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In this paper, we will analyze three-dimensional supersymmetric Yang-Mills theory coupled to matter
fields in SIMð1Þ superspace formalism. The original theory which is invariant under the full Lorentz group
has N ¼ 1 supersymmetry. However, when we break the Lorentz symmetry down to SIMð1Þ group, the
SIMð1Þ superspace will break half the supersymmetry of the original theory. Thus, the resultant theory in
SIMð1Þ superspace will have N ¼ 1=2 supersymmetry. This is the first time that N ¼ 1 supersymmetry
will be broken down to N ¼ 1=2 supersymmetry, for a three-dimensional theory, on a manifold without a
boundary. This is because it is not possible to use nonanticommutativity to break N ¼ 1 supersymmetry
down to N ¼ 1=2 supersymmetry in three dimensions.
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I. INTRODUCTION

Lorentz symmetry is one of the most important sym-
metries in nature. However, there are strong theoretical
indications it might only be an effective symmetry and it
might break at Planck scale. These theoretical indications
come from various approaches to quantum gravity. For
example, in string theory the unstable perturbative string
vacuum is expected to break Lorentz symmetry [1] and [2].
This happens as in this case certain tensors acquire nonzero
vacuum expectation values, which in turn induce a pref-
erential direction in spacetime. In fact, as string theory
is related to noncommutativity and noncommutativity is
expected to break Lorentz symmetry, it is not a surprise that
unstable perturbative string vacuum can break Lorentz
symmetry [3] and [4]. In most approaches to quantum
gravity the Lorentz symmetry is expected to break at Planck
scale [5]. One way to observe that is to note that the gravity
is not renormalizable. It can only be made renormalizable
by adding higher terms to original action [6], which in turn
break the unitarity of the theory [7]. The unitarity can be
preserved by taking a different Lifshitz scaling for space
and time, thus, adding higher order spatial derivatives to the
theory without adding any term containing a higher order
temporal derivative. This theory is called Hořava-Lifshitz
gravity, and it obviously breaks Lorentz symmetry [8] and
[9]. In fact, even in loop quantum gravity, Lorentz
symmetry is expected to break at Planck scale [10] and
[11]. There have been attempts to study a model where a
system is only invariant under subgroups of the Lorentz
group, such that this subgroup still preserves enough
symmetry for the constancy of the velocity of light. This
theory is called very special relativity (VSR) [12]. In this
theory the whole Lorentz group is recovered if charge
parity (CP) symmetry is also postulated as a symmetry of
the system. Two subgroups of the Lorentz group called the

SIMð2Þ and the HOMð2Þ have been studied in this regard.
The advantage of using these subgroups is that the
dispersion relations, time delay and all classical tests of
special relativity are valid for these subgroups.
The VSR can also be realized as the part of the Poincaré

symmetry preserved on a noncommutative Moyal plane
with lightlike noncommutativity [13]. In fact, the three
subgroups relevant to the VSR can also be realized in the
noncommutative spacetime setting. Quantum field theory
with Abelian gauge symmetry has been studied in space-
time with the symmetry group corresponding to VSR [14].
This work has been recently generalized to include non-
Abelian gauge theories [15]. Four-dimensional supersym-
metric theories have been analyzed in SIMð2Þ [16]. In fact,
a superspace construction [17] and supergraph rules [18]
for such theories have also been developed. This SIMð2Þ
superspace formalism has been used for analyzing gauge
theories [19].
It may be noted that if the Lorentz invariant is broken

down to invariance under the SIMð2Þ group, the resultant
SIMð2Þ superspace breaks half the supersymmetry of the
original theory. Thus, if we modify a four-dimensional
Lorentz invariant theory with N ¼ 1 supersymmetry, to
SIMð2Þ superspace, the resultant theory has N ¼ 1=2
supersymmetry. The terminology N ¼ 1=2 supersymmetry
is borrowed from nonanticommutative deformation of a
theory in four dimensions. This is because in four dimen-
sions, it is also possible to break half the supersymmetry of a
theory by deforming the theory to a nonanticommutative
superspace [20–25]. So, if nonanticommutativity is imposed
on a four-dimensional theory with N ¼ 1 supersymmetry,
the resultant theory is called a theory with N ¼ 1=2
supersymmetry, as it preserves only half the supersymmetry
of the original theory. The breaking of the Lorentz group
down to the SIMð2Þ group also breaks half the supersym-
metry of the original Lorentz invariant theory. So, the
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amount of supersymmetry broken by breaking the Lorentz
symmetry of a theory to a SIMð2Þ superspace is the same
as the amount of supersymmetric broken by deforming it
by imposing nonanticommutativity. Thus, if the Lorentz
symmetry of a four-dimensional theory with N ¼ 1 super-
symmetry is broken down to the SIMð2Þ group, the resultant
theory will also be called a theory with N ¼ 1=2
supersymmetry.
It is not possible to break the supersymmetry of a three-

dimensional theory from N ¼ 1 supersymmetry to N ¼
1=2 supersymmetry by deforming it to a nonanticommu-
tative superspace. This is because there are not enough
anticommutative degrees of freedom to perform such a
deformation. Any nonanticommutative deformation of a
three-dimensional supersymmetric theory with N ¼ 1
supersymmetry will break all the supersymmetry of the
theory. It is possible to break the supersymmetry of a three-
dimensional theory with N ¼ 2 supersymmetry down to
N ¼ 1 supersymmetry by imposing nonanticommutativity
[26]. However, a three-dimensional theory with N ¼ 1=2
supersymmetry can be constructed on a manifold with a
boundary [27–30]. This is because the boundary effects
break half the supersymmetry of the original theory. So,
if a theory has N ¼ 1 supersymmetry in the absence of a
boundary, the same theory will only have N ¼ 1=2
supersymmetry in presence of a boundary. Furthermore,
in the presence of a boundary, we can also use projections
to construct a theory with N ¼ ð1; 1Þ supersymmetry. As
both the boundary effects and nonanticommutativity breaks
half the supersymmetry, it is possible to use a different
projection to impose nonanticommutativity from the pro-
jection used to preserve half the supersymmetry on the
boundary. So, for a three-dimensional theory with N ¼
ð1; 1Þ supersymmetry, it is also possible break the super-
symmetry down to N ¼ ð1=2; 0Þ supersymmetry by com-
bining nonanticommutativity with boundary effects [31].
However, the advantage of using SIMð1Þ superspace is
that, we will be able construct a three-dimensional theory
with N ¼ 1=2 supersymmetry by modifying a theory
with N ¼ 1 supersymmetry on a manifold without a
boundary. Thus, it is the first time a three-dimensional
theory with N ¼ 1=2 supersymmetry will be constructed
from a theory N ¼ 1 supersymmetry on a manifold
without a boundary.

II. SUBGROUP OF THE LORENTZ GROUP
PRESERVING LIGHTLIKE DIRECTION

A very special relativity [12] works with space-time
symmetry reduced to a subgroup of the Lorentz group. In
four dimensions the largest such subgroup is the SIMð2Þ
group, which is a group of transformations that preserve a
fixed lightlike vector up to rescaling. It is possible to
consider subgroups of the Lorentz group determined by
such a condition also in dimensions other than four. Wewill
examine this possibility in this section.

An infinitesimal transformation of a vector x under the
group SOðD − 1; 1Þ is given as δxa ¼ ωa

bxb, where ωa
b

are infinitesimal parameters chosen such that the size
of the vector is not changed. This means that 0 ¼
δðx2Þ ¼ xaðωc

aηcb þ ωc
bηacÞxb, because this must hold

for any vector, the expression inside brackets must vanish.
If we use the metric ηab for rising and lowering of indices
we get the condition that ω must be antisymmetric
ωab þ ωba ¼ 0.
In addition to invariance of size of vectors we impose the

condition that some null vector n is preserved up to
rescaling. This can be written as

δna ¼ ωabnb ¼ −2Ana; A ∈ R: ð1Þ
It is convenient to work with light-cone coordinates
x� ¼ 1ffiffi

2
p ðx0 � x1Þ, where the indices take values in the

set þ;−; 2…; D − 1 and the metric is

η ¼

0
B@

−1
−1

1D−2

1
CA; ð2Þ

where 1D−2 denotes ðD − 2Þ × ðD − 2Þ unit matrix. We
choose the null vector such that it has only one nonzero
coordinate nþ ¼ −n− ¼ 1ffiffi

2
p , and the remaining coordinates

vanish n− ¼ −nþ ¼ 0, na ¼ na ¼ 0 for a ¼ 2;…; D − 1.
The condition [Eq. (1)] then leads to

ωþbnb ¼ Anþ ⇒ ωþ− ¼ 2A;

ω−bnb ¼ An− ⇒ 0 ¼ 0;

ωabnb ¼ Ana ⇒ ωa− ¼ 0; for a ¼ 2;…; D − 1: ð3Þ
The third condition is the only one that restricts the infini-
tesimal parameters, it sets D − 2 of them to zero. Thus the
dimension of the resulting group is DðD−1Þ

2
− ðD − 2Þ.

In the case of D ¼ 3 the dimension of the group is 2 and
the matrix ω has the form

ωab ¼

0
B@

0 ωþ− ωþ2

ω−þ 0 ω−2

ω2þ ω2− 0

1
CA ¼

0
B@

0 2A −
ffiffiffi
2

p
B

−2A 0 0ffiffiffi
2

p
B 0 0

1
CA;

ð4Þ
where A;B ∈ R. The exponentiation of the infinitesimal
transformation gives the transformation

xþ → e−2Axþ −
ffiffiffi
2

p
e−ABx2 þ B2x−;

x− → e2Ax−;

x2 → x2 −
ffiffiffi
2

p
eABx−: ð5Þ

Another way to arrive to this group is to represent vectors
by two-dimensional symmetric matrices,
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x ¼
�
x0 þ x1 x2

x2 x0 − x1

�
¼

� ffiffiffi
2

p
xþ x2

x2
ffiffiffi
2

p
x−

�
; ð6Þ

the size of the vector is x2 ¼ −detx and the size-preserving
transformations are given as

x0 ¼ gxgT; g ∈ SLð2;RÞ: ð7Þ

Any null vector can be written as nαβ ¼ ξαξβ where the
commuting spinor ξ is determined uniquely up to a sign. A
convenient choice of a null vector is to choose ξþ ¼ 1,
ξ− ¼ 0. The condition that this null vector is preserved up
to a rescaling can be now written as

gξ ¼ �e−Aξ; A ∈ R: ð8Þ

Only matrices from SLð2;RÞ that satisfy this criteria are

g ¼ �
�
e−A −B
0 eA

�
; ð9Þ

the meaning of A and B is the same as in Eq. (5).
The difference between D ¼ 3 and D ¼ 4 is that in the

case of D ¼ 4 we worked with complex matrices from
SLð2;CÞ, while in the case of D ¼ 3 we have real matrices
from SLð2;RÞ. In the four-dimensional case we called this
group SIMð2Þ a group of similarity transformations in two
dimensions (consisting of rotation, scaling and shift). In our
D ¼ 3 case we can identify this group with a group of
orientation preserving similarity transformations in one
dimension (consisting of scaling and shift). In order to
show that we identify a point in one-dimensional space
determined by coordinate z with a point in projective space
RP1 represented by ð z

1
Þ. An action of the group given by

left multiplication by g then gives

�
z

1

�
→ g

�
z

1

�
¼ �

�
e−Az − B

eA

�
∼
�
e−2Az − e−AB

1

�

¼
�
z0

1

�
: ð10Þ

The change z → z0 indeed describes the orientation
preserving similarity transformation.

III. THREE-DIMENSIONAL SUPERSYMMETRY

In this section, we will study three-dimensional super-
space. In the Lorentz invariant theory, N ¼ 1 supersym-
metry will be generated by

Qα ¼ ∂α − ðγaθÞα∂a ¼ ∂α þ γaαβθ
β∂a: ð11Þ

This generator of N ¼ 1 supersymmetry in three dimen-
sions commutes with the superderivative Dα, where

Dα ¼ ∂α þ ðγaθÞα∂a ¼ ∂α − γaαβθ
β∂a: ð12Þ

The full supersymmetry algebra that Qα and Dα satisfy is
given by

fQα; Qβg ¼ 2γaαβ∂a; fQα; Dβg ¼ 0;

fDα; Dβg ¼ −2γaαβ∂a: ð13Þ

Now as was shown in Eq. (9), the SIMð1Þ transformation
of spinors is given as

�
ψ 0þ

ψ 0−

�
¼

�
e−A −B
0 eA

��
ψþ

ψ−

�
⇔

�
ψ 0þ
ψ 0
−

�
¼

�
eA 0

B e−A

��
ψþ
ψ−

�
ð14Þ

with A;B ∈ R. Spinors that satisfy the condition

nψ ¼ 0 ⇒ ψ ¼
�

0

ψ−

�
ð15Þ

constitute a space that is invariant under SIMð1Þ trans-
formations. Let us denote the space of all spinors as S, and
the invariant space that we have just described as Sinvariant.
We also define a space Squotient ¼ S=Sinvariant. A convenient
description of this space is provided by choosing a
representative,

ψ ¼
�
ψþ
0

�
; ð16Þ

in each equivalence class. Both spaces Sinvariant and
Squotient carry a representation of the SIMð1Þ group; they
transform as

�
0

ψ 0
−

�
¼ e−A

�
0

ψ 0
−

�
;

�
ψ 0þ
0

�
¼ eA

�
ψ 0þ
0

�
: ð17Þ

Thus we have two distinct one-dimensional representations.
The reduction of supersymmetry will be done following

the same steps as in the four-dimensional case [16,17]. We
can summarize the necessary steps as follows:

(i) The space-time symmetry will be reduced to SIMð1Þ
subgroup.

(ii) The supersymmetry transformations will be reduced
to those that correspond to symmetry generator ϵ̄Q
with anticommuting parameter ϵ satisfying the con-
dition nϵ ¼ 0. There will remain only one super-
symmetry generator proportional to nQ. It will
transforms under SIMð1Þ in the same way as spinors
from Squotient.

(iii) Only the anticommuting θ coordinates that satisfy
nθ ¼ 0 are kept in the superspace. There will be only
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one anticommuting coordinate. It will transform
under SIMð1Þ in the same way as spinors
from Sinvariant.

(iv) The covariant derivatives are reduced in a similar
way as supersymmetry generators. There are two
things we have to take care of. First, we only keep
covariant spinor derivatives that are proportional to
nD. Second, because the resulting superspace is
reduced we have to make a projection that removes
anticommuting coordinates that are no longer part
of it (i.e., projection that sets nθ ¼ 0). There will
be one spinor covariant derivative that will trans-
form under SIMð1Þ in the same way as spinors
from Squotient.

The above steps can be easily done if we introduce
another null-vector ~n that satisfies the relation n · ~n ¼ 1.
This allows us to define projectors that split any spinor into
two parts:

ψ ¼ 1

2
~nnψ þ 1

2
n ~nψ⇔ψα ¼ − ~nαβnβγψγ − nαβ ~nβγψγ:

ð18Þ

With the choice of n and ~n in which only the components
nþþ ¼ i, ~n−− ¼ −i are nonzero we get

1

2
~nnψ ¼

�
ψþ
0

�
;

1

2
n ~nψ ¼

�
0

ψ−

�
: ð19Þ

The supersymmetry generator S, the anticommuting
superspace coordinate ζ and spinor derivative d are
defined as

S ¼ 1

2
~nnQ; ζ ¼ 1

2
n ~nθ; d ¼ 1

2
~nnDjnθ¼0: ð20Þ

Each of them have only one nonzero component,

Sþ ¼ ∂þ þ iζ−∂þþ; ζ− ¼ θ−; dþ ¼ ∂þ − iζ−∂þþ;

ð21Þ

and they satisfy

fSþ; Sþg ¼ 2∂þþ; fSþ; dþg ¼ 0;

fdþ; dþg ¼ −2∂þþ; ∂þζ− ¼ −i: ð22Þ

It may be noted that this modification breaks half the
supersymmetry of the original theory. Thus, as our
original theory had N ¼ 1 supersymmetry, the resultant
theory after this modification only has N ¼ 1=2 super-
symmetry. Unlike the four-dimensional case [20–25], we
cannot break the supersymmetry of a three-dimensional
theory with N ¼ 1 supersymmetry to N ¼ 1=2 super-
symmetry by using nonanticommutativity. This is

because in four dimensions there are enough degrees
of freedom to partially break the N ¼ 1 supersymmetry.
For a four-dimensional theory with N ¼ 1 supersym-
metry, there are four independent anticommutating coor-
dinates. So, if nonanticommutativity is imposed between
two of them, still the supersymmetry corresponding to
the other two is preserved. However, for three-
dimensional theory with N ¼ 1 supersymmetry there
are only two independent anticommutating coordinates,
and so, any nonanticommutativity will break all the
supersymmetry of such a three-dimensional theory.
Hence, a three-dimensional theory with N ¼ 1=2 super-
symmetry can be obtained by breaking the Lorentz
symmetry down to SIMð1Þ group.

IV. SUPERFIELD DECOMPOSITION

In this section we are going to establish correspondence
between superfields that appear in SOð2; 1Þ superspace and
superfields that we use in SIMð1Þ superspace. There are
two things we have to resolve in order to establish this
correspondence. First, the SOð2; 1Þ superspace is bigger
than SIMð1Þ superspace. This means that if we write a
SOð2; 1Þ theory in SIMð1Þ superspace then to each
SOð2; 1Þ superfield there will correspond multiple
SIMð1Þ superfields, otherwise we lose some degrees of
freedom. In fact, we will observe that for each SOð2; 1Þ
superfield there are two SIMð1Þ superfields. Second, if the
SOð2; 1Þ superfield carries some space-time indices then
we have to handle them specially, otherwise we will get
SIMð1Þ superfields that transform in a very complicated
way under SIMð1Þ group.
Let us start with a scalar SOð2; 1Þ superfield Φ. The

projections

ϕ ¼ Φjθþ¼0; ~ϕ− ¼ ðD−ΦÞjθþ¼0 ð23Þ

contain all information carried by Φ. This is most easily
seen from the fact that the superfield Φ could be written as

Φ ¼ ϕ − iθþð ~ϕ− þ iθ−∂þ−ϕÞ: ð24Þ

The SIMð1Þ rotations change these superfields as (prime
denotes transformed quantities)

ϕ0ðx0; θ0Þ ¼ ϕðx; θÞ;
~ϕ0
−ðx0; θ0Þ ¼ e−A ~ϕ−ðx; θÞ þ Bϕðx; θÞ: ð25Þ

The superfield ϕ transforms nicely but the superfield ~ϕ−
transforms into a combination of both ϕ and ~ϕ− which
makes it unsuitable for description of SIMð1Þ theories
because it makes SIMð1Þ invariance nontrivial. This
behavior originates in the fact that in order to define it
we need the projectors [Eq. (20)]. The definition of these
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projectors requires the null-vector ~n that introduces another
preferred direction (apart from the direction of n) which
further breaks SIMð1Þ symmetry.
However, we can change the projection ~ϕ− in such a way

that it has better transformation properties with respect to
the SIMð1Þ group. We introduce an operator

q̂ ¼ n∂
2n · ∂D; ð26Þ

which has only one nonzero component

q̂− ¼ D− −
∂−þ
∂þþ

Dþ: ð27Þ

The improved SIMð1Þ superfield is defined as

ϕ̂− ¼ ðq̂−ΦÞjθþ¼0: ð28Þ

The new SIMð1Þ transformation rule,

ϕ̂0
−ðx0; θ0Þ ¼ e−Aϕ̂−ðx; θÞ; ð29Þ

does not suffer from mixing with the other superfield ϕ.
In the case of gauge theory we are going to replace the

derivatives in Eq. (26) with covariant ones. The covariant
derivatives in the Lorentz invariant theory are given by

∇α ¼ Dα − iΓα; ∇αβ ¼ ∂αβ − iΓαβ; ð30Þ

such that the (anti)commutators are given by

f∇α;∇βg¼−2∇αβ;

½∇α;∇βγ� ¼CαðβWγÞ;

½∇αβ;∇γδ� ¼−
1

2
CαγFβδ−

1

2
CαδFβγ −

1

2
CβδFαγ −

1

2
CβγFαδ;

ð31Þ

where

Γαβ ¼ −
1

2
ðDðαΓβÞ − ifΓα;ΓβgÞ;

Wα ¼ −
i
2
DβDαΓβ −

1

2
½Γβ; DβΓα� þ

i
6
½Γβ; fΓβ;Γαg�;

∇αWα ¼ 0;

Fαβ ¼
1

2
∇ðαWβÞ: ð32Þ

There is more than one way to define a covariant version of
the operator [Eq. (26)] because covariant derivatives do not
commute among each other so the definition of this

operator is ordering dependent. In this text we will use
the following variant1

q ¼ n∇ 1

2n ·∇∇; ð33Þ

which leads to the definition of the superfield

ϕ− ¼ ðq−ΦÞjθþ¼0 ¼
��

∇− −∇þ−
∇þ
∇þþ

�
Φ

�����
θþ¼0

: ð34Þ

The SIMð1Þ transformation properties are the same as in
the case of ϕ̂−.
In Eq. (27), we introduced the nonlocal operator 1

∂þþ
. A

similar operator 1
∂þ _þ

appears in the four-dimensional

SIMð2Þ theory, the properties of this operator were dis-
cussed in detail in [19], and the same arguments that were
presented there apply also to our case. The operator 1

∂þþ
has

to be linear and satisfy the condition ∂þþ 1
∂þþ

¼ 1, i.e., it is a

propagator associated with ∂þþ. In addition to that we
require it to commute with space-time derivatives. This is a
nontrivial requirement because the condition that it com-
mutes with ∂þþ gives

�
1

∂þþ
; ∂þþ

�
fðxÞ ¼

�
1

∂þþ
∂þþ − ∂þþ

1

∂þþ

�
fðxÞ

¼ 1

∂þþ
∂þþfðxÞ − fðxÞ ¼ 0: ð35Þ

But this is evidently not true for nonzero functions
satisfying ∂þþfðxÞ ¼ 0. The solution to this problem is
to restrict the space of functions to those that satisfy the
condition Eq. (35). One way to define this operator is
(omitting anticommuting coordinates)

1

∂þþ
fðxþþ;x−−;xþ−Þ¼

Z
xþþ

−∞
dtþþfðtþþ;x−−;xþ−Þ; ð36Þ

and restrict the space of functions to those that satisfy
limxþþ→−∞fðxþþ; x−−; xþ−Þ ¼ 0. One of consequences of
the fact that we are working with the reduced space of
functions is that the equation ∂þþfðxÞ ¼ 0 has only one
solution fðxÞ ¼ 0. The covariant version of the operator
1

∇þþ
should retain most of the properties of the operator 1

∂þþ
,

it should be linear, inverse to ∇þþ and commute with ∇þþ.

1In 3þ 1 dimensions [19] the ordering ambiguity is resolved if
we want the ϕ− projection of a covariantly chiral superfield
∇̄ _αΦ ¼ 0 to satisfy the SIMð2Þ chiral-covariant condition
∇̄ _þϕ− ¼ 0. This forces us to choose the ordering

ϕ− ¼
��

∇− −∇− _þ
1

∇þ _þ
∇þ

�
Φ

�����
θþ¼0;θ̄ _þ¼0

:
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We cannot require it to commute with other covariant
derivatives because covariant derivatives do not commute
among each other. As in general formalism the explicit
expression for the covariant derivative is not given, we do
not construct an explicit expression for this operator.
However, an explicit expression for this operator is not
needed for obtaining the main results of this paper.
If the SIMð1Þ superfield carries space-time indices

we arrive at basically the same problem as in the case of
q−. We will illustrate this problem on the superfield Wα.

2

The projections

wþ ¼ Wþjθþ¼0; ~w− ¼ W−jθþ¼0 ð37Þ

transform under the action of SIMð1Þ group as

w0þðx0; θ0Þ ¼ eAwþðx; θÞ;
~w0
−ðx0; θ0Þ ¼ e−A ~w−ðx; θÞ þ Bwþðx; θÞ: ð38Þ

The projection ~w− has the same ugly transformation rule as
we had for ~ϕ−. The transformation properties can be
improved by the same trick that we used above. We
introduce an operator3

▵ ¼ i
2

�
1

2n ·∇ n∇þ n∇ 1

2n ·∇
�
: ð39Þ

The only nonzero components of ▵αβ are

▵−þ ¼ 1; ▵−− ¼ 1

2
∇þ−

1

∇þþ
þ 1

2

1

∇þþ
∇þ−: ð40Þ

We define

w− ¼ ið▵−
αWαÞjθþ¼0 ¼ ðW− − ▵−−WþÞjθþ¼0: ð41Þ

If there are more space-time indices we have to repeat this
procedure for each index; in particular, we will need to do
this for the superfield Fαβ. We define

fþþ ¼ Fþþjθþ¼0;

fþ− ¼ ið▵−
αFþαÞjθþ¼0 ¼ ðFþ− − ▵−−FþþÞjθþ¼0;

f−− ¼ −ð▵−
α
▵−

βFαβÞjθþ¼0

¼ ðF−− − 2▵−−Fþ− þ ▵−−▵−−FþþÞjθþ¼0: ð42Þ

The superfields that we obtain in this way have very simple
transformation properties under the action of SIMð1Þ. For a
general superfield ψþ���þ−���− we can schematically write
this rule as

ψ 0þ���þ−���−ðx0; θ0Þ
¼ eAð# of “þ” indices minus # of “−” indicesÞψþ���þ−���−ðx; θÞ:

ð43Þ

V. GAUGE THEORY WITH N ¼ 1=2
SUPERSYMMETRY

In this section, we will use SIMð1Þ superspace to
study super-Yang-Mills theory coupled to matter fields.
As the reduction of the N ¼ 1 superspace to SIMð1Þ
superspace breaks the supersymmetry from N ¼ 1 super-
symmetry to N ¼ 1=2 supersymmetry, the Yang-Mills
theory coupled to matter fields will have N ¼ 1=2
supersymmetry. It may be noted that if we do not break
the Lorentz symmetry but use the SIMð1Þ formalism for
analyzing the super-Yang-Mills theory coupled to matter
field, we can recover the full N ¼ 1 supersymmetry. In
this case only N ¼ 1=2 supersymmetry will be man-
ifested in the superspace formalism. The other half of the
symmetry can be considered as an accidental symmetry
that would disappear once we use this formalism in its
intended role—to study effects that break the Lorentz
symmetry but preserve SIMð1Þ symmetry.
We will consider the Lorentz invariant action for matter

superfields as

Sm ¼ 1

2

Z
d3x∇2½ð∇αΦ†Þð∇αΦÞ�; ð44Þ

and a Lorentz invariant action for the gauge
superfield as

Sg ¼ tr
Z

d3x∇2½W2�: ð45Þ

In this section we are going to write down these actions
in SIMð1Þ formalism. This would not make much sense
if the Lorentz symmetry was not broken because in that
case the ordinary superspace would provide a more
convenient setting. However, these actions can also serve
as a basis for theories where the Lorentz symmetry is
broken and the Lorentz invariant formalism does not
provide adequate setting. Some Lorentz breaking mech-
anisms are discussed in the next sections. When the
space-time covariant derivatives appear in the SIMð1Þ
action, we have to understand them as projections
∇αβjθþ¼0 of SOð2; 1Þ derivatives. The matter field action
in the SIMð1Þ superspace formalism is

2We should also consider ~q− projections, but in the case of
field strengths in gauge theory we do not need them.

3The ordering in this definition was chosen in this way because
it results in a very simple rule for integration by parts

Z
d3x∇þðð▵αβfÞgÞ ¼

Z
d3x∇þðfð▵αβgÞÞ þ surface terms;

where f and g are arbitrary superfunctions.
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Sm ¼ 1

2

Z
d3x∇þ

�
ð∇þϕ†

−Þϕ− þ ϕ†
−ð∇þϕ−Þ − 2iϕ†

−

�
wþ

∇þ
∇þþ

ϕ

�
− 2i

�
wþ

∇þ
∇þþ

ϕ†
�
ϕ−

þ ð□covϕ
†Þ
� ∇þ
∇þþ

ϕ

�
þ
� ∇þ
∇þþ

ϕ†
�
ð□covϕÞ

− i

� ∇þ
∇þþ

ϕ†
��

ð∇þþw−Þ
∇þ
∇þþ

ϕ

�
þ 1

2

� ∇þ
∇þþ

ϕ†
���

fþþ;
1

∇þþ
wþ

� ∇þ
∇þþ

ϕ

��

þ surface terms; ð46Þ

and we can say that it is explicitly SIMð1Þ invariant. In fact
each term that appears in the action is separately SIMð1Þ
invariant. The covariant d’Alambertian operator is defined
as □cov ¼ − 1

2
∇αβ∇αβ.

Now we can write the action for the gauge sector of the
theory as

Sg ¼ tr
Z

d3x∇þð− ~fþ− ~w− þ wþ ~f−−Þ þ surface terms:

ð47Þ
This form, that uses projectors [Eq. (37)], does not show
manifest SIMð1Þ invariance. The SIMð1Þ transformations
change, according to Eq. (38), this action to

S0g ¼ Sg þ ðeABÞtr
Z

d3x∇þðwþ ~fþ− − ~fþþ ~w−Þ

þ ðe2AB2Þtr
Z

d3x∇þðwþfþþ − fþþwþÞ

¼ Sg þ ðeABÞtr
Z

d3x∇þð−∇þðwþ ~w−ÞÞ

¼ Sg þ surface terms; ð48Þ
where we used ∇þwþ ¼ fþþ and ∇þ ~w− ¼ ~fþ−. We see
that the SIMð1Þ invariance is not obvious at first glance.
This is a reason why it is better to write the action in terms
of SIMð1Þ superfields that have simple transformation
properties,

Sg ¼ tr
Z

d3x∇þ

�
−fþ−w− þ wþf−−

−
i
2

�
wþ;

1

∇þþ
wþ

	
w− −

i
2

�
1

∇þþ
fwþ; wþg

�
w−

−
1

2
ð▵−

αwþÞ
�
wþ;

1

∇þþ
ð▵−αwþÞ

	�

þ surface terms: ð49Þ

Each term in this action is separately SIMð1Þ invariant. The
verification of the SIMð1Þ invariance is easy because the
superfields wþ, w−, fþþ, fþ−, f−− and derivatives ∇þ,∇þþ transform under SIMð1Þ according to the rule
Eq. (43). Thus the expressions are invariant if they contain
the same number of lower plus indices as there are lower
minus indices. The only exception to this rule is the
operator ▵−α that appear in the last term. This term is
equal to

−
i
2
ð▵−−wþÞ

�
wþ;

1

∇þþ
wþ

	

þ i
2
wþ

�
wþ;

1

∇þþ
ð▵−−wþÞ

	
; ð50Þ

where we used that ▵−þ ¼ 1. Using the transformation rule
▵−− → e−2A▵−− þ e−AB▵−þ ¼ e−2A▵−− þ e−AB we find
that SIMð1Þ transformations change this term as

δ

�
tr
Z

d3x∇þ

�
−
i
2
ð▵−−wþÞ

�
wþ;

1

∇þþ
wþ

	
þ i
2
wþ

�
wþ;

1

∇þþ
ð▵−−wþÞ

	��

¼ eABtr
Z

d3x∇þ

�
−
i
2
wþ

�
wþ;

1

∇þþ
wþ

	
þ i
2
wþ

�
wþ;

1

∇þþ
wþ

	�
¼ 0; ð51Þ

so this term is also SIMð1Þ invariant. Thus, we have been
able to write the action of super-Yang-Mills theory coupled
to matter fields in SIMð1Þ superspace.
The actions Eqs. (46) and (49) contain nonlocal operator

1
∇þþ

, but that does not mean that they describe nonlocal

theory. In fact, we know that the actions Eqs. (46) and (49)

describe local theory because they are derived from local
Lorentz invariant actions. A four-dimensional supersym-
metric theory provides us with another example where we
encounter nonlocal operators in a local theory. When we
write a chiral integral in a form with integral over full
superspace we obtain an expression that contains a nonlocal
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operator.4 In the same way operators 1
∇þþ

play a very similar

role in SIMð1Þ superspace. This does not imply that any
theory in SIMð1Þ superspace is nonlocal, just as the
existence of a nonlocal operator in the four-dimensional
chiral superspace does not imply that any theory in chiral
superspace is nonlocal. In absence of a Lorentz breaking
term, we could still write the action of a local three-
dimensional theory withN ¼ 1 supersymmetry in SIMð1Þ
superspace, in which only half of the supersymmetry is

manifest. This is just a complicated way to write the
original action with N ¼ 1 supersymmetry. Now, as the
original action was local, the same action written in SIMð1Þ
superspace has to also be local, despite the presence of
nonlocal operators.
So far we have worked with a particular choice of the

vector n, but we could also write the results in a form that
shows explicit dependence on this vector. Thus, the action
for the matter sector can be written as

Sm ¼ 1

2

Z
d3x∇α

�
−ð∇βqβΦ†ÞðqαΦÞ − ðqαΦ†Þð∇βqβΦÞ þ 2ðqαΦ†Þ

�
Wβ

nβγffiffiffi
2

p
n · ∇∇γΦ

�
þ 2

�
Wβ

nβγffiffiffi
2

p
n · ∇∇γΦ†

�
ðqαΦÞ

þ ð□covΦ†Þ
�

nαβffiffiffi
2

p
n ·∇∇βΦ

�
þ
�

nαβffiffiffi
2

p
n ·∇∇βΦ†

�
ð□covΦÞ − i

�
nαβffiffiffi
2

p
n ·∇∇βΦ†

��
ðð

ffiffiffi
2

p
n · ∇Þ▵γδWδÞ

1ffiffiffi
2

p
n ·∇∇γΦ

�

þ 1

2

�
nαβffiffiffi
2

p
n · ∇∇βΦ†

���
nγδfγδ;

1ffiffiffi
2

p
n ·∇Wσ

�
nσϵffiffiffi
2

p
n · ∇∇ϵΦ

��
þ surface terms; ð52Þ

and the action for the gauge sector can be written as

Sg ¼ tr
Z

d3x∇α

�
ð▵γδFγδÞð▵α

βWβÞ þ ð▵α
γ
▵β

δFγδÞWβ

−
i
2

�
Wγ;

nγδffiffiffi
2

p
n ·∇Wδ

	
ð▵α

βWβÞ −
i
2

�
nγδffiffiffi
2

p
n · ∇ fWγ;Wδg

�
ð▵α

βWβÞ

−
1

2
ð▵γβWγÞ

�
Wσ;

nασffiffiffi
2

p
n ·∇ ð▵δ

βWδÞ
	�

þ surface terms: ð53Þ

The fact that we could write the action in this form proves
that the supersymmetry is broken only due to the presence
of the preferred lightlike direction determined by n.

VI. EXAMPLES OF LORENTZ
SYMMETRY BREAKING

This section is devoted to the discussion of two simple
examples of Lorentz symmetry breaking. In each example
the origin of Lorentz symmetry breaking will be different,
in the first case it will be a contribution to the action which
violates Lorentz symmetry and in the second case it will be
a presence of a boundary.
We may consider a Lorentz breaking contribution to the

action that has a form

Sb ¼
Z

d3xDþL− ¼
Z

d3xdþðL−jθþ¼0Þ; ð54Þ

where the Lorentz breaking Lagrangian L transforms
under the SIMð1Þ group as L0

−ðx0; θ0Þ ¼ e−AL−ðx; θÞ.
This ensures invariance with respect to SIMð1Þ rotations,
invariance with respect to space-time translations is ensured
by integral over space-time. The only thing that remains
to be checked is invariance with respect to supersymmetry
transformations. The change caused by infinitesimal super-
symmetry transformation is

δSb ¼
Z

d3xDþðδL−Þ ¼
Z

d3xDþð−ϵαQαL−Þ

¼ ϵα
Z

d3xDþððDα þ 2θβ∂βαÞL−Þ

¼ ϵ−
Z

d3xDþD−L−; ð55Þ
where ϵα are infinitesimal anticommuting parameters.
In the last equality we used the fact that all surface terms
vanish. We see that only supersymmetry transformations
with nϵ ¼ ϵ− ¼ 0 leave Eq. (54) unchanged. This is the
same condition that we used to break the N ¼ 1 super-
symmetry to N ¼ 1=2 supersymmetry.
An example of a Lorentz breaking contribution to the

action that has this form is a Lorentz breaking mass term for
superfield Φ

4For example, assume that Φ is a chiral superfield. The chiral
integral of Φ2 could be written as

Z
d4xD2ðΦ2Þ ¼

Z
d4xD2D̄2

�
Φ
D2

□
Φ

�
:
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Sb ¼ −m2

Z
d3x∇þ

�
ϕ† ∇þ

∇þþ
ϕ

�

¼ m2

Z
d3x∇α

�
Φ† nαβffiffiffi

2
p

n ·∇∇βΦ

�
: ð56Þ

In component form we get

Sm þ Sb ¼
Z

d3x

�
−A†ð□cov −m2ÞA

− ψ†α
�
∇αβ −m2

nαβffiffiffi
2

p
n ·∇

�
ψβ

− A†Wαψα þ ψ†αWαA − F†F

�
; ð57Þ

where A ¼ Φjθ¼0, ψα ¼ ð∇αΦÞjθ¼0 and F ¼ ð∇2ΦÞjθ¼0

are projections of Φ. It may be noted that when we
introduce a Lorentz breaking contribution we can write
the action only as a total ∇þ derivative. It is not possible
to write this action as a total ∇2 derivative. On the other
hand, it is possible to write a Lorentz invariant theory in
SIMð1Þ superspace, and in this case, half the supersym-
metry of the theory will remain hidden. However, it is not
possible to express a theory with SIMð1Þ symmetry in
the original superspace.
Now, we are going to look at another mechanism of

Lorentz symmetry breaking. We are going to consider a
boundary consisting of points that satisfy the condition
n · x ¼ 0, which in our choice of n means that x−− ¼ 0.
The space-time symmetry of such a set of points consists of
SIMð1Þ rotations and translations generated by Pþ−, P−−.
The symmetry generator P−− does not generate trans-
formation preserving the boundary. Thus, the space-time
symmetry that we use in this case is a little different from
what we considered in Sec. III. The boundary condition that
we are going to use is that the superfield Φ vanishes for
n · x ¼ 0:

Φjx−−¼0 ¼ 0: ð58Þ

While the space-time symmetry was determined by the
shape of the boundary surface, the amount of unbroken
supersymmetry will follow from the requirement that the
boundary condition is invariant. The infinitesimal super-
symmetry transformation change the boundary condition as

δΦjx−−¼0 ¼ −ðϵαQαΦÞjx−−¼0

¼ −½ϵþð∂þ þ θþ∂þþ þ θ−∂þ−ÞΦ
þ ϵ−ð∂− þ θþ∂þ− þ θ−∂−−ÞΦ�jx−−¼0

¼ −ϵ−ðθ−∂−−ΦÞjx−−¼0: ð59Þ

Thus, we are again forced to limit supersymmetry trans-
formations to those that satisfy nϵ ¼ ϵ− ¼ 0.

In both of our examples it was not enough to break
space-time symmetry to SIMð1Þ: we also had to break half
of the supersymmetry.

VII. CONCLUSION

In this paper, we analyzed three-dimensional super-
Yang-Mills theory in SIMð1Þ superspace. The original
Lorentz invariant theory had N ¼ 1 supersymmetry.
However, when the Lorentz symmetry was broken down
to the SIMð1Þ group, the resultant theory preserved only
half the supersymmetry of the original theory. As the
original theory had N ¼ 1, so, the theory in SIMð1Þ
superspace has N ¼ 1=2 supersymmetry. This was the
first time that N ¼ 1 supersymmetry was broken down to
N ¼ 1=2 supersymmetry in three dimensions, on a mani-
fold without a boundary. This is because for a manifold
without a boundary, the other way to obtain a theory with
N ¼ 1=2 supersymmetry is by imposing nonanticommu-
tativity. However, in three dimensions there are not enough
superspace degrees to allow this partial breaking of
supersymmetry. So, any nonanticommutative deformation
of a three-dimensional theory with N ¼ 1 supersymmetry
will break all the supersymmetry of the resultant theory. It
would be interesting to analyze a theory on a manifold with
boundaries with SIMð1Þ superspace. It is known that the
presence of a boundary also breaks half the supersymmetry
of a theory [30] and [31]. It is possible that both the
boundary effects and the modification of the superspace to
SIMð1Þ superspace will break the same supercharges and
hence will preserve half the supersymmetry of the original
theory. It is also possible that a similar effect can be
generated by studying nonanticommutativity in SIMð1Þ
superspace. It may be noted that the Wess-Zumino model
with a Lorentz symmetry breaking term has been quantized
in SIMð2Þ superspace, and the one-loop effective action for
this theory has also been constructed [18]. So, it would be
interesting to analyze the quantization of three-dimensional
gauge theories in SIMð1Þ superspace.
Three-dimensional superspace is important as it has

been used for studding three-dimensional superconformal
field theories. Three-dimensional superconformal field
theory with N ¼ 8 supersymmetry is thought to describe
the low energy action for multiple M2-branes. This is
because apart from a constant closed 7-form on S7,
AdS4 ×S7∼SOð2;3Þ×SOð1;2Þ=SOð8Þ×SOð7Þ⊂OSp×
ð8j4Þ=SOð1;3Þ×SOð7Þ, and so, OSpð8j4Þ symmetry of
the eleven-dimensional supergravity on AdS4 × S7 gets
realized as N ¼ 8 supersymmetry of its dual super-
conformal field theory. There are further constraints on
this superconformal field theory which are satisfied by a
theory called the Bagger-Lambert-Gustavsson (BLG)
theory [32–36]. However, the gauge symmetry of the
BLG theory is generated by a Lie 3-algebra, and it only
describes two M2-branes. It is possible to generalize the
BLG theory to a theory describing any number of
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M2-branes and this theory is called the Aharony-
Bergman-Jafferis-Maldacena (ABJM) theory [35–38].
Even though the ABJM theory has only N ¼ 6 super-
symmetry, it is expected that its supersymmetry might get
enhanced to full N ¼ 8 supersymmetry [39–42]. It is
also possible to use a Mukhi-Papageorgakis novel Higgs
mechanism to obtain a theory of multiple D2-branes from
a theory of multiple M2-branes [43–46]. The gauge
sector for the low energy action of multiple D2-branes
is describedbya super-Yang-Mills theory.As it is known that
certain unstable string theory vacuum states break Lorentz
symmetry [1] and [2], it will be interesting to analyze the
actionofmultipleD2-branes inSIMð1Þ superspace. Itwould
also be interesting to analyze the theory of multiple
M2-branes and the Mukhi-Papageorgakis novel Higgs
mechanism in SIMð1Þ superspace.

APPENDIX: NOTATION

A spinor θα is real (Majorana), spinor metric is anti-
symmetric and imaginary, the rules for raising and lowering
of spinor indices are

θα ¼ θβCβα; θα ¼ θβCβα: ðA1Þ
Gamma matrices are real (Majorana)

fγa; γbg ¼ 2ηab; ðγaÞ� ¼ γa; ðA2Þ
with space-time metric η having signature −1;þ1;þ1. The
notation with spinor indices is related to the notation with
matrix multiplication by identifying

θ ∼ θα; θ̄ ¼ θ†iγ0 ¼ θTC ∼ θα;

C ∼ Cαβ; C−1 ∼ Cαβ; γa ∼ ðγaÞαβ: ðA3Þ
We also define

θ2 ¼ 1

2
θ̄θ ¼ 1

2
θαθα; v ¼ vaγa;

γaαβ ¼ ðγaC−1Þαβ ¼ ðγaÞαγCγβ;

γαβa ¼ −ðCγaÞαβ ¼ ðγaÞγβCγα: ðA4Þ

There are a lot of useful relations

ðθαÞ� ¼ θα; ðθαÞ� ¼ −θα;

CαγCγβ ¼ δβα; Cαβ ¼ −Cβα ¼ −C�
αβ;

∂αθ
β ¼ δβα; θαθβ ¼ −Cαβθ

2;

γaαβ ¼ γaβα ¼ −ðγaαβÞ�; γαβa ¼ γβαa ¼ −ðγαβa Þ�;
γaαβγ

αβ
b ¼ −2δab; γaαβγ

γδ
a ¼ −δγðαδ

δ
βÞ: ðA5Þ

The explicit form of spinor metric and gamma matrices can
be, for example, chosen as

Cαβ ¼ σ2 ¼ Cαβ;

ðγaÞαβ ¼ ðiσ2; σ1;−σ3Þ;
γαβa ¼ γaαβ ¼ ði1; iσ3; iσ1Þ: ðA6Þ

The correspondence between spinor and vector indices
for coordinates, derivatives and other vectors (represented
by n)

xαβ ¼ 1

2
γαβa xa; ∂αβ ¼ γaαβ∂a; nαβ ¼ 1ffiffiffi

2
p γαβa na

ðA7Þ

or if we need the inverse relations

xa ¼ −γaαβxαβ; ∂a ¼ −
1

2
γαβa ∂αβ; na ¼ −

1ffiffiffi
2

p γaαβn
αβ:

ðA8Þ

With these rules we have

∂αβxγδ ¼ −
1

2
δγðαδ

δ
βÞ; ∂αγ∂βγ ¼ −δαβ□;

Dαθ
β ¼ δβα; D2θ2 ¼ −1: ðA9Þ
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