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We construct a D-brane soliton, a composite topological soliton sharing some properties with a D-brane,
in a Skyrme model in 4þ 1 dimensions, in which Skyrmions are strings ending on a domain wall.
We further generalize this D-brane soliton to diverse dimensions. A string, carrying the πN−1 topological
charge, ends on a domain wall in an OðNÞ model with higher-derivative terms in N þ 1 dimensions.
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I. INTRODUCTION

Dirichlet (D-)branes are solitonic objects in string theory,
on which fundamental strings can end [1]. Since their
discovery, D-branes have provided a fundamental tool to
study nonperturbative dynamics of string theory and even
quantum field theory such as a brane realization [2] and via
the AdS/CFT correspondence [3]. The Dirac-Born-Infeld
(DBI) action describes the collective-coordinate motion of
D-branes. In the DBI action, endpoints of fundamental
strings can be regarded as solitonic excitations called BIons
[4]. After some attempts in field theory to mimic D-branes
[5], constructing the first exact solution of a composite
soliton looking like a D-brane was achieved in Ref. [6],
in which a lump string ends on a domain wall [7] in a
supersymmetric CP1 nonlinear sigma model. When one
looks at this solution from the domain-wall effective theory,
it reproduces a BIon, and therefore this solution was named
a D-brane soliton. The D-brane soliton was promoted to
that in supersymmetric QED, which is a U(1) gauge theory
coupled with two charged scalar fields [8,9]. More general
D-brane solitons were constructed in supersymmetric CPn

and Grassmann sigma models, and corresponding super-
symmetric UðNÞ gauge theories [10], in which exact
solutions with an arbitrary number of strings at an arbitrary
position stretched between multiple domain walls [11,12]
were found (for a review see Ref. [13]). Low-energy
dynamics, such as scattering of strings stretched between
branes, was studied in the moduli-space approximation
[14]. In Ref. [10], a negative monopole charge was found at
the endpoint of a string, which was later named a boojum
[15]; see also Ref. [16], and the boojum charge was also
reproduced in a domain-wall effective action [17]. Strings
stretched between a brane and antibrane pair, their approxi-
mate solutions, and a fate after a pair annihilation were
discussed in Ref. [18]. A wall-vortex junction in the large
magnetic flux limit was studied in Ref. [19].
The term boojum was taken from condensed matter

physics, and in fact, boojums have been already studied in

various condensed matter systems [20] such as nematic
liquids [21], superfluids at the edge of a container filled
with 4He, at the A-B phase boundary of 3He [22], multi-
component Bose-Einstein condensates (BEC) of ultracold
atomic gases [23], spinor BECs [24], and in even dense
quark matter [25]. Among others, in particular, D-brane
solitons accompanied by boojums of the same type were
constructed in two-component BECs [26].
Strings in D-brane solitons found thus far are of

codimension two. In this paper, we offer a very simple
model admitting strings (of higher codimensions) ending
on a domain wall in higher dimensions. It is an OðNÞ
nonlinear sigma model with higher-derivative (Skyrme-
like) term(s) in N þ 1 dimensions and a quadratic potential
term with two vacua and thus admitting a domain wall. The
O(3) model is a baby-Skyrme model [27] with a quadratic
potential [28] in 3þ 1 dimensions, while the O(4) model is
the Skyrme model with the quadratic potential [29–33] in
4þ 1 dimensions. The model admits a baby-Skyrmion
string with π2 lump charge (N ¼ 3), a Skyrmion string with
π3 Skyrmion (baryon) charge (N ¼ 4), or higher dimen-
sional analogs with πN−1 topological charge. We numeri-
cally construct solutions of these D-brane solitons for
N ¼ 3; 4; 5; 6. For the O(3) model in 3þ 1 dimensions,
we construct a baby-Skyrmion string ending on a domain
wall, which is baby-Skyrmion version of the prototype of a
lump-string ending on a wall [6]. For the O(4) model in
4þ 1 dimensions, we construct a Skyrmion string with π3
topological (baryon) charge, ending on a domain wall.
For the OðNÞmodel inN þ 1 dimensions, we have a higher
dimensional Skyrmion-like string of codimensions N − 1,
supported by the πN−1 topological charge, ending on a
domain wall. For N > 3 higher-derivative terms are needed
to prevent the string from collapsing to a singular solution.
We study the shapes of domain walls pulled by such (finite)
strings. It is known that the shape is logarithmic for the
O(3) model without the fourth-order derivative term. We
find that once the higher-derivative terms are considered,
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the shape is 1=ρ#, where the power # is fitted to be about 5
and perhaps is universal.
This paper is organized as follows. Section II presents

our model: an OðNÞ sigma model with higher-derivative
terms. In Sec. III, we review the D-brane soliton in the
O(3) model without any higher-derivative terms in
d ¼ 3þ 1. In Sec. IV we construct the D-brane soliton
in the Skyrme model for O(3) in d ¼ 3þ 1 dimensions and
for O(4) in d ¼ 4þ 1 dimensions. In Sec. V we generalize
the construction to 5þ 1 and 6þ 1 dimensions, necessitat-
ing an even higher-order derivative term; explicitly we
consider a sixth-order term for N ¼ 5; 6 in d ¼ 5þ 1 and
6þ 1, respectively. Section VI is devoted to a summary and
discussion.

II. THE MODEL

We consider the OðNÞ sigma model with higher-
derivative terms in N þ 1 dimensions whose Lagrangian
density reads

L ¼ −
1

2
∂μn · ∂μnþ c4L4 þ c6L6 − V; ð1Þ

where μ ¼ 1;…; N; n ¼ ðn1;…; nNÞT; n · n ¼ 1 and

L4 ¼ −
1

4
ð∂μn · ∂μnÞ2 þ 1

4
ð∂μn · ∂νnÞ2; ð2Þ

L6 ¼ −ð∂μn½a∂νnb∂ρnc�Þ2

¼ −
1

6
ð∂μn · ∂μnÞ3 þ 1

2
ð∂μn · ∂μnÞð∂νn · ∂ρnÞ2

−
1

3
ð∂μn · ∂νnÞð∂νn · ∂ρnÞð∂ρn · ∂μnÞ; ð3Þ

where a; b; c ¼ 1;…; N and the antisymmetrization is
defined as

T ½abc� ≡ 1

3!
ðTabc þ Tbca þ Tcab − Tcba − Tbac − TacbÞ:

ð4Þ

We are using the mostly positive metric. In the absence of
the potential, the symmetry is OðNÞwhich is spontaneously
broken to OðN − 1Þ. The target space of the sigma model is

OðNÞ=OðN − 1Þ≃ SN−1: ð5Þ

We consider the potential, given by

V ¼ 1

2
m2ð1 − n2NÞ: ð6Þ

The vacua are

þ ∶ nN ¼ þ1; ð7Þ

− ∶ nN ¼ −1: ð8Þ

The above potential breaks the OðNÞ symmetry to OðN − 1Þ
explicitly.
Note that the Lagrangian density (3) is the baryon

density squared when N ¼ 4 and is the basis of the BPS
Skyrme model [34]. In the present formulation of the term,
N can be larger than 4 but then the term no longer
represents the πN−1 charge.
We will consider a domain wall extended in the z≡ xN

direction, which interpolates between the − and the þ
vacua of Eqs. (7) and (8). The domain-wall solution is
given by

nN ¼ tanhðmzÞ; ð9Þ

and is an exact solution: it is the sine-Gordon soliton
[for the O(3) model [7], the O(4) model [29–32,35], and the
OðNÞ model [33]].
In this paper we are interested in the soliton junction

composed by the latter domain wall and a “string” carrying
πN−1 charge. This is possible because zero modes (moduli)
are localized on the domain wall, which originate from the
spontaneously broken OðN − 1Þ symmetry in the presence
of the wall. Those moduli are U(1) for the O(3) model [7],
S2 for the O(4) model [30–32,35], and SN−2 for the OðNÞ
model [33]. One could construct textures (Skyrmions)
supported by πN−2ðSN−2Þ≃ Z [30–33,36–39], which are
localized on the wall. Instead, here, we discuss defects
again supported by πN−2ðSN−2Þ≃ Z. As we will see, these
defects actually extend in the direction perpendicular to
the wall, and it turns out that they are Skyrmion strings
supported by the πN−1ðSN−1Þ≃ Z in the bulk.
An appropriate ansatz for the configuration is

n ¼
�
~x
ρ
sin fðρ; zÞ; cos fðρ; zÞ

�
T
; ð10Þ

where ~x ¼ ðx1;…; xN−1Þ; ρ2 ¼ ðx1Þ2 þ � � � þ ðxN−1Þ2 is
the ðN − 1Þ-dimensional radial coordinate and z≡ xN .
Inserting the above ansatz into the Lagrangian density
(1) we obtain the following static Lagrangian density:

−L¼ 1

2
f2ρ þ

1

2
f2z þ

N − 2

2ρ2
sin2fþ c4

�
N − 2

2ρ2
sin2fðf2ρ þ f2zÞ

þ ðN − 3ÞðN − 2Þ
4ρ4

sin4f

�

þ c6

�ðN − 3ÞðN − 2Þ
2ρ4

sin4fðf2ρ þ f2zÞ

þ ðN − 4ÞðN − 3ÞðN − 2Þ
6ρ6

sin6f

�

þ 1

2
m2sin2f; ð11Þ
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where fx ≡ ∂xf and the equation of motion reads

fρρ þ fzz þ
N − 2

ρ
fρ þ c4

N − 2

ρ2
sin2f

�
fρρ þ fzz þ

N − 4

ρ
fρ

�
þ c4

N − 2

2ρ2
sinð2fÞðf2ρ þ f2zÞ

þ c6
ðN − 3ÞðN − 2Þ

ρ4
sin4f

�
fρρ þ fzz þ

N − 6

ρ
fρ

�
þ c6

ðN − 3ÞðN − 2Þ
ρ4

sin2f sinð2fÞðf2ρ þ f2zÞ −
N − 2

2ρ2
sinð2fÞ

− c4
ðN − 3ÞðN − 2Þ

2ρ4
sin2f sinð2fÞ − c6

ðN − 4ÞðN − 3ÞðN − 2Þ
2ρ6

sin4f sinð2fÞ − 1

2
m2 sin 2f ¼ 0: ð12Þ

The πN−1 charge is given by

C ¼ ΓðN
2
Þ

2π
N
2

Z
dN−1x

1

ðN − 1Þ! ϵ
i1���iN−1ϵa1���aN∂i1na1 � � � ∂iN−1

naN−1
naN

¼ ΓðN
2
Þffiffiffi

π
p

ΓðN−1
2
Þ
Z

dρsinN−2ðfÞ∂ρf

¼ − cos fðsign sin fÞN−1 ΓðN
2
Þffiffiffi

π
p

ΓðN−1
2
Þ 2F1

�
1

2
;
3 − N
2

;
3

2
; cos2f

�����
fð∞Þ

fð0Þ
¼ −1; ð13Þ

where i# ¼ 1;…; N − 1; a# ¼ 1;…; N; Γ is the gamma
function and 2F1 is the usual hypergeometric function.
(Note that the overall sign is chosen for convenience and is
opposite to the conventional choice.) With the boundary
conditions fð0Þ ¼ 0 and fð∞Þ ¼ π, the above charge
integrates to C ¼ −1 for all N ≥ 3, as shown in the last
step of the last line. The charge density is given by

C ¼ 1

ρN−2 sin
N−2ðfÞ∂ρf: ð14Þ

The reason for including higher-derivative terms in the
action (1) is to prevent the “string” from collapsing to a
singular solution (at a finite distance from the domain wall).
Let us consider a scaling argument for just the coordinates
transverse to the domain wall, ~x → μ ~x. The energy thus
scales as

E → −
Z

dN−1x½μ3−NLρ
2 þ μ1−NLz

2 þ μ5−Nc4L
ρ
4

þ μ3−Nc4L
z
4 þ μ7−Nc6L

ρ
6 þ μ5−Nc6L

z
6 − μ1−NV�; ð15Þ

whereLρ;z
d denotes the part of the Lagrangian density of dth

order in derivatives having two derivatives in ρ and z,
respectively [40]. Stability of the solitonic solution requires
a positive power of μ for at least one term. If the power is
zero (i.e. μ0), the term is classically conformal and cannot
provide stabilization.
For N ¼ 3 we can have a finite-size (lump-charged)

string with just the Dirichlet term and thus no higher-
derivative terms (c4 ¼ c6 ¼ 0). The apparent instability in
the z coordinate does not affect the solution because of
factorization (see the next section). Note also that the ρ part
of the energy is classically conformal; a characteristic of

lumps. For N ¼ 4 and just the Skyrme term turned on
(c4 ¼ 1 and c6 ¼ 0) we have a stable finite-size Skyrmion-
charged string. At each constant-z slice, a domain wall
becomes a spherical domain wall studied in Ref. [31] which
is nothing but a Skyrmion. For N ¼ 5; 6 we need the sixth-
order derivative term for stabilizing the string. We will
consider these three cases in turn in the next sections.

III. THE PURE SIGMA MODEL

In this section, we use only the kinetic term and
the potential, i.e. the Lagrangian density (11) with
c4 ¼ c6 ¼ 0.
This system is special for N ¼ 3 where it corresponds to

an integrable sector in the supersymmetric O(3) sigma
model [11]. For N ¼ 2, the system is again integrable,
but is somehow trivial as it describes two domain walls
orthogonally assembled.
In order to uncover the domain-wall structure of the

system, let us change variables as

f ¼ 2 arctan g; ð16Þ

which gives us the nonlinear equation of motion (we keep
N explicit for illustrative purposes here)

ð1þ g2Þgρρ − 2gg2ρ þ
N − 2

ρ
ð1þ g2Þgρ

þ ð1þ g2Þgzz − 2gg2z −
N − 2

2ρ2
gð1 − g2Þ

−m2gð1 − g2Þ ¼ 0: ð17Þ

Regrouping this, we get
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gρρ þ
N − 2

ρ
gρ þ gzz −

N − 2

ρ
g −m2g ¼ 0; ð18Þ

with the nonlinear constraint (assuming the above equation
is satisfied)

g2ρ
g
−
N − 2

ρ2
gþ g2z

g
−m2g ¼ 0; ð19Þ

and inserting a factorizing ansatz g ¼ RðρÞZðzÞ into the
latter constraint, we get

R ¼ ρ�
ffiffiffiffiffiffiffi
N−2

p
; Z ¼ e�mðz−z0Þ: ð20Þ

Inserting this into Eq. (18) yields (N ≥ 2)

∓ ffiffiffiffiffiffiffiffiffiffiffiffi
N − 2

p
� ðN − 2Þ32 ¼ 0; ð21Þ

which determines N ¼ 3 (or the trivial solution N ¼ 2
which is physically not so interesting). The exact solution
in the nonlinear sigma model case for N ¼ 3 thus reads

g ¼ r�1 expf�mðz − z0Þg: ð22Þ

The two signs are independent of each other and all four
possibilities are solutions to the equation of motion. They
are however not all physically different as the Lagrangian is
invariant under f → π − f which corresponds to g → g−1.
Using this fact, we see that there are two distinct configu-
rations which we can think of as a wall junction and
antiwall junction. These two are related by sending the
coordinate z → −z.
Factorization is possible when N ¼ 3 as we have

just shown above, but only possible when N ¼ 3. For
illustrative purposes, let us implement the domain-wall
structure explicitly by setting

g ¼ expfmzghðρ; zÞ; ð23Þ

and study the string solutions on both sides of the domain
wall. Notice that m → �m and z → z − z0 recovers the
domain wall/anti-domain-wall and position modulus,
respectively. In order not to clutter the notation too much
in the following, we will just use emz. The equation of
motion can now be written as

hρρð1þ e2mzh2Þ − 2e2mzhh2ρ þ
N − 2

ρ
ð1þ e2mzh2Þhρ

þ hzzð1þ e2mzh2Þ − 2e2mzhh2z þ 2mð1 − e2mzh2Þhz
−
N − 2

ρ2
ð1 − e2mzh2Þh ¼ 0: ð24Þ

The field h will describe the junction in the (fixed)
background of the domain wall which is generally a
solution to the above partial differential equation and hence
a function of both ρ and z. Taking the limit z → ∞, the
equation of motion (24) becomes independent of z:

hρρ −
2h2ρ
h

þ N − 2

ρ
hρ þ

N − 2

ρ2
h ¼ 0; ð25Þ

and a power function ansatz h ¼ ρb yields the following
two solutions:

bþ ¼ N − 2; b− ¼ −1: ð26Þ

Taking now the limit z → −∞, the equation of motion (24)
becomes again independent of z:

hρρ þ
N − 2

ρ
hρ −

N − 2

ρ2
h ¼ 0; ð27Þ

FIG. 1 (color online). O(3) soliton junction of a domain wall (in the z direction) and a lump string carrying π2 charge. The three panels
show the field n3, the energy density on a logarithmic scale and the charge density.
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and the power function ansatz h ¼ ρb now yields the two
solutions

bþ ¼ 1; b− ¼ −N þ 2: ð28Þ

Having two different signs on each side of the domain wall
corresponds to a composite soliton made of a wall and an
antiwall and thus is not a solution on the fixed background.
Therefore we need to pick the same sign on each side of
the domain wall, which corresponds to choosing a string
or an antistring (or alternatively which direction the string
is pointed). The factorization is again visible for N ¼ 3
because the power function ansatz is the same on both sides
of the domain wall (and in fact as we showed earlier, it is a

solution in all space). In principle we could contemplate a
solution interpolating the two different power functions
when N ≥ 4, but as shown by a scaling argument in Sec. II
[see Eq. (15)], such solution will have a singular (i.e.
vanishing thickness) string and the junction will also be
pointlike. We can blow up such solutions by adding higher-
derivative terms, as shown in Eq. (15). This will be the topic
of the next sections.

IV. THE SKYRME MODEL

In this section, we turn on the Skyrme term in the
Lagrangian density (11), viz. c4 ¼ 1 and c6 ¼ 0. This will
allow for stable finite-size strings for N ¼ 4 as shown by

FIG. 2 (color online). O(4) soliton junction of a domain wall (in the z direction) and a Skyrmion string carrying π3 charge. The three
panels show the field n4, the energy density on a logarithmic scale and the charge density.

0 1 2 3 4 5
−6

−4

−2

0

2

4

6

8

10

ρ

z

 

 

numerical solution (with Skyrme term)
fit = −5.1992 + 29.1821|ρ − 1.1695|−5.5095
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FIG. 3 (color online). Contour line of the soliton junction (cos f ¼ 0), describing the bending of the domain wall due to the attached
string. The left-hand (right-hand) side panel is for the O(3)-case [O(4)-case] and the fit is made with the numerical data in the region
z < −3 (z < −4).
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the scaling argument in Eq. (15). The equation of motion
(12), in this case, is not integrable and we need to turn to
numerical methods to obtain solutions.
We will employ a finite-difference scheme on a quadratic

square lattice with 2562 lattice sites and relax initial guesses
with the relaxation method.
For completeness, we also calculate the case of N ¼ 3

with the Skyrme term, which makes the string thicker than
in the sigma model case.
In Figs. 1 and 2 are shown the numerical solutions, the

corresponding energy densities and charge densities, for
the O(3) and O(4) model, respectively.
Interestingly, the shape of the wall junction is altered

somewhat drastically. In Fig. 3 is shown the contour line of
the field nN ¼ 0 in the ðρ; zÞ-plane. In the O(3) case, a
comparison with the analytic sigma-model solution is

shown with the red dashed-dotted line. A fit of the
asymptotic part of the junction is also shown with a green
dashed line. The function is found to be a power function,

contour ¼ z0 þ bjρ − wjp; ð29Þ

where z0 is the position of the domain wall, b is a
proportionality constant, w is the width of the string and
p is the sought-after power describing the bending of the
domain wall. The fits find p to be about 5–6.

V. THE 6TH ORDER MODEL

In this section, we want to consider N ¼ 5; 6 which
requires at least a sixth-order derivative term, in order for
the string to have a finite thickness, see Eq. (15).

FIG. 4 (color online). O(5) soliton junction of a domain wall (in the z direction) and a string carrying π4 charge. The three panels show
the field n5, the energy density on a logarithmic scale and the charge density.

FIG. 5 (color online). O(6) soliton junction of a domain wall (in the z direction) and a string carrying π5 charge. The three panels show
the field n6, the energy density on a logarithmic scale and the charge density.
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We will again use a finite-difference scheme on a
quadratic square lattice with 2562 lattice sites and relax
initial guesses with the relaxation method. In Figs. 4 and 5
are shown the numerical solutions, the corresponding
energy densities and charge densities, for the O(5) and
O(6) model, respectively.
We consider again the shape of the wall junction and

show the contour line of the field nN ¼ 0 in the ðρ; zÞ-plane
as well as a fit of the type (29) in Fig. 6. The powers p are
again fitted to be about 5–6.
Finally, we consider the string charge which as function

of z has to interpolate from a full charge (1) to zero across
the wall junction. Hence we plot Eq. (13) across the
domain-wall junction for all the obtained solutions in

Fig. 7. It is seen that the transition becomes more steep
with increasing N, which may be expected just on dimen-
sional grounds.

VI. SUMMARY AND DISCUSSION

We have constructed D-brane solitons, composite sol-
itons of strings ending on a domain wall in an O(N) model
with a higher-derivative term in d ¼ N þ 1 dimensions.
ForN ¼ 3, it is a baby-Skyrmion string ending on a domain
wall in d ¼ 3þ 1, while for N ¼ 4, it is a Skyrmion string
ending on a domain wall in d ¼ 4þ 1. In general, a string
supported by the πN−1 topological charge ends on a domain
wall and bends the domain wall like 1=ρ#. In this paper, we
have considered only N ¼ 3; 4; 5; 6 where we have calcu-
lated the needed terms explicitly. A generalization to higher
N can be carried out by considering the higher-order
derivative term

L2m ¼ −ð∂ ½a1
μ1 � � � ∂am�

μm Þ2; ð30Þ
where μi ¼ 1;…; N; ai ¼ 1;…; N; i ¼ 1;…; m and m ¼
⌈N=2⌉ (⌈x⌉ rounds up a real number to the nearest integer).
In this paper, strings are of various codimensions depend-

ing on the dimension, while “D-branes” are all of domain-
wall type, that is, of codimension one. For instance, a vortex
string (of codimension two) with a confined Skyrmion was
constructed in Refs. [32,41]. The generalization to higher
codimensions for D-branes remains a future problem.
In supersymmetric theories, all possible composite BPS
solitons were classified in Ref. [42], which may be useful
for this study.
Field theory D-branes beyond the semiclassical approach

were studied in Ref. [43], in which the bulk-boundary
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FIG. 6 (color online). Contour line of soliton junction (cos f ¼ 0), describing the bending of the domain wall due to the attached
string. The left-hand (right-hand) side panel is for the O(5)-case [O(6)-case] and the fit is made with the numerical data in the region
z < −3.
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FIG. 7 (color online). String chargeC as function of z. Far away
from the domain wall it is 0 and 1, on the left- and right-hand side
of the domain wall, respectively.
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correspondence was proposed. Our study could be applied
to that direction as well.
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