 ¼ λ4 ¼ 0; ð225Þ

as are the mass parameters to

μ21 ¼
g2v2

2
; μ22 ¼ 0: ð226Þ

The other parameters are unknown except for the require-
ment that they must lead to vR ≫ κþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 þ κ22

p
≈

246 GeV ≫ vL ≈ 0, and κ1 ≫ κ2. Let us approximate
κ2 ≈ 0. In this case, the mass of the lightest neutral scalar,
which consists mostly of the real part of ϕ0

1, is given
approximately by [82,83]

M2
h ≈ κ21

�
2λ1 − α21

2ρ1

	
: ð227Þ

The first term is what the Higgs mass would be if the
couplings to the triplets were nonexistent:

Mh ¼
ffiffiffiffiffiffiffi
2λ1

p
κ1 ¼ gκ1: ð228Þ

Given that the prediction for the left-handedW mass would
be MWL

¼ MW1
¼ gκ1=2 in this case, this would lead to

the prediction Mh=MW ¼ 2 as in the suð2=1Þ case. The
existence of the second term shows that mixing with the
neutral components of ΔL;R could lower the mass to a
more realistic value. Renormalization group running could
further lower Mh toward 126 GeV. We will look at this
possibility in the subsection after the next.

H. The emergence scale and the right-handed
breaking scale

Let us now determine the scale Λs at which we envision
the suð2=2Þ ∼ SUð2ÞL × SUð2ÞR ×Uð1ÞB−L structure to
emerge from an underlying NCG theory. This is the scale at
which we expect the relation gBL=g ¼ 1=

ffiffiffi
2

p
to hold.

When one imagines the emergence of an LRSM from
an underlying UV theory at some scale Λs, one usually
thinks of the subsequent breaking of the gauge symmetry
down to Uð1Þem to occur in steps at several scales, a
schematic diagram of which would be

NCG theory?

↓Λs

suð2=2Þ ∼ SUð2ÞL × SUð2ÞR ×Uð1ÞB−L
↓ΛR ∼ gvR

suð2=1Þ ∼ SUð2ÞL ×Uð1ÞY
↓MW ∼ gv

Uð1Þem
Thus, the theory would be effectively SUð2ÞL × SUð2ÞR ×
Uð1ÞB−L between Λs and ΛR, and SUð2ÞL ×Uð1ÞY
between ΛR and MW , that is, the gauge couplings would
run with the LRSM particle content between Λs and ΛR,
and with the SM particle content below ΛR. The boundary
condition we would like to impose at Λs is

gBLðΛsÞ
gðΛsÞ

¼ 1ffiffiffi
2

p ; ð229Þ

while the matching condition at ΛR requires

1

g02ðΛRÞ
¼ 1

g2ðΛRÞ
þ 1

g2BLðΛRÞ
: ð230Þ

Therefore, we have, up to one-loop, the relations

1

g2LðΛsÞ
¼ 1

g22ðΛRÞ
− 2bL ln

Λs

ΛR

¼
�

1

g22ðMWÞ
− 2b2 ln

ΛR

MW

	
− 2bL ln

Λs

ΛR
;

1

g2BLðΛsÞ
¼ 1

g2BLðΛRÞ
− 2bBL ln

Λs

ΛR

¼
�

1

g02ðΛRÞ
− 1

g22ðΛRÞ
	
− 2bBL ln

Λs

ΛR
;

1

g02ðΛRÞ
¼ 1

g02ðMWÞ
− 2b1 ln

ΛR

MW
: ð231Þ

The bi’s are given by [75]

bi ¼
1

16π2

�
− 11

3
C2ðGiÞ þ

2

3

X
f

TiðfÞ þ
1

3

X
s

TiðsÞ
�
;

ð232Þ

where the summation is over Weyl fermions in the second
term and over scalars in the third. The index i labels the
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gauge groups and we have i ¼ 1; 2 below ΛR, and
i ¼ L;R; BL above it, and i ¼ 3 for QCD. C2ðGiÞ is the
quadratic Casimir for the adjoint representation of the
group Gi, and Ti is the Dynkin index of each representa-
tion. For SUðNÞ, C2ðGÞ ¼ N, T ¼ 1=2 for doublet repre-
sentations and T ¼ 2 for triplets. For Uð1Þ, C2ðGÞ ¼ 0 and

X
f;s

T ¼
X
f;s

�
Y
2

	
2

; ð233Þ

where Y=2 is the Uð1Þ charge, the factor of 1=2 coming
from the traditional normalizations of the hypercharge Y
and B − L charges. In the LRSM, we have, for each
generation, six left-handed and six right-handed quarks
with B − L ¼ 1=3, two left-handed and two right-handed
leptons with B − L ¼ −1, six complex scalars (coming
from the two triplets) with B − L ¼ 2, and a bi-doublet
with B − L ¼ 0.
Therefore, we have

bL ¼ bR ¼ 1

16π2

�
− 7

3

	
; bBL ¼ 1

16π2

�
14

3

	
: ð234Þ

The values of b1, b2, and b3 for the SM particle content
have been listed earlier in Eq. (146). Using the above
RGE relations Eq. (231), we look for the scale Λs at which
the constraint Eq. (229) is satisfied as a function ΛR. The
results are shown in Fig. 2.
One possible solution is, of course, Λs ¼ ΛR ≈ 4 TeV

since that was the scale at which g0=g ¼ 1=
ffiffiffi
3

p
when the

couplings run with the SM particle content, and this
automatically leads to gBL=g ¼ 1=

ffiffiffi
2

p
. When ΛR is

increased above 4 TeV, however, as we can see from
Fig. 2, we find that the scale Λs at which Eq. (229) is
satisfied is actually lower than ΛR. That is, we must run the
couplings up to ΛR with the SM particle content, and then
run back down to a lower energy with the LRSM particle
content to satisfy the required boundary condition.
Obviously, this is an unphysical situation. So we are led

to conclude that our formalism demands Λs ¼ΛR≈4 TeV.
That is, the SUð2ÞL × SUð2ÞR ×Uð1ÞB−L gauge theory
emerges already broken to SUð2ÞL ×Uð1ÞY of the SM at
that scale. In fact, it is already broken all the way down to
Uð1Þem due to the nonzero VEV of the bi-doublet field Φ,
though it may not necessarily be manifest at Λs due
to Λs ¼ ΛR ≫ MW .
This result is not inconsistent with the view we have

been advocating based on our suð2=1Þ ∼ SUð2ÞL ×Uð1ÞY
model. There, the theory emerged already broken to
Uð1Þem at the emergence scale Λs, with the Higgs field
already shifted to fluctuations around its nonzero VEV.
So schematically, we had

NCG theory?

↓Λs ≈ 4 TeV

Broken SUð2ÞL ×Uð1ÞY!
MWUð1Þem:

For the suð2=2Þ case, the breaking schematic is

NCG theory?

↓Λs ¼ ΛR ≈ 4 TeV

Broken SUð2ÞL × SUð2ÞR ×Uð1ÞB−L!
MWUð1Þem:

These schematics suggest that the physics responsible for
the emergence of the suð2=1Þ or suð2=2Þ patterns from the
underlying theory may also be responsible for the sponta-
neous breaking of the chiral gauge symmetries. A possible
and attractive scenario would be that this new physics is
geometric in nature and is triggered by the separation of the
two branes from each other, as evidenced in the fact that the
matrix derivative encodes information on the Higgs VEV.
Another attractive point about the scale ΛR being on the

order of 4 TeV is that it would place the masses of all the
new particles associated with the LRSM at that scale,
perhaps light enough to be discovered just beyond their
current experimental limits. We will return to this obser-
vation in Sec. V.

I. The Higgs boson mass from suð2=2Þ
Let us now discuss how the observed Higgs mass can be

accommodated in our suð2=2Þ framework. We have seen
that both suð2=1Þ and suð2=2Þ embeddings place the
emergence scale at ∼4 TeV. Moreover, they demand the
same boundary condition on the Higgs quartic coupling
[λ for suð2=1Þ, λ1 for suð2=2Þ] at that scale. In the suð2=1Þ
case, this led to a prediction of the Higgs mass of
MhðMZÞ ∼ 170 GeV. In the suð2=2Þ case, however, the
Higgs mass prediction can be lowered due to the mixing of
the Higgs with other neutral scalars available in the model.
In this section, we will investigate the simplest option as

an example. We will assume that only a SM singlet scalar S
survives dominantly at low energies (∼MZ) which is

200 400 600 800 1000
R TeV

0.95

0.96

0.97

s

R

FIG. 2. The behavior of Λs
ΛR

above 4 TeV, where it is exactly
equal to unity.
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responsible for the mass of the right-handed neutrino. In
our suð2=2Þ embedding, this can be taken to be the real
part of δ0R:

δ0R ¼ vR þ Sþ iTffiffiffi
2

p : ð235Þ

We assume that S couples to the SM Higgs field H via

LS ¼
1

2
∂μS∂μS −m2

2
S2 − λS

4
S4 − λHSH†HS2: ð236Þ

This model, in which the SM is extended with a singlet
scalar S, has been analyzed in detail previously in the
contexts of the vacuum stability of the SM [92,93], and
dark matter [94,95]. In the suð2=2Þ framework, terms in the
above Lagrangian result from the terms with coefficients ρ1
and α1 in Eq. (194), provided that

λS ¼ ρ1; λHS ¼
α1
2
: ð237Þ

A similar singlet field is found in the spectral SM [63].
See also Refs. [67,68].
Assuming that in addition to S, the right-handed neutrino

survives a low energies, we obtain the following renorm-
alization group equations (RGE’s) for the evolution of the
relevant parameters [94,96]:

μ
dht
dμ

¼ ht
ð4πÞ2

�
9

2
h2t þ h2ν −

�
17

12
g02 þ 9

4
g2 þ 8g2s

	�
;

μ
dhν
dμ

¼ hν
ð4πÞ2

�
3h2t þ

5

2
h2ν −

�
3

4
g02 þ 9

4
g2
	�

;

μ
dλ
dμ

¼ 1

ð4πÞ2
�


12h2t þ 4h2ν − ð3g02 þ 9g2Þ
�
λ

− 2h4ν − 6h4t þ 24λ2 þ 2λ2HS

þ 3

8
ðg04 þ 2g02g2 þ 3g4Þ

�
;

μ
dλHS

dμ
¼ λHS

ð4πÞ2
�
6h2t þ 2h2ν −

�
3

2
g02 þ 9

2
g2
	

þ 2ð6λþ 3λS þ 4λHSÞ
�
;

μ
dλS
dμ

¼ 1

ð4πÞ2 ð8λ
2
HS þ 18λ2SÞ; ð238Þ

where ht and hν are the top-quark and right-handed
neutrino Yukawa couplings, λ and λS are the Higgs and
the singlet quartic couplings, and λHS is the Higgs-singlet
coupling. The boundary conditions we use are
htðMZÞ ¼ 0.997, obtained from htðMZÞ ¼

ffiffiffi
2

p
mt=v, and

λðΛRÞ ¼ g2ðΛRÞ=2, where the latter is fixed by our suð2=2Þ
construction. We also assume hν ∼ 10−6, which is neces-
sary to generate the correct light neutrino mass from the

TeV scale seesaw, if the Dirac mass MD ≈Me. We also
need the values of λSðΛRÞ and λHSðΛRÞ as boundary
conditions for our RGE’s, but these are not fixed by our
suð2=2Þ framework (yet). Thus, we allow these values to
float to find the conditions that lead to the correct Higgs
mass. The mass of the Higgs is determined from [63]

M2
h ¼ λv2 þ λSv2R −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλv2 − λSv2RÞ2 þ 4λ2HSv

2v2R

q
≃ 2v2λ

�
1 − λ2HS

λλS

	
; ð239Þ

consistent with Eq. (227). We have also set vR ¼ ΛR ≃
4 TeV in this calculation.
The resulting range of values for λSðΛRÞ and λHSðΛRÞ

which reproduce the correct Higgs mass is shown in Fig. 3.
The plot shows the range of values (0.15 ∼ 0.25) in the
perturbative region, but larger values for these couplings
are also possible as long as ð1 − λ2HS=λλSÞ ≥ 0, while λ
remains small. Thus, the suð2=2Þ structure can accommo-
date the correct Higgs mass, provided the parameters in the
Higgs potential are in the appropriate ranges.

J. suð2=2Þ summary

In this section, we have applied the formalism
developed for the suð2=1Þ embedding of the SM in
the previous section to an suð2=2Þ superconnection into
which the SUð2ÞL × SUð2ÞR ×Uð1ÞB−L gauge bosons of
the LRSM were embedded in its diagonal even part, and
a bi-doublet Higgs field Φ in its off-diagonal odd part.
Unlike the suð2=1Þ case, the matrix derivative could be
made nilpotent, and the supercurvature F followed a
simple transformation law under gauge transformations.
To the gauge invariant but spontaneously broken
[to SUð2ÞV ×Uð1ÞB−L] action derived from F , in which
the bi-doublet Φ was already the shifted field fluctu-
ating around the VEV ζ=

ffiffiffi
2

p
, we introduced two

triplet fields ΔL;R to achieve the breaking sequence
SUð2ÞL×SUð2ÞR×Uð1ÞB−L→SUð2ÞL×Uð1ÞY→Uð1Þem.

MH 125.5 0.5 GeV

R 4 TeV

S R

SH R

0.18 0.2 0.22 0.24

0.15

0.16

0.17

0.18

FIG. 3. A patch of the parameter space which gives the
observed Higgs mass.
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The predictions of the formalism were gBL=g ¼ 1=
ffiffiffi
2

p
(or, equivalently, g0=g ¼ 1=

ffiffiffi
3

p
) and λ1 ¼ −2λ3 ¼ g2=2,

λ2 ¼ λ4 ¼ 0, where the λi’s are quartic self-couplings of
the bi-doublet Φ. Of these, λ1 corresponds to the quartic
self-coupling λ of the SM Higgs. Assuming the above
symmetry breaking sequence, it was found that the con-
dition gBL=g ¼ 1=

ffiffiffi
2

p
could only be imposed if the emer-

gence scale Λs of the suð2=2Þ structure and the breaking
scale ΛR of the LRSM down to the SM were the same and
at ∼4 TeV. Thus, the formalism demands that the LRSM
emerge from the hypothetical underlying NCG theory
already fully broken. Despite the formalism’s predictions
including the emergence scale being essentially the same
as in the suð2=1Þ case, the observed Higgs mass could still
be accommodated due to the availability of other neutral
scalar degrees of freedom in the model which mixed with
the Higgs.

IV. FERMIONS

For the superconnection formalism presented here to
be taken seriously, we must have the freedom to couple
fermions to the Higgs field with arbitrary Yukawa cou-
plings, or the formalism must be able to predict what these
Yukawa couplings should be. This is a difficult problem
given that the superconnection formalism is essentially a
gauge-Higgs unified theory, and as with any such scenario,
if one naively couples the superconnection J to the
fermions, the Yukawa couplings are forced to be equal
to the gauge couplings [97–103].
To see how this comes about in the suð2=1Þ case, let

us assume that the Lagrangian of the lepton suð2=1Þ triplet
ψ coupled to the superconnection J is given, schemati-
cally, by

Ll ¼ iψ̄Dψ ¼ iψ̄

�
dþ g

2
ðdM þ J Þ

�
ψ ; ð240Þ

where all the operators within the parenthesis must be
placed in the appropriate representations. In the spinorial
representation, the one-form dxμ is represented by the Dirac
matrix γμ [104–107]. Thus, we have the replacements

d ¼ dxμ ∧ ∂μ → γμ∂μ ¼ ∂;
Wi ¼ Wi

μdxμ → Wi
μγ

μ ¼ Wi;

B ¼ Bμdxμ → Bμγ
μ ¼ B; ð241Þ

and consequently,

d → ∂ · 13×3;

J → i

"
τ ·W − 1ffiffi

3
p B · 12×2

ffiffiffi
2

p
ϕffiffiffi

2
p

ϕ† − 2ffiffi
3

p B

#
≡ J: ð242Þ

We define the Dirac operator D as

D ¼ ∂ · 13×3 þ i
g
2
η; ð243Þ

to represent the generalized exterior derivative
dS ¼ dþ g

2
dM. Then, the Lagrangian is found to be

Ll → iψ̄

�
Dþ g

2
J

	
ψ

¼ l̄Li∂lL þ l̄Ri∂lR

−
g
2
ðl̄LξlR þ l̄Rξ

†lLÞ − gffiffiffi
2

p ðl̄LϕlR þ l̄Rϕ
†lLÞ

−
g
2

�
ðl̄Lγ

μτilLÞWi
μ − 1ffiffiffi

3
p ðl̄Lγ

μlL þ 2l̄Rγ
μlRÞBμ

�
¼ l̄Li∂lL þ l̄Ri∂lR − gffiffiffi

2
p ðl̄Lϕ̂lR þ l̄Rϕ̂

†lLÞ

−
g
2

�
ðl̄Lγ

μτilLÞWi
μ − 1ffiffiffi

3
p ðl̄Lγ

μlL þ 2l̄Rγ
μlRÞBμ

�
;

ð244Þ

where we have defined ϕ̂ ¼ ϕþ ξ=
ffiffiffi
2

p
as before. Thus, in

addition to g0=g ¼ 1=
ffiffiffi
3

p
, we find that the lepton Yukawa

coupling is fixed to g=
ffiffiffi
2

p
, and the matrix derivative terms

couple the leptons to the Higgs VEVand yield the charged
lepton mass. Note also that this Lagrangian is manifestly
SUð2Þ × Uð1ÞY gauge invariant when written in terms of
the shifted field ϕ̂, but the invariance is already sponta-
neously broken with fermion mass terms when written in
terms of the ϕ field appearing in the superconnection.
In order to be able to change the Yukawa coupling to an

arbitrary value, one must have the freedom to multiply ξ in
the matrix derivative, which determines hϕ̂i, and ϕ in the
superconnection J by the same constant for each fermion
flavor to maintain the gauge invariance of the Lagrangian
when written in terms of ϕ̂. In the spectral SM approach
[29,57–64], this is accomplished by writing the Dirac
operator D in full fermion flavor space, including all three
generations, and inserting the complete fermion mass-
mixing matrix into the off-diagonal matrix derivative part.
This is in accordancewith the idea that the matrix derivative
encodes information on symmetry breaking. The super-
connection J is also defined via the generalized exterior
derivative using D, which passes on the information
included in the matrix derivative to the couplings of the
ϕ. The information also feeds into the supercurvature, from
which one determines the gauge-Higgs action and the
Higgs VEV. This procedure allows for the introduction of
arbitrary masses and mixings into the fermion sector.
Thus, the spectral SM shows that it is possible to embed

the required masses and mixings of the fermions to
reproduce the SM into the “geometry” of the NCG discrete
direction. The interesting point is that in the spectral SM
approach, it is the fermion masses that are the input and the
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Yukawa couplings the output, and not the other way around
as in the standard approach. The breaking of the gauge
symmetry is encoded in the geometry, which is given in
terms of the fermion masses and from which one extracts
the Higgs VEV, and one could say that the Yukawa
interactions themselves are consequences rather than the
reason for fermion mass.
It must be said, though, that this is actually a highly

unsatisfactory state of affairs. One wishes the NCG to
determine the fermion masses and mixings, and not the
other way around. But for that a full theory of NCG
dynamics would be necessary. So for the time being, we
leave the prediction of the fermion masses and mixings to a
possible future theory, and simply deal with the problem by
assuming that when the suð2=1Þ [or suð2=2Þ] structure
emerges from the underlying NCG theory at the emergence
scale, the geometry, a full description of which could
be fairly complicated, in addition to breaking the gauge
symmetries also fixes the fermion masses and mixings to
the observed values.

V. PHENOMENOLOGY

We have been led to the possibility that a LRSM emerges
from an underlying NCG theory at the scale of Λs ≈ 4 TeV,
which also breaks to SUð2ÞL ×Uð1ÞY with a triplet VEVof
vR ¼ OðΛR=gÞwithΛR ¼ Λs. An additional constraint that
the model predicts is that the Higgs quartic coupling λ1 and
the SUð2Þ coupling g are related by λ1 ¼ g2=2 at that scale.
In this section, let us look at what the phenomenological
consequences are of such a scenario.
Since we envision that the UV theory above the

emergence scale of Λs ¼ 4 TeV is a NCG theory with a
discrete extra dimension, the existence of the extra dimen-
sion at such a low scale should have observable conse-
quences beyond predicting a LRSM with a particular
boundary condition. However, since the extra dimension
is also discrete, it is not at all clear what it means to have a
“scale” associated with it. Having zero measure, it cannot
be populated by extra degrees of freedom, which, for a
continuum extra dimension model, would lead to Kaluza-
Klein states. Lacking an understanding of the hypothetical
UV NCG theory, it is difficult to state what to expect, so
we will, for now, concentrate on the more conventional
phenomenology of the effective LRSM the formalism
predicts. Considerations of more exotic “smoking gun”
signatures will be left to future works.

A. New particles

First and foremost, the LRSM we have been consid-
ering predicts a plethora of new and heavy particles:
W�

2 (which are mostly W�
R ), Z2 (which is mostly Z0),

and a variety of neutral, singly charged, and doubly
charged scalars originating in the Higgs sector that are
denoted H0

1, H
0
2, H

0
3, A

0
1, A

0
2, H

�
1 , H

�
2 , δ

��
L and δ��

R in

Ref. [108].18 The coupling of the triplet to the leptons,
Eq. (190), will also generate massive Majorana neutrinos,
which we will denote N or NR (since they are mostly νR)
with a possible flavor index.
All these new particles will receive masses from the same

triplet VEV, vR ¼ OðΛR=gÞ, so we can expect them all
to have masses in the multi-TeV range, placing some of
them, hopefully, within LHC reach. The actual masses will
depend on the many parameters of the model, e.g. those
appearing in the Higgs potential. One concrete prediction
we can make is that MZ2

=MW2
≈

ffiffiffi
3

p
, so, for instance,

if MW2
¼ 4 TeV then MZ2

≈
ffiffiffi
3

p
MW2

≈ 7 TeV. Thus, the
actual particle masses need not all be concentrated at 4 TeV,
and one expects a spread out spectrum. The TeV scale
Majorana masses of the NR’s will also allow us to invoke a
TeV scale seesaw mechanism to suppress regular neutrino
masses.
Bounds on these new particle masses exist from various

low energy observables, and from direct searches at the
LHC. Let us take a look at what they are.

B. Bounds from low energy processes

Constraints on the LRSM from low energy processes
have been heavily studied in the literature for both the
nonsupersymmetric LRSM [108–139], and its supersym-
metric extension [140–143]. Processes and observables that
have been considered include muon decay μ → eν̄eνμ,
neutron beta decay n → pe−ν̄e, the neutron electric dipole
moment (nEDM), K0K̄0 mixing (i.e. the K0

L-K
0
S mass

difference ΔMK ¼ MK0
L
−MK0

S
and the K-decay CP vio-

lation parameters ϵ and ϵ0; cf. Fig. 4), D0D̄0 mixing, B0B̄0

mixing (ΔMBd
, ΔMBs

, and CP violation in hadronic B
decays), b semileptonic decay, and b → sγ.
Of the constraints thus obtained, those on the mass of

W2, which is mostly WR, are fairly robust and independent
of the detailed form of the Higgs potential. This is due
to the SUð2ÞR gauge coupling being well known in the

(a) (b)

FIG. 4. Processes that contribute to K0-K̄0 mixing in the
LRSM. In (a), the indices i and j run over the three generations
of up-type quarks u, c, and t. Diagrams rotated by 90°, 180°, and
270° also contribute.

18The lightest neutral Higgs particle, denoted h0 in Ref. [108],
is identified with the SM Higgs boson and is not included in
this list.
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LRSM, and for the quark sector, if one assumes the Yukawa
interaction with the bi-doublet Φ, Eq. (203), to be solely
responsible for the quark masses and mixings, then the
right-handed CKM matrix VR can be fairly well con-
strained from quark masses and the usual left-handed CKM
matrix VL. According to the analysis of Ref. [108], ΔMK
yields 2.5 TeV, while the combination of ϵ and nEDM
yields 4 TeV, respectively, as the lower bound ofMW2

. The
4 TeV bound matches precisely our right-handed scale ΛR
where we expect typical new particle masses to be.
Bounds on scalar masses are more model dependent, and

can be much stronger than that on MWR
. For instance, the

H0
1 and A

0
1 exchange can contribute to K

0K̄0 mixing at tree-
level [see Fig. 4(b)], and Ref. [108] uses ΔMK to place a
lower bound of 15 TeV on their masses.

C. LHC signatures

CMS and ATLAS have looked for BSM signals includ-
ing WR, Z0, and δ��

L;R’s of the LRSM in proton-proton
collisions of energies up to

ffiffiffi
s

p ¼ 8 TeV, and will continue
their searches when the LHC resumes operation in 2015 at
the center of mass energy of

ffiffiffi
s

p ¼ 13 TeV. Here, we cite
some of their current bounds.

1. WR and NR

Since the heavy neutrino NR has a large Majorana mass
in our construction, a distinctive signature for the model at
the LHC is a same-sign dileptonþ dijet final state with
no missing energy viaW�

R → NRl� → l�l�jj [144]. The
Drell-Yan diagram for this lepton number violating process
is shown in Fig. 5, the violation due to the Majorana mass
insertion on the NR line. Since a Dirac mass does not
violate lepton number, a Dirac neutrino would only allow
oppositely charged dileptons in the final state. Therefore,
LHC searches for the same-sign channel are important in
determining whether the heavy neutrino NR is Majorana
or Dirac.
The cross section of the process naturally depends on

bothWR and NR masses, so the searches exclude correlated
regions inMWR

-MN space. In particular, ifMWR
< MN then

the process will be highly suppressed and be undetectable,
so certain regions cannot be probed. If the intermediate
state is Ne (Nμ), then the dilepton in the final state will be

ee (μμ). However, if the Ne and Nμ mix, then one can also
have eμ final states. Thus, the bounds could also depend on
which channels are included in the analysis.
In Ref. [145], ATLAS reports that for both no-mixing

and maximal-mixing scenarios (between Ne and Nμ), they
have excluded WR of mass up to 1.8 TeV (2.3 TeV) at
95% C.L., assuming a mass difference betweenWR and Nl
larger than 0.3 TeV (0.9 TeV).
In Ref. [146], CMS reports that WR of mass up to

3.0 TeV have been excluded at 95% C.L. for the ee and
μμ channels separately, and also with the two channels
combined assuming degenerate Ne and Nμ masses.

2. Doubly charged Higgs

Another signature of the LRSMwhich could be observed
at the LHC comes from the triplet Higgs channel. In
particular, the doubly charged Higgs boson of the triplet
decaying to two same-sign leptons

δ��
L;R → e�e�; μ�μ�; e�μ� ð245Þ

via the Majorana interaction, Eq. (190), will present a very
clear and distinctive signal.
In Ref. [147], ATLAS reports that δ��

L of masses up to
409 GeV, 398 GeV, and 375 GeV, and δ��

R of masses up to
322 GeV, 306 GeV, and 310 GeV have been excluded at
95% C.L. for the ee, μμ, and eμ final states, respectively.
These results assume a branching fraction of 100% for each
final state. For smaller branching fractions, the bounds will
be weaker.
In Ref. [148], CMS reports the mass bounds on the

doubly charged Higgs in the left-handed triplet extension
of the SM (type II seesaw model). At the 95% C.L., the
bounds are 444 GeV, 453 GeV, 373 GeV, 459 GeV,
375 GeV, and 204 GeV respectively when 100% decay
to ee, eμ, eτ, μμ, μτ, and ττ final states are assumed.

D. Neutrinoless double-β decay

Since the Majorana masses of the neutrinos violate
lepton number by two units, their presence will lead to
lepton number violating processes such as neutrinoless
double-β decay (0νββ):

ðA; ZÞ → ðA; Z þ 2Þ þ e− þ e−: ð246Þ

The rate of 0νββ can be written generically as

Γ0νββ

ln 2
¼ G

jMj2
m2

e
jmββ

ν j2; ð247Þ

where G denotes the kinematic factor, M is the nuclear
matrix element, me is the electron mass, and jmββ

ν j is the
effective neutrino mass:

FIG. 5. The Feynman diagram for the production of a heavy
right-handed neutrino and its decay to a dilepton and a dijet
through WR exchange. MN is the Majorana mass of NR.
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mββ
ν ¼

X
i

U2
eimi: ð248Þ

Here, U is the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) mixing matrix, and mi the mass of ith mass
eigenstate.
In the LRSM, 0νββ would occur via the WL and WR

exchange processes with νL and νR intermediate states as
shown in Fig. 6. The dominant contributions are more
likely to come from pure left-handed currents with light
neutrino intermediate states, Fig. 6(a), and pure right-
handed current with heavy neutrino intermediate states,
Fig. 6(b). Contributions from left-right mixed currents,
Figs. 6(c) and 6(d), involve a suppressing factor due to
the small left-right mixing (mD=MN ∼ 10−6 for the TeV
scale LRSM with generic Yukawa couplings) [149–154].
However, there is still room in the parameter space which
allows significant contributions from the mixed diagrams,
as discussed in Ref. [155].
In addition, there exist contributions to 0νββ from the

doubly charged Higgs mediated diagrams shown in Fig. 7.

While those involving the left-handed currents and δL are
suppressed by a factor of p2=M2

δ , those involving the
right-handed currents and δR are proportional to MN=M2

δ,
which may give significant contributions, depending on the
masses in question.
The present limits on 0νββ are not in contradiction with

the TeV scale LRSM. As stated in Ref. [132], the current
signal on 0νββ can be accounted by, for example,
MW2

¼ 3 TeV and MN ¼ 10 GeV, where some fine-tuning
is required but not in an unacceptable amount.

E. Lepton flavor violating processes

The LRSM also allows for the lepton flavor violating
(LFV) processes μ → eγ [156–158], μ → 3e [158,159],
and μ → e conversion in nuclei [158,160–163] though
the predictions for these processes are dependent on how
much LFV is built into the Majorana interaction between
the leptons and the triplet scalars [150,152,154,158,164].
Current experimental bounds on the branching fractions
are [74]

Bðμ → eγÞ < 5.7 × 10−13;
Bðμ → eeeÞ < 1.0 × 10−12;

σðμ−Au → e−AuÞ
σðμ−Au → captureÞ < 7 × 10−13; ð249Þ

all at 90% C.L.
Among these processes, μ → 3e is mediated by the

doubly charged bosons (δ��
L;R) at tree level, Fig. 8, and can

be expected to have a relatively large branching fraction.
Since the Majorana couplings at the vertices of Fig. 8 are

(a) (b)

(c) (d)

FIG. 6. Neutrinoless double-beta decay in the LRSM via the
exchange of WL, WR with νL and νR intermediate states. mD and
MN are respectively the Dirac and Majorana masses of the
neutrino. Mass eigenstates are linear combinations of νL and νR,
with the light state ν consisting mostly of νL, and the heavy state
N consisting mostly of νR. The double circle on theW propagator
in (d) indicates WL-WR mixing.

FIG. 7. Doubly charged Higgs contributions to 0νββ in LRSM.

FIG. 8. Doubly charged Higgs contribution to μ− → e−e−eþ in
the LRSM.
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proportional to the scale of the Majorana masses of the
N’s, the diagram is roughly proportional to M2

N=M
2
δ, and

the branching fraction to M4
N=M

4
δ. So the process provides

a bound on MN=Mδ. In the analysis of Ref. [150] the
left-right symmetry operator of the model is taken to be
charge conjugation C [132] which restricts the form of the
Majorana interaction and allows one to constrain the right-
handed PMNS matrix from the left-handed PMNS matrix,
just as in the case of the Yukawa interaction for quarks,
providing some predictability. Assuming MW2

¼ 3.5 TeV
and Mmax

N ¼ 0.5 TeV, and taking all of the above LFV
processes into account, Ref. [150] reportsMmax

N =Mδ < 0.1,
which places a lower bound on Mδ of 5 TeV, right in the
ballpark of our ΛR ¼ 4 TeV.
Belle, BABAR, and LHCb have also searched for the

LFV decays τ → lγ [165,166] and τ → lll [167–169],
where l ¼ e or μ, and have placed bounds on the branching
fractions to these decays at around a few times 10−8 at
90% C.L. According to the analysis of Ref. [170], the
LRSM with W2, H�

1 , and δ��
L;R masses all set to 3 TeV can

accommodate a branching fraction of τ → lll as large
as 10−9 which would be accessible at the next generation
of super B factories [171,172].

F. Phenomenological outlook

Based on these conventional phenomenological analy-
ses, we conclude that the TeV scale LRSM predicted by
the suð2=2Þ superconnection formalism, possibly with an
underlying NCG, provides a wealth of new particles and
predictions within reach of LHC and other experiments.
The fact that the current experimental bounds on the
LRSM and the corresponding predictions of the super-
connection formalism are suspiciously close may be a
sign that LHC is on the brink of discovering something
new and exciting.
With the center of mass energy of

ffiffiffi
s

p ¼ 13 TeV for its
second run, the LHC is well capable of observing the new
particles of the model among which the most important are
the right-handed gauge bosons (W�

R , Z
0) whose masses are

fixed by the formalism and range within the TeV scale.
With the scale of 4 TeV, selected by the formalism itself,
these masses will be within reach of the LHC, provided that
the right-handed neutrinos (NR) are light enough to make
the corresponding channels accessible.19

A number of relevant and important observations could
be delivered in the LFV branch as well, especially in μ → e
conversion in nuclei, which we briefly discussed in an
earlier section. With the next generation of machines,

COMET [173] and Mu2e [174] collaborations target to
increase their sensitivity for this process from 10−13 to
10−17, which will significantly improve the limits on new
physics including LRSM. Moreover, the next generation of
super B factories aim to increase the limit on LFV τ decays
to a level of 10−9 [171,172], which will also provide useful
information on the nature of new physics.
Thus, the early disappointments of the LHC (lack of

other discoveries except for the discovery of the Higgs)
could have been nothing but the calm before the storm.

VI. SUMMARY, QUESTIONS, AND
SPECULATIONS

A. Strengths and weaknesses of the
NCG-superconnection approach

In this paper, we have reviewed the suð2=1Þ super-
connection approach to the SM of Ne’eman et al. [4,13,39],
supplemented by later developments by Coquereaux et al.
[36] and Haussling et al. [37]. The superconnection
describes the connection in a model space in which our
3þ 1 dimensional spacetime is extended by a discrete extra
dimension consisting of only two points, i.e. the model
space consists of two 3þ 1 dimensional branes separated
by a gap. The left-handed fermions are assumed to inhabit
one brane, and the right-handed fermions the other. The
even part of the superconnection describes the usual gauge
connection within each 3þ 1 dimensional brane, while the
odd part of the superconnection, identified with the Higgs
doublet, describes the connection in the discrete direction
bridging the gap between the two branes. Contrary to early
misconceptions about the approach, the Higgs doublet
enters as a bosonic scalar, and does not violate the
spin-statistics theorem.
The suð2=1Þ superconnection model predicts

sin2 θW ¼ 1=4, a condition which can only be imposed
on the SUð2ÞL × Uð1ÞY gauge couplings at ∼4 TeV. We
interpret this to mean that the SM emerges from the
underlying discrete extra dimension theory at that scale.
The model also predicts the Higgs mass, which, including
RGE running down from 4 TeV, is ∼170 GeV.
To remedy this problem, we extended the model to

suð2=2Þ, in which the SUð2ÞL × SUð2ÞR ×Uð1ÞB−L gauge
bosons and a bi-doublet field Φ were embedded into the
superconnection. This extended the SM to the LRSM, for
which the emergence scale also turned out to be 4 TeV.
In this case, additional gauge triplet scalars were introduced
to break SUð2ÞR ×Uð1ÞB−L down to Uð1ÞY , and the scale
of this breaking was also required to be at 4 TeV. The
bi-doublet field then broke the SUð2ÞL ×Uð1ÞY symmetry
down to Uð1Þem. It was shown that the lightest neutral
scalar in the Higgs sector could have mass as light as
∼126 GeV. The model also predicts a plethora of new
particles with masses in the multi-TeV range, within reach
of the LHC run 2.

19There is nothing in the model which constrains the right-
handed neutrinos NR to be light. With NR heavier than W�

R , the
Drell-Yan interactions will be highly suppressed and thus,
although theoretically the TeV scale LRSM could still be viable,
it will be very difficult for the LHC to detect its signature through
the W�

R channels.
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Of the several salient features of the approach, the most
interesting is that the generalized exterior derivative in the
discrete direction, i.e. the matrix derivative, shifts the VEV
of the off-diagonal zero-forms to nonzero values, effec-
tively breaking the gauge symmetries. Thus, gauge sym-
metry breaking is intimately connected to the geometry
of the model spacetime, in particular, to the separation of
the two branes. We envision a scenario in which the two
branes, originally overlapping, separate from each other
dynamically and trigger gauge symmetry breaking. In
other words, the Higgs mechanism is not due to the
Higgs dynamics which is independent of any underlying
geometry, but an integral part of the geometry itself, and is
quantum gravitational in character.
Many problems still remain for the formalism to mature

into a full fledged model building paradigm. First, the Lie
superalgebra structure is assumed to emerge from some
underlying NCG theory, but we have not clarified how the
geometry enforces the structure yet. We would also like to
incorporate QCD, quarks, and fermion generations into the
structure. The spectral SM of Connes et al. supposedly has
already done this, but as commented on earlier, the spectral
SM approach does not have much predictive power. Also,
after the incorporation of QCD into the model, we would
like to unify it with the LRSM via the Pati-Salam group.
The Uð1ÞB−L gauge boson being part of the suð2=2Þ
superconnection, this suggests that QCD cannot be simply
tacked on to the model.
There is also the subtle problem of how the nilpotency of

the matrix derivative should be treated. In the suð2=1Þ case,
the term d2

M in the definition of the supercurvature could
not be ignored for gauge invariance, but including it led to
internal inconsistencies. In the suð2=2Þ case, d2

M belongs
to the center of the superalgebra, so it can be added or
subtracted from the supercurvature without changing its
algebraic properties. This suggests that one can decide to
ignore d2

M based on consistency requirements, but one
cannot shake the impression that the treatment is ad hoc.
Furthermore, in the suð2=2Þ case, phenomenological
requirements demanded that the nilpotency of the matrix
derivative be broken. Whether this is another indication of a
deep connection between spontaneous symmetry breaking
and the geometry of the underlying theory remains to
be seen.
These, and other questions, will be addressed in future

publications.

B. Comment on the hierarchy problem and the
unification of couplings

The major appeal of the more traditional approaches to
BSM model building such as supersymmetry (as well as
technicolor, extra dimensions, etc.) is that they address the
hierarchy problem, and that they shed light on the apparent
unification of couplings, both within the context of local
effective field theory (EFT).

However, this apparent theoretical appeal of supersym-
metry does not exclude approaches that do not necessarily
follow the local EFT paradigm. For example, in the spectral
SM approach of Connes et al. [29,57–64] the hierarchy
problem can be addressed in a completely different fashion
[62]. The crucial NCG (and thus in some sense nonlocal)
aspect of the SM is found in the Higgs sector, which
in principle comes with an extra (second) scale, to be
distinguished from the usual UV scale of local EFT. The
hierarchy between the Higgs and the UV (Planck) scale can
be associated (as shown by Chamseddine and Connes in
Ref. [62]) with the natural exponential factor that comes
from the dynamical discrete geometry of the Higgs sector.
Similarly, the apparent gauge unification [in the guise of an
effective SOð10Þ relation between the gauge couplings] is
also incorporated into the spectral SM. These aspects of the
NCG approach to the SM are almost completely unknown
in the particle physics community, and at the moment,
almost completely undeveloped from a phenomenological
viewpoint.
One of our aims in our upcoming review of the spectral

SM [71] is to clarify these interesting features of the NCG
approach to the SM and make them palatable to the wider
phenomenological community. We are also motivated by a
deeper need to understand the limitations of the local EFT
paradigm from the point of view of the physics of quantum
gravity, which is usually, rather naively, ignored at the
currently interesting particle physics scales, by invoking the
concept of decoupling, which represents another central
feature of the local EFTand which is also challenged by the
NCG approach to the SM. Finally, as we discuss in the next
concluding subsection of this paper, the usual RG analysis
of the local EFT should be reexamined in the new light of
the noncommutative/nonlocal structure of the SM, and the
apparent existence of two natural (and naturally related)
physics scales.

C. The violation of decoupling and
the possibility for UV/IR mixing

In this concluding subsection we would like to comment
on the observation made in Ref. [175] regarding the
violation of decoupling in the Higgs sector, and how this
violation may point to the more fundamental possibility of
mixing of UV and IR degrees of freedom, given our view
that a NCG underlies the Higgs sector. Such UV/IR mixing
is known in the simpler context of noncommutative field
theory [176], which we review below.
First, let us briefly recall the argumentmade in Ref. [175]:

Essentially Senjanovic and Sokorac foundwithin the LRSM
that the Higgs scalars do not decouple at low energy due
to the essential relation between the gauge couplings and
the Higgs mass. Note that this violation of decoupling will
affect the scales of the electroweak breaking (taken as the
low energy scale) and the TeV scale (taken as the high
energy scale of new physics).
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Such a violation of decoupling might point to a more
fundamental phenomenon of the UV/IR mixing of the short
and long distance physics. Here we briefly recall in slightly
more detail the UV/IR mixing found in noncommutative
field theory [176]. In this particular toy-model case
(to be distinguished from NCG of Connes relevant for our
discussion) the noncommutative spatial coordinates are
assumed to satisfy

½xa; xb� ¼ iθab; ð250Þ

where θab is real and antisymmetric. Note that when this
relation is taken together with the fundamental commuta-
tion relation

½xa; pb� ¼ iδab; ð251Þ

they imply the possibility of a fundamentally new effect:
UV/IR mixing, i.e.

δxa ∼ θabδpb: ð252Þ

This would mean, contrary to the usual intuition from local
effective field theory, that high energy processes are related
to low energy distances. We have argued elsewhere that the
UV/IR mixing should be a fundamental feature of quantum
gravity and string theory [177,178].
At the moment we are not aware of an explicit UV/IR

relation in the context of the NCG of Connes that underlies
the superconnection formalism and the new viewpoint on
the SM and the physics beyond it, as advocated in this
paper. However, there exists a very specific toy model of
noncommutative field theory in which such UV/IR mixing
has been explicitly demonstrated. The nice feature of this
toy model is that it can be realized in a fundamental short
distance theory, such as string theory [176].
The noncommutative field theory is defined by the

effective action

Snc ¼
Z

d4xL½ϕ� ð253Þ

where the product of the fields ϕ is given by the Moyal
(or star) product

ðϕ1⋆ϕ2ÞðxÞ≡ exp

�
i
2
θab∂y

a∂z
b

�
ϕ1ðyÞϕ2ðzÞjy¼z¼x: ð254Þ

In what follows, motivated by the form of the Higgs
Lagrangian, we take L½ϕ� to describe the massive λϕ4

noncommutative field theory.
The main point made in Ref. [176] is that in the simplest

case of the ϕ4 theory the 1PI two point function has
the following nontrivial leading form (up to an overall
coefficient)

Λ2
eff −m2 log

�
Λ2
eff

m2

	
; ð255Þ

where m is the mass of the ϕ field, and the effective cutoff
Λeff is given by the following expression:

Λ2
eff ¼

�
1

Λ2
− paθ

2
abpb

	−1
: ð256Þ

Here, Λ is the usual UV cutoff. Note that the noncommu-
tativity scale θ plays the role of the natural IR cutoff.
The UV/IR mixing, characteristic of this type of non-

commutative field theory leads to the question of the
existence of the proper continuum limit for noncommuta-
tive field theory. This question can be examined from the
point of view of nonperturbative renormalization group
(RG). The proper Wilsonian analysis of this type of
noncommutative theory has been done in Ref. [179].
The UV/IR mixing leads to a new kind of the RG flow:
a double RG flow, in which one flows from the UV to IR
and the IR to the UVand ends up, generically, at a self-dual
fixed point. It would be tantalizing if the NCG setup
associated with the SM, and in particular, the LRSM
generalization discussed in this paper, would lead to
the phenomenon of the UV/IR mixing and the double
RG flow with a self-dual fixed point. Finally, we remark
that it has been argued in a recent work on quantum gravity
and string theory that such UV/IR mixing and the double
RG might be a generic feature of quantum gravity coupled
to matter [177,178].
Even though the NCG in our case is different from this

toy example, the lesson in the essential physics of the
UV/IR mixing is present in our situation as well: the Higgs
field can be associated with the natural scale of non-
commutativity and thus the natural IR scale, and therefore
even in our situation we might reasonably expect that the
Higgs scale is mixed with the UV cutoff defined by some
more fundamental theory. Needless to say, at the moment
this is only an exciting conjecture.
If this conjecture is true, given the results presented in

this paper one could expect that the appearance of the
LRSM degrees of freedom (as well as the embedded SM
degrees of freedom) at low energy is essentially a direct
manifestation of some effective UV/IR mixing, and thus
that on one hand the remnants of the UV physics can be
expected at a low energy scale of 4 TeV, and conversely that
the LRSM structure point to some unique features of the
high energy physics of quantum gravity. In this context we
recall the observations made in Ref. [70] about the special
nature of the Pati-Salam model, which unifies the LRSM
with QCD, in certain constructions of string vacua. Even
though this observation is mainly based on “groupology”
and it is not deeply understood, this observation might be
indicative that the Pati-Salam model is the natural com-
pletion of the SM, as suggested in this paper, in which the
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infrared physics associated with the Higgs sector is mixed
with the ultraviolet physics of some more fundamental
physics, such as string theory.
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APPENDIX A: THE NE’EMAN-STERNBERG
RULE FOR SUPERMATRIX MULTIPLICATION

As stated in footnote 11, some papers in the literature
treat the superconnection J as a superendomorphism of a
superspace and calculate the supercurvature F differently.
In this appendix, we derive the multiplication rule for
superendomorphisms with differential forms as elements
(or superendomorphism valued differential forms). We
will follow the notation of Sternberg [11] in which the
Z2-grading is denoted with � superscripts instead of 0, 1
subscripts.
A superspace E is simply a vector space with a Z2

grading:

E ¼ Eþ ⊕ E−: ðA1Þ
We denote the set of all endomorphisms, i.e. linear trans-
formations, on E with EndðEÞ, which is already an
associative algebra. In matrix representation, the product
of EndðEÞ is just standard matrix multiplication.
When E is provided with a Z2 grading as above, a Z2

grading can also be introduced into EndðEÞ by simply
letting EndðEÞþ consist of all endomorphisms that map E�

to E�, and EndðEÞ− consist of all endomorphisms that
map E� to E∓. That is

EndðEÞþ∶ Eþ → Eþ; E− → E−;
EndðEÞ−∶ Eþ → E−; E− → Eþ: ðA2Þ

In matrix representation, elements of EndðEÞþ will consist
of matrices of the form�

A 0

0 B

�
; A∶ Eþ → Eþ; B∶ E− → E−; ðA3Þ

while elements of EndðEÞ− will consist of those of the form�
0 C
D 0

�
; C∶ E− → Eþ; D∶ Eþ → E−: ðA4Þ

Then, clearly

EndðEÞ ¼ EndðEÞþ ⊕ EndðEÞ−; ðA5Þ

and EndðEÞ can be viewed as a superalgebra, its product
satisfying Eq. (7). Note that the product of the superalgebra
here is just the product of the associative algebra from
which it was derived, i.e. standard matrix multiplication.
So far, nothing has changed by viewing EndðEÞ as a
superalgebra.
The multiplication rule changes when the superalgebra

EndðEÞ ¼ EndðEÞþ ⊕ EndðEÞ− is tensored with the
commutative superalgebra of differential forms ΩðMÞ ¼
ΩþðMÞ ⊕ Ω−ðMÞ, yielding a superalgebra of superendo-
morphism valued differential forms, or superendormor-
phisms with differential forms as elements. The rule
depends slightly on whether we view superendomorphism
valued differential forms as elements of the tensor product
EndðEÞ ⊗ ΩðMÞ, or the tensor product ΩðMÞ ⊗ EndðEÞ,
since this affects the sign in the definition of the product
for tensored superalgebras, Eq. (28).
For elements of EndðEÞ ⊗ ΩðMÞ, we have the

Ne’eman-Sternberg multiplication rule given in
Refs. [11,13,36,39] as

�
A C

D B

�
⊙
�
A0 C0

D0 B0

�
≔
�
A ∧ A0 þ ð−1ÞjCjC ∧ D0 C ∧ B0 þ ð−1ÞjAjA ∧ C0

D ∧ A0 þ ð−1ÞjBjB ∧ D0 B ∧ B0 þ ð−1ÞjDjD ∧ C0

�
; ðA6Þ

where A, B, C, D, A0, B0, C0, andD0 are all matrices themselves whose elements are differential forms of a definite grading.
For the elements of ΩðMÞ ⊗ EndðEÞ, we have�

A C

D B

�
⊙
�
A0 C0

D0 B0

�
≔
�
A ∧ A0 þ ð−1ÞjD0jC ∧ D0 A ∧ C0 þ ð−1ÞjB0jC ∧ B0

ð−1ÞjA0jD ∧ A0 þ B ∧ D0 ð−1ÞjC0jD ∧ C0 þ B ∧ B0

�
: ðA7Þ

These relations are simple consequences of Eq. (28). First, rewrite each matrix in tensor product form, schematically,
as
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�
A C

D B

�
¼ A ⊗

�
1 0

0 0

�
þ B ⊗

�
0 0

0 1

�
þ C ⊗

�
0 1

0 0

�
þD ⊗

�
0 0

1 0

�
;�

A0 C0

D0 B0

�
¼ A0 ⊗

�
1 0

0 0

�
þ B0 ⊗

�
0 0

0 1

�
þ C0 ⊗

�
0 1

0 0

�
þD0 ⊗

�
0 0

1 0

�
: ðA8Þ

Note that we are using tensor products in ΩðMÞ ⊗ EndðEÞ with the differential form on the left and the supermatrix on the
right. Then, we multiply the tensor products together, term by term. For instance,�

A ⊗
�
1 0

0 0

�	
⊙
�
A0 ⊗

�
1 0

0 0

�	
¼ ð−1Þ0×jA0jðA ∧ A0Þ ⊗

��
1 0

0 0

�
·

�
1 0

0 0

�	

¼ ðA ∧ A0Þ ⊗
�
1 0

0 0

�

¼
�
A ∧ A0 0

0 0

�
; ðA9Þ

and �
C ⊗

�
0 1

0 0

�	
⊙
�
D0 ⊗

�
0 0

1 0

�	
¼ ð−1Þ1×jD0jðC ∧ D0Þ ⊗

��
0 1

0 0

�
·

�
0 0

1 0

�	

¼ ð−1ÞjD0jðC ∧ D0Þ ⊗
�
1 0

0 0

�

¼
� ð−1ÞjD0jC ∧ D0 0

0 0

�
: ðA10Þ

Summing, we obtain the 1-1 element of Eq. (A7). All other elements can be derived in a similar fashion.

APPENDIX B: USEFUL IDENTITIES

To compare Eq. (2.9) of Ref. [82] and Eq. (A2) of Ref. [83] we need the following identities:

Tr½ðΦ†ΦÞ2� ¼ ðTr½Φ†Φ�Þ2 − 1

2
Tr½Φ† ~Φ�Tr½ ~Φ†Φ�;

1

2
ðTr½Φ† ~Φ� þ Tr½ ~Φ†Φ�Þ2 ¼ 1

2
fðTr½Φ† ~Φ�Þ2 þ ðTr½ ~Φ†Φ�Þ2g þ Tr½Φ† ~Φ�Tr½ ~Φ†Φ�;

1

2
ðTr½Φ† ~Φ� − Tr½ ~Φ†Φ�Þ2 ¼ 1

2
fðTr½Φ† ~Φ�Þ2 þ ðTr½ ~Φ†Φ�Þ2g − Tr½Φ† ~Φ�Tr½ ~Φ†Φ�;

Tr½Φ†Φ ~Φ† ~Φ� ¼ 1

2
Tr½Φ† ~Φ�Tr½ ~Φ†Φ�;

Tr½Φ† ~ΦΦ† ~Φ� þ Tr½ ~Φ†Φ ~Φ†Φ� ¼ 1

2
fðTr½Φ† ~Φ�Þ2 þ ðTr½ ~Φ†Φ�Þ2g;

Tr½ðΔ†
LΔLÞ2� ¼ ðTr½Δ†

LΔL�Þ2 − 1

2
Tr½ΔLΔL�Tr½Δ†

LΔ
†
L�;

Tr½ ~Φ ~Φ†ΔLΔ
†
L� ¼ Tr½Φ†Φ�Tr½Δ†

LΔL� − Tr½Φ†ΦΔ†
LΔL�;

Tr½ ~Φ† ~ΦΔRΔ
†
R� ¼ Tr½ΦΦ†�Tr½Δ†

RΔR� − Tr½ΦΦ†Δ†
RΔR�: ðB1Þ
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