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We continue the study, initiated in [L. Fei, S. Giombi, and I. R. Klebanov, Phys. Rev. D 90, 025018
(2014)], of theOðNÞ symmetric theory ofN þ 1massless scalar fields in 6 − ϵ dimensions. This theory has
cubic interaction terms 1

2
g1σðϕiÞ2 þ 1

6
g2σ3. We calculate the three loop beta functions for the two couplings

and use them to determine certain operator scaling dimensions at the IR stable fixed point up to order ϵ3. We
also use the beta functions to determine the corrections to the critical value of N below which there is no
fixed point at real couplings. The result suggests a significant reduction in the critical value as the
dimension is decreased to 5. We also study the theory with N ¼ 1, which has a Z2 symmetry under
ϕ → −ϕ. We show that it possesses an IR stable fixed point at imaginary couplings which can be reached
by flow from a nearby fixed point describing a pair of N ¼ 0 theories. We calculate certain operator scaling
dimensions at the IR fixed point of the N ¼ 1 theory and suggest that, upon continuation to two
dimensions, it describes a nonunitary conformal minimal model.
DOI: 10.1103/PhysRevD.91.045011 PACS numbers: 12.38.Bx, 11.10.Kk, 11.10.Gh

I. INTRODUCTION AND SUMMARY

This paper is a sequel to [1] where a one loop analysis
was carried out for the cubic OðNÞ symmetric theory of
N þ 1 scalar fields σ and ϕi in 6 − ϵ dimensions. The
Lagrangian of this theory is

L ¼ 1

2
ð∂μϕ

iÞ2 þ 1

2
ð∂μσÞ2 þ

1

2
g1σðϕiÞ2 þ 1

6
g2σ3; ð1:1Þ

and the one loop beta functions showed that for N > Ncrit
there exists an IR stable fixed point with real values of the
two couplings. It was argued that this IR fixed point of the
cubic OðNÞ theory is equivalent to the perturbatively
unitary UV fixed point of the OðNÞ model with interaction
ðϕiϕiÞ2, which exists for large N in 4 < d < 6 [2–5]. The
1=N expansions of various operator scaling dimensions
were found in [1] to agree with the corresponding results
[6–14] in the quartic OðNÞ model continued to 6 − ϵ
dimensions.
A surprising result of [1] was that the one loop value of

Ncrit is very large: if Ncrit is treated as a continuous real
parameter, then it is ≈1038.266. Our main interest is in
continuing the d ¼ 6 − ϵ fixed point to ϵ ¼ 1 in the hope of
finding a five-dimensional OðNÞ symmetric unitary con-
formal field theory (CFT). In order to study the ϵ expansion
of Ncrit, in Sec. II we calculate the three loop β functions,
following the earlier work of [15–17].1 In Sec. IV we find
the following expansion for the critical value of N:

Ncrit ¼ 1038.266 − 609.840ϵ − 364.173ϵ2 þOðϵ3Þ: ð1:2Þ

Neglecting further corrections, this gives Ncritðϵ ¼ 1Þ ≈ 64,
but higher orders in ϵ can obviously change this value
significantly. It is our hope that a conformal bootstrap
approach [19–22], perhaps along the lines of [23], can help
determine Ncrit more precisely in d ¼ 5. The bootstrap
approach may also be applied in noninteger dimensions
close to 6, but one should keep in mind that such theories
are not strictly unitary [24].2

The major reduction of Ncrit as ϵ is increased from 0 to 1
is analogous to what is known about the Abelian Higgs
model in 4 − ϵ dimensions.3 For the model containing Nf
complex scalars, the one loop critical value of Nf is found
to be large,Nf;crit ≈ 183 [26]. However, theOðϵÞ correction
found from two loop beta functions has a negative
coefficient and almost exactly cancels the leading term
when ϵ ¼ 1, suggesting that the Nf;crit is small in the
physically interesting three-dimensional theory [27].
Another interesting property of the theories (1.1) is the

existence of the lower critical value N0
crit such that for N <

N0
crit there is an IR stable fixed point at imaginary values of

g1 and g2. The simplest example of such a nonunitary
theory is N ¼ 0, containing only the field σ. Its 6 − ϵ
expansion was originally studied by Michael Fisher [28]
and the continuation to ϵ ¼ 4 provides an approach to the
Yang-Lee edge singularity in the two-dimensional Ising
model [this is the (2,5) minimal model [29,30] with central

1These papers considered cubic field theories of q − 1 scalar
fields that were shown in [18] to describe the q-state Potts model.
These theories possess only discrete symmetries and generally
differ from the OðNÞ symmetric theories that we study.

2Another possible nonperturbative approach to the theory in
4 < d < 6 is the exact renormalization group (RG) [25]. This
approach does not seem to indicate the presence of aUV fixed point
in the theory ofN scalar fields, but a search for an IR fixed point in
the theory of N þ 1 scalar fields has not been carried out yet.

3We are grateful to Igor Herbut for pointing this out to us.
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charge −22=5]. From the three loop β functions we find the
ϵ expansion

N0
crit ¼ 1.02145þ 0.03253ϵ − 0.00163ϵ2 þOðϵ3Þ: ð1:3Þ

The smallness of the coefficients suggests that N0
crit > 1 for

a range of dimensions below 6. In Sec. V we discuss some
properties of the N ¼ 1 theory. We show that it possesses
an unstable fixed point with g�1 ¼ g�2 where the Lagrangian
splits into that of two decoupled N ¼ 0 theories. There is
also an IR stable fixed point where g�2 ¼ 6g�1=5þOðϵÞ. A
distinguishing feature of this nonunitary CFT is that it has a
discrete Z2 symmetry, and it would be interesting to search
for it using the conformal bootstrap methods developed in
[31]. We suggest that, when continued to two dimensions, it
describes the (3,8) nonunitary conformal minimal model.
In Sec. IVAwe also discuss unstable unitary fixed points

that are present in 6 − ϵ dimensions for allN. ForN ¼ 1 the
fixed point has g�1 ¼ −g�2; it is Z3 symmetric and describes
the critical point of the 3-state Potts model in 6 − ϵ
dimensions [32].4

II. THREE LOOP β-FUNCTIONS IN d ¼ 6 − ϵ

The action of the cubic theory is

S¼
Z
ddx

�
1

2
ð∂μϕ

i
0Þ2þ

1

2
ð∂μσ0Þ2þ

1

2
g1;0σ0ϕi

0ϕ
i
0þ

1

6
g2;0σ30

�
;

ð2:1Þ

where ϕi
0 and σ0 are bare fields and g1;0 and g2;0 are bare

coupling constants.5 As usual, we introduce renormalized
fields and coupling constants by

σ0 ¼ Z1=2
σ σ; ϕi

0 ¼ Z1=2
ϕ ϕi;

g1;0 ¼ μ
ϵ
2Zg1Z

−1=2
σ Z−1

ϕ g1; g2;0 ¼ μ
ϵ
2Zg2Z

−3=2
σ g2: ð2:2Þ

Here g1, g2 are the dimensionless renormalized couplings,
and μ is the renormalization scale. We may write

Zσ ¼ 1þ δσ; Zϕ ¼ 1þ δϕ;

Zg1 ¼ 1þ δg1; Zg2 ¼ 1þ δg2 ð2:3Þ

so that, in terms of renormalized quantities, the action reads

S ¼
Z

ddx

�
1

2
ð∂μϕ

iÞ2 þ 1

2
ð∂μσÞ2 þ

g1
2
σϕiϕi þ g2

6
σ3

þ δϕ
2
ð∂μϕ

iÞ2 þ δσ
2
ð∂μσÞ2 þ

δg1
2

σϕiϕi þ δg2
6

σ3
�
:

ð2:4Þ

To carry out the renormalization procedure, we will use
dimensional regularization [33] in d ¼ 6 − ϵ and employ
the minimal subtraction scheme [34]. In this scheme, the
counterterms are fixed by requiring cancellation of poles in
the dimensional regulator, and have the structure

δg1 ¼
X∞
n¼1

anðg1; g2Þ
ϵn

; δg2 ¼
X∞
n¼1

bnðg1; g2Þ
ϵn

;

δϕ ¼
X∞
n¼1

zϕnðg1; g2Þ
ϵn

; δσ ¼
X∞
n¼1

zσnðg1; g2Þ
ϵn

: ð2:5Þ

The anomalous dimensions and β-functions are determined
by the coefficients of the simple 1=ϵ poles in the counter-
terms [34]. Specifically, in our case we have that the
anomalous dimensions are given by

γϕ ¼ −
1

4

�
g1

∂
∂g1 þ g2

∂
∂g2

�
zϕ1 ; ð2:6Þ

γσ ¼ −
1

4

�
g1

∂
∂g1 þ g2

∂
∂g2

�
zσ1 ð2:7Þ

and the β-functions are

β1ðg1; g2Þ ¼ −
ϵ

2
g1 þ

1

2

�
g1

∂
∂g1 þ g2

∂
∂g2 − 1

�

×

�
a1 −

1

2
g1ð2zϕ1 þ zσ1Þ

�
;

β2ðg1; g2Þ ¼ −
ϵ

2
g2 þ

1

2

�
g1

∂
∂g1 þ g2

∂
∂g2 − 1

�

×

�
b1 −

3

2
g2zσ1

�
: ð2:8Þ

In other words, in order to determine the anomalous
dimensions and β-functions, we have to calculate
the coefficients of the 1=ϵ-divergencies in the loop dia-
grams, from which we can read off the residues
a1ðg1; g2Þ; b1ðg2; g2Þ; zϕ1 ðg1; g2Þ; zσ1ðg1; g2Þ.
Working in perturbation theory, we will denote by a1i

the term of ith order in the coupling constants, and similarly
for the other residue functions. Then, using the results for
the Feynman diagrams collected in the Appendix, we find
the anomalous dimensions:

4We are grateful to Yu Nakayama for valuable discussions on
this issue.

5We do not include mass terms as we are ultimately interested
in the conformal theory. In the dimensional regularization that we
will be using, mass terms are not generated if we set them to zero
from the start.
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γϕ ¼ −
1

2
zϕ12 − zϕ14 −

3

2
zϕ16

¼ g21
6ð4πÞ3 −

g21
432ð4πÞ6 ðg

2
1ð11N − 26Þ − 48g1g2 þ 11g22Þ

−
g21

31104ð4πÞ9 ðg
4
1ðNð13N − 232Þ þ 5184ζð3Þ − 9064Þ þ g31g26ð441N − 544Þ

− 2g21g
2
2ð193N − 2592ζð3Þ þ 5881Þ þ 942g1g32 þ 327g42Þ; ð2:9Þ

γσ ¼ −
1

2
zσ12 − zσ14 −

3

2
zσ16

¼ Ng21 þ g22
12ð4πÞ3 þ 1

432ð4πÞ6 ð2Ng41 þ 48Ng31g2 − 11Ng21g
2
2 þ 13g42Þ

þ 1

62208ð4πÞ9 ð96Nð12N þ 11Þg51g2 − 1560Ng31g
3
2 þ 952Ng21g

4
2 − 2Ng61ð1381N − 2592ζð3Þ þ 4280Þ

þ g62ð2592ζð3Þ − 5195Þ þ 3Ng41g
2
2ðN þ 4320ζð3Þ − 8882ÞÞ ð2:10Þ

and the β-functions

β1 ¼ −
ϵ

2
g1 þ

�
a13 −

1

2
g1ð2zϕ12 þ zσ12Þ

�
þ 2

�
a15 −

1

2
g1ð2zϕ14 þ zσ14Þ

�
þ 3

�
a17 −

1

2
g1ð2zϕ16 þ zσ16Þ

�

¼ −
ϵ

2
g1 þ

1

12ð4πÞ3 g1ððN − 8Þg21 − 12g1g2 þ g22Þ

−
1

432ð4πÞ6 g1ðð536þ 86NÞg41 þ 12ð30 − 11NÞg31g2 þ ð628þ 11NÞg21g22 þ 24g1g32 − 13g42Þ

þ 1

62208ð4πÞ9 g1ðg
6
2ð5195 − 2592ζð3ÞÞ þ 12g1g52ð−2801þ 2592ζð3ÞÞ

− 8g21g
4
2ð1245þ 119N þ 7776ζð3ÞÞ þ g41g

2
2ð−358480þ 53990N − 3N2 − 2592ð−16þ 5NÞζð3ÞÞ

þ 36g51g2ð−500 − 3464N þ N2 þ 864ð5N − 6Þζð3ÞÞ
− 2g61ð125680 − 20344N þ 1831N2 þ 2592ð25N þ 4Þζð3ÞÞ þ 48g31g

3
2ð95N − 3ð679þ 864ζð3ÞÞÞÞ; ð2:11Þ

β2 ¼ −
ϵ

2
g2 þ

�
b13 −

3

2
g2zσ12

�
þ 2

�
b15 −

3

2
g2zσ14

�
þ 3

�
b17 −

3

2
g2zσ16

�

¼ −
ϵ

2
g2 þ

1

4ð4πÞ3 ð−4Ng31 þ Ng21g2 − 3g32Þ

þ 1

144ð4πÞ6 ð−24Ng51 − 322Ng41g2 − 60Ng31g
2
2 þ 31Ng21g

3
2 − 125g52Þ

þ 1

20736ð4πÞ9 ð−48Nð713þ 577NÞg71 þ 6272Ng21g
5
2 þ 48Ng31g

4
2ð181þ 432ζð3ÞÞ

− 5g72ð6617þ 2592ζð3ÞÞ − 24Ng51g
2
2ð1054þ 471N þ 2592ζð3ÞÞ

þ 2Ng61g2ð19237N − 8ð3713þ 324ζð3ÞÞÞ þ 3Ng41g
3
2ð263N − 6ð7105þ 2448ζð3ÞÞÞ: ð2:12Þ

In the case N ¼ 0 (the single scalar cubic theory), our results are in agreement with the three loop calculation of [16].
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III. THE IR FIXED POINT

Let us introduce the notation

g1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ϵð4πÞ3

N

r
x; g2 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ϵð4πÞ3

N

r
y: ð3:1Þ

In terms of the new variables x and y, the condition that both β-functions be zero reads

0 ¼ 1

2
xð−8x2 þ Nðx2 − 1Þ − 12xyþ y2Þ

−
1

12N
xðð536þ 86NÞx4 þ 12ð30 − 11NÞx3yþ ð628þ 11NÞx2y2 þ 24xy3 − 13y4Þϵ

−
1

288N2
xð12xy5ð2801 − 2592ζð3ÞÞ þ y6ð−5195þ 2592ζð3ÞÞ þ 48x3y3ð2037 − 95N þ 2592ζð3ÞÞ

þ 8x2y4ð1245þ 119N þ 7776ζð3ÞÞ þ x4y2ð358480 − 53990N þ 3N2 þ 2592ð5N − 16Þζð3ÞÞ
− 36x5yð−500 − 3464N þ N2 þ 864ð5N − 6Þζð3ÞÞ
þ 2x6ð125680 − 20344N þ 1831N2 þ 2592ð25N þ 4Þζð3ÞÞÞϵ2 ð3:2Þ

and

0 ¼ −
1

2
ð9y3 þ Nð12x3 þ y − 3x2yÞÞ

−
1

4N
ð125y5 þ Nx2ð24x3 þ 322x2yþ 60xy2 − 31y3ÞÞϵ

−
1

96N2
ðN2x4ð27696x3 − 38474x2yþ 11304xy2 − 789y3Þ þ 5y7ð6617þ 2592ζð3ÞÞ

þ 34224Nx7 − 6272Nx2y5 þ 16Nx6yð3713þ 324ζð3ÞÞ − 48Nx3y4ð181þ 432ζð3ÞÞ
þ 48Nx5y2ð527þ 1296ζð3ÞÞ þ 18Nx4y3ð7105þ 2448ζð3ÞÞÞϵ2: ð3:3Þ

These equations can be solved order by order in the ϵ expansion. Using also the 1=N expansion, we find the fixed point
values

x� ¼ 1þ 22

N
þ 726

N2
−
326180

N3
−
349658330

N4
þ � � �

þ
�
−
155

6N
−
1705

N2
þ 912545

N3
þ 3590574890

3N4
þ � � �

�
ϵ

þ
�
1777

144N
þ 29093=36 − 1170ζð3Þ

N2
þ � � �

�
ϵ2; ð3:4Þ

y� ¼ 6

�
1þ 162

N
þ 68766

N2
þ 41224420

N3
þ 28762554870

N4
þ � � �

þ
�
−
215

2N
−
86335

N2
−
75722265

N3
−
69633402510

N4
þ � � �

�
ϵ

þ
�
2781

48N
þ 270911 − 157140ζð3Þ

6N2
þ � � �

�
ϵ2: ð3:5Þ

This large N solution corresponds to an IR stable fixed point and generalizes the one loop result of [1]. This fixed point
exists and is stable to all orders in the 1=N expansion.
If results beyond the 1=N expansion are desired, one can determine the ϵ expansions of x�; y� for finite N as follows.

Plugging the expansions
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x� ¼ x0ðNÞ þ x1ðNÞϵþ x2ðNÞϵ2 þ � � � ;
y� ¼ y0ðNÞ þ y1ðNÞϵþ y2ðNÞϵ2 þ � � � ð3:6Þ

into (3.2) and (3.3), the leading order terms are found to be
[1,35]

x0ðNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
ðN − 44ÞzðNÞ2 þ 1

s
zðNÞ;

y0ðNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
ðN − 44ÞzðNÞ2 þ 1

s
ð1þ 6zðNÞÞ; ð3:7Þ

where zðNÞ is the solution to the cubic equation

840z3 − ðN − 464Þz2 þ 84zþ 5 ¼ 0 ð3:8Þ

with large N behavior zðNÞ ¼ 840N þOðN0Þ.6 This
solution is real only if N > 1038.27, as can be seen from
the discriminant of the above cubic equation. Once the
x0ðNÞ; y0ðNÞ are known, one can then determine the higher
order terms in (3.6) by solving the equations (3.2) and (3.3)
order by order in ϵ.
For N ≫ 1038 the finite N exact results are close to

(3.4) and (3.5), but for N ∼ 1038 they deviate some-
what, indicating that, close to the critical N, the large N
expansion is not a good approximation (see also Fig. 1
below).

A. Dimensions of ϕ and σ

In terms of the rescaled couplings x, y defined in (3.1),
the anomalous dimensions read

γϕ ¼ x2

N
ϵ −

x2

12N2
ðð26 − 11NÞx2 þ 48xy − 11y2Þϵ2

þ x2

144N3
ð6ð544 − 441NÞx3y − 942xy3 − 327y4 þ x4ð9064þ ð232 − 13NÞN − 5184ζð3ÞÞ

þ 2x2y2ð5881þ 193N − 2592ζð3ÞÞgÞϵ3; ð3:9Þ

γσ ¼
Nx2þy2

2N
ϵ−

1

12N2
ð13y4þNx2ð2x2þ48xy−11y2ÞÞϵ2

þ 1

288N3
ðN2x4ð2762x2−1152xy−3y2Þ

þ2Nx2ð−528x3yþ780xy3−476y4þ3x2y2ð4441−2160ζð3ÞÞþ8x4ð535−324ζð3ÞÞÞ
þy6ð5195−2592ζð3ÞÞÞϵ3: ð3:10Þ

Plugging the fixed point values (3.4) and (3.5) into these expressions, we get the conformal dimensions of σ and ϕ at the
fixed point:

Δϕ ¼ d
2
− 1þ γϕ ð3:11Þ

¼ 2 −
ϵ

2
þ
�
1

N
þ 44

N2
þ 1936

N3
þ � � �

�
ϵþ

�
−

11

12N
−
835

6N2
−
16352

N3
þ � � �

�
ϵ2

þ
�
−

13

144N
þ 6865

72N2
þ 54367=2 − 3672ζð3Þ

N3
þ � � �

�
ϵ3; ð3:12Þ

Δσ ¼
d
2
− 1þ γσ ð3:13Þ

¼ 2þ
�
40

N
þ 6800

N2
þ � � �

�
ϵþ

�
−
104

3N
−
34190

3N2
þ � � �

�
ϵ2

þ
�
−
22

9N
þ 47695=18 − 2808ζð3Þ

N2
þ � � �

�
ϵ3: ð3:14Þ

6The other two roots have large N behavior zðNÞ ∼� ffiffiffiffiffiffiffi
5N

p
and they are unstable IR fixed points [1].
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One can verify that these results are in precise agreement
with the large N calculation of [6–8] for the critical OðNÞ
model in general d, analytically continued to d ¼ 6 − ϵ.
This provides a strong check on our calculations and on our
interpretation of the IR fixed point of the cubicOðNÞ scalar
theory.
The 1=N expansions are expected to work well for

N ≫ 1038. For any N larger than the critical value, the ϵ
expansions of the scaling dimensions may be determined
using (3.10) and the exact analytic solutions for the fixed
point location ðx�; y�Þ. For example, in Fig. 1 we plot the
coefficient of the Oðϵ3Þ term in Δσ as a function of N and
compare it with the corresponding 1=N expansion.

B. Dimensions of quadratic and cubic operators

In [1] the mixed anomalous dimensions of quadratic
operators σ2 and ϕiϕi were calculated at one loop order.
These results were checked against the Oð1=NÞ term in the
corresponding operator dimensions for the OðNÞ ϕ4 theory
[12]. In this paper, we carry out an additional check,
comparing with the Oð1=N2Þ correction found in [36], but
still working to the one loop order in ϵ (it should be
straightforward to generalize the mixing calculation to
higher loops, but we will not do it here).
In the quarticOðNÞ theory with interaction λ

4
ðϕiϕiÞ2, the

derivative of the beta function at the fixed point coupling

ω ¼ β0ðλ�Þ ¼ 4 − dþ ω1

N
þ ω2

N2
þ � � � ð3:15Þ

is related to the dimension of the operator ðϕiϕiÞ2 by

Δϕ4 ¼ dþ ω: ð3:16Þ

In [12,36] the coefficient ω1 was computed as a function of
dimension d:

ω1 ¼
2ðd − 4Þðd − 2Þðd − 1ÞΓðdÞ

dΓð2 − d
2
ÞΓðd

2
Þ3 : ð3:17Þ

The coefficient ω2 has a more complicated structure for
general d which was first found in [36]. Using this result,
we get that in d ¼ 5,

Δϕ4 ¼ 4 −
2048

15π2N
−
8192ð67125π2 − 589472Þ

3375π4N2

þ � � � ≈ 4 −
13.8337

N
−
1819.66

N2
þ � � � : ð3:18Þ

Let us also quote the expansion of ω2 in d ¼ 4 − ϵ and
d ¼ 6 − ϵ:

ω2 ¼ 102ϵ2 þ
�
−
259

2
þ 120ζð3Þ

�
ϵ3 þ � � � ;

d ¼ 4 − ϵ; ð3:19Þ

ω2 ¼ −49760ϵþ 237476

3
ϵ2

þ
�
−
92480

9
þ 32616ζð3Þ

�
ϵ3 þ � � � ;

d ¼ 6 − ϵ: ð3:20Þ

In d ¼ 4 − ϵ, one can check that the above results correctly
reproduce the derivative of the β-function [37]

β ¼ −ϵλþ N þ 8

8π2
λ2 −

3ð3N þ 14Þ
64π4

λ3

þ 33N2 þ 480Nζð3Þ þ 922N þ 2112ζð3Þ þ 2960

4096π6
λ4

þOðλ5Þ
ð3:21Þ

at the IR fixed point

λ� ¼
8π2

N þ 8
ϵþ 24π2ð3N þ 14Þ

ðN þ 8Þ3 ϵ2

−
π2ð33N3 − 110N2 þ 96ðN þ 8Þð5N þ 22Þζð3Þ − 1760N − 4544Þ

ðN þ 8Þ5 ϵ3 þOðϵ4Þ: ð3:22Þ

exact result

up to 1 N8

up to 1 N4

1200 1400 1600 1800 2000

0.002

0.000

0.002

0.004

0.006

0.008

N

FIG. 1 (color online). The Oðϵ3Þ in Δσ as a function of N for
N ≥ 1039. The 1=N expansion approaches the exact result as we
include more terms.
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In d ¼ 6 − ϵ, the dimension of the ðϕiϕiÞ2 operator in
the quartic theory should be matched to the primary
operator arising from the mixing of the σ2 and ϕiϕi

operators in our cubic theory. In [1], the mixing matrix
of σ2 and ϕiϕi to one loop order was found to be

γij ¼ −1
6ð4πÞ3

�
4g21 − Ng21 6

ffiffiffiffi
N

p
g21 −

ffiffiffiffi
N

p
g1g2

6
ffiffiffiffi
N

p
g21 −

ffiffiffiffi
N

p
g1g2 4g22 − Ng21

�
:

ð3:23Þ
Computing the eigenvalues γ� of this matrix, and inserting
the values of one loop fixed point couplings

g1� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ϵð4πÞ3

N

r �
1þ22

N
þ726

N2
−
326180

N3
þ�� �

�
; ð3:24Þ

g2� ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ϵð4πÞ3

N

r �
1þ 162

N
þ 68766

N2
þ 41224420

N3
þ � � �

�
ð3:25Þ

we find the scaling dimensions of the quadratic operators
to be

Δ− ¼ d − 2þ γ−

¼ 4þ
�
−
100

N
−
49760

N2
−
27470080

N3
þ � � �

�
ϵþOðϵ2Þ;

ð3:26Þ

Δþ ¼ d − 2þ γþ

¼ 4þ
�
40

N
þ 6800

N2
þ 2637760

N3
þ � � �

�
ϵþOðϵ2Þ:

ð3:27Þ

The operator with dimension Δþ is a descendant of σ. The
operator with dimension Δ− is a primary, and comparing
with (3.17), (3.20), we see that its dimension precisely
agrees with the results of [36] to order 1=N2. The higher
order terms in ϵ can be determined from mixed anomalous
dimension calculations beyond one loop, and we leave this
to future work.
We now calculate the mixed anomalous dimensions of

the nearly marginal operators O1 ¼ σϕϕ and O2 ¼ σ3.
Using the beta functions written in Eqs. (2.11)and (2.12),
we can determine the anomalous dimensions of the nearly
marginal operators by computing the eigenvalues of the
matrix

Mij ¼
∂βi
∂gj : ð3:28Þ

Strictly speaking, this matrix is not exactly equal to the
anomalous dimension mixing matrix, because it is not

symmetric. However, we could make it symmetric by
dividing and multiplying the off-diagonal elements by a
factor

ffiffiffiffiffiffiffi
3N

p þOðϵÞ, which corresponds to an appropriate
rescaling of the couplings. This clearly does not change the
eigenvalues of the matrix, and hence we can directly
compute the eigenvalues λ� of (3.28), and obtain the
dimensions of the eigenstate operators as

Δ� ¼ dþ λ�: ð3:29Þ

Plugging in the fixed point values x� and y� from Eqs. (3.4)
and (3.5), we find that

Δþ ¼ 6þ
�
155

3
ϵ2 −

1777

36
ϵ3þ� � �

�
1

N
þO

�
1

N2

�
;

Δ− ¼ 6þ
�
−420ϵþ 499ϵ2−

1051

12
ϵ3þ� � �

�
1

N
þO

�
1

N2

�
:

ð3:30Þ

The dimension of the σk operator in the quartic OðNÞ
model is known to order 1=N as a function of d [12], and
may be written as

ΔðσkÞ ¼ 2kþ kðd − 2Þððk − 1Þd2 − dð3k − 1Þ þ 4ÞΓðdÞ
NdΓð2 − d

2
ÞΓðd

2
Þ3

þO
�

1

N2

�
: ð3:31Þ

Our result for Δ− agrees with the ϵ expansion of this
formula for k ¼ 3 in d ¼ 6 − ϵ.

IV. ANALYSIS OF CRITICAL N
AS A FUNCTION OF ϵ

We now investigate the behavior of Ncrit above which the
fixed point exists at real values of the couplings. This can
be defined as the value of N (formally viewed as a
continuous parameter) at which two real solutions of the
β-function equations merge, and subsequently go off to the
complex plane. Geometrically, this means that the curves
on the ðg1; g2Þ plane defined by the zeros of β1 and β2 are
barely touching, i.e. they are tangent to each other.
Therefore the critical N, as well as the corresponding
critical value of the couplings, can be determined by
solving the system of equations

β1 ¼ 0; β2 ¼ 0;
∂β1=∂g1
∂β1=∂g2 ¼

∂β2=∂g1
∂β2=∂g2 : ð4:1Þ

Note that the condition in the second line is equivalent to
requiring that the determinant of the anomalous dimension
mixing matrix of nearly marginal operators, Mij ¼ ∂βi∂gj,
vanishes. This means that one of the two eigenstates
becomes marginal.
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Working in terms of the rescaled coupling constants
defined in (3.1), we can solve the system of equations (4.1)
order by order in ϵ. We assume a perturbative expansion

x ¼ x0 þ x1ϵþ x2ϵ2 þOðϵ3Þ;
y ¼ y0 þ y1ϵþ y2ϵ2 þOðϵ3Þ;
N ¼ N0 þ N1ϵþ N2ϵ

2 þOðϵ3Þ ð4:2Þ

and plugging this into (4.1), we can solve for the unde-
termined coefficients uniquely. At the zeroth order, we get
the equations

N0 þ 8x20 − N0x20 þ 12x0y0 − y20 ¼ 0;

12N0x30 þ N0y0 − 3N0x20y0 þ 9y30 ¼ 0;

6þ ðN0 − 44Þx0
6x0 − y0

¼ 6N0x0ðy0 − 6x0Þ
3N0x20 − 27y20 − N0

: ð4:3Þ

The above system of equations can be solved analytically,
as was done in [1]. We find that, up to the signs of x0 and
y0, there are three inequivalent solutions

x0¼1.01804; y0¼8.90305; N0¼1038.26605; ð4:4Þ

x00¼0.23185i; y00¼0.25582i; N0
0¼1.02145; ð4:5Þ

x000 ¼0.13175; y000¼−0.03277; N00
0¼−0.08750: ð4:6Þ

The first of these solutions, with Ncrit ¼
1038.26605þOðϵÞ, is of most interest to us because it
is related to the large N limit of the theory. For N > Ncrit,
we find a stable IR fixed point at real couplings g1 and g2.

7

This fixed point is shown with the red dot in Fig. 2 [there is
a second stable IR fixed point obtained by the trans-
formation ðg1; g2Þ → ð−g1;−g2Þ, which is a symmetry of
this theory]. There is also a nearby unstable fixed point,
shown with a black dot, which has one stable and one
unstable direction. As N approaches Ncrit from above, the
nearby unstable fixed point approaches the IR stable fixed
point, and they merge at Ncrit. At N < Ncrit, both fixed
points disappear into the complex plane. As discussed in
[38], this is a rather generic behavior at the lower edge of
the conformal window: the conformality is lost through the
annihilation of a UV fixed point and an IR fixed point. In
[38] this was argued to happen at the lower (strongly
coupled) edge of the conformal window for four-
dimensional SUðNcÞ gauge theory with Nf flavors. It is

interesting to observe that the same type of behavior occurs
at the lower edge of the conformal window of the OðNÞ
model in d ¼ 6 − ϵ, which extends from Ncrit to infinity.
Let us identify the operator that causes the flow between

the unstable fixed point and the IR stable fixed point of our
primary interest. It is one of the two nearly marginal
operators cubic in the fields that were studied in Sec. III B.
By studying the behavior of the dimensions Δ1 and Δ2 as
N → Ncrit we find that Δ2 → 6 − ϵ. Therefore, it is the
operator corresponding to Δ2 that becomes exactly mar-
ginal for N ¼ Ncrit and causes the flow between the
IR fixed point and the nearby UV fixed point for N
slightly above Ncrit. In bootstrap studies of the quartic
OðNÞ model this operator was denoted by σ3 [12], i.e. it
can be thought of as the “triple-trace operator” ðϕiϕiÞ3.
The theory at the unstable fixed point has an unconven-
tional large N behavior where x ∼Oð1Þ and y ∼Oð ffiffiffiffi

N
p Þ,

so that corrections to scaling dimension proceed in powers
of N−1=2 [1].
Let us now go back to finding the higher order

corrections to Ncrit given by (4.4) [the higher order
corrections to the other critical values (4.5) and (4.6) will
be discussed in the next section]. Once we have solved the
leading order system (4.3), we can plug the solution into
(4.2) and expand (4.1) up to order ϵ2. From this we obtain
simple systems of linear equations from which we can
determine x1; y1; N1 and x2; y2; N2. We find

IR

IR UV

x

y

3 2 1 0 1 2 3

40

20

0

20

40

FIG. 2 (color online). The zeros of the one loop β functions and
the RG flow directions for N ¼ 2000. The red dots
correspond to the stable IR fixed points, while the black dots
are unstable fixed points. As N → Ncrit, the red dot merges with
the nearby black dot, and the two fixed points move into the
complex plane.

7It is stable with respect to flows of the nearly marginal
couplings g1 and g2. As usual, there are some OðNÞ invariant
relevant operators that render this fixed point not perfectly
stable.
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x1 ¼ −0.00940; y1 ¼ −0.21024; N1 ¼ −609.93980;

x2 ¼ 0.00690; y2 ¼ 1.01680; N2 ¼ −364.17333:

ð4:7Þ

Thus, to three loop order, we conclude that

Ncrit ¼ 1038.26605 − 609.83980ϵ − 364.17333ϵ2 þOðϵ3Þ:
ð4:8Þ

We have also checked these expansion coefficients via a
direct high-precision numerical calculation of Ncrit for very
small values of ϵ. The large and negative coefficients

indicate that in the physically interesting case of d ¼ 5,
Ncrit seems to be much lower than the zeroth order value
(this is analogous to the result [27] for the Abelian Higgs
model). If we just use the first three terms and plug in
ϵ ¼ 1, we get

Ncrit ≈ 64.253: ð4:9Þ

For N < Ncrit the anomalous dimensions, such as γϕ, are
no longer positive (in fact, they become complex). This loss
of positivity of γϕ can also be seen as N is reduced in the
quartic OðNÞ model. For example, using the 1=N expan-
sion of γϕ in d ¼ 5 [8]

γϕ ¼ 32

15π2N
−

1427456

3375π4N2

þ
�
275255197696

759375π6
−
89735168

2025π4
þ 32768 ln 4

9π4
−
229376ζð3Þ

3π6

�
1

N3
þ � � �

¼ 3

2
þ 0.216152

N
−
4.342
N2

−
121.673

N3
þ � � � ð4:10Þ

we find that it stops being positive for N < 35. This critical value is not too far from (4.9).
It is also instructive to study the theory using the 4 − ϵ expansion. The anomalous dimension of ϕi is [37]

γϕ ¼ N þ 2

4ðN þ 8Þ2 ϵ
2 þ N þ 2

16ðN þ 8Þ4 ð−N
2 þ 56N þ 272Þϵ3

þ N þ 2

64ðN þ 8Þ6 ð−5N
4 − 230N3 þ 1124N2 þ 17920N þ 46144 − 384ζð3Þð5N þ 22ÞðN þ 8ÞÞϵ4 þOðϵ5Þ: ð4:11Þ

For positive ϵ this expansion gives accurate information
about theWilson-Fisher IR fixed points [39]. For negaþ ve
ϵ there exist formal UV fixed points at negative quartic
coupling where we can apply this formula as well. In that
case, γ becomes negative for sufficiently large jϵj and
N < Ncrit, indicating that the operator ϕi violates the
unitarity bound. For example for d ¼ 5, corresponding
to ϵ ¼ −1, we find Ncrit ≈ 8. Inclusion of the Oðϵ5Þ term
raises this to Ncrit ≈ 14.
We see, therefore, that the estimates of Ncrit using the

quartic OðNÞ theory in d ¼ 5 are even lower than the three
loop estimate (4.9). However, our analysis so far has not
taken into account the large orders in perturbation theory or
non-perturbative effects. To determine Ncrit in d ¼ 5 more
precisely, one needs a nonperturbative approach to thed ¼ 5
theory, perhaps along the lines of the conformal bootstrap
calculation in [23].

A. Unitary fixed points for all positive N

Let us note that not all real fixed points disappear for
N < Ncrit. The unstable real fixed points that are located in
the upper left and lower right corners of Fig. 2 exist for all
positive N, and we would like to find their interpretation.

The fixed point with N ¼ 1 has a particularly simple
property that g�1 ¼ −g�2. This property of the solution holds
for the three loop β functions, and we believe that it is exact.
Using this, we note that the action at the fixed point is
proportional to ðσ þ iϕÞ3 þ ðσ − iϕÞ3. Therefore, the
theory at this fixed point enjoys a Z3 symmetry acting
by the phase rotation on the complex combination σ þ iϕ.
This cubic classical action appears in the Ginzburg-Landau
theory for the 3-state Potts model (see, for example, [32]).8

Therefore, we expect the Z3 symmetric fixed point to
describe the 3-state Potts model in d ¼ 6 − ϵ. The dimen-
sions of operators at this fixed point are related by the Z3

symmetry. For example, we find

Δϕ ¼ Δσ ¼ 2 −
1

3
ϵþ 2

3
ϵ2 þ 443

54
ϵ3 þOðϵ4Þ: ð4:12Þ

This is in agreement with the result of [16]. By calculating
the eigenvalues λ� of the matrixMij ¼ ∂βi∂gj, we also find the
dimensions (3.29) of the two cubic operators to order ϵ3:

8We are grateful to Yu Nakayama for pointing this out to us.
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Δ− ¼ 6 −
14

3
ϵ −

158

9
ϵ2 −

�
17380

81
þ 16ζð3Þ

�
ϵ3

¼ 6 − 4.66667ϵ − 17.5556ϵ2 − 233.801ϵ3;

Δþ ¼ 6 −
83

18
ϵ2 −

�
38183

648
þ 4ζð3Þ

�
ϵ3

¼ 6 − 4.61111ϵ2 − 63.7326ϵ3: ð4:13Þ

The dimensionΔþ corresponds to the operator ðσ þ iϕÞ3 þ
ðσ − iϕÞ3 which preserves the Z3 symmetry and is slightly
irrelevant for small ϵ. The dimension Δ− corresponds to the
relevant operator σðσ2 þ ϕ2Þ which breaks the Z3. Thus,
the Z3 symmetry helps stabilize the fixed point at small ϵ.
Unfortunately, the 6 − ϵ expansions (4.13) have growing

coefficients, and it is not clear for what range of ϵ the fixed
point exists. Thus, one may not be able to interpolate
smoothly from the Z3 symmetric fixed point in d ¼ 6 − ϵ to
d ¼ 2 where the 3-state Potts model is described by the
unitary (5,6) minimal model [29].
For all N ≥ 2 we find unstable fixed points with OðNÞ

symmetry. These fixed points always have a relevant cubic
operator, corresponding to a negative eigenvalue of the
matrix ∂βi∂gj. Also, they exhibit an unconventional large N
behavior involving half-integer powers of N, similarly to
the unstable fixed points that appear for N > Ncrit and are
shown by the black dots in the upper right and lower left
corners of Fig. 2. We leave a discussion of these fixed
points for the future.

V. NONUNITARY THEORIES

In addition to the fixed points studied so far, which are
perturbatively unitary and appear for N > Ncrit, there exist
nonunitary fixed points for N00

crit < N < N0
crit. The leading

values of N0
crit and N″

crit are given in (4.5) and (4.6),
respectively. Using the method developed above for finding
the higher order in ϵ corrections to Ncrit we get

N0
crit ¼ 1.02145þ 0.03253ϵ − 0.00163ϵ2;

x0 ¼ ið0.23185þ 0.08887ϵ − 0.03956ϵ2Þ;
y0 ¼ ið0.25582þ 0.11373ϵ − 0.04276ϵ2Þ ð5:1Þ

and

N00
crit ¼ −0.08750þ 0.34726ϵ − 0.88274ϵ2;

x00 ¼ 0.13175 − 0.16716ϵþ 0.12072ϵ2;

y00 ¼ −0.03277þ 0.13454ϵ − 0.35980ϵ2: ð5:2Þ

Unfortunately, the latter expansion has growing coeffi-
cients, and we cannot extract any useful information from
it. On the other hand, the higher order corrections to N0

crit
are very small, which suggests that N0

crit > 1 for range of
dimensions below 6.

The theory with N ¼ 0, which contains only the field σ,
was originally studied by Michael Fisher as an approach to
the Yang-Lee edge singularity in the Ising model [28].
Since the coupling is imaginary, it describes a nonunitary
theory where some operator dimensions (e.g. σ) are below
the unitarity bounds. In d ¼ 2, this CFT corresponds to the
(2,5) minimal model [30], which has c ¼ −22=5. A
conformal bootstrap approach to this model [31] has
produced good results for a range of dimensions below 6.
The N ¼ 1 theory, which has two fields and two

coupling constants, has a more intricate structure. This
theory is distinguished from theN ¼ 0 case by the presence
of a Z2 symmetry ϕ → −ϕ. Examining the β functions at
N ¼ 1 and the eigenvalues of the matrix ∂βi∂gj, we

observe that there exist a stable fixed point with
g�2 ¼ 6g�1=5þOðϵÞ, and an unstable one with g�1 ¼ g�2.
Introducing the field combinations

σ1 ¼ σ þ ϕ; σ2 ¼ σ − ϕ; ð5:3Þ

we note that for g�1 ¼ g�2 the interactions of the N ¼ 1

model decouple as ∼σ31 þ σ32, i.e. at this fixed point the
theory is a sum of two Fisher’s N ¼ 0 theories. However,
one of the flow directions at this fixed point is unstable,
since the corresponding operator has ΔO ¼ 6 − 10ϵ=9þ
Oðϵ2Þ and is relevant (this value of the dimension corre-
sponds to the negative eigenvalue of the matrixMij ¼ ∂βi∂gj at
the g�1 ¼ g�2 fixed point). This dimension has a simple
explanation as follows. The flow away from the decoupled
fixed point is generated by the operator O ¼ σ1σ

2
2 þ σ2σ

2
1.

This is allowed by the original Z2 symmetry ϕ → −ϕ,
which translates into the interchange of σ1 and σ2. Thus,

ΔO ¼ ΔN¼0
σ þ ΔN¼0

σ2
¼ 2þ 2ΔN¼0

σ ; ð5:4Þ

where we used the fact that in the N ¼ 0 theory, ΔN¼0
σ2

¼
2þ ΔN¼0

σ because σ2 is a descendant. Using (3.10) for
N ¼ 0, we find

Δσ ¼ 2 −
5

9
ϵ −

43

1458
ϵ2 þ

�
8ζð3Þ
243

−
8375

472392

�
ϵ3

¼ 2 − 0.555556ϵ − 0.0294925ϵ2 þ 0.021845ϵ3: ð5:5Þ

Substituting this into (5.4) we find the dimension of the
relevant operator O, which indeed precisely agrees with
ΔO ¼ dþ λ−, where λ− is the negative eigenvalue ofMij ¼
∂βi∂gj at the g

�
1 ¼ g�2 fixed point. Using the ϵ expansion (5.5),

we find thatO continues to be relevant as ϵ is increased. For
ϵ ¼ 4, i.e. d ¼ 2, we know the exact result in the (2,5)
minimal model that ΔN¼0

σ ¼ −2=5, which implies
ΔO ¼ 6=5. This strongly suggests that O is relevant, and
the decoupled fixed point is unstable, for the entire range

FEI et al. PHYSICAL REVIEW D 91, 045011 (2015)

045011-10



2 ≤ d < 6. To describe this CFT in d ¼ 2 more precisely,
we note the existence of the modular invariant minimal
model Mð3; 10Þ, which is closely related to the product of
two Yang-Lee (2,5) minimal models [40,41].
The flow away from the unstable fixed point with g�1 ¼

g�2 can lead the N ¼ 1 theory to the IR stable fixed point
where g�2 ¼ 6g�1=5þOðϵÞ. Using our results we can
deduce the ϵ expansion of various operator dimensions
at this fixed point. For example,

Δϕ ¼ 2 − 0.5501ϵ − 0.0234477ϵ2 þ 0.0200649ϵ3 þ � � � ;
Δσ ¼ 2 − 0.561122ϵ − 0.0358843ϵ2 þ 0.0236057ϵ3 þ � � � :

ð5:6Þ

By calculating the eigenvalues λ� of the matrix Mij ¼ ∂βi∂gj,
we find the dimensions of two operators that are slightly
irrelevant in d ¼ 6 − ϵ:

Δ− ¼ dþ λ− ¼ 6− 0.88978ϵþ 0.0437732ϵ2 − 0.039585ϵ3;

Δþ ¼ dþ λþ ¼ 6− 0.773191ϵ2 þ 1.59707ϵ3: ð5:7Þ

As ϵ is increased, these expansions suggest that the two
operators become more irrelevant. It would be interesting to
study this Z2 symmetric fixed point using a conformal
bootstrap approach along the lines of [31].
Assuming that the N ¼ 1 IR fixed point continues to be

stable in d ¼ 5; 4; 3; 2, it is interesting to look for statistical
mechanical interpretations of this nonunitary CFTs. A
distinguishing feature of the N ¼ 1 CFT is that it has a
discrete Z2 symmetry, while the N ¼ 0 theory has no
symmetries at all. As we have noted, in d ¼ 2 the CFT can
be obtained via deforming the (3,10) minimal model by a
Virasoro primary field of dimension 6=5 (this is the highest
dimension relevant operator in that minimal model). After
analyzing the spectra of several candidate minimal models,
we suggest that the end point of this RG flow is described
by the (3,8) minimal model with c ¼ −21=4.9 Let us note
that Mð2; 5Þ and Mð3; 8Þ are members of the series of
nonunitary minimal models Mðk; 3k − 1Þ.
In addition to the identity operator, the Mð3; 8Þ model

has three Virasoro primary fields which are Z2 odd and
three that are Z2 even. Comparing with the theory in 6 − ϵ
dimensions, we can tentatively identify the leading Z2 odd
operator as ϕ and the leading Z2 even one as σ. Obviously,
further work is needed to check if the stable fixed point
in 6 − ϵ dimensions with g�2 ¼ 6g�1=5þOðϵÞ continued
to ϵ ¼ 4 is described by the nonunitary minimal
model Mð3; 8Þ.
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APPENDIX A: SUMMARY OF
THREE LOOP RESULTS

The Feynman rules for our theory are depicted in Fig. 3,
where we introduced symmetric tensor coupling dαβγ and

counterterms ðδgÞαβγ, ðδzÞαβ with α; β; γ ¼ 0; 1;…; N as

d000 ¼ g2; dii0 ¼ di0i ¼ d0ii ¼ g1;

ðδgÞ000 ¼ δg2; ðδgÞii0 ¼ ðδgÞi0i ¼ ðδgÞ0ii ¼ δg1;

ðδzÞ00 ¼ δσ; ðδzÞii ¼ δϕ; ðA1Þ
where i ¼ 1;…; N. The general form of a Feynman diagram
in our theory could be schematically represented as

Feynman diagram ¼ Integral × Tensor structure factor:

ðA2Þ
The “Tensor structure factors” are products of the tensors
dαβγ and ðδgÞαβγ , ðδzÞαβ, with summation over the dummy
indices. Their values for different diagrams are represented
in Figs. 7 and 8 after the parentheses.10 The “Integrals”
already include symmetry factors and are the same as in the
usualφ3-theory; their values are listed in Figs. 7 and 8 before
the parentheses.

FIG. 3. Feynman rules.

FIG. 4. The Special KITE and ChT diagrams, the numbers
labeling each propagator denote its index.

9Note that this value is greater than the central charge of the
UV theoryMð3; 10Þ, which is equal to −44=5. For flows between
nonunitary theories the Zamolodchikov c-theorem does not hold,
and it is possible that cUV < cIR.

10To find the “Tensor structure factor”we used the fact that it is
a polynomial in N, so we calculated sums of products of dαβγ ,
ðδgÞαβγ , ðδzÞαβ explicitly for N ¼ 1; 2; 3; 4;…, using Wolfram
MATHEMATICA. Having answers for N ¼ 1; 2; 3; 4;… it is pos-
sible to restore the general N form.
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1. Counterterms

zϕ12 ¼ −
g21

3ð4πÞ3 ; zσ12 ¼ −
Ng21 þ g22
6ð4πÞ3 ; a13 ¼ −

g21ðg1 þ g2Þ
ð4πÞ3 ; b13 ¼ −

Ng31 þ g32
ð4πÞ3 ; ðA3Þ

zϕ14 ¼
g21

432ð4πÞ6 ðg
2
1ð11N − 26Þ − 48g1g2 þ 11g22Þ;

zσ14 ¼ −
1

432ð4πÞ6 ð2Ng41 þ 48Ng31g2 − 11Ng21g
2
2 þ 13g42Þ;

a15 ¼ −
1

144ð4πÞ6 g
2
1ðg31ð11N þ 98Þ − 2g21g2ð7N − 38Þ þ 101g1g22 þ 4g32Þ;

b15 ¼ −
1

48ð4πÞ6 ð4Ng51 þ 54Ng41g2 þ 18Ng31g
2
2 − 7Ng21g

3
2 þ 23g52Þ; ðA4Þ

zϕ16 ¼
g21

46656ð4πÞ9 ðg
4
1ðNð13N − 232Þ þ 5184ζð3Þ − 9064Þ þ g31g26ð441N − 544Þ

− 2g21g
2
2ð193N − 2592ζð3Þ þ 5881Þ þ 942g1g32 þ 327g42Þ;

zσ16 ¼ −
1

93312ð4πÞ9 ð2Ng61ð1381N − 2592ζð3Þ þ 4280Þ − 96Nð12N þ 11Þg51g2
− 3Ng41g

2
2ðN þ 4320ζð3Þ − 8882Þ þ 1560Ng31g

3
2 − 952Ng21g

4
2 − g62ð2592ζð3Þ − 5195ÞÞ;

a17 ¼
g21

15552ð4πÞ9 ð−g
5
1ðNð531N þ 10368ζð3Þ − 2600Þ þ 23968Þ

þ g41g2ð99N2 þ 2592ð5N − 6Þζð3Þ − 9422N − 2588Þ þ 2g31g
2
2ð1075N þ 2592ζð3Þ − 16897Þ

þ 2g21g
3
2ð125N − 5184ζð3Þ − 3917Þ − g1g42ð5184ζð3Þ þ 721Þ þ g52ð2592ζð3Þ − 2801ÞÞ;

b17 ¼ −
1

2592ð4πÞ9 ð2g
7
1Nð577N þ 713Þ − 48g61g2Nð31N − 59Þ þ g51g

2
2Nð423N þ 2592ζð3Þ þ 1010Þ

− g41g
3
2Nð33N − 1296ζð3Þ − 6439Þ − 27g31g

4
2Nð32ζð3Þ þ 11Þ − 301Ng21g

5
2 þ g72ð432ζð3Þ þ 1595ÞÞ: ðA5Þ

APPENDIX B: SAMPLE DIAGRAM
CALCULATIONS

1. Some useful integrals

Many of the diagrams listed in Fig. 7 are recursively
primitive, so they can be easily evaluated using the integral:

Iðα; βÞ ¼
Z

ddp
ð2πÞd

1

p2αðp − kÞ2β ¼
Ldðα; βÞ

ðk2Þαþβ−d=2 ; ðB1Þ

where

−
−

+

+

+

A B C

D E

FIG. 5. The LADDER diagram can be reduced to five master integrals.
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Ldðα;βÞ¼
1

ð4πÞd=2
Γðd

2
−αÞΓðd

2
−βÞΓðαþβ− d

2
Þ

ΓðαÞΓðβÞΓðd−α−βÞ : ðB2Þ

For the more complicated integrals, we use the
MATHEMATICA program FIRE [42], which uses integration-
by-parts relations to turn them into simpler “master integrals,”
which we then evaluate by hand.

There are two categories of diagrams which show up
quite frequently as subdiagrams, the “special KITE” dia-
grams and the “ChT” diagrams shown in Fig. 4.
The special KITE diagram is a two loop diagram

corresponding to the following integral:

SKðαÞ ¼
Z

ddp
ð2πÞd

ddq
ð2πÞd

1

p2ðpþ kÞ2q2ðqþ kÞ2ðp − qÞ2α :

ðB3Þ

Notice that the power of the middle propagator is arbitrary.
Via the Gegenbauer Polynomial technique as described in
[43], this integral can be expressed as an infinite sum of
gamma functions:

SKðαÞ ¼ −
2

ð4πÞd
1

ðk2Þ4þα−d
Γ2ðλÞΓðλ− αÞΓðαþ 1− 2γÞ

Γð2λÞΓð3λ− α− 1Þ

×

�
Γ2ð1=2ÞΓð3λ− α− 1ÞΓð2λ− αÞΓðαþ 1− 2λÞ

ΓðλÞΓð2λþ 1=2− αÞΓð1=2− 2λþ αÞ

þ
X∞
n¼0

Γðnþ 2λÞ
Γðnþ αþ 1Þ

1

ðnþ 1− λþ αÞ
�
; ðB4Þ

where λ ¼ d=2 − 1. In the case of d ¼ 6 − ϵ we have found
that, for example,

p p

0

p p p p

0 0

(a) (b) (c)

FIG. 6. The three orientations of the same diagram topology
correspond to different integrals.

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

×
{

Ng3
1(g

3
1 + 3g2

1g2 + 2g1g
2
2 + g3

2) + g6
2

g3
1((N + 2)g3

1 + 3g2
1g2 + g1g

2
2 + g3

2)

×
{

Ng3
1((N + 1)g3

1 + 2g2
1g2 + g1g

2
2 + 2g3

2) + g6
2

2g4
1(g1 + g2)

2

×
{

Ng2
1(Ng4

1 + 4g3
1g2 + g2

1g
2
2 + g4

2) + g6
2

2g3
1(2g

3
1 + Ng2

1g2 + g3
2)

×
{

Ng2
1(2g

4
1 + (N + 2)g3

1g2 + g1g
3
2 + g4

2) + g6
2

g3
1(g1 + g2)((N + 2)g2

1 + g2
2)

×
{

Ng3
1(2g

3
1 + 2g2

1g2 + g1g
2
2 + 2g3

2) + g6
2

g2
1((N + 2)g4

1 + 2(N + 1)g3
1g2 + g4

2)

×
{

Ng4
1(2g

2
1 + 5g2

2) + g6
2

4g4
1(g

2
1 + g2

2)

×
{

Ng2
1(4g

4
1 + Ng2

1g
2
2 + 2g4

2) + g6
2

4g4
1(Ng2

1 + g2
2)

×
{

Ng2
1((N + 2)g4

1 + 3g2
1g

2
2 + g4

2) + g6
2

g2
1((3N + 2)g4

1 + (N + 1)g2
1g

2
2 + g4

2)

×
{

Ng2
1(4g

4
1 + Ng2

1g
2
2 + 2g4

2) + g6
2

g2
1((N

2 + 4)g4
1 + 2Ng2

1g
2
2 + g4

2)

(c)

(b)

(a)

×
{

2Ng4
1 + Ng2

1g
2
2 + g4

2

g2
1((N + 2)g2

1 + g2
2)

×
{

Ng3
1(g1 + 2g2) + g4

2

2g3
1(g1 + g2)

×
{

Ng2
1 + g2

2

2g2
1

Value of ∂
∂p2 (sum of graphs)

− 1
(4π)9

1
9ε3

1 − 5ε
6

+ 7ε2

144

)

− 1
(4π)9

1
9ε3

1 − 7ε
12

+ 71ε2

288

)
1

(4π)9
1

108ε3
1 − 3ε

2
+ 103ε2

144

)
1

(4π)9
1

18ε3
1 − 11ε

12
+ 2ε2

9

)
1

(4π)9
1

54ε3
1 − 19ε

12
+ 121ε2

144

)
1

(4π)9
1

18ε2
1 + εζ(3)

2
− 7ε

8

)

− 1
(4π)9

1
648ε3

1 − 11ε
12

+ 23ε2

144

)

− 1
(4π)9

1
324ε3

1 − 11ε
4

+ 103ε2

36

)

− 1
(4π)9

1
324ε3

1 − 11ε
12

− 13ε2

144

)

− 1
(4π)3

1
6ε

1
(4π)6

1
6ε2

1 − ε
3

)

− 1
(4π)6

1
36ε2

1 − 11ε
12

)

FIG. 7. Values of derivatives of two-point diagrams. The upper row in parentheses is for hσσi and the lower is for hϕϕi.
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SK

�
2 −

d
2

�
¼ 1

ð4πÞd
1

ðk2Þ6−3d=2
�
−54
ϵ2

þ −71þ 24γ

1296ϵ
þ −14641þ 8520γ − 1440γ2 þ 120π2

15520
þ � � �

�
: ðB5Þ

The ϵ-expansion of the above result can also be verified indirectly with the MATHEMATICA packages MBTOOLS
implementing the Mellin-Barnes representation [44].
The ChT diagram is another variation of the KITE diagram. It corresponds to the integral:

ChTðα; βÞ ¼
Z

ddp
ð2πÞd

ddq
ð2πÞd

1

p2αðpþ kÞ2βq2ðqþ kÞ2ðp − qÞ2 : ðB6Þ

In this diagram, which has the same topology as the KITE diagram, one triangle has all propagators with index 1, and the
other two lines have arbitrary indices α and β. This diagram was evaluated in position space by Vasiliev et al. in [7]. Their
answer is

ChTðα; βÞ ¼ πdvðd − 2Þ
Γðd

2
− 1Þ

1

ðx2Þd=2−3þαþβ

×

�
vðαÞvð2 − αÞ

ð1 − βÞðαþ β − 2Þ þ
vðβÞvð2 − βÞ

ð1 − αÞðαþ β − 2Þ þ
vðαþ β − 1Þvð3 − α − βÞ

ðα − 1Þðβ − 1Þ
�
; ðB7Þ

where vðαÞ ¼ Γðd=2−αÞ
ΓðαÞ . For our purpose, we just need to Fourier transform this expression to momentum space.

We also need variations of the SK and ChT diagrams, with a particular index raised by 1, for example. However, we can
use FIRE to relate them to the original version of these diagrams.

2. Example of a two-point function diagram

We will evaluate the three loop ladder diagram which is the first diagram in Fig. 7(e). It corresponds to the integral:

LADDER ¼
Z

ddpddqddr
ð2πÞ3d

1

p2ðpþ kÞ2ðp − rÞ2r2ðrþ kÞ2ðr − qÞ2q2ðqþ kÞ2 ; ðB8Þ

where the loop momenta are p, q, and r. The external momentum is k. Using FIRE, it can be reduced to a sum of five master
integrals, denoted as MA;… ;ME:

LADDER ¼ 4ð2d − 5Þð3d − 8Þð9d2 − 65dþ 118ÞMA

ðd − 4Þ4k8 −
12ðd − 3Þð3d − 10Þð3d − 8ÞMC

ðd − 4Þ3k6

þ 32ðd − 3Þ2ð2d − 7ÞMB

ðd − 4Þ3k6 þ 4ðd − 3Þ2ME

ðd − 4Þ2k4 þ 3ðd − 3Þð3d − 10ÞMD

ðd − 4Þ2k4 : ðB9Þ

The diagrams corresponding to the master integrals are listed in Fig. 5. Among these master integrals, only MD is
nonprimitive, the rest can be calculated easily. However, if we integrate over the middle loop, we see that MD is in fact
related to the special KITE diagram SKð2 − d=2Þ. We have

MA ¼ Ldð1; 1ÞLdð1; 2 − d=2ÞLdð1; 3 − dÞ
ðk2Þ4−3d=2 ; MB ¼ ðLdð1; 1ÞÞ2Ldð1; 4 − dÞ

ðk2Þ5−3d=2 ;

MC ¼ ðLdð1; 1ÞÞ2Ldð1; 2 − d=2Þ
ðk2Þ5−3d=2 ; MD ¼ Ldð1; 1ÞSKð2 − d=2Þ; ME ¼ ðLdð1; 1ÞÞ3

ðk2Þ6−3d=2 : ðB10Þ

Plugging in d ¼ 6 − ϵ and expanding in ϵ, we find that

LADDER ¼ k2

ð4πÞ3d=2
�
−

2

9ϵ3
þ −115þ 36γ þ log k2

108ϵ2

þ −4043þ 18ð115 − 18γÞγ þ 18π2 − 18 log k2ð−115þ 36γ þ 18 log k2Þ
1296ϵ

þ � � �
�
: ðB11Þ
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FIG. 8. Values of three-point diagrams. The upper row in parentheses is for hσσσi and the lower is for hσϕϕi.
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3. Example of a three-point function diagram

We will evaluate the three loop diagram found in
Fig. 8(f). In order to employ the same techniques used
for the two-point functions, we impose that the momentum
running through the three points are p, −p, and 0, as a
three-point function with three arbitrary momenta is much
more difficult to compute.
However, since the momenta are asymmetric, it is

necessary to consider all three “orientations” of each
topology of the diagram. Notice that the tensor factors
mentioned in the previous section will also be different. As
an illustration, let us denote the three orientations of the

diagram we are considering by I1, I2, and I3. After taking
into account that one of the external momenta is zero, they
are each equivalent to a two-point function as shown in
Fig. 6. All lines have indices 1, except those with black
dots, which have indices 2.
I1 contains a subdiagram that is equivalent to ChTð1; 2Þ,

which can be evaluated easily using our formula before;
after that, the diagram is primitive. The other two diagrams
can be reduced via FIRE into the master integralsMA, MB,
MC, and MD as in the LADDER diagram. Again, in
d ¼ 6 − ϵ, we find that

I1 ¼
1

ð4πÞ3d=2
�

1

6ϵ3
þ 5 − 2γ − 2 log k2

8ϵ2
þ 173þ 18ðγ − 5Þγ − π2 þ 18 log k2ð−5þ 2γ þ log k2Þ

96ϵ
þ � � �

�
; ðB12Þ

I2 ¼
1

ð4πÞ3d=2
�

1

6ϵ3
þ 5 − 2γ − 2 log k2

8ϵ2
þ 125þ 18ðγ − 5Þγ − π2 þ 18 log k2ð−5þ 2γ þ log k2Þ

96ϵ
þ � � �

�
; ðB13Þ

I3 ¼
1

ð4πÞ3d=2
�

1

6ϵ3
þ 5 − 2γ − 2 log k2

8ϵ2
þ 125þ 18ðγ − 5Þγ − π2 þ 18 log k2ð−5þ 2γ þ log k2Þ

96ϵ
þ � � �

�
: ðB14Þ
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