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Extensive investigations show that QED3 exhibits dynamical fermion mass generation at zero temperature
when the fermion flavor N is sufficiently small. However, it seems difficult to extend the theoretical analysis
to finite temperature. We study this problem by means of the Dyson-Schwinger equation approach after
considering the effect of finite temperature or disorder-induced fermion damping. Under the widely used
instantaneous approximation, the dynamical mass displays an infrared divergence in both cases. We then
adopt a new approximation that includes an energy-dependent gauge boson propagator and obtain results for
dynamical fermion mass that do not contain infrared divergence. The validity of the new approximation is
examined by comparing it to the well-established results obtained at zero temperature.
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I. INTRODUCTION

It is well established that (3þ 1)-dimensional quantum
electrodynamics (QED) can describe the electromagnetic
interaction between charged elementary particles with
very high precision. QED defined on (2þ 1)-dimensional
space-time, dubbed QED3, is safer in the high-energy
region than its (3þ 1)-dimensional counterpart. In particu-
lar, QED3 is a superrenormalizable field theory and there-
fore free of ultraviolet divergence. Extensive investigations
have found that QED3 exhibits a number of interesting
physical properties, such as dynamical chiral symmetry
breaking (DCSB) [1–19], asymptotic freedom [2], and
permanent confinement [11,20,21]. Apparently, QED3 is
more like four-dimensional QCD than QED4. For this
reason, QED3 is often considered as a toy model of QCD4

in the context of particle physics. More interestingly, QED3

has proven in the past 20 years to be an effective low-
energy model for several strongly correlated condensed-
matter systems, including high-Tc cuprate superconductors
[22–33], spin-1=2 Kagome spin liquid [34,35], graphene
[36–38], quantum critical systems [39], and Kane-Mele
model with weak-extended Hubbard interaction [40].
Although QED3 can be well controlled in the ultraviolet

regime, it encounters infrared problems since both Dirac
fermions and U(1) gauge field are massless. For instance,
the theory exhibits infrared divergence if the free gauge
boson propagator is utilized in the perturbative calculations.
Appelquist et al. showed that such an infrared divergence
can be naturally erased by including dynamical screening
effect of massless fermions into the effective gauge boson

propagator [2]. Based on this scheme, Appelquist et al. [3]
investigated the Dyson-Schwinger equation (DSE) of
fermion self-energy function and found that the massless
fermions acquire a finite dynamical mass, which induces
DCSB, when their flavor is below certain threshold,
N < Nc. Most of the existing analytical and numerical
calculations [4–10,14–19] agree that the critical flavor is
Nc ≈ 3.5 at zero temperature.
In the application of QED3 to condensed matter systems,

DCSB is usually interpreted as the formation of Heisenberg
quantum antiferromagnetism [26,30–33]. It was found
that DCSB in QED3 with finite gauge boson mass can
still appear if the mass of the gauge boson is not large
enough [41]. This model can describe the coexistence
of antiferromagnetism and superconductivity in high-
temperature cuprate superconductors [41].
The fate of dynamical mass generation at finite temper-

ature [42–56] has also attracted considerable interest.
Notice that finite temperature QED3 is not only interesting
from the viewpoint of quantum field theory, but of practical
value since QED3 has wide applications in condensed
matter physics. An important problem is to estimate the
critical temperature Tc at which dynamical mass generation
is destroyed by thermal fluctuation.
Unfortunately, the study of dynamical mass generation

at finite temperature seems to be more difficult than the
case of zero temperature. A main obstacle is that the
Lorentz invariance is explicitly broken at finite temper-
ature. The integration over 3-momenta k ¼ ðk0; k1; k2Þ that
appears in the DSE is replaced by an integration over
2-momenta k ¼ ðk1; k2Þ and a summation over imaginary
frequency k0 ¼ ωn, where ωn is the Mastubara frequency
with n being an integer. As a consequence, the DSE
becomes much more complicated, so it is usually necessary
to make certain approximations to perform algebraic
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calculations. A number of different approximations have
been proposed to study dynamical mass generation in finite
temperature QED3 [42–46,49–55]. The most frequently
used one is the so-called instantaneous approximation,
which assumes that the gauge boson propagator is com-
pletely independent of energy,

Δμνðq0;qÞ → Δμνð0;qÞ: ð1Þ
In previous works [42–45,50–55], the transverse compo-
nent of gauge boson propagator, Δij, is usually ignored on
top of the instantaneous approximation, i.e.,

Δμνð0;qÞ → Δ00ð0;qÞ: ð2Þ

Under these approximations, the DSE for fermion mass
becomes much simpler and can be easily solved. However,
as shown in Ref. [46], the transverse component of gauge
boson propagator Δij, if incorporated in the DSE, induces
an infrared divergence at finite temperature. To obtain
convergent results, Lee proposed to simply neglect the
contribution from Δij [46].
However, neglecting the transverse component of gauge

boson propagator is actually problematic. An important
reason for QED3 to exhibit dynamical fermion mass gen-
eration is that the gauge interaction is long ranged, which is
guaranteed by the gauge invariance. If the gauge boson
acquires a finite mass, the dynamical fermion mass gen-
eration will be strongly suppressed [41]. At finite temper-
ature, the Lorentz invariance is explicitly broken, and then
the longitudinal and transverse components of gauge
boson propagator behave very differently [25–27,57–59]:
the former becomes short ranged due to thermal screening,
whereas the latter remains long ranged as a consequence of
gauge invariance. Therefore, the transverse component of
gauge boson propagator should play a more significant
role than the longitudinal component at finite temperatures.
This judgment is supported by the extensive recent analysis
of nontrivial properties induced by gauge interaction
[25–27,57–59]. Overall, the transverse component of gauge
boson propagator needs to be included in an appropriate
manner in the study of dynamical fermionmass generation at
finite temperature, which is the motivation of our work.
In this paper, we revisit the issue of dynamical mass

generation in finite temperature QED3. In order to obtain
physically meaningful results, we go beyond the widely
used instantaneous approximation and employ a new
approximation that ignores the energy dependence of
dynamical fermion mass, i.e., mðp0;pÞ → mð0;pÞ, but
maintains both the longitudinal and transverse components
of gauge boson propagator. Different form the instanta-
neous approximation, the new approximation does not
completely neglect the energy dependence of the gauge
boson. After performing extensive numerical computa-
tions, we find that the dynamical fermion mass is free of
divergence under the new approximation. We also examine

the validity of the new approximation by comparing to the
case of zero temperature and show that it is better than the
instantaneous approximation.
As aforementioned, QED3 can serve as an effective low-

energy field theory for several condensed matter systems
[22–33]. In these systems, there is always certain amount
of disorders, which couple to massless fermions and induce
a finite damping rate. Disorders are responsible to the
anomalous behaviors of a plenty of observable quantities
of interacting systems of Dirac fermions [60–62].
Therefore, it is also interesting to study dynamical mass
generation of QED3 in the presence of disorders. To
describe the influence of disorders, a finite fermion damp-
ing rate Γ is introduced to the fermion propagator [49]. As
is shown below, Γ plays analogous role as temperature T,
so its effect on dynamical mass generation can be studied in
a similar manner to the case of finite temperature.
The rest of paper is organized as follows. In Sec. II,

we give the Lagrangian and the relevant propagators. In
Sec. III, we show that the dynamical mass is divergent
under the instantaneous approximation if temperature or
damping rate is finite. In Sec. IV, we solve the DSE for
dynamical mass by invoking a new approximation and
find that the results are free of infrared divergence. The
nature of the infrared divergence is also discussed. In
Sec. V, we examine the validity of the new approximation
by comparing to the case of zero temperature. In Sec. VI,
we summarize the main results. Detailed calculations of
polarization functions are given in Appendix A.

II. MODEL AND FEYNMAN RULES

The Lagrangian density for QED3 with N flavors of
massless Dirac fermions is given by

L ¼
XN
i¼1

ψ̄ iði∂ þ eAÞψ i −
1

4
F2
μν: ð3Þ

The electromagnetic tensor is related to vector potential Aμ

as Fμν ¼ ∂μAν − ∂νAμ. The fermion is described by a four-
component spinor field ψ , whose conjugate spinor field
is ψ̄ ¼ ψ†γ0. The 4 × 4 gamma matrixes are defined as
ðγ0; γ1; γ2Þ ¼ ðiσ3; iσ1; iσ2Þ ⊗ σ3, which satisfy the stan-
dard Clifford algebra fγμ; γνg ¼ 2gμν with the metric being
gμν ¼ diagð−1;−1;−1Þ. In (2þ 1) dimensions, there are
two chiral matrices γ3 and γ5 [2,63],

γ3 ¼ i

�
0 I

−I I

�
; γ5 ¼ i

�
0 I

I 0

�
; ð4Þ

which anticommute with γ0, γ1, and γ2. The Lagrangian
shown in Eq. (3) respects a continuous Uð2NÞ chiral
symmetry ψ → eiθγ3;5ψ, where θ is an arbitrary constant.
Once a finite fermion mass is dynamically generated, the
global Uð2NÞ chiral symmetry is spontaneously broken
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down to its subgroup UðNÞ × UðNÞ. In this paper, we
consider a general large N and perform perturbative
expansion in powers of 1=N. For convenience, we work
in units with ℏ ¼ kB ¼ 1 and set the velocity vF ≡ 1.
In the Euclidian space, the free propagator of massless

fermions is

G0ðkÞ ¼
1

kμγμ
ð5Þ

at zero temperature. The free propagator of gauge boson
can be written as

Δð0Þ
μν ðqÞ ¼ 1

q2

�
δμν −

qμqν
q2

�
ð6Þ

in the Landau gauge. After including the dynamical
screening effect due to fermions, the effective gauge boson
propagator takes the form

ΔμνðqÞ ¼
1

q2 þ ΠðqÞ
�
δμν −

qμqν
q2

�
: ð7Þ

To the lowest order of 1=N expansion, the polarization
function can be obtained from the polarization tensor
through the relationship

ΠμνðqÞ ¼ Ne2
Z

d3k
ð2πÞ3 Tr½G0ðkÞγμG0ðkþ qÞγν�

¼ ΠðqÞ
�
δμν −

qμqν
q2

�
; ð8Þ

where ΠðqÞ ¼ αq with α ¼ Ne2
8

[3].
Pisarski [1] first carefully studied DCSB in QED3

by means of nonperturbative DSEapproach and showed
that DCSB takes place for any finite flavor N. However,
subsequent analysis of Appelquist et al. [3] found that
DCSB can occur only when the fermion flavor N is smaller
than a critical value Nc, which is Nc ¼ 32=π2 to the lowest
order of 1=N expansion. Nash [4] then examined the effect
of next-to-leading order correction and obtained a critical
flavor Nc ¼ ð4=3Þ32=π2. Pennington et al. [7,8] included
the wave renormalization function and claimed that DCSB
can be realized for any flavor N, although the correspond-
ing dynamical fermion mass decreases exponentially
with increasing N. Nevertheless, their analysis ignored
the influence of wave renormalization function on the
polarization. Later, Maris [9] studied DCSB by solving a
set of self-consistent DSEs for fermion propagator and
polarization, which contain vertex corrections and therefore
satisfy the Ward-Takahashi (WT) identities. The calcula-
tions of Ref. [9] arrived at a finite critical flavor Nc ≈ 3.3,
which is close to that of Ref. [3]. The key difference
between the treatments of Pennington et al. [7] and Maris
[9] is that the latter included the interaction correction to

the polarization, whereas the former did not. It turns out
that an appropriate approximation plays a crucial role in
the DSE analysis of DCSB. More refined calculations of
Fischer et al. revealed a finite critical flavor Nc ≈ 4 [10].
The gauge invariance of Nc is also discussed [4,11,12].
Apart from the DSE approach, this problem can be studied
by the renormalization group method, which found that
3 < Nc < 4 [14]. The critical flavor Nc obtained in lattice
Monto Carlo simulations [15,16] is much smaller than
that obtained by means of DSEs. However, Gusynin and
Reenders argued that the difference is attributed to the finite
volume effect introduced in lattice simulations [17]. It is
fairy to say that, although there is still some debate
[11,12,19], most studies have obtained a finite critical
flavor for DCSB in QED3, which is roughly Nc ≈ 3.5
at T ¼ 0.
As we go to finite temperature, the dynamical fermion

mass is expected to be rapidly suppressed by thermal
fluctuation. The temperature scale Tc at which the dynami-
cal mass vanishes defines the critical temperature. At
T ≠ 0, we write the fermion propagator in the standard
Matsubara formalism as

Gðk0;kÞ ¼
1

ðk0 þ Γsgnðk0ÞÞγ0 þ γ · kþm0

; ð9Þ

where k0 ¼ ð2nþ 1ÞπT with n being an integer. Here, we
introduce a constant Γ to represent the fermion damping
rate generated by disorder scattering. This quantity mea-
sures the strength of the fermion damping effect. For more
explanation of the origin and the physical effect of the
constant Γ, please see Ref. [49]. To the leading order of
1=N-expansion, the polarization tensor is given by

Πμνðq0;q; T;m0;ΓÞ ¼
Ne2

β

Xþ∞

n¼−∞

Z
d2k
ð2πÞ2 Tr½Gðk0;kÞ

× γμGðk0 þ q0;kþ qÞγν�; ð10Þ

where q0 ¼ 2n0πT with n0 being an integer and β ¼ 1
T. The

effective propagator of gauge boson now becomes

Δμνðq0;qÞ ¼
Aμν

q20 þ q2 þΠAðq0;qÞ
þ Bμν

q20 þ q2 þΠBðq0;qÞ
;

ð11Þ
where

Aμν ¼
�
δμ0 −

qμq0
q2

�
q2

q2

�
δ0ν −

q0qν
q2

�
; ð12Þ

Bμν ¼ δμi

�
δij −

qiqj
q2

�
δjν: ð13Þ

Aμν and Bμν are orthogonal and satisfy
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Aμν þ Bμν ¼ δμν −
qμqν
q2

: ð14Þ

The functions ΠA and ΠB are defined as

ΠA ¼ q2

q2
Π00; ΠB ¼ Πii −

q20
q2

Π00: ð15Þ

The calculational details of the relevant polarization func-
tions are shown in Appendix A.
In the following, we consider two approximations,

namely the popular instantaneous approximation and a
new approximation to be explained below. We neglect the
energy dependence of the polarization functions and also
the feedback of dynamical mass to the polarization func-
tions. First, in the limit that q0 ¼ 0, Γ ¼ 0, and m0 ¼ 0,
the polarization functions are

ΠAðq; TÞ ¼
16αT
π

Z
1

0

dx ln

�
2 cosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2

p
2T

��
;

ð16Þ

ΠBðq; TÞ ¼
8α

π

Z
1

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2

q
tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2

p
2T

�
:

ð17Þ

We have used α ¼ Ne2
8
. Second, in the limit that q0 ¼ 0,

T ¼ 0, and m0 ¼ 0, the polarization functions are

ΠAðq;ΓÞ ¼
16α

π2

�
Γ ln

�
Λ
Γ

�
þ Γ

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4Γ2

p
2jqj

× ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4Γ2

p
− jqjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ 4Γ2
p

þ jqj

��

þ
Z

1

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2

q

×arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2

p
Γ

��
; ð18Þ

ΠBðq;ΓÞ ¼
16α

π2

Z
1

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2

q

× arctan
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞq2
p

Γ

�
: ð19Þ

From these expressions, we can see that the fermion
damping rate Γ plays a very similar role to temperature
T, which allows us to study the effects of temperature
and fermion damping using the same scheme. To simplify
later calculations, we can further approximate Eqs. (16) and
(17) by [44]

ΠAðq; TÞ ≈ α

�
jqj þ c1T exp

�
−

jqj
c1T

��
; ð20Þ

ΠBðq; TÞ ≈ αjqj tanh
�
c2jqj
T

�
; ð21Þ

where c1 ¼ 16 ln 2=π and c2 ¼ 2=3π. Analogously,
Eqs. (18) and (19) can be approximated by

ΠAðq;ΓÞ ≈
16αΓ
π2

ln

�
Λ
Γ

�
þ 2αjqj

π
arctan

�
c3jqj
Γ

�
; ð22Þ

ΠBðq;ΓÞ ≈
2αjqj
π

arctan
�
c3jqj
Γ

�
; ð23Þ

where c3 ¼ 4=3π. It can be checked numerically that
expressions Eqs. (20)–(23) are very good approximations
for both the high- and low-momentum behaviors of
Eqs. (16)–(19). In the following sections, we use
Eqs. (20)–(23) to analyze and numerically solve the
DSEs for dynamical fermion mass at finite temperature
and/or finite fermion damping rate.

III. DSE UNDER INSTANTANEOUS
APPROXIMATION

In this section, we present the DSE for dynamical mass
under the widely used instantaneous approximation. We
show that the solutions of DSE are divergent in the infrared
region whenever T ≠ 0 and are therefore ill-defined. Such
an infrared divergence also exists if T ¼ 0 but Γ ≠ 0.
The free fermion propagator is

G0ðk0;kÞ ¼
1

ðk0 þ Γsgnðk0ÞÞγ0 þ γ · k
: ð24Þ

Due to gauge interaction, the fermion may become mas-
sive, and the propagator is renormalized to

Gðk0;kÞ ¼
1

ðk0 þ Γsgnðk0ÞÞγ0 þ γ · kþmðk0;k; T;ΓÞ
:

ð25Þ

Here, to the lowest order of 1=N expansion, we neglect the
wave renormalization function. Now,G0ðk0;kÞ is related to
Gðk0;kÞ through the following DSE,

G−1ðp0;pÞ ¼ G−1
0 ðp0;pÞ þmðp0;pÞ; ð26Þ

where

mðp0;pÞ ¼
e2

β

X
k0

Z
d2k
ð2πÞ2 γμGFðk0;kÞγνΔμνðq0;qÞ

ð27Þ
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with q0 ¼ p0 − k0 and q ¼ p − k. Substituting Eqs. (24) and (25) into Eq. (27) and then giving an explicit T and Γ to the
fermion mass, we obtain

mðp0;p; T;ΓÞ ¼
e2

β

X
k0

Z
d2k
ð2πÞ2

mðk0;k; T;ΓÞ
ðk0 þ Γsgnðk0ÞÞ2 þ k2 þm2ðk0;k; T;ΓÞ

×

�
1

q20 þ q2 þ ΠAðq0;q; T;ΓÞ
þ 1

q20 þ q2 þ ΠBðq0;q; T;ΓÞ
�
: ð28Þ

In previous studies [42–45,50–55], the key assumption
beneath the instantaneous approximation is to completely
ignore the energy dependence of gauge boson propagator.
Apart from this approximation, the transverse component
of gauge boson propagator is widely neglected, i.e.,

Δμνðq0;qÞ → Δ00ð0;qÞ: ð29Þ

Now we follow the instantaneous approximation and drop
the energy dependence of gauge boson propagator. Never-
theless, as illustrated in recent works on the nontrivial
properties of QED3 [25–27,57–59], the transverse compo-
nent of gauge interaction plays a more important role than
the longitudinal component at finite temperature, since
the latter becomes short ranged after acquiring an effective

thermal mass proportional to T. If T ¼ 0 and Γ ≠ 0, the
longitudinal part of gauge interaction also becomes short
ranged due to static screening caused by disorder scatter-
ing. In any case, the gauge invariance ensures that the
transverse component of gauge interaction is strictly long
ranged. It is therefore not appropriate to neglect the
transverse component. For completeness, here we keep
them both and write the gauge boson propagator as

Δμνð0;qÞ ¼
δμ0δ0ν

q2 þ ΠAð0;qÞ
þ
δμiðδij − qiqj

q2 Þδjν
q2 þ ΠBð0;qÞ

: ð30Þ

The corresponding DSE becomes

mðp; T;ΓÞ ¼ e2

β

X
k0

Z
d2k
ð2πÞ2

mðk; T;ΓÞ
ðk0 þ Γsgnðk0ÞÞ2 þ k2 þm2ðk; T;ΓÞ

�
1

q2 þ ΠAð0;q; T;ΓÞ
þ 1

q2 þ ΠBð0;q; T;ΓÞ
�
: ð31Þ

Once the instantaneous approximation is adopted, the
dynamical mass m completely loses its dependence on
energy. Therefore, the frequency summation in the DSE
can be written as

S1 ¼
X
k0

1

½ðk0 þ Γsgnðk0ÞÞ2 þ k2 þm2ðk; T;ΓÞ�

¼
�
β

2π

�
2 X∞
n¼−∞

1

½ðnþ 1
2
þ Xsgnðnþ 1

2
ÞÞ2 þ Y2� ; ð32Þ

where X ¼ β
2π Γ, and Y ¼ β

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2ðk; T;ΓÞ

p
. With the

help of an identity

SðX; YÞ ¼
X∞
n¼0

1

ðnþ XÞ2 þ Y2

¼ 1

2Yi
½ψðX þ iYÞ − ψðX − iYÞ� ð33Þ

where ψðzÞ is Digamma function, we get

S1 ¼
β2

2π2
X∞
n¼0

1

½ðnþ 1
2
þ XÞ2 þ Y2�

¼ β2

2π2Y
Im

�
ψ

�
1

2
þ X þ iY

��
: ð34Þ

Carrying out frequency summation leads to

mðp;T;ΓÞ¼8α

N

Z
d2k
ð2πÞ2

mðk;T;ΓÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2ðk;T;ΓÞ

p
×
1

π
Im
�
ψ

�
1

2
þ Γ
2πT

þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2ðk;T;ΓÞ

p
2πT

��

×

�
1

q2þΠAð0;q;T;ΓÞ
þ 1

q2þΠBð0;q;T;ΓÞ
�
:

ð35Þ

This equation can be further simplified. First, we assume
Γ ¼ 0 and T ≠ 0 and then rewrite the DSE as
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mðp; TÞ ¼ 4α

N

Z
d2k
ð2πÞ2

mðk; TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2ðk; TÞ

p
× tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2ðk; TÞ

p
2T

�

×

�
1

q2 þ ΠAðq; TÞ
þ 1

q2 þ ΠBðq; TÞ
�
; ð36Þ

where Im½ψð1
2
þ iξ

2πTÞ� ¼ π
2
tanhð ξ

2TÞ is used in the derivation.
Second, at T ¼ 0 and Γ ≠ 0, we have

mðp;ΓÞ ¼ 8α

N

Z
d2k
ð2πÞ2

mðk;ΓÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2ðk;ΓÞ

p
×
1

π
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2ðk;ΓÞ

p
Γ

�

×

�
1

q2 þ ΠAðq;ΓÞ
þ 1

q2 þ ΠBðq;ΓÞ
�
; ð37Þ

where limT→0Im½ψð1
2
þ Γþiξ

2πT Þ� ¼ arctanðξΓÞ. The similarity
between the above two equations can be clearly seen. At
T ¼ 0, the constant fermion damping rate Γ can be
considered as certain effective temperature. This is an
important reason for us to discuss these two cases simulta-
neously in this paper.
To solve the DSE, it is convenient to introduce an

infrared cutoff μ. This amounts to assume that the system
has a finite volume [17,64]. For finite μ, the dynamical
fermion mass obtained from DSE is always free of infrared
divergence. Our aim is to examine whether the dynamical
mass is still well defined as μ → 0. We employ an infrared
cutoff μ1 for momentum jkj and replace jqj with jqj þ μ2.
Usually, μ1 and μ2 should satisfy μ1 ∼ μ2. For simplicity, we
assume μ1 ¼ μ2 ¼ μ. Now the DSE at Γ ¼ 0 and T ≠ 0
becomes

mðp; TÞ ¼ α

Nπ2

Z
Λ

μ
djk∥kj

Z
2π

0

dφ
mðk; TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2ðk; TÞ
p tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2ðk; TÞ

p
2T

�

×

�
1

ðjqj þ μÞ2 þ ΠAðjqj þ μ; TÞ þ
1

ðjqj þ μÞ2 þ ΠBðjqj þ μ; TÞ
�
; ð38Þ

where φ is the angle between k and p. As usual, we choose
Λ ¼ α [3]. The DSE at T ¼ 0 and Γ ≠ 0 can be transformed
analogously.
For different finite temperatures, the dynamical mass at

the lowest momentum μ with N ¼ 2 and N ¼ 3 is shown in
Figs. 1(a) and 1(b), respectively. As μ → 0, mðμÞ does not
converge to a finite value, but is divergent. As T further
decreases, mðμÞ grows more slowly, but still divergent
at finite T. For different values of Γ, the relations
between mðμÞ and μ with N ¼ 2 and N ¼ 3 are displayed
in Figs. 2(a) and 2(b), respectively. Numerical calculations
show that mðμÞ is ill defined as μ → whenever Γ ≠ 0.
Apparently, the instantaneous approximation leads to
divergent results.

IV. DYNAMICAL MASS GENERATION
UNDER A NEW APPROXIMATION

We have shown in the last section that the widely used
instantaneous approximation leads to infrared divergence in
the dynamical fermion mass obtained at finite temperature
or in the presence of a finite fermion damping rate, when
both the longitudinal and transverse components of gauge
boson propagator are adopted. It is therefore necessary to
go beyond this approximation and seek a new approxima-
tion that could yield convergent results. We find it very
helpful to employ a treatment utilized by Ref. [65] in the

study of excitonic insulating transition in graphene
[64–68]. The key assumption of this treatment is to neglect
the energy dependence of dynamical fermion mass, which
was shown [65] to generate physically reliable dynamical
mass for Dirac fermions.
Let us start from the DSE given by (28). Now we assume

the dynamical fermion mass does not depend on energy,
namely

mðp0;p; T;ΓÞ → mðp; T;ΓÞ: ð39Þ

After making this approximation, the DSE (28) can be
written in the following form:

mðp; T;ΓÞ ¼ 8α

Nβ

X
k0

Z
d2k
ð2πÞ2

×
mðk; T;ΓÞ

ðk0 þ Γsgnðk0ÞÞ2 þ k2 þm2ðk; T;ΓÞ

×

�
1

k20 þ q2 þ ΠAðk0;q; T;ΓÞ

þ 1

k20 þ q2 þ ΠBðk0;q; T;ΓÞ
�
: ð40Þ

Notice the effective gauge boson propagator still retains an
explicit energy dependence, which is thus different from
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the instantaneous approximation. However, the summation
over k0 cannot be performed exactly due to the complicated
k0 dependence of polarization functions. To further sim-
plify the DSE, we drop the energy dependence of polari-
zation functions, i.e.,

ΠAðk0;q; T;ΓÞ → ΠAð0;q; T;ΓÞ; ð41Þ

ΠBðk0;q; T;ΓÞ → ΠBð0;q; T;ΓÞ: ð42Þ

The DSEs then can be formally written as

mðp; TÞ ¼ 8α

Nβ

X
k0

Z
d2k
ð2πÞ2

mðk; TÞ
k20 þ k2 þm2ðk; TÞ

×

�
1

k20 þ q2 þ ΠAðq; TÞ

þ 1

k20 þ q2 þ ΠBðq; TÞ
�

ð43Þ

in the case of T ≠ 0 and Γ ¼ 0 and to

mðp;ΓÞ ¼ 8α

N

Z
dk0
2π

×
Z

d2k
ð2πÞ2

mðk;ΓÞ
ðk0 þ Γsgnðk0ÞÞ2 þ k2 þm2ðk;ΓÞ

×

�
1

k20 þ q2 þ ΠAðq;ΓÞ

þ 1

k20 þ q2 þ ΠBðq;ΓÞ
�

ð44Þ

in the case of Γ ≠ 0 and T ¼ 0. The infrared behaviors of
these two equations will be further analyzed later. It is now
straightforward to sum over k0, which leads us to the
following expressions:
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FIG. 1 (color online). Relationship between mðμÞ=α and μ=α for different temperatures at Γ ¼ 0 with N ¼ 2; 3 in (a) and (b).
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FIG. 2 (color online). Relationship between mðμÞ=α and μ=α for different Γ at T ¼ 0 with N ¼ 2; 3 in (a) and (b), respectively.

INFRARED BEHAVIOR OF DYNAMICAL FERMION MASS … PHYSICAL REVIEW D 91, 045006 (2015)

045006-7



mðp; TÞ ¼ 4α

N

Z
d2k
ð2πÞ2

(
mðk; TÞ

q2 þ ΠAðjqj; TÞ − k2 −m2ðk; TÞ

"
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2ðk; TÞ
p tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2ðk; TÞ

p
2T

�

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ ΠAðq; TÞ
p tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ΠAðq; TÞ

p
2T

�#
þ ½ΠAðq; TÞ → ΠBðq; TÞ�

)
; ð45Þ

mðp;ΓÞ ¼ 8α

Nπ

Z
d2k
ð2πÞ2

�
mðk;ΓÞ

ðΓ2 þ k2 þm2ðk;ΓÞ − q2 − ΠAðq;ΓÞÞ2 þ 4Γ2ðq2 þ ΠAðq;ΓÞÞ

×

�
Γ2 − k2 −m2ðk;ΓÞ þ q2 þ ΠAðq;ΓÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2ðk;ΓÞ
p �

π

2
− arctan

�
Γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2ðk;ΓÞ
p ��

þ π

2

Γ2 þ k2 þm2ðk;ΓÞ − q2 − ΠAðq;ΓÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ΠAðq;ΓÞ

p − Γ ln

�
Γ2 þ k2 þm2ðk;ΓÞ

q2 þ ΠAðq;ΓÞ
��

þ ½ΠAðq;ΓÞ → ΠBðq;ΓÞ�
�
: ð46Þ

Following the approach used in Sec. III, we introduce an
infrared cutoff μ to Eqs. (46) and (46) and then solve these
equations numerically. In the case that T ≠ 0 and Γ ¼ 0,
the dependence of dynamical mass mðμÞ on μ at finite T
with N ¼ 2 and N ¼ 3 is shown in Figs. 3(a) and 3(b),
respectively. As the infrared cutoff vanishes, μ → 0, mðμÞ
is saturated to certain finite values, which means that the
infrared divergence encountered under the instantaneous
approximation does not exist under the new approximation.
Analogous calculations can be carried out in the case that
T ¼ 0 and Γ ≠ 0. We display the dependence of mðμÞ on μ
with N ¼ 2 and N ¼ 3 in Figs. 4(a) and 4(b), respectively.
It is easy to see that mðμÞ also approaches finite values as
μ → 0. Apparently, the new approximation adopted in this
section leads to convergent results for the dynamical
fermion mass and is therefore more reliable than the
instantaneous approximation. We fix the infrared cutoff
at μ ¼ 10−12 and calculate the dynamical gap mðjpjÞ under

the new approximation. The calculated mðjpjÞ under the
new approximation at different values of T or different
values of Γ is shown in Figs. 5(a) and 5(b), respectively.
Let us now analyze the origin of the infrared divergence.

At T ≠ 0 and Γ ¼ 0, the DSE has the form

mðp0;p; TÞ ¼
e2

β

X
q0¼2nπT

Z
d2q
ð2πÞ2

mðk0;k; TÞ
k20 þ k2 þm2ðk0;k; TÞ

×

�
1

q20 þ q2 þ ΠAðq0;q; TÞ

þ 1

q20 þ q2 þ ΠBðq0;q; TÞ
�
: ð47Þ

Since m is finite after dynamical mass generation and
ΠAð0; 0; TÞ ∝ T in the low energy limit, the terms appear-
ing in the first and second lines of the integral kernel are
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FIG. 3 (color online). Relation between mðμÞ=α and μ=α for different T with N ¼ 2; 3 in (a) and (b). Results are obtained under the
new approximation.
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safe in the infrared region. However, the term appearing
in the third line contains a potential infrared divergence.
To make this transparent, we divide the summation over k0
as follows:

I1 ∼
X

q0¼2nT

Z
d2q
ð2πÞ2

1

q20 þ q2 þ ΠBðq0;q; TÞ

∼
X

q0¼2nTðn≠0Þ

Z
d2q
ð2πÞ2

1

q20 þ q2 þ ΠBðq0;q; TÞ

þ
Z

d2q
ð2πÞ2

1

q2 þ ΠBðq; TÞ
: ð48Þ

Notice that q0 ¼ 2nTðn ≠ 0Þ is always finite at finite T
whenever n ≠ 0, so the first term does not yield any

infrared divergence. In contrast, the second term is danger-
ous because ΠBðq; TÞ ¼ a1q2 with a1 ∝ 1

T for small
momenta. We now simply focus on the potential divergent
term and find that

Z
d2q
ð2πÞ2

1

q2 þ ΠBðq; TÞ
∼
Z

d2q
ð2πÞ2

1

cq2

∼
1

c

Z
Λ

μ

djqj
jqj ∼

1

c
ln

�
Λ
μ

�
;

where c ¼ 1þ a1. It is clear that this term is divergent
as the infrared cutoff μ → 0. From the above analysis, we
see that the infrared divergence of DSE comes from the
zero-energy transfer processes mediated by the singular
transverse component of gauge boson propagator. Lee [46]
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FIG. 4 (color online). Relation between mðμÞ=α and μ=α for different Γ with N ¼ 2; 3 in (a) and (b). Results are obtained under the
new approximation.
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noticed the existence of infrared divergence and then
simply neglected the transverse component of gauge boson
propagator. The same strategy is widely utilized in other
works [42–45,50–55].
More recently, Lo and Swanson [69] also stressed the

existence of infrared divergence and proposed to remove
this divergence by choosing an appropriate temperature-
dependent gauge parameter. Their approach is basically
equivalent to considering the following DSE,

mðp0;p; TÞ ¼
e2

β

Z
d2q
ð2πÞ2

mðk0;k; TÞ
k20 þ k2 þm2ðk0;k; TÞ

×
� X
q0¼2nπT

1

q20 þ q2 þ ΠAðq0;q; TÞ

þ
X

q0¼2nπTðn≠0Þ

1

q20 þ q2 þ ΠBðq0;q; TÞ
�
;

which ignores the zero frequency (n ¼ 0) contribution of
the transverse component of gauge boson propagator.
Careful numerical computation of this equation is interest-
ing, but challenging since it is hard to sum over n and at the
same time integrate over q with high precision. This is
subjected to future investigation.
Under the new approximation, the DSE of dynamical

mass is simply Eq. (43). The denominator of the kernel of
this equation contains a factor of k20 ¼ ðð2nþ 1ÞπTÞ2,
whose minimum is π2T2. We may consider this term as
an effective thermal mass of gauge boson, i.e., ma ∝ π2T2,
which serves as an infrared regulator and eliminates the
potential infrared divergence of the dynamical fermion
mass. This thermal mass exists only at finite T and vanishes
naturally as T → 0. To examine to what extent the new
approximation is valid, we show in the next section that
Eq. (43) leads to results qualitatively consistent with those
obtained at T ¼ 0 [3].
We then turn to the case of finite fermion damping

rate. At T ¼ 0, the DSE is given by Eq. (44). The potential
infrared divergence can only come from the second term in
the bracket. The most singular part is represented by

I2 ∼
Z

dq0
2π

Z
d2q
ð2πÞ2

1

q20 þ q2 þ ΠBðq0;q;ΓÞ
: ð49Þ

In order to analyze potential infrared divergence, we
replace ΠBðq0;q;ΓÞ with ΠBðq;ΓÞ and then

I2 ∼
Z

dq0
2π

Z
d2q
ð2πÞ2

1

q20 þ q2 þ ΠBðq;ΓÞ
: ð50Þ

For small momenta, ΠBðq;ΓÞ behaves as ΠBðq;ΓÞ ¼ a2q2

with a2 ∝ 1
Γ. It is clear that the potential infrared divergence

can be represented by

I2 ∼
Z

dq0
2π

Z
d2q
ð2πÞ2

1

q20 þ c0q2
¼ 1

2
ffiffiffiffi
c0

p
Z

d2q
ð2πÞ2

1

jqj
¼ 1

4π
ffiffiffiffi
c0

p
Z

Λ

μ
djqj ¼ 1

4π
ffiffiffiffi
c0

p ðΛ − μÞ; ð51Þ

where c0 ¼ 1þ a2. As μ → 0, I2 is definitely not divergent.
This property should be fulfilled no matter what approxi-
mation is used to calculate the DSE.
Under the instantaneous approximation, the DSE is

represented by Eq. (37), which contains the following
singular contribution:

I3 ∼
Z

d2q
ð2πÞ2

1

q2 þ ΠBðq;ΓÞ
¼ 1

2πc0
ln

�
Λ
μ

�
: ð52Þ

This function is divergent as μ → 0. Apparently, the
instantaneous approximation brings an artificial infrared
divergence that should not exist.
Under the new approximation proposed by us, the DSE

is given by Eq. (44). The only possible singular part can be
simply written as

I4 ∼
Z

dk0
2π

Z
d2q
ð2πÞ2

1

k20 þ q2 þ ΠBðq;ΓÞ
ð53Þ

∼ ¼ 1

4π
ffiffiffiffi
c0

p ðΛ − μÞ; ð54Þ

which is not divergent and well consistent with Eq. (51).

V. VALIDITY OF NEW APPROXIMATION

In Sec. IV, we have adopted a new approximation to
study the DSE for dynamical fermion mass in the presence
of finite temperature or finite fermion damping. Compared
with the popular instantaneous approximation, the main
advantage of the new approximation is that it retains both
the longitudinal and transverse components of gauge
boson propagator and at the same time leads to physically
meaningful, convergent results. To further see this point, it
is now interesting to make a more straightforward com-
parison between these two approximations.
In this section, we consider zero temperature QED3 in

the clean limit, namely T ¼ Γ ¼ 0. This model has already
been extensively investigated, and the dynamical mass
obtained from DSE is free of infrared divergence, which
then can be considered as a reference to examine the
reliability of the results obtained at finite temperature.
For an approximation to be reliable, it should work well at
both zero and finite temperatures. As T → 0,mðTÞ ought to
approach a well-defined quantity mð0Þ, which should be
free of infrared divergence and as close in quantity as
possible to that obtained directly at T ¼ 0. We now
examine whether the new approximation is valid according
to this criterion.
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If one neglects the feedback of fermion mass to the
polarization functions, the DSE to the lowest order of
1=N-expansion is known to be [3]

mðpÞ ¼ 4α

N

Z
d3k
ð2πÞ3

mðkÞ
k2 þm2ðkÞ

1

q2 þ ΠðqÞ ;

ð55Þ

with ΠðqÞ ¼ αq. This equation was first solved in Ref. [3],
and the solution is very well known. Under the instanta-
neous approximation, the DSE is simplified to

mðpÞ ¼ 8α

N

Z
d2k
ð2πÞ2

mðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þmðkÞ

p 1

q2 þ ΠðqÞ ; ð56Þ

with ΠðjqjÞ ¼ αjqj. Under the new approximation, the
corresponding DSE is

mðpÞ ¼ 4α

N

Z
d2k
ð2πÞ2

mðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2ðkÞ

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ΠðqÞ

p
×

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2ðkÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ΠðqÞ

p ; ð57Þ

where ΠðqÞ also equals to αjqj. The dynamical fermion
mass mðμÞ as a function μ obtained in three cases is shown
in Fig. 6(a), represented by lines with different colors.
We notice that mðμÞ is saturated to finite values in all of
these three cases when μ → 0. However, the fermion mass
obtained in the new approximation is closer to that obtained
directly from Eq. (55) than the instantaneous approxima-
tion. It seems that both of these two approximations lead to
convergent results for dynamical mass. Nevertheless, we
still need to examine whether these results are robust
against higher order corrections.

We then include the feedback of dynamical fermion mass
to the polarization. The polarization appearing in Eq. (55)
becomes

Πðq;m0Þ ¼
8αq2

π

"
m0

2q2
þ q2 − 4m2

0

4q3

×arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

q2 þ 4m2
0

s !#
; ð58Þ

and the polarization appearing in Eqs. (56) and (57) can be
obtained by replacing q of Πðq;m0Þ with jqj. In addition,
m0 is substituted by mðμÞ. The dependence of dynamical
mass mðμÞ on μ is depicted in Fig. 6(b). We find that mðμÞ
diverges as μ → 0 under the instantaneous approximation.
Nevertheless,mðμÞ obtained in the other two cases does not
exhibit infrared divergence and remains finite as μ → 0.
These results further demonstrate that the instantaneous
approximation yields unphysical results and that the new
approximation is more reliable.

VI. SUMMARY AND DISCUSSION

In this paper, we have studied dynamical fermion mass
generation in QED3 after including the effects of finite
temperature or finite fermion damping rate. Many previous
DSE calculations of dynamical fermion mass adopted an
instantaneous approximation, which is often accompanied
by simply ignoring the transverse component of gauge
interaction [42–45,50–55]. As already explained in the
context, at finite temperature or at a finite fermion damping
rate, the longitudinal component of gauge interaction
becomes short ranged due to static screening, whereas
the transverse component of gauge interaction remains
long ranged as required by the local gauge invariance. It is
therefore not appropriate to ignore the more important
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FIG. 6 (color online). Dependence of mðμÞ=α on μ=α at T ¼ 0 (a) neglecting and (b) including the feedback of mðμÞ to the
polarization.
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contribution of gauge interaction. However, we have shown
that, if one adopts the instantaneous approximation and
meanwhile includes the complete gauge boson propagator,
the dynamical fermion mass exhibits infrared divergence.
We have revisited this problem and employed a new

approximation to calculate the DSE for dynamical fermion
mass. Under the new approximation, both the longitudinal
and transverse components of gauge interaction are incor-
porated, and the results obtained from in the DSE are free
of infrared divergence. To further examine the validity of
the new approximation, we have to also make a comparison
to the results obtained directly at zero temperature. In
summary, our calculations have shown that the new
approximation leads to more reliable results for the
dynamical fermion mass than the widely used instanta-
neous approximation.
The existence of infrared divergence is not special to the

issue of dynamical mass generation in finite temperature
QED3. Indeed, similar divergence appears in a number of
interacting gauge field theories. For instance, Lee calcu-
lated the fermion damping rate caused by gauge interaction
within an effective nonrelativistic U(1) gauge field theory
and found non-Fermi liquid behavior at zero temperature
[70]. Nevertheless, the fermion damping rate diverges at
finite temperature [70]. Recently, analogous divergence is
also found in QED3 defined at finite temperature and finite
chemical potential [58]. We hope the approach proposed
and used in this paper could provide useful insight into this
problem.
Confinement is an important feature of QED3. It is

known from previous studies [11,20,21] that whether this
model is confining depends crucially on the behavior of the
polarization function in the low energy regime, which is in

turn determined by the dynamical fermion mass. It would
be interesting to apply the new approximation proposed
here to carefully calculate the polarization function at
finite T by including the impact of dynamical fermion
mass and then to evaluate the critical temperature for
the confinement-deconfinement transition, following the
schemes presented in Refs. [11,20,21]. It would also be
interesting to examine whether confinement and dynamical
fermion mass generation take place simultaneously by
analyzing the behavior of wave function renormalization
[11]. To address these issues, one needs to incorporate the
wave function renormalization and the vertex functions in
the DSEs, which are subjected to future research.
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APPENDIX: CALCULATIONS OF
POLARIZATION FUNCTIONS

In the Appendix, we present the detailed calculations for
the polarization functions in the presence of finite temper-
ature T and finite fermion damping rate Γ. The calculations
are performed within the standard Matsubara formalism for
finite temperature quantum field theory.

1. Expression for general k0 and general Γ

Starting from the effective fermion propagator given by
Eq. (9), we write the polarization functions Π00 and Πii in
the following forms

Π00ðq0;q; T;m0;ΓÞ ¼
Ne2

β

Xþ∞

n¼−∞

Z
d2k
ð2πÞ2 Tr½Gðk0;kÞγ0Gðk0 þ q0;kþ qÞγ0�; ðA1Þ

Πiiðq0;q; T;m0;ΓÞ ¼
Ne2

β

Xþ∞

n¼−∞

Z
d2k
ð2πÞ2 Tr½Gðk0;kÞγiGðk0 þ q0;kþ qÞγi�; ðA2Þ

where k0 ¼ ð2nþ 1Þπ=β and q0 ¼ 2πn0=β with n and n0 being integers, to the leading order of 1=N expansion. Substituting
Eq. (9) into Eqs. (A1) and (A2) and then using the Feynman parametrization formula,

1

AB
¼
Z

1

0

dx
1

½xAþ ð1 − xÞB�2 ; ðA3Þ

we can get

Π00ðq0;q; T;m0;ΓÞ ¼
4Ne2

β

Z
1

0

dx
Z

d2l
ð2πÞ2

�
S1 − 2

�
l2 þm2

0 þ xð1− xÞq20 þ x

�
k0 þ

3

2
q0

�
δ

�
S2 þ ½ð1− 2xÞq0 þ δ�S�

�
;

ðA4Þ
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Πiiðq0;q; T;m0;ΓÞ ¼ −
8Ne2

β

Z
1

0

dx
Z

d2l
ð2πÞ2

�
S1 −

�
l2 þ 2xð1 − xÞ

�
q20 þ

q2

2

�
þ xð2k0 þ 3q0Þδ

�
S2

þ ½ð1 − 2xÞq0 þ δ�S�
�
; ðA5Þ

with

Si ¼
X∞
n¼−∞

1

½l20 þ l2 þm2
0 þ xð1 − xÞq2 þ 2xðk0 þ q0Þδ�i

;

ðA6Þ

S� ¼
X∞
n¼−∞

l0
½l20 þ l2 þm2

0 þ xð1 − xÞq2 þ 2xðk0 þ q0Þδ�2
;

ðA7Þ

where l2 ¼ l20 þ l2 with l0 ¼ k0 þ xq0 þ Γsgnðk0Þ,
q2 ¼ q20 þ q2, and δ ¼ Γ½sgnðk0 þ q0Þ − sgnðk0Þ�. When
δ ≠ 0, the frequency summation cannot be carried out
precisely. There are two ways to make δ ¼ 0. First, q0 ¼ 0,
corresponding to the static limit. Second, Γ ¼ 0, corre-
sponding to the clean limit of the system (without any
disorder). Next we calculate the polarization functions in
these two cases, respectively.

2. Calculation of polarization functions
in the limit q0 ¼ 0

For a general constant Γ, we have

Π00ðq;T;m0;ΓÞ¼
4Ne2

β

Z
1

0

dx
Z

d2l
ð2πÞ2 ½S1−2ðl2þm2

0ÞS2�;
ðA8Þ

Πiiðq; T;m0;ΓÞ

¼ −
8Ne2

β

Z
1

0

dx
Z

d2l
ð2πÞ2 ½S1 − ½l2 þ xð1 − xÞq2�S2�;

ðA9Þ

with

Si ¼
�
β

2π

�
2iX∞

n¼0

2

½ðnþ 1
2
þ Xsgnðnþ 1

2
ÞÞ2 þ Y2�i ; ðA10Þ

where X ¼ β
2π Γ and Y ¼ β

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

0 þ xð1 − xÞq2
p

.
Summing over n, it is easy to get

S1 ¼
β2

2π2Y
Im

�
ψ

�
1

2
þ X þ iY

��
; ðA11Þ

which then leads to

S2 ¼ −
β2

8π2Y
∂S1
∂Y ¼ β4

16π4Y3
Im

�
ψ

�
1

2
þ X þ iY

��

−
β4

16π4Y2

∂Im½ψð1
2
þ X þ iYÞ�
∂Y : ðA12Þ

Substituting the expressions of Si into Eqs. (A8) and (A9),
we have

Π00ðq; T;m0;ΓÞ ¼
2Ne2

π2

Z
1

0

dx
Z

Λffiffiffiffiffiffiffiffiffiffiffi
m2

0
þC2

q

p dt

�
C2
q

t2
F1ðt; T;ΓÞ þ

t2 − C2
q

t
∂F1ðt; T;ΓÞ

∂t
�
; ðA13Þ

Πiiðq; T;m0;ΓÞ ¼ −
2Ne2

π2

Z
1

0

dx
Z

Λffiffiffiffiffiffiffiffiffiffiffi
m2

0
þC2

q

p dt
�
t2 þm2

0

t2
F1ðt; T;ΓÞ þ

t2 −m2
0

t
∂ImF1ðt; T;ΓÞ

∂t
�
; ðA14Þ

where Cq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2

p
and F1ðt; T;ΓÞ ¼ Im½ψð1

2
þ Γ

2πT þ i t
2πTÞ�. Now we are interested in the limiting the behavior of

Π00 and Πii at zero temperature. As T → 0, we know that

lim
T→0

Im

�
ψ

�
1

2
þ Γþ it

2πT

��
¼ arctan

�
t
Γ

�
: ðA15Þ

Therefore, at zero temperature, the polarization functions can be written as
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Π00ðq; m0;ΓÞ ¼
2Ne2

π2

�
Γ ln

�
Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ2 þm2
0

p �
þ Γ

�
1þ K2

2jqj ln
�
K2 − jqj
K2 þ jqj

��
þ q2

Z
1

0

dx
xð1 − xÞ

K1

arctan

�
K1

Γ

��
;

Πiiðq; m0;ΓÞ ¼
2Ne2

π2
q2

Z
1

0

dx
xð1 − xÞ

K1

arctan

�
K1

Γ

�
; ðA16Þ

with K1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ xð1 − xÞq2
p

and K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðΓ2 þm2

0Þ þ q2
p

.

3. Calculation of polarization functions in the clean limit Γ ¼ 0

For general q0, we have

Π00ðq0;q; T;m0Þ ¼
4Ne2

β

Z
1

0

dx
Z

d2l
ð2πÞ2 fS1 − 2½l2 þm2

0 þ xð1 − xÞq20�S2 þ ð1 − 2xÞq0S�g; ðA17Þ

Πiiðq0;q; T;m0Þ ¼ −
8Ne2

β

Z
1

0

dx
Z

d2l
ð2πÞ2

�
S1 −

�
l2 þ 2xð1 − xÞ

�
q20 þ

q2

2

��
S2 þ ð1 − 2xÞq0S�

�
; ðA18Þ

with

Si ¼
�
β

2π

�
2i X∞

n¼−∞

1

½ðnþ 1
2
þ XÞ2 þ Y2�i ; ðA19Þ

S� ¼
�
β

2π

�
3 X∞
n¼−∞

nþ 1
2
þ X

½ðnþ 1
2
þ XÞ2 þ Y2�2 ; ðA20Þ

where X ¼ β
2π xq0 and Y ¼ β

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

0 þ xð1 − xÞðq20 þ q2Þ
p

. Carrying out the frequency summation yields

S1 ¼
β2

4π2Y
Im

�
ψ

�
1

2
þ X þ iY

��
þ β2

4π2Y
Im

�
ψ

�
1

2
− X þ iY

��
: ðA21Þ

It is then straightforward to obtain

S2 ¼ −
β2

8π2Y
∂S1
∂Y ¼ β4

32π4Y2

�
1

Y
Im

�
ψ

�
1

2
þ X þ iY

��
−
∂Im½ψð1

2
þ X þ iYÞ�
∂Y þ 1

Y
Im

�
ψ

�
1

2
− X þ iY

��

−
∂Im½ψð1

2
− X þ iYÞ�
∂Y

�
; ðA22Þ

S� ¼ −
β

4π

∂S1
∂X ¼ −

β3

16π3Y

�∂Im½ψð1
2
þ X þ iYÞ�
∂X þ ∂Im½ψð1

2
− X þ iYÞ�
∂X

�
: ðA23Þ

Substituting Eqs. (A21), (A22), and (A23) into Eqs. (A17) and (A18), the polarization functions can be written as

Π00ðq0;q; T;m0Þ ¼
Ne2

π2

Z
1

0

dx
Z

Λffiffiffiffiffiffiffiffiffiffiffi
m2

0
þC2

q

p dt
�
B2
q

t2
F2ðx; q0; t; TÞ þ

t2 − B2
q

t
∂ðF2ðx; q0; t; TÞÞ

∂t
−
ð1 − 2xÞq0

2

∂ðF2ðx; q0; t; TÞÞ
∂ðxq0Þ

�
; ðA24Þ
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Πiiðq0;q; T;m0Þ ¼ −
Ne2

π2

Z
1

0

dx
Z

Λffiffiffiffiffiffiffiffiffiffiffi
m2

0
þC2

q

p dtt

�
t2 − B02

q þm2
0

t2
ðF2ðx; q0; t; TÞÞ þ

t2 þ B02
q −m2

0

t
∂ðF2ðx; q0; t; TÞÞ

∂t
−ð1 − 2xÞq0

∂ðF2ðx; q0; t; TÞÞ
∂ðxq0Þ

�
; ðA25Þ

where Bq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2

p
, B0

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq20

p
, and t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

0 þ xð1 − xÞðq20 þ q2Þ
p

. Here, F2ðx; q0; t; TÞ ¼
Im½ψð1

2
þ xq0

2πT þ i t
2πTÞ� þ Im½ψð1

2
− xq0

2πT þ i t
2πTÞ�. Since ψð1 − zÞ ¼ ψðzÞ þ π cotðπzÞ, we have

F2ðx; q0; t; TÞ ¼
π

2i

�
− tan

�
xq0
2T

− i
t
2T

�
þ tan

�
xq0
2T

þ i
t
2T

��
: ðA26Þ

Substituting Eq. (A26) into Eqs. (A24) and (A25), the polarization functions become

Π00ðq0;q; T;m0Þ ¼
Ne2

2π

Z
1

0

dx

�
2

β
ln

�
4

�
cosh2

�
1

2
βK3

�
− sin2

�
1

2
βxq0

���

−
1

K3

½m2
0 þ xð1 − xÞq20� sinhðβK3Þ

cosh2ð1
2
βK3Þ − sin2ð1

2
βxq0Þ

−
1

2

ð1 − 2xÞq0 sinðβxq0Þ
cosh2ð1

2
βK3Þ − sin2ð1

2
βxq0Þ

�
; ðA27Þ

Πiiðq0;q; T;m0Þ ¼
Ne2

2π

Z
1

0

dx

�
1

K3

xð1 − xÞð2q20 þ q2Þ sinhðβK3Þ
cosh2ð1

2
βK3Þ − sin2ð1

2
βxq0Þ

þ ð1 − 2xÞq0 sinðβxq0Þ
cosh2ð1

2
βK3Þ − sin2ð1

2
βxq0Þ

�
; ðA28Þ

with K3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ xð1 − xÞðq20 þ q2Þ
p

.
At zero temperature, the polarization functions are simplified to

Π00ðq0;q; m0Þ ¼
Ne2q2

π

�
m0

2q2
þ q2 − 4m2

0

4q3
arcsin

�
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ 4m2
0

p ��
; ðA29Þ

Πiiðq0;q; m0Þ ¼
Ne2ð2q20 þ q2Þ

π

�
m0

2q2
þ q2 − 4m2

0

4q3
arcsin

�
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ 4m2
0

p ��
: ðA30Þ

In the limit q0 ¼ 0, the polarization functions are

Π00ðq; T;m0Þ ¼
Ne2

π

Z
1

0

dx

�
2T ln

�
2 cosh

�
K1

2T

��
−
m2

0

K1

tanh

�
K1

2T

��
;

Πiiðq; T;m0Þ ¼
Ne2

π

Z
1

0

dx
xð1 − xÞq2

K1

tanh

�
K1

2T

�
: ðA31Þ

[1] R. D. Pisarski, Phys. Rev. D 29, 2423(R) (1984).
[2] T. W. Appelquist, M. Bowick, D. Karabali, and L. C. R.

Wijewardhana, Phys. Rev. D 33, 3704 (1986).
[3] T. Appelquist, D. Nash, and L. C. R. Wijewardhana, Phys.

Rev. Lett. 60, 2575 (1988).
[4] D. Nash, Phys. Rev. Lett. 62, 3024 (1989).
[5] D. Atkinson, P. W. Johnson, and P. Maris, Phys. Rev. D 42,

602 (1990).
[6] D. C. Curtis and M. R. Pennington, Phys. Rev. D 42, 4165

(1990).

[7] M. R.PenningtonandD.Walsh,Phys.Lett.B253, 246 (1991).
[8] D. C. Curtis, M. R. Pennington, and D. Walsh, Phys. Lett. B

295, 313 (1992).
[9] P. Maris, Phys. Rev. D 54, 4049 (1996).

[10] C. S. Fischer, R. Alkofer, T. Dahm, and P. Maris, Phys. Rev.
D 70, 073007 (2004).

[11] A. Bashir, A. Raya, I. C. Cloët, and C. D. Roberts, Phys.
Rev. C 78, 055201 (2008).

[12] A. Bashir, A. Raya, S. Sánchez-Madrigal, and C. D.
Roberts, Few-Body Syst. 46, 229 (2009).

INFRARED BEHAVIOR OF DYNAMICAL FERMION MASS … PHYSICAL REVIEW D 91, 045006 (2015)

045006-15

http://dx.doi.org/10.1103/PhysRevD.29.2423
http://dx.doi.org/10.1103/PhysRevD.33.3704
http://dx.doi.org/10.1103/PhysRevLett.60.2575
http://dx.doi.org/10.1103/PhysRevLett.60.2575
http://dx.doi.org/10.1103/PhysRevLett.62.3024
http://dx.doi.org/10.1103/PhysRevD.42.602
http://dx.doi.org/10.1103/PhysRevD.42.602
http://dx.doi.org/10.1103/PhysRevD.42.4165
http://dx.doi.org/10.1103/PhysRevD.42.4165
http://dx.doi.org/10.1016/0370-2693(91)91392-9
http://dx.doi.org/10.1016/0370-2693(92)91572-Q
http://dx.doi.org/10.1016/0370-2693(92)91572-Q
http://dx.doi.org/10.1103/PhysRevD.54.4049
http://dx.doi.org/10.1103/PhysRevD.70.073007
http://dx.doi.org/10.1103/PhysRevD.70.073007
http://dx.doi.org/10.1103/PhysRevC.78.055201
http://dx.doi.org/10.1103/PhysRevC.78.055201
http://dx.doi.org/10.1007/s00601-009-0069-9


[13] J. Braun, H. Gies, L. Janssen, and D. Roscher, Phys. Rev. D
90, 036002 (2014).

[14] K.-I. Kubota and H. Terao, Prog. Theor. Phys. 105, 809
(2001).

[15] S. J. Hands, J. B. Kogut, and C. G. Strouthos, Nucl. Phys.
B645, 321 (2002).

[16] S. J. Hands, J. B. Kogut, L. Scorzato, and C. G Strouthos,
Phys. Rev. B 70, 104501 (2004).

[17] V. P. Gusynin and M. Reenders, Phys. Rev. D 68, 025017
(2003).

[18] C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys.
33, 477 (1994).

[19] T. Appelquist and L. C. R. Wijewardhana, arXiv:hep-ph/
0403250v4.

[20] C. J. Burden, J. Praschifka, and C. D. Roberts, Phys. Rev. D
46, 2695 (1992).

[21] P. Maris, Phys. Rev. D 52, 6087 (1995).
[22] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78,

17 (2006).
[23] I. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988).
[24] L. B. Ioffe and A. I. Larkin, Phys. Rev. B 39, 8988 (1989).
[25] D. H. Kim, P. A. Lee, and X.-G. Wen, Phys. Rev. Lett. 79,

2109 (1997).
[26] D. H. Kim and P. A. Lee, Ann. Phys. (N.Y.) 272, 130

(1999).
[27] W. Rantner and X.-G. Wen, Phys. Rev. Lett. 86, 3871

(2001).
[28] W. Rantner and X.-G. Wen, Phys. Rev. B 66, 144501

(2002).
[29] M. Franz and Z. Tes̆anović, Phys. Rev. Lett. 87, 257003

(2001).
[30] M. Franz, Z. Tes̆anović, and O. Vafek, Phys. Rev. B 66,

054535 (2002).
[31] I. F. Herbut, Phys. Rev. Lett. 88, 047006 (2002).
[32] I. F. Herbut, Phys. Rev. B 66, 094504 (2002).
[33] G. Z. Liu and G. Cheng, Phys. Rev. B 66, 100505(R)

(2002).
[34] Y. Ran, M. Hermele, P. A. Lee, and X.-G. Wen, Phys. Rev.

Lett. 98, 117205 (2007).
[35] M. Hermele, Y. Ran, P. A. Lee, and X.-G. Wen, Phys. Rev. B

77, 224413 (2008).
[36] S. G. Sharapov, V. P. Gusynin, and H. Bech, Phys. Rev. B

69, 075104 (2004).
[37] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Int. J.

Mod. Phys. B 21, 4611 (2007).
[38] A. Raya and E. D. Reyes, J. Phys. A 41, 355401 (2008).
[39] Y.-M. Lu and D.-H. Lee, Phys. Rev. B 89, 195143 (2014).
[40] X. Luo, Y. Yu, and L. Liang, arXiv:1408.5730v1.

[41] G.-Z. Liu and G. Cheng, Phys. Rev. D 67, 065010 (2003).
[42] N. Norey and N. E. Mavromatos, Phys. Lett. B 266, 163

(1991).
[43] N. Dorey and N. E. Mavromatos, Nucl. Phys. B386, 614

(1992).
[44] I. J. R. Aitchison, N. Dorey, M. Klein-Kreisler, and N. E.

Mavromatos, Phys. Lett. B 294, 91 (1992).
[45] I. J. R. Aitchison and M. Klein-Kreisler, Phys. Rev. D 50,

1068 (1994).
[46] D.-J. Lee, Phys. Rev. D 58, 105012 (1998).
[47] G. Triantaphyllou, Phys. Rev. D 58, 065006 (1998).
[48] G. Triantaphyllou, J. High Energy Phys. 3 (1999) 020.
[49] W. Li and G.-Z. Liu, Phys. Rev. D 81, 045006 (2010).
[50] H.-T. Feng, S. Shi, W.-M. Sun, and H.-S. Zong, Phys. Rev.

D 86, 045020 (2012).
[51] H.-T. Feng, S. Shi, P. Yin, and H.-S. Zong, Phys. Rev. D 86,

065002 (2012).
[52] H.-T. Feng, B. Wang, W.-M. Sun, and H.-S. Zong, Phys.

Rev. D 86, 105042 (2012).
[53] H.-T. Feng, Y.-Q. Zhou, P.-L. Yin, and H.-S. Zong, Phys.

Rev. D 88, 125022 (2013).
[54] P.-L. Yin, Y.-M. Shi, Z.-F. Cui, H.-T. Feng, and H.-S. Zong,

Phys. Rev. D 90, 036007 (2014).
[55] H.-T. Feng, J.-F. Li, Y.-M. Shi, and H.-S. Zong, Phys. Rev.

D 90, 065005 (2014).
[56] P. M. Lo and E. S. Swanson, Phys. Rev. D 89, 025015

(2014).
[57] J.-R. Wang and G.-Z. Liu, Nucl. Phys. B832, 441 (2010).
[58] J.-R. Wang and G.-Z. Liu, Phys. Rev. B 82, 075133

(2010).
[59] J. Wang and G.-Z. Liu, Phys. Rev. D 85, 105010 (2012).
[60] P. A. Lee, Phys. Rev. Lett. 71, 1887 (1993).
[61] A. C. Durst and P. A. Lee, Phys. Rev. B 62, 1270 (2000).
[62] A. Altland, B. D. Simons, and M. R. Zirnbauer, Phys. Rep.

359, 283 (2002).
[63] Ma. de Jesús Anguiano and A. Bashir, Few-Body Syst. 37,

71 (2005).
[64] G.-Z. Liu, W. Li, and G. Cheng, Phys. Rev. B 79, 205429

(2009).
[65] O. V. Gamayun, E. V. Gorbar, and V. P. Gusynin, Phys. Rev.

B 81, 075429 (2010).
[66] D. V. Khveshchenko, Phys. Rev. Lett. 87, 246802 (2001).
[67] E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A.

Shovkovy, Phys. Rev. B 66, 045108 (2002).
[68] J.-R. Wang and G.-Z. Liu, New J. Phys. 14, 043036 (2012),

and the references therein.
[69] P. M. Lo and E. S. Swanson, Phys. Lett. B 697, 164 (2011).
[70] P. A. Lee and N. Nagaosa, Phys. Rev. B 46, 5621 (1992).

JING-RONG WANG, GUO-ZHU LIU, AND CHANG-JIN ZHANG PHYSICAL REVIEW D 91, 045006 (2015)

045006-16

http://dx.doi.org/10.1103/PhysRevD.90.036002
http://dx.doi.org/10.1103/PhysRevD.90.036002
http://dx.doi.org/10.1143/PTP.105.809
http://dx.doi.org/10.1143/PTP.105.809
http://dx.doi.org/10.1016/S0550-3213(02)00869-6
http://dx.doi.org/10.1016/S0550-3213(02)00869-6
http://dx.doi.org/10.1103/PhysRevB.70.104501
http://dx.doi.org/10.1103/PhysRevD.68.025017
http://dx.doi.org/10.1103/PhysRevD.68.025017
http://dx.doi.org/10.1016/0146-6410(94)90049-3
http://dx.doi.org/10.1016/0146-6410(94)90049-3
http://arXiv.org/abs/hep-ph/0403250v4
http://arXiv.org/abs/hep-ph/0403250v4
http://dx.doi.org/10.1103/PhysRevD.46.2695
http://dx.doi.org/10.1103/PhysRevD.46.2695
http://dx.doi.org/10.1103/PhysRevD.52.6087
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/PhysRevB.37.3774
http://dx.doi.org/10.1103/PhysRevB.39.8988
http://dx.doi.org/10.1103/PhysRevLett.79.2109
http://dx.doi.org/10.1103/PhysRevLett.79.2109
http://dx.doi.org/10.1006/aphy.1998.5888
http://dx.doi.org/10.1006/aphy.1998.5888
http://dx.doi.org/10.1103/PhysRevLett.86.3871
http://dx.doi.org/10.1103/PhysRevLett.86.3871
http://dx.doi.org/10.1103/PhysRevB.66.144501
http://dx.doi.org/10.1103/PhysRevB.66.144501
http://dx.doi.org/10.1103/PhysRevLett.87.257003
http://dx.doi.org/10.1103/PhysRevLett.87.257003
http://dx.doi.org/10.1103/PhysRevB.66.054535
http://dx.doi.org/10.1103/PhysRevB.66.054535
http://dx.doi.org/10.1103/PhysRevLett.88.047006
http://dx.doi.org/10.1103/PhysRevB.66.094504
http://dx.doi.org/10.1103/PhysRevB.66.100505
http://dx.doi.org/10.1103/PhysRevB.66.100505
http://dx.doi.org/10.1103/PhysRevLett.98.117205
http://dx.doi.org/10.1103/PhysRevLett.98.117205
http://dx.doi.org/10.1103/PhysRevB.77.224413
http://dx.doi.org/10.1103/PhysRevB.77.224413
http://dx.doi.org/10.1103/PhysRevB.69.075104
http://dx.doi.org/10.1103/PhysRevB.69.075104
http://dx.doi.org/10.1142/S0217979207038022
http://dx.doi.org/10.1142/S0217979207038022
http://dx.doi.org/10.1088/1751-8113/41/35/355401
http://dx.doi.org/10.1103/PhysRevB.89.195143
http://arXiv.org/abs/1408.5730v1
http://dx.doi.org/10.1103/PhysRevD.67.065010
http://dx.doi.org/10.1016/0370-2693(91)90761-E
http://dx.doi.org/10.1016/0370-2693(91)90761-E
http://dx.doi.org/10.1016/0550-3213(92)90632-L
http://dx.doi.org/10.1016/0550-3213(92)90632-L
http://dx.doi.org/10.1016/0370-2693(92)91645-P
http://dx.doi.org/10.1103/PhysRevD.50.1068
http://dx.doi.org/10.1103/PhysRevD.50.1068
http://dx.doi.org/10.1103/PhysRevD.58.105012
http://dx.doi.org/10.1103/PhysRevD.58.065006
http://dx.doi.org/10.1088/1126-6708/1999/03/020
http://dx.doi.org/10.1103/PhysRevD.81.045006
http://dx.doi.org/10.1103/PhysRevD.86.045020
http://dx.doi.org/10.1103/PhysRevD.86.045020
http://dx.doi.org/10.1103/PhysRevD.86.065002
http://dx.doi.org/10.1103/PhysRevD.86.065002
http://dx.doi.org/10.1103/PhysRevD.86.105042
http://dx.doi.org/10.1103/PhysRevD.86.105042
http://dx.doi.org/10.1103/PhysRevD.88.125022
http://dx.doi.org/10.1103/PhysRevD.88.125022
http://dx.doi.org/10.1103/PhysRevD.90.036007
http://dx.doi.org/10.1103/PhysRevD.90.065005
http://dx.doi.org/10.1103/PhysRevD.90.065005
http://dx.doi.org/10.1103/PhysRevD.89.025015
http://dx.doi.org/10.1103/PhysRevD.89.025015
http://dx.doi.org/10.1016/j.nuclphysb.2010.01.021
http://dx.doi.org/10.1103/PhysRevB.82.075133
http://dx.doi.org/10.1103/PhysRevB.82.075133
http://dx.doi.org/10.1103/PhysRevD.85.105010
http://dx.doi.org/10.1103/PhysRevLett.71.1887
http://dx.doi.org/10.1103/PhysRevB.62.1270
http://dx.doi.org/10.1016/S0370-1573(01)00065-5
http://dx.doi.org/10.1016/S0370-1573(01)00065-5
http://dx.doi.org/10.1007/s00601-005-0111-5
http://dx.doi.org/10.1007/s00601-005-0111-5
http://dx.doi.org/10.1103/PhysRevB.79.205429
http://dx.doi.org/10.1103/PhysRevB.79.205429
http://dx.doi.org/10.1103/PhysRevB.81.075429
http://dx.doi.org/10.1103/PhysRevB.81.075429
http://dx.doi.org/10.1103/PhysRevLett.87.246802
http://dx.doi.org/10.1103/PhysRevB.66.045108
http://dx.doi.org/10.1088/1367-2630/14/4/043036
http://dx.doi.org/10.1016/j.physletb.2011.01.055
http://dx.doi.org/10.1103/PhysRevB.46.5621

