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I. INTRODUCTION

It is now well established that the Bern-Dixon-Smirnow
(BDS) conjecture [2] for the maximally helicity-violating
n-point scattering amplitude in the planar limit of the
N ¼ 4 super Yang-Mills (SYM) theory is incomplete for
n ≥ 6. One of the first indications for this was found in
Refs. [3,4] and in Ref. [5]. Corrections to the BDS formula
have been named “remainder functions” Rn, and in recent
years major efforts have been made for determining these
remainder functions, in particular the remainder function
R6 for the case n ¼ 6. The function R6 has been calculated
for two, three [6–18], and four loops [19] and even several
attempts have been made for the n ¼ 7 case up to two
loops [20–23].
When trying to go beyond this loop expansion, it has

turned out to be useful to consider a special kinematic limit,
in particular the multi-Regge limit. For the n ¼ 6-point
amplitude the comparison of the BDS conjecture with the
leading-logarithmic approximation which extends over all
orders of the coupling constant, has shown that the BDS
formula fails in two major aspects:
(1) the Regge pole contributions do not have the correct

phase structure in all kinematic regions;
(2) it does not contain the Regge-cut contributions

which are predicted by leading-log calculations.
Therefore, it is the remainder function which con-
tains Regge-cut contributions.

A careful analysis has shown that this cut contribution
vanishes both in the Euclidean region and in the physical
region where all energies are positive. It is nonzero only in

special kinematic regions, named “Mandelstam regions”:
these are physical regions where some of the energy
variables are positive, and others negative (“mixed
regions”; the precise definition will be given later on).
These results have also been generalized beyond the
leading-logarithmic approximation, and there is no doubt
that the multi-Regge limit plays a key role for the
determination of the remainder functions.
To construct the remainder function in the multi-Regge

limit it is therefore necessary to consider all possible
kinematic regions and to find the correct structure of the
Regge-pole and Regge-cut contributions. The first step is
the analysis of the Regge-pole contributions. It is well
known that in non-Abelian gauge theories the gauge bosons
Reggeize, and in the leading approximation the 2 → nþ 1
production amplitudes can be written in a simple factoriz-
ing form with exchange of Reggeized gluons in all t
channels. Beyond the leading approximation this factoriz-
ing form of the Regge-pole contribution remains valid
in the region where all energies are positive, but the
production vertices become complex-valued functions.
This factorizing representation is equivalent to another
representation, in which the scattering amplitude is written
as a sum of kn different terms,1 where each of them has a
distinct set of nonvanishing simultaneous energy disconti-
nuities: in this representation the agreement with the
Steinmann relations is explicit.
When applying these results to the planar amplitudes

of N ¼ 4 SYM theory, an important difference between
planar and fully signatured amplitudes was discovered
[3,4,24]. Namely, the simple factorized form of the
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1The numbers kn coincide with the Catalan numbers Cn with
Cn ¼ 1; 1; 2; 5; 14; 42;… for n ¼ 0; 1; 2; 3; 4; 5;…. They satisfy
the recurrence relation Cnþ1 ¼

P
i¼n
i¼0 CiCn−i.
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Regge-pole contributions is valid in the physical region
where all energy variables are positive (and also in the
Euclidean region), but it takes a different form in other
regions, in particular in the Mandelstam regions mentioned
before. In the latter region the Regge-pole contribution
has a term which contains an unphysical singularity and
requires the existence of Regge-cut contributions with the
same phase structure. In the sum, the singular terms
contained in the Regge poles and in the Regge-cut con-
tributions cancel, leading to a sum of IR-finite and
conformal-invariant pole and cut contributions.
In a recent paper [1] we have started a systematic study

of these Regge-pole and Regge-cut contributions. We
found it instructive to first return to the six-point case,
and then developed tools which allow us to extend to
higher-order scattering amplitudes, in particular to the
seven-point amplitude. As the first step we have analyzed
the Regge-pole contribution. Particular attention has been
given to the appearance of unphysical pole singularities,
and we have outlined, for the 2 → 5 scattering amplitudes,
that these pole singularities have to be canceled by Regge-
cut contributions. As a result, we have found that, in all
kinematic regions, the scattering amplitude can be written
as a sum of conformal-invariant Regge-pole contributions
and Regge-cut amplitudes (a brief summary is presented in
Appendix B). Whereas our construction was designed to
find explicit conformal expressions for the Regge-pole
contributions (valid to all orders in the coupling constant),
we did not determine the explicit expressions of the Regge-
cut contribution. It is the purpose of the present paper, to
complete our program by computing the Regge-cut con-
tribution. To this end we have to develop a slightly different
strategy which allows one to compute, from energy dis-
continuities, Regge-cut contributions. At present we will
restrict ourselves to the weak-coupling limit, but a next-to-
leading-order (NLO) calculation is within reach. Again, our
main focus is on the seven-point amplitude. The extension
to the eight-point case is under way.
It may be useful to make a few preparatory remarks on

our tools. Our calculations will make use of the analytic
structure of scattering amplitudes in multi-Regge kinemat-
ics, and we will compute, via unitarity integrals, energy
discontinuities. To be a bit more specific, we first write the
scattering amplitude as a sum of several terms: for the six-
point case we have five terms, for the seven-point amplitude
14 terms, for the eight-point cases 42 terms and so on. Each
term is written as a multiple Sommerfeld-Watson integral,
where the integrand consists of a product of complex
energy factors and a real-valued coefficient function, the
partial wave, which depends upon the angular momentum
variables, the squared momentum transfers and the Toller
angles. The phase structure is contained in the energy
factors only. The partial waves are written as sums of the
Regge contributions, Regge poles and Regge cuts. Whereas
the pole contributions have been analyzed in our previous

paper, the focus of this paper will be on the Regge-cut
singularities: we will compute them from energy disconti-
nuities, i.e. our calculations will boil down to unitarity
integrals. This is the point where, at present, we restrict
ourselves to the weak-coupling approximation, since inside
the unitarity integrals we will insert the leading-log
expressions of the scattering amplitudes.
An important ingredient in this construction is the

observation that Regge-pole and Regge-cut contributions
come with products of trigonometric factors which have to
be determined before the energy discontinuities can be
addressed. The origin of these trigonometric factors is the
factorization of the Regge-pole contribution which, in the
case of planar scattering amplitudes, leads to the appear-
ance of unphysical pole singularities. As we have discussed
already in our previous paper, these singularities must
cancel in the scattering amplitude, i.e. in the sum of the
partial-wave contributions. This is the place where the
existence of Regge cuts becomes mandatory. As an
important part of our calculations we will find a systematic
way of computing these trigonometric factors.
There exists an extensive literature on Regge theory,

mainly on Regge poles [25,26]. One of the key concepts is
the introduction of signature: in order to define proper
analytic continuation in the angular momentum plane, one
has to define combinations of amplitudes which are even or
odd under crossing. Many general results in Regge theory
(e.g. signature conservation rules) cannot be considered
without signature. In the context of AdS/CFT duality we
consider the limit of large Nc and are thus led to planar
amplitudes to which signature does not apply. A priori,
therefore, it is not clear to what extent results from the
literature can be used.2 Nevertheless, in our calculations we
will adopt results of Regge theory, and we have to view
them as assumptions: their validity has to be justified by the
results. The key features which we consider as “proof of
consistency” are as follows.
(1) Agreement with perturbation theory, wherever re-

sults on multiparticle scattering amplitudes are
available.

(2) After removing those IR-singular pieces which are
part of the BDS formula, the remainder function has
to be IR finite; and

(3) Conformal invariance: for the 2 → 4 and 2 → 5
scattering amplitudes our construction has been
completed and satisfies the constraints, and for the
2 → 6 scattering amplitude results will be pub-
lished soon.

Our paper will be organized as follows. We begin
(Sec. II) with the 2 → 5 scattering amplitude, define our
ansatz (the sum of 14 terms), and we list the trigonometric
factors for the Regge-pole contributions. We then discuss
these factors for the Regge-cut contributions and formulate

2We thank A. White for a helpful discussion on this point.
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rules which can be also used for higher-point amplitudes. In
order to illustrate our strategy of using energy disconti-
nuities we make a digression (Sec. IV) and complete the
construction of Regge cuts in the 2 → 4 case. In Sec. V we
return to the 2 → 5 case and calculate, via energy dis-
continuities, the Regge-cut contribution. Finally, in Sec. VI
we list our predictions for the scattering amplitude in
different kinematic regions. A few details of our calcu-
lations of the 2 → 5 scattering amplitude are presented in
Appendix A and a table, and a brief summary of the results
of our previous paper is given in Appendix B.

II. ANALYTIC STRUCTURE AND
TRIGONOMETRIC COEFFICIENTS

We begin with the analytic structure of the seven-point
amplitude. In multi-Regge kinematics the scattering ampli-
tude can be written as a sum of 14 terms (Figs. 1 and 2)
which we will name “analytic decomposition”:

T ¼
X

Tijk; ð2:1Þ

where each subscript “i,j,k” is related to a production vertex
and takes the values L (left) or R (right). In the planar
approximation for the 2 → 5 amplitude each term belongs
to a maximal set of nonoverlapping energy discontinuities3:
we write each term as a multiple Sommerfeld-Watson
integral, where the integrand consists of a product of
energy factors and of a real-valued partial wave which
depends upon momentum transfers ti ¼ −~q2i and angular
momenta ωi ¼ ji − 1 and contains the singularities in the

angular momentum plane. As an example, the first term
reads as follows:

TLLL ¼ s
Z Z Z Z

dω0
1dω

0
2dω3

0dω0
4

ð2πiÞ4
× ð−s34Þω0

43ð−s234Þω0
32ð−s1234Þω0

21ð−sÞω0
1

× FLLLðt1; t2; t3; t4;ω0
1;ω

0
2;ω

0
3;ω

0
4Þ: ð2:2Þ

We denote these partial waves by Fijk. As we have said
already, the subscripts take the values R or L, and their
origin is discussed in Appendix A. Each partial wave may
consist of several contributions which contain Regge-pole
or Regge-cut singularities:

Fijk ¼ Fpole
ijk þ FRegge cut 1

ijk þ FRegge cut 1
ijk þ… ð2:3Þ

In particular, all 14 terms contain a Regge pole piece. A
Regge cut in the t3 channel is contained in all those terms
which contain the discontinuity in s3 (RLR and LLR),
and a Regge cut in the t2 channel in the terms with a
nonvanishing discontinuity in s2 (LRL and LRR). Finally,
the long Regge cut extending over the t2 and t3 channels is
contained in the first two terms of the triplets LLR and
LRR: they all have the discontinuity in s123.
From the decomposition in Eq. (2.1) we derive the

scattering amplitudes in different kinematic regions.
Following the notations introduced in Ref. [1], we will
label the different kinematic regions by products τiτj….
Each factor τi stands for a “twist” of the corresponding
ti-channel state and takes us into a “crossed” channel. For
example, the configuration τ1τ4 has twists in the t1 and t4
channels and denotes the kinematic region where the three
produced particles have become “incoming particles.”

1 2 3 4

A B

0

LLL RRR RRL RLL

FIG. 1. Terms without Regge cuts. For the produced particles we also use the labels a, b, c.

a
1

a
2

b
1

b
2

RLR RLR LRL LRL

FIG. 2. Terms which contain Regge-cut contributions: two doublets (a) and (b).

3For signatured amplitudes there exist additional nonplanar
contributions [27]. Some of them can be derived from configu-
rations which are planar in a crossed channel.
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Further examples can be found in Ref. [1]. The choice of
the kinematic region determines the phases of the energy
factors after their analytic continuation. Each of the 14
terms, therefore, comes with a certain phase, and in their
sum cancellations may occur. Prominent examples are the
region where all squared energies are positive (each
positive energy si comes with a phase e−iπ) and the
Euclidean region where all energies are negative (each
negative energy has a factor 1). In both regions, all terms
containing Regge cuts sum up to zero, and only Regge-pole
contributions remain.
To understand the existence of Regge cuts it is necessary

to say a few words about the connection between the
decomposition (2.1) and Feynman diagrams. In multi-
Regge kinematics, the sum of relevant Feynman amplitudes
for a 2 → nþ 1 multiparticle production process can be
decomposed according to the analytic structure, and it can
be written as a sum of multiple dispersion integrals in the
energy variables; in Regge theory these dispersion integrals
can be used to define Froissart-Gribov partial-wave pro-
jections which contain the Regge singularities. This leads
to the decomposition (2.1). However, the existence of
Regge cuts in the scattering amplitude can most easily
be understood if we go back to the Feynman amplitudes
[i.e. prior to the decomposition (2.1)]. As an example, let us

return to the Regge cut in the planar 2 → 4 amplitude
(Fig. 4): let us consider the kinematic region where all
energies are positive. It is well known [28] that, as a rule,
Regge cuts cancel in planar diagrams. In Fig. 4(a) this
cancellation is easily seen [24]: introducing Sudakov
variables k ¼ βpA þ αpB þ k⊥ and concentrating on the
α integral of the k loop momentum in the left-hand part of
the diagram, the two singularities coming from the poles of
line “a” and “b” lie on the same side of the integration
contour and thus lead to a vanishing integral. However,
when analytically continuing into the kinematic region
s; s2 > 0, s1; s012; s3; s123 < 0 the poles of the lines b and
b’ move to the other sides of the integration contours and
the Regge cut remains. In fact, the particles “1” and “2” are
in the initial state, and the diagram becomes “physically
nonplanar.” This leads to the following Mandelstam con-
dition: in order to have a nonvanishing Regge-cut con-
tribution, one needs, at both ends of the two-Reggeon cut,
nonplanar α (β) integrals. For the 2 → 4 production
amplitude this is achieved by analytically continuing in
s1 and s3, i.e. by twisting the t1 and t3 channels. This
Mandelstam condition can easily be applied to more
general 2 → n scattering processes with n > 4.
Returning to the decomposition (2.1), we have already

stated that Feynman diagrams in the multi-Regge limit may
contribute to several terms in this decomposition. In each
term, the content of the Regge singularity of the partial
waves Fijk is independent of the kinematic region. The
vanishing of a Regge-cut contribution in Feynman diagrams
(so-called Amati-Fubini-Stanghellini cancellation), in the
decomposition (2.1) therefore translates into a cancellation
between different terms. Applying the Mandelstam criterion
to the kinematic region of all energies being positive or
negative, we immediately see that Regge cuts must cancel
for all 2 → n processes. In contrast, there exist Mandelstam
regions (“mixed” regions) where some energies are positive,
and others are negative. As an example, for 2 → 5, we
have the Mandelstam region s1 ¼ s01; s012; s0123, s4 ¼
s45; s345; s2345 < 0; s2; s3; s234; s > 0 (in our notation,
τ1τ4). In this region, a Regge-cut contribution extending
over the t2 and t3 channels exists.
Further details on the decomposition are presented in

Appendix A. Here we list the energy factors which
determine the phases of the scattering amplitudes:

c
1

c
2

c
3

d
1

d
2

d
3

LLR LLR LLR

LRR LRR LRR

FIG. 3. Terms which contain Regge-cut contributions: two
triplets (c) and (d).

ka

b

p
A p

B

s
2

(a) (b)

k ’

0

1 2

3

a’

b’

FIG. 4. Mandelstam criterion for the Regge cut in the 2 → 4 scattering amplitude (wavy lines denote Reggeons, and straight lines
denote scalar particles). (a) The simplest diagram illustrating the Mandelstam criterion. (b) A generalization (enhanced diagram) in
which the propagators a and a0 are replaced by sets of ladder diagrams (Reggeons).
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LLL∶ ð−s4Þω43ð−s345Þω32ð−s2345Þω21ð−sÞω1 ; ð2:4Þ

RRR∶ ð−s1Þω12ð−s012Þω23ð−s0123Þω34ð−sÞω4 ; ð2:5Þ

RRL∶ ð−s4Þω43ð−s1Þω12ð−s012Þω23ð−sÞω3 ; ð2:6Þ

RLL∶ ð−s1Þω12ð−s4Þω43ð−s345Þω32ð−sÞω2 : ð2:7Þ

Next we list the doublets:

RLR∶ a1 ¼ ð−s1Þω12ð−s3Þω34ð−s234Þω42ð−sÞω2 ;

a2 ¼ ð−s1Þω12ð−s3Þω32ð−s0123Þω24ð−sÞω4 ð2:8Þ

and

LRL∶ b1 ¼ ð−s2Þω21ð−s012Þω13ð−s4Þω43ð−sÞω3 ;

b2 ¼ ð−s2Þω23ð−s4Þω43ð−s1234Þω31ð−sÞω1 : ð2:9Þ

Finally, we list the two triplets:

LLR∶ c1¼ð−s3Þω32ð−s123Þω21ð−s0123Þω14ð−sÞω4 ;

c2¼ð−s3Þω32ð−s123Þω24ð−s1234Þω41ð−sÞω1 ;

c3¼ð−s3Þω34ð−s234Þω42ð−s1234Þω21ð−sÞω1 ð2:10Þ

and

LRR∶ d1¼ð−s2Þω23ð−s123Þω34ð−s1234Þω41ð−sÞω1 ;

d2¼ð−s2Þω23ð−s123Þω31ð−s0123Þω14ð−sÞω4 ;

d3¼ð−s2Þω21ð−s012Þω13ð−s0123Þω34ð−sÞω4 : ð2:11Þ

It should be noted that in these expressions, for simplicity,
we have disregarded κ factors as well as energy scales.
Details are described in Ref. [1]. Depending on the
kinematic regions, these energy factors lead to different
phases. A complete list of phases in the different kinematic
regions is presented in Appendix B.
Let us now discuss the form of the partial waves. Regge-

pole contributions are contained in all partial waves,
whereas Regge cuts can be contained only in those partial
waves which have nonvanishing energy discontinuities
along the Regge cut. In detail, partial waves which have
a cut in the energy s2 (s3) are expected to have a short
Regge cut in the t2 (t3) channel: LRL and LRR (RLR and
LLR). The long Regge cut in the ω2 and ω3 channels can
contribute only to the partial waves with a nonvanishing
energy discontinuity in the s123: LLR and LRR.
Let us go through the partial waves; the simplest of these

are the Regge-pole contributions. In most of the partial
waves, these Regge-pole contributions contain trigonomet-
ric factors which are closely related to Regge factorization.
For the case of signatured 2 → 4 scattering amplitudes, it
has been shown in Ref. [25] that the property of Regge

factorization and the analytic decomposition (2.1) are
compatible only if the Regge poles contain special combi-
nations of trigonometric factors. One of our tasks is to
generalize this and to find the corresponding factors for
the case 2 → 5 (and for higher n > 5). This is done in
Appendix Awhere we formulate general rules for comput-
ing these factors.
One of the peculiar features of these factors is that, in

certain kinematic regions, they contain unphysical singu-
larities of the type ∼1= sin πω2 which should not be present
in scattering amplitudes (and certainly do not appear in
perturbation theory). In our previous paper [1] we have
discussed these singular terms in detail: starting from the
Regge-factorized form of the 2 → nþ 1 scattering ampli-
tude we have calculated the Regge-pole contributions to
the scattering amplitude in all different kinematic regions.
In particular, for the 2 → 4, and for the 2 → 5 cases we
presented a full list of these singular terms and of the
kinematic regions where they appear. Here it is important to
note the difference between signatured and planar ampli-
tudes. In planar amplitudes, these singular terms coming
from the Regge poles have to cancel against Regge-cut
contributions: in fact, in Ref. [1] we have already derived
the phase structure of the Regge cut which allows one to
absorb and cancel these singular terms. In the present paper
we will complete this discussion by computing the full
Regge-cut amplitudes. This leads to the conclusion that, for
the planar amplitudes, the existence of Regge-cut contri-
butions is necessary for obtaining scattering amplitudes
which are free from unphysical singularities.
For signatured amplitudes the situation is slightly differ-

ent. In order to obtain signatured amplitudes we form even
or odd combinations of different kinematic regions. As
an example, we return to the simplest case of the 2 → 4
amplitude, and list the two regions with singular terms:

τ1τ3∶ e−iπω2

�
eiπðωaþωbÞ−2ieiπω2

ΩaΩb

Ω2

�

¼e−iπω2

�
cosπωabþ isinπðωaþωbÞ−2i

cosπω2ΩaΩb

Ω2

�
;

ð2:12Þ

τ1τ2τ3∶ −
�
e−iπðωaþωbÞ þ 2ie−iπω2

ΩaΩb

Ω2

�

¼ −
�
cos πωab − i sin πðωa þ ωbÞ þ 2i

cos πω2ΩaΩb

Ω2

�
:

ð2:13Þ

In the signatured amplitude the singular terms appear in the
following combination:
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−2iτ1τ3ðe−iπω2 þ τ2Þ
cos πω2ΩaΩb

Ω2

; ð2:14Þ

i.e. the singularities cancel for odd signature τ2 ¼ −1, and
there is no need for a Regge cut in the t2 channel. At the
same time, because of signature conservation, the signa-
tured amplitude cannot contain a Regge-cut composed of
two (odd-signatured) gluons in the t2 channel. The situation
will be different for even signature τ2 ¼ þ1: the singularity
in the Regge pole is present, and signature conservation
admits the two-Reggeon cut.
Let us now address the trigonometric factors for the

2 → 5 scattering amplitude. With the notations

Ωi ¼ sin πωi; Ωij ¼ sin πðωi − ωjÞ;
ωij ¼ ωi − ωj

ð2:15Þ

and

ωi ¼ −
γK
4
ln
jqij2
λ2

; ωa ¼ −
γK
8
ln

jq1j2jq2j2
jq1 − q2j2λ2

;

ωb ¼ −
γK
8
ln

jq2j2jq3j2
jq2 − q3j2λ2

ð2:16Þ

the results for the first four partial waves are4

Fpole
LLL ¼ VLðaÞ

Ω21

VLðbÞ
Ω32

VLðcÞ
Ω43

; ð2:17Þ

Fpole
RRR ¼ VRðaÞ

Ω12

VRðbÞ
Ω23

VRðcÞ
Ω34

; ð2:18Þ

Fpole
RRL ¼ VRðaÞ

Ω12

VRðbÞ
Ω23

VLðcÞ
Ω43

; ð2:19Þ

Fpole
RLL ¼ VRðaÞ

Ω12

VLðbÞ
Ω32

VLðcÞ
Ω43

: ð2:20Þ

Here the vertex functions are given by

VRðaÞ ¼ sin πðω1 − ωaÞ ¼ Ω1a;

VLðaÞ ¼ sin πðω2 − ωaÞ ¼ Ω2a: ð2:21Þ

Next we consider the two doublets which contain Regge
poles and cuts. We write

FRLRð1Þ ¼ Fpole
RLRð1Þ þ Fω3−cut

RLRð1Þ; ð2:22Þ

FRLRð2Þ ¼ Fpole
RLRð2Þ þ Fω3−cut

RLRð2Þ; ð2:23Þ

and

FLRLð1Þ ¼ Fpole
LRLð1Þ þ Fω2−cut

LRLð1Þ; ð2:24Þ

FLRLð2Þ ¼ Fpole
LRLð2Þ þ Fω2−cut

LRLð2Þ: ð2:25Þ

The pole and cut terms differ by their singularities in the
angular momentum planes ω1, ω2, and ω3. However, later
on we will see that the cut pieces will contain subtractions
related to the Regge-pole terms. For the pole terms we have
the trigonometric factors (see Appendix A)

Fpole
RLRð1Þ ¼

Ω4

Ω3

Ω32

Ω42

VRðaÞ
Ω12

VLðbÞ
Ω32

VRðcÞ
Ω34

; ð2:26Þ

Fpole
RLRð2Þ ¼

Ω2

Ω3

Ω34

Ω24

VRðaÞ
Ω12

VLðbÞ
Ω32

VRðcÞ
Ω34

; ð2:27Þ

and

Fpole
LRLð1Þ ¼

Ω1

Ω2

Ω23

Ω13

VLðaÞ
Ω21

VRðbÞ
Ω23

VLðcÞ
Ω43

; ð2:28Þ

Fpole
LRLð2Þ ¼

Ω3

Ω2

Ω21

Ω31

VLðaÞ
Ω21

VRðbÞ
Ω23

VLðcÞ
Ω43

: ð2:29Þ

Next we have to find the trigonometric factors of the ω3-cut
contribution. We first observe that, in the region where
all energies are positive, the two partial waves FRLRð1Þ
and FRLRð2Þ come with the same phase (Appendix A).
The absence of the Regge cuts implies that they must be
opposite and equal. We make the ansatz

Fω3−cut
RLRð1Þ ¼

VRðaÞ
Ω12

Wω3;RLR

Ω42

;

Fω3−cut
RLRð2Þ ¼

VRðaÞ
Ω12

Wω3;RLR

Ω24

: ð2:30Þ

The form of the first factor, VRðaÞ
Ω21

follows from the require-
ment of Regge factorization, whereas the existence of the
denominator 1=Ω24 can be deduced from a study of the
kinematic region τ2τ4. Namely, in this region the Regge
cut is expected to be present, and the amplitude has to
be free from unphysical singularities. From the energy
factors of FRLRð1Þ and FRLRð2Þ we have the phases
e−iπðω3þω1−ω2Þe−iπðω2−ω4Þ and e−iπðω3þω1−ω2Þe−iπðω4−ω2Þ, i.e.
in the difference we find a factor 2i sin πðω2 − ω4Þ which
just cancels this denominator. With a similar argument for
the partial waves FLRLð1Þ and FLRLð2Þ we put

4In the following it will be understood that our expressions for
the partial waves have to be multiplied with the Born amplitudes
and with the Regge-pole propagators, e.g. 1=ðω0

1 − ω1Þ, etc. The
Born amplitude carries a factor s; its sign will be included when
we present results for Regge-pole and Regge-cut contributions
for the different kinematic regions.
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Fω2−cut
LRLð1Þ ¼

Wω2;LRL

Ω13

VLðcÞ
Ω43

;

Fω2−cut
LRLð2Þ ¼

Wω2;LRL

Ω31

VLðcÞ
Ω43

: ð2:31Þ

Finally we turn to the triplets which contain Regge poles
and two types of cuts: a “short” one and a “long” one. In
detail

FLLRð1Þ ¼ Fpole
LLRð1Þ þ Fω3−cut

LLRð1Þ þ Fω2−ω3−cut
LLRð1Þ ;

FLLRð2Þ ¼ Fpole
LLRð2Þ þ Fω3−cut

LLRð2Þ þ Fω2−ω3−cut
LLRð2Þ ;

FLLRð3Þ ¼ Fpole
LLRð3Þ þ Fω3−cut

LLRð3Þ: ð2:32Þ

Similarly

FLRRð1Þ ¼ Fpole
LRRð1Þ þ Fω2−cut

LRRð1Þ þ Fω2−ω3−cut
LRRð1Þ ;

FLRRð2Þ ¼ Fpole
LRRð2Þ þ Fω2−cut

LRRð2Þ þ Fω2−ω3−cut
LRRð2Þ ;

FLRRð3Þ ¼ Fpole
LRRð3Þ þ Fω2−cut

LRRð3Þ: ð2:33Þ

Again, the pole and cut terms differ by their singularities
in the complex angular momentum planes. The Regge-pole
terms are (see Appendix A)

Fpole
LLRð1Þ ¼

Ω1

Ω3

Ω34

Ω14

VLðaÞ
Ω21

VLðbÞ
Ω32

VRðcÞ
Ω34

; ð2:34Þ

Fpole
LLRð2Þ ¼

Ω4

Ω3

Ω34Ω21

Ω24Ω41

VLðaÞ
Ω21

VLðbÞ
Ω32

VRðcÞ
Ω34

; ð2:35Þ

Fpole
LLRð3Þ ¼

Ω4

Ω3

Ω32

Ω42

VLðaÞ
Ω21

VLðbÞ
Ω32

VRðcÞ
Ω34

: ð2:36Þ

For the second triplet

Fpole
LRRð1Þ ¼

Ω4

Ω2

Ω21

Ω41

VLðaÞ
Ω21

VRðbÞ
Ω23

VRðcÞ
Ω34

; ð2:37Þ

Fpole
LRRð2Þ ¼

Ω1

Ω2

Ω34Ω21

Ω31Ω14

VLðaÞ
Ω21

VRðbÞ
Ω23

VRðcÞ
Ω34

; ð2:38Þ

Fpole
LRRð3Þ ¼

Ω1

Ω2

Ω23

Ω13

VLð2Þ
Ω21

VRð3Þ
Ω23

VRð4Þ
Ω34

: ð2:39Þ

For the short cut in the ω3 channel we observe that, for
positive energies, the absence of the Regge cut requires the
cancellation of the three partial waves FLLRð1Þ, FLLRð2Þ, and
FLLRð3Þ. Therefore, in the ansatz

Fω3−cut
LLRð1Þ ¼ x1

VLðaÞ
Ω21

Wω3;LLR

Ω24

;

Fω3−cut
LLRð2Þ ¼ x2

VLðaÞ
Ω21

Wω3;LLR

Ω24

;

Fω3−cut
LLRð3Þ ¼ x3

VLðaÞ
Ω21

Wω3;LLR

Ω24

ð2:40Þ

the sum of the coefficents xi must be zero:

x1 þ x2 þ x3 ¼ 0: ð2:41Þ

In order to obtain more information for the xi, we compute
the contribution of the ω3 cut to the scattering amplitude.
Namely, in the region τ2τ4 where this Regge cut is expected
to be present, we have

Fω3−cut
RLRð1Þ þ Fω3−cut

RLRð2Þ → 2ie−iπðω1þω3Þeiπω2
VRðaÞ
Ω12

Wω3;RLR

ð2:42Þ

and

Fω3−cut
LLRð1Þ þFω3−cut

LLRð2Þ þFω3−cut
LLRð3Þ→−2ix3

VLðaÞ
Ω21

e−iπω3Wω3;LLR;

ð2:43Þ

where we have used x1 þ x2 ¼ −x3. Taking the sum of the
last two equations and observing the Regge-factorization
formula

VRðaÞ
Ω12

eiπω2 þ VLðaÞ
Ω21

eiπω1 ¼ eiπωa ; ð2:44Þ

we are led to the identifications

x3 ¼ −1 ð2:45Þ

and

Wω3;RLR ¼ Wω3;LRL ¼ Wω3
: ð2:46Þ

The result for the sum of all five terms then becomes

RLRð1Þ þ RLRð2Þ þ LLRð1Þ þ LLRð2Þ þ LLRð3Þ
¼ 2ie−iπðω1þω3ÞeiπωaWω3

: ð2:47Þ

Next we consider the region τ1τ2τ4. We find

τ1τ2τ4∶ − e−iπω3
VLðaÞ
Ω21Ω24

ðx1e−iπðω1−ω4−ω2Þ

þ x2e−iπðω4−ω1−ω2Þ þ x3e−iπðω2−ω1−ω4ÞÞWω3

¼ −2ie−iπω3VLðaÞ
�
x1

eiπω4

Ω24

þ x2
eiπω1

Ω21

�
Wω3

: ð2:48Þ
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The coefficients x1 and x2 must be chosen to cancel the
unphysical singularities ∼1=Ω21, ∼1=Ω24; furthermore,
they must satisfy x1 þ x2 ¼ −x3 ¼ 1. The solution of these
conditions is

x1 ¼
Ω1

Ω2

Ω24

Ω14

; ð2:49Þ

x2 ¼
Ω4

Ω2

Ω21

Ω41

: ð2:50Þ

With these findings the trigonometric factors of the ω3 cut
become

Fω3−cut
LLRð1Þ ¼

Ω1

Ω2

Ω24

Ω14

VLðaÞ
Ω21

Wω3

Ω24

;

Fω3−cut
LLRð2Þ ¼

Ω4

Ω2

Ω21

Ω41

VLðaÞ
Ω21

Wω3

Ω24

;

Fω3−cut
LLRð3Þ ¼

VLðaÞ
Ω21

Wω3

Ω42

: ð2:51Þ

An analogous argument applies to the short cut in the ω2

channel, and the trigonometric factors become

Fω2−cut
LRRð1Þ ¼

Ω4

Ω3

Ω31

Ω41

Wω2

Ω31

VRðcÞ
Ω34

;

Fω2−cut
LRRð2Þ ¼

Ω1

Ω3

Ω34

Ω14

Wω2

Ω31

VRðcÞ
Ω34

;

Fω2−cut
LRRð3Þ ¼

Wω2

Ω13

VRðcÞ
Ω34

: ð2:52Þ

Finally, the long-cut term has the form

Fω2−ω3−cut
LLRð1Þ ¼ Wω2ω3;L

Ω32Ω14

;

Fω2−ω3−cut
LLRð2Þ ¼ Wω2ω3;L

Ω32Ω41

ð2:53Þ

and

Fω2−ω3−cut
LRRð1Þ ¼ Wω2ω3;R

Ω23Ω41

;

Fω2−ω3−cut
LRRð2Þ ¼ Wω2ω3;R

Ω23Ω14

: ð2:54Þ

As discussed before, the absence of this Regge cut in the
kinematic region where all energies are positive requires
the cancellation of the two partial waves Fω2−ω3−cut

LLRð1Þ ,

Fω2−ω3−cut
LLRð2Þ ; the same argument applies to Fω2−ω3−cut

LRRð1Þ
and Fω2−ω3−cut

LRRð2Þ .

This completes our derivation of the trigonometric
factors for Regge poles and Regge cuts of all 14 terms.

Our construction of the trigonometric factors for the Regge
cuts has followed the line of arguments given in our
previous paper [1]: we required that in all kinematic regions
the scattering amplitudes satisfy Regge factorization and
are free from unphysical singularities. In Appendix A we
make use of these results and formulate rules for the Regge
cuts which generalize those of the Regge poles. These rules
can also be used for the 2 → 6 amplitude. At present we
do not know how to “derive” these rules; as we have said
before, the justification will come from the IR finiteness
and conformal invariance of our final results.
We conclude this section with a few comments on the

Regge-pole contributions. First, in our previous paper [1]
our discussion of Regge-pole contributions has started from
the factorizing expression. This representation is equivalent
to the decomposition (2.1). To illustrate this, we go into the
region of positive energies. With the identity

Ω4

Ω3

Ω32

Ω42

þ Ω2

Ω3

Ω34

Ω24

¼ 1 ð2:55Þ

it is easy to see that the sum of two pole terms, Fpole
RLRð1Þ and

Fpole
RLRð2Þ, can be written as

Fpole
RLRð1Þ þ Fpole

RLRð2Þ →
VRðaÞ
Ω12

VLðbÞ
Ω32

VRðcÞ
Ω34

; ð2:56Þ

where the arrow indicates that we have multiplied the
partial waves with their phases. Similarly,

Fpole
LRLð1Þ þ Fpole

LRLð2Þ →
VLðaÞ
Ω21

VRðbÞ
Ω23

VLðcÞ
Ω43

: ð2:57Þ

For the triplets we need the identities

Ω4

Ω3

Ω21Ω34

Ω24Ω41

þΩ1

Ω3

Ω34

Ω14

þ Ω4

Ω3

Ω32

Ω42

¼ 1 ð2:58Þ

and

Ω1

Ω2

Ω21Ω34

Ω31Ω14

þΩ1

Ω2

Ω23

Ω13

þ Ω4

Ω2

Ω21

Ω41

¼ 1 ð2:59Þ

and obtain

Fpole
LLRð1Þ þ Fpole

LLRð2Þ þ Fpole
LLRð3Þ →

VLðaÞ
Ω21

VLðbÞ
Ω32

VRðcÞ
Ω34

ð2:60Þ

and

Fpole
LRRð1Þ þ Fpole

LRRð2Þ þ Fpole
LRRð3Þ →

VLðaÞ
Ω21

VRðbÞ
Ω23

VRðcÞ
Ω34

:

ð2:61Þ
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When combining the results of all 14 partial waves, it is
convenient to use identities such as (2.44). In this way
one obtains, for the sum of all 14 terms, the factorizing
expression

Tpole

Γðt1Þjs1jω1 js2jω2 js3jω3 js4jω4Γðt4Þ
¼ eiπðωaþωbþωcÞe−iπðω1þω2þω3þω4Þ: ð2:62Þ

As far as the other kinematic regions are concerned, it
is possible—but much more tedious—to perform similar
calculations for the other kinematic regions and to arrive at
the same results as those listed in Ref. [1].

III. A DIGRESSION: THE 2 → 4
SCATTERING AMPLITUDE

To illustrate our future strategy we briefly return to the
well-studied case of the 2 → 4 scattering [1,24]. We begin
with the ansatz consisting of five terms. We write

T2→4 ¼ TLL þ TRR þ TRL þ TLRð1Þ þ TLRð2Þ: ð3:1Þ

Each term has an energy factor which—depending on the
kinematic region—determines the phase:

LL∶ ð−s3Þω32ð−s123Þω21ð−sÞω1 ; ð3:2Þ

RR∶ ð−s1Þω12ð−s012Þω23ð−sÞω3 ; ð3:3Þ

RL∶ ð−s1Þω12ð−s3Þω32ð−sÞω2 ; ð3:4Þ

LRð1Þ∶ ð−s2Þω21ð−s012Þω13ð−sÞω3 ;

LRð2Þ∶ ð−s2Þω23ð−s123Þω31ð−sÞω1 : ð3:5Þ

The first three terms have Regge poles only. For the last two
partial waves we write a sum of Regge-pole and Regge-cut
contributions. We have from Ref. [3]

Fpole
LL ¼ VLðaÞ

Ω21

VLðbÞ
Ω32

; ð3:6Þ

Fpole
RR ¼ VRðaÞ

Ω12

VRðbÞ
Ω23

; ð3:7Þ

Fpole
RL ¼ VRðaÞ

Ω12

VLðbÞ
Ω32

; ð3:8Þ

FLRð1Þ ¼ Fpole
LRð1Þ þ Fcut

LRð1Þ

¼ VLðaÞ
Ω21

VRðbÞ
Ω23

Ω1

Ω2

Ω23

Ω13

þWω2

Ω13

; ð3:9Þ

FLRð2Þ ¼ Fpole
LRð2Þ þ Fcut

LRð2Þ

¼ VLðaÞ
Ω21

VRðbÞ
Ω23

Ω3

Ω2

Ω21

Ω31

þWω2

Ω31

: ð3:10Þ

In the next step we describe the derivation of the function
Wω2

. To this end, we consider single-energy discontinu-
ities5 of the full scattering amplitude. It is important to
observe that, when calculating discontinuities, we have to
take into account all five terms in Eq. (3.1). Furthermore,
in each term there may be different Regge contributions,
Regge poles and Regge cuts. The former ones are known,
and they contain singular terms ∼1=Ω2. We will find that
these singular pieces in the Regge poles will also be
“inherited” by the Regge-cut contributions. Only at the
end, when the full scattering amplitude is computed, will
we show that these singularities completely cancel in all
kinematic regions.
First we consider, in the kinematic region of positive

energies, the discontinuity in s2 which is contained only in
the two partial waves FLR. From the Regge pole we obtain

−e−iðω1þω3Þ VLðaÞVRðbÞ
Ω2

; ð3:11Þ

whereas the contribution of the Regge cut reads

e−iðω1þω3Þeiπω2Wω2
: ð3:12Þ

The discontinuity of the full scattering amplitude therefore
becomes

disc12T2→4 ¼ …Δ12;

Δ12 ¼ e−iðω1þω3Þ
�
−
VLðaÞVRðbÞ

Ω2

þ eiπω2Wω2

�
;

ð3:13Þ

where the dots indicate that we have left out the integration
symbols and the energy factors. Here the important result
is the singular term ∼1=Ω2: since the lhs is computed from
the unitarity integral and has no singularity, the Regge-cut
amplitude Wω2

on the lhs must contain a singular term
which cancels the singularity from the Regge pole.
So far our results are valid to all orders in the coupling

constant. The energy discontinuities have to be calculated
from unitarity integrals, and at this stage the restriction in
accuracy enters. In Ref. [4] the discontinuities in s12 have
been calculated in the leading approximation. Restricting
ourselves to this approximation we can neglect the phases
and obtain

5We define discxfðxÞ¼ 1
2iðfðxþ iϵÞ−fðx− iϵÞÞ; discsð−sÞω ¼

−jsjω sin πω ¼ −jsjωΩ.
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Wω2
¼ Δ12 þ π

ω2aω2b

ω2

¼ Δ12 þ π

�
ω2 − ωa − ωb þ

ωaωb

ω2

�
: ð3:14Þ

This is not yet our final result. In Ref. [4] we have discussed
that the RPRR vertex consists of a “local” and a “nonlocal”
piece [Fig. 5(a)]. The former piece does not couple to a
Regge cut. It satisfies the bootstrap condition in the t2
channel: at leading order this condition implies that the
vertex does not depend upon the momenta k and q2 − k
separately, but only upon the sum q2. As a result, when
multiplying the production with the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) color-octet Green’s function, the
local term Reggeizes, whereas the second one leads to
the Reggeon cut [Fig. 5(b)]. Finally, when the two
production vertices are combined, we arrive at the terms
illustrated in Fig. 6. Inserting this into Eq. (3.14), the terms
∼ω2 − ωa − ωb cancel. What is left is the Regge-cut piece
(second diagram in Fig. 6): we separate the infrared-
divergent lowest-order (one-loop) term6 from the infrared
finite cut amplitude which we denote by fω2

and obtain

Δ12 ¼ −πðω2 − ωa − ωbÞ þ
π

2
V13 þ fω2

; ð3:15Þ

where

Vik ¼
γK
4
ln

jqij2jqkj2
jqi − qkj2λ2

: ð3:16Þ

Since the term V13 is neither infrared finite nor conformal
invariant, we introduce the phase

δ13 ¼ πðV13 þ ωa þ ωbÞ ¼ π
γK
4
ln
jq1jjq3jjkajjkbj
jka þ kbj2jq2j2

ð3:17Þ

and write

Δ12 ¼ −πðω2 − ωa − ωbÞ −
πðωþ ωbÞ

2
þ δ13

2
þ fω2

:

ð3:18Þ
The resulting Regge-cut amplitude, fω2

, is defined to begin
with at least one iteration of the color-octet BFKL kernel
and is given by

fω2
¼ g2Nc

16π2
X
n

ð−1Þn
Z

dν

ν2 þ n2
4

��
−
s2
s0

�
ωðν;nÞ

− 1

�

×

�
q�3k

�
a

k�bq
�
1

�
iν−n

2

�
q3ka
kbq1

�
iνþn

2 ð3:19Þ

(here we have included one of the ω integrals from the
Sommerfeld-Watson integral representation). The calcula-
tion of the unitarity integral and impact factors which leads
to this expression has been described in Ref. [4] and will
not be repeated here. We still write the expression for fω2

in
a slightly more general form [29,30] which also specifies
the energy scale s0. We introduce the anharmonic ratios

u1 ¼
ð−sÞð−s2Þ

ð−s012Þð−s123Þ
; u2 ¼

ð−s3Þð−t1Þ
ð−s123Þð−t2Þ

;

u3 ¼
ð−s1Þð−t3Þ
ð−s012Þð−t2Þ

;

ð3:20Þ

and the complex-valued variable w

w ¼ q3ka
q1kb

: ð3:21Þ

We write

q
2
−k

=
−

(a)

(b)

q
1

k

k
1

= −

FIG. 5. The RPRR production vertex. (a) Vertex decomposition to 'local' and 'non-local' piece. (b) Vertex multiplication by the Green's
function leads to: reggeization of the local piece and appearance of Regge cut.

6We follow the notation of Ref. [1].
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fω2
¼ g2Nc

16π2
X
n

ð−1Þn
�
w
w�

�n
2

Z
dν
2πi

Φ�
ν;n

× ½ð− ffiffiffiffiffiffiffiffiffiffi
u2u3

p Þ−ωðν;nÞ − 1�Φν;njwj2iν: ð3:22Þ

It is important to note that this expression is conformal
invariant. To summarize the construction of fω2

, the impact
factor Φν;n has its origin in the “nonlocal” piece of the
RPRR production vertex only (i.e. from the full RPRR
production vertex we first have to remove the “local” term),
and from the BFKL Green’s function we remove the one-
loop contribution. Our final result for Wω2

thus becomes

Wω2
¼ π

ωaωb

ω2

−
πðωa þ ωbÞ

2
þ δ13

2
þ fω2

: ð3:23Þ

At the end of this section we will show that the first two
terms, which coincide with the leading approximation of
the “subtraction” defined in Ref. [1], will cancel parts of the
Regge pole, leaving what we call the “conformal Regge
pole.” The last two terms are conformally invariant, and fω2

defines the “conformally invariant Regge-cut” amplitude.
Before we conclude this digression on the 2 → 4

amplitude, we want to make several comments. First,
our choice of computing the discontinuity in the kinematic
region where all energies are positive was not unique.
Alternatively, we could also compute the discontinuity in s2
in another kinematic region, e.g. in the region τ1τ3:

τ1τ3∶ disc12T
τ1τ3
2→4 ¼ …Δτ1τ3

12 ;

Δτ1τ3
12 ¼ −

VLðaÞVRðbÞ
Ω2

þ e−iπω2Wω2
:

ð3:24Þ

The phases are different from those of the positive-energy
result in Eq. (3.14). They reflect the fact that, in the
unitarity integral, the amplitudes on both sides of the
unitarity integral, have their phases, and they clearly
depend upon the kinematic region where the unitarity
integral is computed. In the weak-coupling limit, these
phases can be neglected and we obtain the same result
for Wω2

.
Next, it is also instructive to consider other disconti-

nuities, e.g. in the total energy s. In the region of positive
energies we obtain

discsT2→4 ¼ …Δs;

Δs ¼ −
Ω2VRðaÞe−iπω12 −Ω1VLðaÞe−iπω21

Ω12

×
Ω3VRðbÞe−iπω23 − Ω2VLðbÞe−iπω32

Ω23

þ eiðω1−ω3Þeiπω2Wω2
; ð3:25Þ

whereas in the region τ1τ3 the result is much simpler:

τ1τ3∶ Δτ1τ3
s ¼ −

ΩaΩb

Ω2

þ e−iπω2Wω2
: ð3:26Þ

Let us verify that these different expressions for Wω2
all

coincide in the weak-coupling limit. To see this in detail,
we first note that, after neglecting the phases, Δ12 and Δ

τ1τ3
12

coincide:

Δ12 ¼ −π
ω2aω2b

ω2

þWω2
: ð3:27Þ

We are thus led to compare the two equations

Wω2
¼ Δ12 þ π

ω2aω2b

ω2

¼ Δ12 þ π

�
ω2 − ωa − ωb þ

ωaωb

ω2

�
ð3:28Þ

and

Wω2
¼ Δs þ π

ωaωb

ω2

: ð3:29Þ

The reason why these seemingly different expressions
for Wω2

coincide, lies in the application of the bootstrap
relations. As we have explained above, for the discontinuity
in s2, Δ12, we have applied the bootstrap condition in the t2
channel which, in Eq. (3.14), leads to the cancellation of the
terms ∼ω2 − ωa − ωb. In contrast, for the discontinuity in
s, namelyΔs, we apply the bootstrap condition to the t1 and
t3 channels; we illustrate the result in Fig. 7. This leads
directly to the second piece on the rhs of Fig. 5, which
results from the nonlocal piece of the RPRR production
vertex. With this observation, Wω2

in Eq. (3.29), agrees
with Eq. (3.28), i.e. both energy discontinuities lead to the
same answer. This equality can also be seen directly by
comparing the second term on the rhs of Fig. 7 and the rhs
of Fig. 6: for the α integral on the lhs (and for the β integral

+=

2 a b
.

FIG. 6. The s12 discontinuity Δ12 of the 2 → 4 scattering amplitude.
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on the rhs) of the Green’s function there are two ways of
closing the integration contour which give the same answer.
As we have explained above, in this last part of our

discussion, we had to restrict ourselves to the leading-
logarithmic approximation. This was because, in evaluating
the energy discontinuities via unitarity integrals, so far we
have used only the leading approximation for the scattering
amplitudes. Fortunately, all building blocks for an NLO
calculation are known: the RPR production vertex, the
RPRR vertex, the gluon trajectory function, and the boot-
strap condition. So it is possible to verify that our con-
struction of the Regge-cut piece can also be done at NLO.
In the final step we put the pieces together and compute,

for different kinematic regions, the full scattering ampli-
tude. In Ref. [1] we have presented a full list of the Regge-
pole contributions. They can be derived from the phases in
Eq. (3.5) and the pole pieces in Eq. (3.10); in Ref. [1] we
found a slightly simpler method of calculation. For the two
most interesting regions τ1τ3 and τ1τ2τ3, we found the
following results:

τ1τ3∶ e−iπω2

�
eiπðωaþωbÞ − 2ieiπω2

ΩaΩb

Ω2

�

¼ e−iπω2

�
cos πωab þ i sin πðωa þ ωbÞ

− 2i
cos πω2ΩaΩb

Ω2

�
; ð3:30Þ

τ1τ2τ3∶ −
�
e−iπðωaþωbÞ þ 2ie−iπω2

ωaΩb

Ω2

�

¼ −
�
cos πωab − i sin πðωa þ ωbÞ þ 2i

cos πω2ΩaΩb

Ω2

�
:

ð3:31Þ

These regions contain the Regge-cut contributions. From
Eqs. (3.5), (3.9), and (3.10) we derive the phase structure of
the cut contributions:

τ1τ3∶ 2ie−iπω2Wω2
; ð3:32Þ

τ1τ2τ3∶ 2iWω2
: ð3:33Þ

Combining poles and cuts we arrive at

τ1τ3∶ e−iπω2

�
cos πωab þ i sin πðωa þ ωbÞ

− 2i
cos πω2ΩaΩb

Ω2

þ 2iWω2

�
; ð3:34Þ

τ1τ2τ3∶ −
�
cos πωab − i sin πðωa þ ωbÞ

þ 2i
cos πω2ΩaΩb

Ω2

− 2iWω2

�
: ð3:35Þ

These results are valid for all orders. We recall thatWω2
is a

real-valued function and contains no further phases.
Since, for the Regge-cut contributionWω2

, we have only
the leading-logarithmic result and we can approximate
Eqs. (3.34) and (3.35):

τ1τ3∶ e−iπω2

�
cosπωabþ iπðωaþωbÞ−2iπ

ωaωb

ω2

þ2iWω2

�
;

ð3:36Þ

τ1τ2τ3∶ −
�
cosπωab − iπðωa þωbÞ þ 2iπ

ωaωb

ω2

− 2iWω2

�
:

ð3:37Þ

When inserting the result (3.23) for the Regge-cut ampli-
tude into Eq. (3.36) we immediately notice the cancellation
of the singular terms, ωaωb

ω2
and of the terms ∼ωa þ ωb. We

obtain

τ1τ3∶ e−iπω2 ½cos πωab þ iδ13 þ 2ifω2
�; ð3:38Þ

τ1τ2τ3∶ − ½cos πωab − iδ13 − 2ifω2
�: ð3:39Þ

Our phase δ13 coincides with the phase contained in the
BDS amplitude [3].
We thus have found that the scattering amplitude can

be written as a sum of the conformal-invariant Regge-pole
term, cos πωab, and a conformal-invariant and infrared-
finite Regge-cut term [24]. Whereas the pole term is given
by an all-order expression, the derivation of the cut term has
been presented here only in the leading approximation.

FIG. 7. The s discontinuity Δs of the 2 → 4 scattering amplitude.
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IV. 2 → 5: COMPUTING REGGE-CUT
CONTRIBUTIONS FROM ENERGY

DISCONTINUITIES

Returning now to the 2 → 5 scattering amplitude, we
proceed in the same way as in the 2 → 4 case. Our ansatz, a
sum of 14 terms, has already been described in Sec. II,
and we have listed the trigonometric factors. In this section
we calculate the Regge-cut contributions via energy
discontinuities.

A. Short Regge cuts: discontinuity in s3
We begin with the discontinuity in s3 ¼ s34; it receives

contributions from the doublet RLR and the triplet LLR.
These are the five partial waves which contain the short cut
in ω3. For simplicity we chose the kinematic region where
all energies are positive. Together with the phases listed in
Appendix B (Table I), the Regge-pole terms of the two
partial waves RLRð1Þ and RLRð2Þ are found to lead to

disc3ðTpole
RLRð1Þ þ Tpole

RLRð2ÞÞ

¼ … −
e−iπðω1þω4Þ

Ω3

VRðaÞ
Ω12

VLðbÞVRðcÞ; ð4:1Þ

where, as before, the dots indicate that we have left out the
integration symbols and the energy factors. From the three
partial waves LLRð1Þ, LLRð2Þ, and LLRð3Þ we obtain

discs3ðTpole
LLRð1Þ þ Tpole

LLRð2Þ þ Tpole
LLRð3ÞÞ

¼ … −
e−iπðω2þω4Þ

Ω3

VLðaÞ
Ω21

VLðbÞVRðcÞ: ð4:2Þ

Their sum equals

disc3ðTpole
RLRð1Þ þ Tpole

RLRð2Þ þ Tpole
LLRð1Þ þ Tpole

LLRð2Þ þ Tpole
LLRð3ÞÞ

¼ … − e−iπðω1þω2þω4Þeiπωa
VLðbÞVRðcÞ

Ω3

: ð4:3Þ

Next we consider the contributions of the Regge-cut term.
From the doublet RLR we have

discs3ðTω3−cut
RLRð1Þ þ Tω3−cut

RLRð2ÞÞ

¼ …e−iπðω1þω2þω4Þeiπω3
VRðaÞ
Ω12

eiπω2Wω3
; ð4:4Þ

whereas the triplet LLR yields

disc3ðTω3−cut
LLRð1Þ þ Tω3−cut

LLRð2Þ þ Tω3−cut
LLRð3ÞÞ

¼ …e−iπðω1þω2þω4Þeiπω3
VLðaÞ
Ω21

eiπω1Wω3
: ð4:5Þ

Their sum equals

disc3ðTω3−cut
RLRð1Þ þ Tω3−cut

RLRð2Þ þ Tω3−cut
LLRð1Þ þ Tω3−cut

LLRð2Þ þ Tω3−cut
LLRð3ÞÞ

¼ …e−iπðω1þω2þω4Þeiπωaeiπω3Wω3
: ð4:6Þ

We finally note that the long-cut pieces in LLRð1Þ and
LLRð2Þ cancel each other and do not contribute to the s3
discontinuity in the positive-energy region.
As a result, the discontinuity in s3 ¼ s34 of the full

scattering amplitude T2→5 in the region of only positive
energies equals

Δ34 ¼ e−iπðω1þω2þω4Þeiπωa

�
−
VLðbÞVRðcÞ

Ω3

þ eiπω3Wω3

�
:

ð4:7Þ

We mention that in other kinematic regions the results are
similar, e.g.

τ2τ4∶ Δτ2τ4
34 ¼ e−iπω1eiπωa

�
−
VLðbÞVRðcÞ

Ω3

þ e−iπω3Wω3

�
:

ð4:8Þ

The important feature of these expressions is the singular
term from the Regge-pole contribution: similar to the 2 → 4
case, on the lhs the energy discontinuity is computed from
unitarity integrals and thus is free from the unphysical
pole ∼1= sin πω3. Hence, on the rhs, the functionWω3

must
compensate the singularity.
Let us now evaluate Eq. (4.7) in the weak-coupling

approximation. We proceed exactly in the same way as we
have described for the 2 → 4 case and obtain

Wω3
¼ Δ34 þ π

�
ω3 − ωb − ωc þ

ωaωb

ω3

�
: ð4:9Þ

For the computation of the discontinuity on the lhs we, as
before, decompose the production vertices into “local” and
“nonlocal” pieces and make use of the bootstrap equation.
This removes, on the rhs of Eq. (4.9), the terms ω3, ωb, and
ωc, and we arrive at the analogue of Eq. (3.23):

Wω3
¼ π

ωbωc

ω3

−
π

2
ðωb þ ωcÞ þ

δ24
2

þ fω3
; ð4:10Þ

where

δ24 ¼ πðV24 þ ωb þ ωcÞ: ð4:11Þ

The integral representation for fω3
is easily derived from

Eq. (3.19). As expected, the partial wave in Eq. (4.10)
consists of a “subtraction” (first two terms) which will be
shown to cancel against the unwanted parts of the Regge-
pole terms. It agrees with the result obtained in our previous
paper [cf. Appendix B]. The piece “1

2
δ24 þ fω3

” represents
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the conformal-invariant and infrared-finite Regge-cut
amplitude.

B. Long cut: discontinuity in s123
Let us now turn to the long Regge-cut contribution

which is contained in the two triplets: LLRð1Þ, LLRð2Þ,
LRRð1Þ, LRRð2Þ. In order to determineWω2ω3

we consider
the discontinuity in s123. For simplicity we again take all
energies to be positive. We begin with the Regge-pole
contribution:

disc123ðTpole
LLRð1Þ þ Tpole

LLRð2ÞÞ

¼ … − e−iπðω1þω4ÞVLðaÞe−iπω32
VLðbÞ
Ω3Ω32

VRðcÞ ð4:12Þ

and

disc123ðTpole
LRRð1Þ þ Tpole

LRRð2ÞÞ

¼ … − e−iπðω1þω4ÞVLðaÞe−iπω23
VRðbÞ
Ω2Ω23

VRðcÞ: ð4:13Þ

Next we consider the short cuts in ω3 and ω2. We find

disc123ðTω3−cut
LLRð1Þ þ Tω3−cut

LLRð2ÞÞ

¼ … − e−iπðω1þω4Þe−iπω32VLðaÞ
Wω3

Ω2

ð4:14Þ

and

disc123ðTω2−cut
LRRð1Þ þ Tω2−cut

LRRð2ÞÞ

¼ … − e−iπðω1þω4Þe−iπω23
Wω2

Ω3

VRðcÞ: ð4:15Þ

Finally for the long cut

disc123ðTω2ω3−cut
LLRð1Þ þ Tω2ω3−cut

LLRð2Þ Þ

¼ …e−iπðω1þω4Þe−iπω32eiπω2
Wω2ω3;L

Ω32

ð4:16Þ

and

disc123ðTω2ω3−cut
LRRð1Þ þ Tω2ω3−cut

LRRð2Þ Þ

¼ …e−iπðω1þω4Þe−iπω23eiπω3
Wω2ω3;R

Ω23

: ð4:17Þ

The sum of all terms equals

Δ123 ¼ e−iπðω1þω4Þ
�
e−iπω32

�
eiπω2

Wω2ω3;L

Ω32

−
VLðaÞWω3

Ω2

−
VLðaÞVLðbÞVRðcÞ

Ω3Ω32

�

þ e−iπω23

�
eiπω3

Wω2ω3;R

Ω32

−
Wω2

VRðcÞ
Ω3

−
VLðaÞVRðbÞVRðcÞ

Ω2Ω23

��
: ð4:18Þ

So far the results for the discontinuity are valid to all orders.
In the weak-coupling limit we find for the sum of all terms

Δ123 ¼ −π
ω2aωbω3c

ω2ω3

−
ω2a

ω2

Wω3
−Wω2

ω3c

ω3

þWω2ω3;L −Wω2ω3;R

πω32

: ð4:19Þ

Let us first evaluate the discontinuity on the lhs which
we illustrate in Fig. 8. Similarly to the 2 → 4 case we
decompose the structure of the RPRR and the RRPR
production vertices. After separating the one-loop contri-
butions we obtain

Δ123 ¼ −πωb þ
π

2
V14 þ fω2ω3

−
π

2
V13

−
π

2
V24 − fω3

− fω2
; ð4:20Þ

which we can also write in the form

Δ123 ¼
1

2
ðδ14 − δ24 − δ13Þ þ fω2ω3

− fω2
− fω3

ð4:21Þ

with

δ14 ¼ πðV14 þ ωa þ ωcÞ: ð4:22Þ

For fω2ω3
we have the integral representation [31]
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fω2ω3
¼ a

2

X
n1;n2

ð−1Þn1þn2

Z Z
dν1dν2
ð2πÞ2

1

iν1 þ n1
2

�
k�aq�3
q�1k

�
b

�
iν1−

n1
2

�
kaq3
q1kb

�
iν1þn1

2

�
−s2
s02

�
ωðν1;n1Þ

× Cðν1; ν2; n1; n2Þ
�
−s3
s03

�
ωðν2;n2Þ�k�bq�4

q�2k
�
c

�
iν2−

n2
2

�
kbq4
q2kc

�
iν2þn2

2 1

iν2 −
n2
2

����
sub

; ð4:23Þ

where the subscript “sub” indicates that we have subtracted the one-loop contribution, and the function Cðν1; ν2; n1; n2Þ is
the “central emission vertex” as defined in Ref. [31] [cf. Eq. (19)].
It may also be useful to write this Regge-cut amplitude in terms of anharmonic ratios. We introduce the six anharmonic

ratios

u11 ¼
ð−s0123Þð−s2Þ
ð−s012Þð−s123Þ

; u21 ¼
ð−s234Þð−t1Þ
ð−s1234Þð−t2Þ

; u31 ¼
ð−s1Þð−t3Þ
ð−s012Þð−t2Þ

;

u12 ¼
ð−s1234Þð−s3Þ
ð−s123Þð−s234Þ

; u22 ¼
ð−s4Þð−t2Þ
ð−s234Þð−t3Þ

; u32 ¼
ð−s012Þð−t4Þ
ð−s0123Þð−t3Þ

; ð4:24Þ

and the complex-valued variables wσ

w1 ¼
q3ka
q1kb

; w2 ¼
q4kb
q2kc

: ð4:25Þ

The integral representation becomes

fω2ω3
¼ a

2

X
n1;n2

ð−1Þn1þn2

�
w1

w�
1

�
n1
�
w2

w�
2

�
n2
Z Z

dν1dν2
ð2πÞ2 Φðν1; n1Þ�jw1j2iν1ð− ffiffiffiffiffiffiffiffiffiffiffiffiffi

u21u31
p Þ−ωðν1;n1Þ

× Cðν1; ν2; n1; n2Þð− ffiffiffiffiffiffiffiffiffiffiffiffiffi
u22u32

p Þ−ωðν2;n2Þjw2j2iν2Φðν2; n2Þjsub: ð4:26Þ

Returning to the energy discontinuity we insert Eq. (4.21) into Eq. (4.19) and obtain

Wω2ω3;L −Wω2ω3;R

πω32

þ ωa

ω2

Wω3
þWω2

ωc

ω3

¼ π
ωaωbωc

ω2ω3

−
π

2
ðωa þ ωcÞ þ

1

2
δ14 þ fω2ω3

: ð4:27Þ

We notice that the single discontinuity is not sufficient to determine Wω2ω3;L and Wω2ω3;R separately. However, it fixes the
combination which appears in the leading approximation of the scattering amplitude. On the rhs of Eq. (4.27) we again find
the subtraction terms which will be canceled by the Regge-pole contributions, and the conformal-invariant Regge-cut

=

a b c

+
b

.

−−

FIG. 8. Illustration of the discontinuity Δ123 in the weak-coupling limit.
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contribution. The subtraction term agrees with the result of
our previous paper (see Appendix B).
For comparison, we also consider another discontinuity

in the total energy s in the kinematic region τ1τ4. First,
one has to write the Regge-pole contribution. After some
algebra we find for the sum of all partial waves

discs
X

Tpole
ijk ¼ … −

ΩaΩbΩc

Ω2Ω3

; ð4:28Þ

where, again, the dots stand for the ω integrals and energy
factors. For later purposes it will be convenient to use the
identity

ΩaΩbΩc

Ω2Ω3

¼ Ωa

�
e−iπω3

Ωb

Ω3Ω23

þ e−iπω2
Ωb

Ω2Ω32

�
Ωc:

ð4:29Þ

Next we consider the short ω3 cut, contained in the doublet
RLR

discsðTω3−cut
RLRð1Þ þ Tω3−cut

RLRð2ÞÞ ¼ …e−iπω3
VRðaÞ
Ω12

Wω3
ð4:30Þ

and in the triplet LLR

discsðTω3−cut
LLRð1Þ þ Tω3−cut

LLRð2Þ þ Tω3−cut
LLRð3ÞÞ

¼ …e−iπω3
Ω1

Ω2

VLðaÞ
Ω21

Wω3
: ð4:31Þ

Their sum equals

discsðTω3−cut
RLRð1Þ þ Tω3−cut

RLRð2Þ þ Tω3−cut
LLRð1Þ þ Tω3−cut

LLRð2Þ þ Tω3−cut
LLRð3ÞÞ

¼ …e−iπω3
Ωa

Ω2

Wω3
: ð4:32Þ

An analogous result holds for the short cut contained in
the doublet LRL and in the triplet LRR. Finally, the
contributions of the long cut are

discsðTω2−ω3−cut
LLRð1Þ þ Tω2−ω3−cut

LLRð2Þ Þ ¼ …e−iπω3
Wω2ω3;L

Ω32

ð4:33Þ

and

discsðTω2−ω3−cut
LRRð1Þ þ Tω3−ω2−cut

LRRð2Þ Þ ¼ …e−iπω2
Wω2ω3;R

Ω23

:

ð4:34Þ
The full discontinuity in s becomes

Δτ1τ4
s ¼ e−iπðω2þω3ÞΩaΩbΩc

Ω2Ω3

þ eiπω2Wω2ω3;L − eiπω3Wω2ω3;R

Ω32

þ eþiπω2
Ωa

Ω2

Wω3
þ eiπω3Wω2

Ωc

Ω3

: ð4:35Þ

To proceed further let us restrict ourselves to the leading-
logarithmic approximation. We obtain

Δτ1τ4
s ¼ Wω2ω3;L −Wω2ω3;R

πω32

þ ωa

ω2

Wω3
þ ωc

ω3

Wω2

− π
ωaωbωc

ω2ω3

: ð4:36Þ

For the lhs we use the bootstrap relations in the t1 and t4
channels and obtain the result illustrated Fig. 9. As we did
before, we isolate on the rhs the IR-divergent one-loop
term:

Δτ1τ4
s ¼ 1

2
δ14 −

π

2
ðωa þ ωcÞ þ fω2ω3

; ð4:37Þ

where fω2ω3
is given in Eq. (4.23). We thus find for Wω2ω3

in the leading-logarithmic approximation

Wω2ω3;L −Wω2ω3;R

πω32

þ ωa

ω2

Wω3
þWω2

ωc

ω3

¼ π
ωaωbωc

ω2ω3

−
π

2
ðωa þ ωcÞ þ

1

2
δ14 þ fω2ω3

; ð4:38Þ

which agrees with our previous result (4.27).

V. THE 2 → 5 SCATTERING AMPLITUDES IN
DIFFERENT KINEMATIC REGIONS

In this final section we put pieces together and compute
the scattering amplitudes. As we have mentioned before, in
the region where all energies are positive all Regge-cut
contributions cancel, and we are left with the Regge-pole
terms only. They have been computed in Ref. [1]. Most
importantly, in some kinematic regions singular terms
appear, e.g. ∼1=Ω2. We will show that the Regge-cut
contributions will remove all these unwanted singularities.

FIG. 9. The s discontinuity Δs of the 2 → 5 scattering amplitude.
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We begin with the kinematic region τ2τ4. In this region,
only the short Regge cut in the ω3 channel is nonzero,
whereas both the short cut in the ω2 channel and the long
cut vanish. From Eqs. (2.4)–(2.11) we derive, for the
product of the partial waves and their phase factors the
following contributions to the scattering amplitude:

Fω3−cut
RLRð1Þ þ Fω3−cut

RLRð2Þ → 2ie−iπðω1þω3Þeiπω2
VRðaÞ
Ω12

Wω3
ð5:1Þ

and

Fω3−cut
LLRð1Þ þ Fω3−cut

LLRð2Þ þ Fω3−cut
LLRð3Þ → 2i

VLðaÞ
Ω21

e−iπω3Wω3
:

ð5:2Þ

Taking the sum of the last two equations and observing the
identity (2.44), we obtain the result

RLRð1Þ þ RLRð2Þ þ LLRð1Þ þ LLRð2Þ þ LLRð3Þ
¼ 2ie−iπðω1þω3ÞeiπωaWω3

: ð5:3Þ

Similarly for the region τ2τ3τ4

τ2τ3τ4∶ 2ie−iπω1eiπωaWω3
: ð5:4Þ

We combine these Regge-cut results with the Regge poles
which are taken from Ref. [1]:

τ2τ4∶ e−iπðω1þω3Þeiπωa

�
eiπðωbþωcÞ − 2ieiπω3

ΩbΩc

Ω3

�

¼ e−iπðω1þω3Þeiπωa

�
cos πðωb − ωcÞ

þi sin πðωb þ ωcÞ − 2i
cos πω3ΩbΩc

Ω3

�
; ð5:5Þ

τ2τ3τ4∶ − e−iπω1eiπωa

�
e−iπðωbþωcÞ þ 2ie−iπω3

ΩbΩc

Ω3

�

¼ −e−iπω1eiπωa

�
cos πðωb − ωcÞ

−i sin πðωb þ ωcÞ þ 2i
cos πω3ΩbΩc

Ω3

�
: ð5:6Þ

When combining these Regge-pole expressions with
the Regge cuts in Eqs. (5.3) and (5.4) [with Wω3

from
Eq. (4.10)], one easily verifies the cancellation between the
subtraction terms in Wω3

and parts of the Regge-pole
contributions. The results for the scattering amplitudes are

τ2τ4∶ e−iπðω1þω3Þeiπωa ½cos πωbc þ iδ24 þ 2ifω3
�; ð5:7Þ

τ2τ3τ4∶ − e−iπω1eiπωa ½cos πωbc − iδ24 − 2ifω3
�: ð5:8Þ

The expressions for the two regions τ1τ3 and τ1τ2τ3 can
easily be obtained by symmetry considerations.
For the remaining kinematic regions we have to calculate

the contributions of the short cuts and of the long cut. First
we complete our calculations of the short cut in ω3:

τ1τ4∶ 2ie−iπω3
Ωa

Ω2

Wω3
; ð5:9Þ

τ1τ2τ4∶ − 2ie−iπω3
VLðaÞ
Ω2

Wω3
; ð5:10Þ

τ1τ3τ4∶ 2i
Ωa

Ω2

Wω3
; ð5:11Þ

τ1τ2τ3τ4∶ − 2i
VLðaÞ
Ω2

Wω3
: ð5:12Þ

Next we turn to the long cut which is contained in the
two triplets: LLRð1Þ, LLRð2Þ, LRRð1Þ, and LRRð2Þ. Their
contributions to the scattering amplitude are

τ1τ4∶ Fω2−ω3−cut
LLRð1Þ þ Fω2−ω3−cut

LLRð2Þ → 2ie−iπω3
Wω2ω3∶L

Ω32

;

ð5:13Þ

τ1τ2τ4∶ Fω2−ω3−cut
LLRð1Þ þ Fω2−ω3−cut

LLRð2Þ → 2ie−iπω3eiπω2
Wω2ω3∶L

Ω32

;

ð5:14Þ

τ1τ3τ4∶ Fω2−ω3−cut
LLRð1Þ þ Fω2−ω3−cut

LLRð2Þ → 2i
Wω2ω3∶L

Ω32

; ð5:15Þ

τ1τ2τ3τ4∶ Fω2−ω3−cut
LLRð1Þ þ Fω2−ω3−cut

LLRð2Þ → 2ie−iπω2
Wω2ω3∶L

Ω32

ð5:16Þ

and

τ1τ4∶ Fω2−ω3−cut
LRRð1Þ þ Fω2−ω3−cut

LRRð2Þ → 2ie−iπω2
Wω2ω3∶R

Ω23

;

ð5:17Þ

τ1τ2τ4∶ Fω2−ω3−cut
LRRð1Þ þ Fω2−ω3−cut

LRRð2Þ → 2i
Wω2ω3∶R

Ω23

; ð5:18Þ

τ1τ3τ4∶ Fω2−ω3−cut
LRRð1Þ þ Fω2−ω3−cut

LRRð2Þ → 2ie−iπω2eiπω3
Wω2ω3∶R

Ω23

;

ð5:19Þ

τ1τ2τ3τ4∶ Fω2−ω3−cut
LRRð1Þ þ Fω2−ω3−cut

LRRð2Þ → 2ie−iπω3
Wω2ω3∶R

Ω23

:

ð5:20Þ
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The sum of all four contributions, Fω2−ω3−cut
LLRð1Þ þ

Fω2−ω3−cut
LLRð2Þ þ Fω2−ω3−cut

LRRð1Þ þ Fω2−ω3−cut
LRRð2Þ can be combined

into

τ1τ4∶ → 2ie−iπðω2þω3Þ
�
eiπω2

Wω2ω3;L

Ω32

þ eiπω3
Wω2ω3;R

Ω23

�
;

ð5:21Þ

τ1τ2τ4∶ → 2ie−iπω3

�
eiπω2

Wω2ω3;L

Ω32

þ eiπω3
Wω2ω3;R

Ω23

�
;

ð5:22Þ

τ1τ3τ4∶ → 2ie−iπω2

�
eiπω2

Wω2ω3;L

Ω32

þ eiπω3
Wω2ω3;R

Ω23

�
;

ð5:23Þ

τ1τ2τ3τ4∶ → 2i

�
e−iπω2

Wω2ω3;L

Ω32

þ e−iπω3
Wω2ω3;R

Ω23

�
:

ð5:24Þ

One easily verifies that the regions τ2τ4 and τ2τ3τ4 which
contain the short cut in ω3 receive no contribution from the
long cut. Similarly, the regions τ1τ3 and τ1τ2τ3 contain only
the Regge poles and the short ω2 cut.
Before we combine the contributions of the long cut with

short cuts and Regge poles, let us pause for a moment and
take a closer look at the long-cut contributions. The long
cut is obtained from the discontinuity in s123 (or the s
discontinuity). The structure of the long-cut expression
[square brackets in Eqs. (5.21)–(5.24)] is illustrated in
Fig. 10 (for the weak coupling see also Fig. 8). It consists
of impact factors on the left and on the right sides of the
two-Reggeon cut which, because of Regge factorization,
are the same as in the 2 → 4 scattering amplitude (in the
leading approximation they are illustrated in Fig. 5) and the
RRPRR production vertex in the center. The latter one is a
new element which, at the leading order, has been calcu-
lated in Ref. [31]. The phase structure contained in
Eqs. (5.21)–(5.24) indicates that, beyond the leading
approximation, this production vertex must become com-
plex valued. It is instructive to recapitulate the RPR
production vertex in the BDS formula for 2 → 3 [1]. For
the different kinematic regions labeled by the τ factors the
relevant phase factors are

1∶ →e−iπðω1þω2Þ
�
eiπω1

VL

Ω21

þeiπω2
VR

Ω12

�
¼e−iπðω1þω2Þeiπωa ;

τ1∶ →e−iπω2

�
eiπω1

VL

Ω21

þeiπω2
VR

Ω12

�
¼e−iπω2eiπωa ;

τ2∶ →e−iπω1

�
eiπω1

VL

Ω21

þeiπω2
VR

Ω12

�
¼e−iπω1eiπωa ;

τ1τ2∶ →

�
e−iπω1

VL

Ω21

þe−iπω2
VR

Ω12

�
¼e−iπωa :

ð5:25Þ
This phase structure allows for two equivalent descriptions:
either we write a sum of two terms with real-valued
coefficients VLðaÞ and VRðaÞ (in agreement with the
Steinmann relations) or, alternatively, we use a factorized
representation with the complex-valued production vertex
eiπωa . Comparing the bracketed expressions with the square
brackets in Eqs. (5.21)–(5.24) we find the same phase
structure. Therefore, for the RRPRR vertex in the center
of Fig. 10, we either retain the sum of the two terms with
real-valued coefficients contained inWω2−ω3;L andWω2−ω3;R,
or we introduce a complex-valued production vertex. At
leading order, this vertex is real. In contrast to the Regge-
pole case in 2 → 3, we do not yet know the complex-valued
RRPRR vertex function beyond the leading order. It is
tempting to expect, again, some form of exponentiation.
Finally we combine the contributions of the long cut and

the short cut with the Regge-pole contributions which are
taken from the Appendix of Ref. [1]. The latter ones are

τ1τ4∶ e−iπðω2þω3Þ
�
eiπðωaþωbþωcÞ − 2ieiπðω2þω3Þ ΩaΩbΩc

Ω2Ω3

�
;

ð5:26Þ

τ1τ2τ4∶ − e−iπω3

�
eiπð−ωaþωbþωcÞ − 2ieiπω3

Ω2aΩbΩc

Ω2Ω3

�
;

ð5:27Þ

τ1τ3τ4∶ −e−iπω2

�
eiπðωaþωb−ωcÞ−2ieiπω2

ΩaΩbΩ3c

Ω2Ω3

�
;

ð5:28Þ

τ1τ2τ3τ4∶
�
eiπð−ωaþωb−ωcÞ − 2i

Ω2aΩbΩ3c

Ω2Ω3

�
: ð5:29Þ

The contributions of the long cuts (5.21)–(5.24), together
with those of the short cut in ω3 (5.9)–(5.12) (and
analogous expressions for the short cut in ω2) are

FIG. 10. Structure of the long Regge cut.

BARTELS, KORMILITZIN, AND LIPATOV PHYSICAL REVIEW D 91, 045005 (2015)

045005-18



τ1τ4∶ → 2ie−iπðω2þω3Þ
��

eiπω2
Wω2−ω3;L

Ω32

þ eiπω3
Wω2−ω3;R

Ω23

�
þ eiπω2

ΩaWω3

Ω2

þ eiπω3
Wω2

Ωc

Ω3

�

¼ 2ie−iπðω2þω3Þ
�
eiπω2

�
Wω2−ω3;L

Ω32

þΩaWω3

Ω2

�
þ eiπω3

�
Wω2−ω3;R

Ω23

þWω2
Ωc

Ω3

��
; ð5:30Þ

τ1τ2τ4∶ → 2ie−iπω3

��
eiπω2

Wω2−ω3;L

Ω32

þ eiπω3
Wω2−ω3;R

Ω23

�
−
Ω2aWω3

Ω2

þ eiπω3
Wω2

Ωc

Ω3

�

¼ 2ie−iπω3

�
eiπω2

�
Wω2−ω3;L

Ω32

þΩaWω3

Ω2

�
þ eiπω3

�
Wω2−ω3;R

Ω23

þWω2
Ωc

Ω3

�
− eiωaWω3

�
; ð5:31Þ

τ1τ3τ4∶ → 2ie−iπω2

��
eiπω2

Wω2−ω3;L

Ω32

þ eiπω3
Wω2−ω3;R

Ω23

�
þ eiπω2

ΩaWω3

Ω2

−
Wω2

Ω3c

Ω3

�

¼ 2ie−iπω2

�
eiπω2

�
Wω2−ω3;L

Ω32

þ ΩaWω3

Ω2

�
þ eiπω3

�
Wω2−ω3;R

Ω23

þWω2
Ωc

Ω3

�
−Wω2

eiωc

�
; ð5:32Þ

τ1τ2τ3τ4∶ → 2i

��
e−iπω2

Wω2−ω3;L

Ω32

þ e−iπω3
Wω2−ω3;R

Ω23

�
−
Ω2aWω3

Ω2

−
Wω2

Ω3c

Ω3

�

¼ 2i

�
e−iπω2

�
Wω2−ω3;L

Ω32

þ ΩaWω3

Ω2

�
þ e−iπω3

�
Wω2−ω3;R

Ω23

þWω2
Ωc

Ω3

�
−Wω2

e−iωc − e−iωaWω3

�
: ð5:33Þ

For the expressions on the rhs of these equations we have
only weak-coupling-limit results. Disregarding the phases
and using Eq. (4.27) we find for the region τ1τ4

e−iπðω2þω3Þ
�
iδ14 þ 2ifω2ω3

þ iπ
ωaωbωc

ω2ω3

− iπðωa þ ωcÞ
�
:

ð5:34Þ

After combining this with the Regge-pole term, we find the
expected cancellation between the subtraction term and the
Regge-pole piece, and we arrive at

τ1τ4∶ → e−iπðω2þω3Þð1þ iπωb þ iδ14 þ 2ifω2ω3
Þ:
ð5:35Þ

In the same way we compute the other regions and obtain

τ1τ2τ4∶ → −e−iπω3ð1þ iπωc − iδ124 − 2iðfω2ω3
− fω3

ÞÞ;
ð5:36Þ

τ1τ3τ4∶ → −e−iπω2ð1þ iπωa − iδ134 − 2iðfω2ω3
− fω2

ÞÞ;
ð5:37Þ

τ1τ2τ3τ4∶ → 1þ iδ1234 − iπωb þ 2iðfω2ω3
− fω2

− fω3
Þ;

ð5:38Þ

where

δ124 ¼ πðV14 − V24 þ ωa − ωbÞ; ð5:39Þ

δ134 ¼ πðV14 − V13 þ ωc − ωbÞ; ð5:40Þ

δ1234 ¼ πðV14 − V13 − V24 − ωa − ωcÞ: ð5:41Þ

Note that, in analogy with our remark at the end of the
2 → 4 section, the term V14 is the one-loop approximation
of the long Regge cut and is contained in the BDS formula;
the same holds for the terms V13 and V24 which represent
the one-loop approximations of the short cuts in the ω2 and
ω3 channels.
Making use of the results from Ref. [1] we can slightly

generalize our results. As discussed in Appendix B, our
weak-coupling results for the partial waves are in agree-
ment with the subtractions predicted in Ref. [1], and in this
paper it was shown that they remove all the unwanted
pieces of the Regge-pole terms. Therefore, this part of our
results—the combination of subtraction terms with the
Regge-pole terms—can be generalized to all orders, and
our restriction to the leading-logarithmic approximation
only applies to the calculation of the Regge-cut contribu-
tions. From the second lines in Eqs. (5.30)–(5.33) we infer
that the partial waves fω3

(fω2
) contained inWω3

(Wω2
) are

multiplied by phase factors eiπωa or e−iπωa (eiπωc or e−iπωc ).
We therefore write

τ1τ4∶ → e−iπðω2þω3Þ½eiπωb cos πωac þ iδ14 þ 2ifω2ω3
�;
ð5:42Þ
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τ1τ2τ4∶ → −e−iπω3 ½eiπωc cos πωab − iδ124

− 2iðfω2ω3
− eiπωafω3

Þ�; ð5:43Þ

τ1τ3τ4∶ → −e−iπω2 ½eiπωa cos πωbc − iδ134

− 2iðfω2ω3
− fω2

eiπωcÞ�; ð5:44Þ

τ1τ2τ3τ4∶ → ½e−iπωbeiπωbaeiπωbc þ iδ1234

þ 2iðfω2ω3
− fω2

e−iπωc − e−iπωafω3
Þ�: ð5:45Þ

In order to pass to the conformally invariant remainder
functions R7;τiτj…τk , we first recapitulate the relation
between our scattering amplitude, the BDS amplitude,
and the remainder function:

T2→5 ¼ TBorn
2→45 × TBDS × R: ð5:46Þ

Here the BDS amplitude contains kinematic phases
(e.g. e−iπðω2þω3Þ for the region τ1τ4), the exponentials of
production vertices (eiπωb , eiπωc , eiπωa , e−iπωb for the
regions τ1τ4, τ1τ2, τ4 τ1τ3τ4, and τ1τ2τ3τ4, respectively),
and the phases eiδij…k . Finally, the Born amplitude TBorn is
proportional to swhich, when introducing a further twist in
a t channel, produces a minus sign (for example, when
going from τ1τ4 to τ1τ2τ4). These factors, therefore, have to
be taken into account in our expressions for the scattering
amplitudes in Eqs. (5.42)–(5.45), before we arrive at the
remainder functions R7.
Before we write down our results for the remainder

functions we want to make a further comment on the
Regge-cut amplitude fω2ω2

. Since this amplitude is known
only to leading-order accuracy, we will not be able to write
all the phase factors for this term. Beyond the leading order
however, we know from our discussion after Eq. (5.24) and
from Eqs. (5.30)–(5.33) that the RRPRR vertex becomes
complex. As a result, the amplitude fω2ω3

will also become
complex and the exponential of the production vertices can
no longer be disregarded. For the region τ1τ4 this means

fω2ω3
→ e−iπωb

eiπω2fω2ω3;L − eiπω2fω2ω3∶R

Ω32

: ð5:47Þ

Our prediction for higher orders, therefore, is that the rhs of
Eq. (5.47) must be conformally invariant. Finally, it is
customary to present results for the product of the remain-
der functions and the phases eiδij…k which are part of the
BDS formula.
With these modifications our final results for the

remainder function become7

R7;τ1τ4e
iδ14 ¼ cos πωac þ iδ14 þ 2ifω2ω3

; ð5:48Þ

R7;τ1τ2τ4e
−iδ124 ¼ cos πωab − iδ124 − 2iðfω2ω3

− eiπωacfω3
Þ;

ð5:49Þ

R7;τ1τ3τ4e
−iδ134 ¼ cos πωbc − iδ134 − 2ifω2ω3

− eiπωcafω2
Þ;

ð5:50Þ

R7;τ1τ2τ3τ4e
iδ1234 ¼ eiπωbaeiπωbc þ iδ1234

þ2iðfω2ω3
−eiπωbcfω2

−eiπωbafω3
Þ: ð5:51Þ

Equations (5.7), (5.8), (5.48), (5.49), (5.50), and (5.51),
represent our final results. All unphysical singularities
have been canceled, and the final expressions consist
of conformally invariant Regge-pole and Regge-cut
contributions.

VI. SUMMARY AND CONCLUSIONS

In this paper we have completed our analysis of the
n ¼ 7 BDS scattering amplitude in the multi-Regge limit.
To summarize the result of this work, we once more list
the final results for the remainder function R7;τiτj…τk in the
different Mandelstam kinematic regions labeled by
τiτj…τk. We follow the definitions given in our previous
paper [1]: from the expressions listed in the previous
section, we remove the kinematic phase factors and
exponents of the production vertices, e�iπωa , e�iπωb ,
e�iπωc which are already parts of the BDS formula. The
final expressions are sums of the conformally invariant
contributions of Regge poles and Regge cuts:

R7;τ2τ4e
iδ24 ¼ cos πωbc þ iδ24 þ 2ifω3

; ð6:1Þ

R7;τ2τ3τ4e
−iδ24 ¼ cos πωbc − iδ24 − 2ifω3

; ð6:2Þ

R7τ1τ3e
iδ13 ¼ cos πωab þ iδ13 þ 2ifω2

; ð6:3Þ

R7;τ1τ2τ3e
−iδ13 ¼ cos πωab − iδ13 − 2ifω2

; ð6:4Þ

R7;τ1τ4e
iδ14 ¼ cos πωac þ iδ14 þ 2ifω2ω3

; ð6:5Þ

R7;τ1τ2τ4e
−iδ124 ¼ cos πωab − iδ124 − 2iðfω2ω3

− eiπωacfω3
Þ;

ð6:6Þ
R7;τ1τ3τ4e

−iδ134 ¼ cos πωbc − iδ134 − 2ifω2ω3
− eiπωcafω2

Þ;
ð6:7Þ

7In our previous paper [1] the remainder function was defined
to include the sign changes due to the s factors of the Born term.
As a result, kinematic regions belonging to an odd number of τ
factors have a global minus sign.
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R7;τ1τ2τ3τ4e
iδ1234 ¼ eiπωbaeiπωbc þ iδ1234

þ 2iðfω2ω3
− eiπωbcfω2

− eiπωbafω3
Þ:
ð6:8Þ

The Regge-cut amplitides fω2
, fω3

and fω2ω3
are explicitly

given in Eq. (3.19) and in Eq. (4.23), respectively. As stated
before, these Regge-cut contributions are valid only in the
weak-coupling approximation: this restriction comes from
the calculation of unitarity integrals in which we have used
leading-order amplitudes Mn→m and from the use of
bootstrap relations. As explained at the end of the previous
section, at next-to-leading order the long-cut amplitude
fω2ω3

is expected to become complex. Since production
vertices have been calculated at NLO [32,33] and bootstrap
equations have been proven to be valid also at NLO
[34,35], all ingredients for a complete NLO analysis are
available.
It is important to note that recently both the n ¼ 6

[29,36] and n ¼ 7 scattering amplitudes [37–39] in multi-
Regge kinematics have been investigated in the strong-
coupling region. The results show a remarkable consistency
between the structure at weak and strong coupling,
thus providing strong support for the AdS/CFT duality
hypothesis.
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APPENDIX A: PARTIAL WAVES AND
MULTIPARTICLE AMPLITUDES

In this appendix we review and present further details of
the Regge-pole analysis, derived from models [25] (scalar
field theories and dual amplitudes) and from S-matrix
theory [26,40–43].
We begin with a brief review of the simplest examples,

namely the 2 → 3 and 2 → 4 scattering amplitudes in
the multi-Regge limit, which have been discussed before.
The possible energy discontinuities of the 2 → 3 case are
illustrated in Fig. 10(a). In a Regge-pole description, one
starts from multiple partial-wave expansions in the crossed
channels. For the 2 → 3 case, such an expansion contains
the triple sum over the angular momenta in the t1 and t2
channels, j1 and j2, and the helicity variable n conjugated
to the Toller angle ω at the production vertex. As was
pointed out in Ref. [26], the definition of the multiple
partial wave and its subsequent analytic continuation to
complex values of angular momenta and helicity requires a

decomposition of the scattering amplitude into separate
pieces (spectral components), which correspond to the two
terms in Fig. 11. Each term allows for the construction of a
Froissart-Gribov partial wave, and the analytic continuation
can be done in two of the three angular momentum
variables j1, j2 and n. The coupling of these variables is
illustrated as hexagraphs, shown in Fig. 11(b).
Disregarding all complications which are unnecessary
for the present discussion, we have

T2→3 ¼
X
n

X
j1≥n

X
j2≥n

dj10nðcos θ1Þundj2n0ðcos θ2Þ

× Fðj1; j2; n; t1; t2Þ; ðA1Þ

where u ¼ eiω, and θ1 and θ2 denote the scattering angles
in the t1 and t2 channels, respectively. As mentioned before,
the Sommerfeld-Watson transformation and analytic con-
tinuation in j1, j2 and n requires the decomposition into
two terms. The first one [left parts of Figs. 11(a) and 11(b)]
reads as

Tð1Þ
2→3 ¼

1

ð2πiÞ2
Z Z

dj1
sin πðj1 − nÞ

dn
sin πn

×
X∞
N¼0

dj10nðcos θ1ÞundnþN
n0 ðcos θ2Þ

× Fð1Þðj1; j2; n; t1; t2Þ; ðA2Þ

i.e. we have put j2 ¼ nþ N, where N ∈ Z. Assuming the
existence of Regge poles at j1 ¼ α1 and n ¼ α2 − N with
factorizing residues, we have for s1 ∼ cos θ1 → ∞ and
s2 ∼ cos θ2 → ∞, the Regge form

(a)

(b)

j1 j2
nn

t1

t2 t1

t2
j2 j1

1 2 3

A B

FIG. 11. (a) The two sets of energy discontinuities and (b) the
corresponding hexagraphs.
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Tð1Þ
2→3 ¼ sα11 sα22 uα2βðt1ÞΓð−α1Þ

×
sin πα1 ~VRðt1; t2; uÞ
sin πðα1 − α2Þ

Γð−α2Þβðt2Þ: ðA3Þ

Here we have used the fact that for large z,

djonðzÞ ∼ zj

Γð1þ jÞ ðA4Þ

and

1

Γð1þ jÞ ¼
− sin πj

π
Γð−jÞ: ðA5Þ

The Γ function on the rhs contains the particle pole in the t
channel. The vertex function VR (for a massive theory) is
analytic in η ¼ u−1 near η ¼ 0. Moreover, since in the
multi-Regge limit η ¼ u−1 ∼ s1s2

s , we can also write

Tð1Þ
2→3 ¼ sα1−α21 sα2βðt1ÞΓð−α1Þ

sin πα1 ~VRðt1; t2; uÞ
sin πðα1 − α2Þ

× Γð−α2Þβðt2Þ: ðA6Þ

Here the energy factors are in accordance with the singu-
larity structure illustrated in the upper line of Fig. 11(a) (left
part). In the same way, the right part of Fig. 11 corresponds
to the second part of the scattering amplitude:

Tð2Þ
2→3 ¼

1

ð2πiÞ2
Z Z

dj2
sin πðj2 − nÞ

dn
sin πn

×
X∞
N¼0

dnþN
0n ðcos θ1Þundj2n0ðcos θ2Þ

× Fð2Þðj1; j2; n; t1; t2Þ: ðA7Þ

With Regge poles at j2 ¼ α2 and n ¼ α1 − N we arrive at

Tð2Þ
2→3 ¼ sα2−α12 sα1βðt1ÞΓð−α1Þ

sin πα2 ~VLðt1; t2; uÞ
sin πðα2 − α1Þ

× Γð−α2Þβðt2Þ: ðA8Þ

In the following it will be convenient to define

sin πα1 ~VRðt1; t2; uÞ ¼ VRðt1; t2; uÞ ðA9Þ

and

sin πα2 ~VLðt1; t2; uÞ ¼ VLðt1; t2; uÞ: ðA10Þ

Note that this definition of the production vertices (apart
from constant factors) is in accordance with the notation
used in the main part of our paper.
We generalize this to higher-order amplitudes. Let us

consider the 2 → 4 case. Turning to the 2 → 4 process, we
only emphasize the new feature. Obviously, we now have
five different ways of drawing maximal sets of nonoverlap-
ping energy variables, and each such diagram has its own
hexagraph: focusing on the terms “3” and “4,” we have

Tð3Þ
2→4 ¼

1

ð2πiÞ3
Z Z Z

dj2
sin πðj2 − n1Þ

dn1
sin πðn1 − n2Þ

dn2
sin πn2

×
X
N1

X
N2

un11 un22 dn1þN1

0n1
ðcos θ1Þdj2n1ðcos θ2Þdn2þN2

n2 ðcos θ3ÞFð3Þðj1; j2; j3; t1; t2; t3; n1; n2Þ: ðA11Þ

Assuming the existence of Regge poles at

j2 ¼ α2; n1 ¼ α1 − N1; n2 ¼ α3 − N2 ðA12Þ

we obtain

Tð3Þ
2→4 ¼ sα11 sα22 sα33 uα11 uα32 × βðt1ÞΓð−α1Þ

sin πα1 sin πα2 ~VLðt1; t2; u1ÞΓð−α2Þ ~VRðt2; t3; u2Þ
sin πðα2 − α1Þ sin πðα1 − α3Þ

Γð−α3Þβðt3Þ: ðA13Þ

Here the energy factors in the first line can also be written as
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sα11 sα22 sα33 uα11 uα32 ¼ sα2−α12 sα1−α3123 sα3 ; ðA14Þ

which is in agreement with the energy-singularity structure of this term. Similarly, the fourth term corresponds to

Tð4Þ
2→4 ¼

1

ð2πiÞ3
Z Z Z

dj2
sin πðj2 − n2Þ

dn1
sin πðn2 − n1Þ

dn2
sin πn1

×
X
N1

X
N2

×un11 un22 dn1þN1

0n1
ðcos θ1Þdj2n1ðcos θ2Þdn2þN2

n2 ðcos θ3ÞFð4Þðj1; j2; j3; t1; t2; t3; n1; n2Þ ðA15Þ

and

Tð4Þ
2→4 ¼ sα11 sα22 sα33 uα11 uα32 βðt1ÞΓð−α1Þ

sin πα2 sin πα3 ~VLðt1; t2; u1ÞΓð−α2Þ ~VRðt2; t3; u2Þ
sin πðα2 − α3Þ sin πðα3 − α1Þ

Γð−α3Þβðt3Þ ðA16Þ

with

sα11 sα22 sα33 uα11 uα32 ¼ sα2−α32 sα3−α1234 sα1 : ðA17Þ

In order to exhibit Regge factorization we use the definitions (A9) and (A10) and rewrite Eqs. (A13) and (A16)
as follows:

Tð3Þ
2→4 ¼ sα11 sα22 sα33 uα11 uα32 βðt1ÞΓð−α1Þ

sin πα1 sin πðα2 − α3Þ
sin πα2 sin πðα1 − α3Þ

VLðt1; t2; u1Þ
sin πðα2 − α1Þ

Γð−α2Þ
VRðt2; t3; u2Þ
sin πðα2 − α3Þ

Γð−α3Þβðt3Þ ðA18Þ

and

Tð4Þ
2→4 ¼ sα11 sα22 sα33 uα11 uα32 βðt1ÞΓð−α1Þ

sin πα3 sin πðα2 − α1Þ
sin πα2 sin πðα3 − α1Þ

VLðt1; t2; u1Þ
sin πðα2 − α1Þ

Γð−α2Þ
VRðt2; t3; u2Þ
sin πðα2 − α3Þ

Γð−α3Þβðt3Þ: ðA19Þ

The trigonometric prefactors in Eqs. (A18) and (A19) agree
with those of Eqs. (3.9) and (3.10). The denominators
sin παi result from the definitions (A9) and (A10), i.e. from
the requirement that each production vertex can be written
in the form

VLðt1; t2; u1Þ
sin πðα2 − α1Þ

¼ VLðt1; t2; u1Þ
Ω21

ðA20Þ

or

VRðt1; t2; u1Þ
sin πðα1 − α2Þ

¼ VRðt1; t2; u1Þ
Ω12

; ðA21Þ

where Ωij ¼ sin πðωi − ωjÞ. Let us generalize the con-
struction of these trigonometric prefactors to general
2 → n − 2 amplitudes. We find it convenient to first draw
the hexagraphs. For the example of the 2 → 5 case, the 14
terms with energy discontinuities have been presented in
Figs. 1–3. Here we list the corresponding hexagraphs: as
suggested in the discussion of White [26,40], we note a
one-to-one correspondence between the decomposition

54321

FIG. 12. The five sets of energy discontinuities (upper row) and the corresponding hexagraphs (lower row).
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(2.1) illustrated in Figs. 1–3 and different sequences of
analytic continuation in the complex helicity variables. A
connection between these two seemingly different argu-
ments can be seen as follows. As an example, we consider
the first hexagraph in Fig. 13 which we redraw in Fig. 14.
We can interpret Fig. 14 as a sequence of Reggeon
scattering subprocesses.

(i) The lowest horizontal line “1” can be attributed to
the Reggeon exchange between the incoming par-
ticle “1” and the outgoing cluster “2þ 3þ 4þ 5.”
At the same time, this exchanged Reggeon can
be viewed as an “incoming Reggeon” for the
subprocess: Reggeon 1þ particle B → cluster

“2þ 3þ 4þ 5”. Next, within this subprocess, the
horizontal line “2” denotes the exchange between
the incoming Reggeon “1” and the cluster
“3þ 4þ 5”; at the same time, it describes the
“incoming Reggeon” for the subprocess: Reggeon
2þ particle B → particles “3þ 4þ 5.”

(ii) For each production vertex, it is either the left or the
right Reggeon which plays the role of the “incom-
ing” Reggeon; correspondingly, the vertex carries
the subscript “L” or “R.” Figure 14 has only vertices
of a single type “L.” One easily sees that, for
the assignments LRL and RLR there exist two
possibilities, whereas for LLR and LRR we have
three terms.

(iii) Each horizontal dashed line denotes an “intermedi-
ate” state which belongs to a certain energy variable.
In our example, the sequence of energies corre-
sponds to s, s2345, s345, and s45 ¼ s4, in agreement
with the energy discontinuity structure of the first
graph of Fig. 1.

These hexagraphs allow for an easy understanding of the
labeling “LLL” etc. As discussed before, for the Regge
poles we have two types of production vertices, denoted by
VL and VR. As can be seen easily from the “hexagraphs” in
Fig. 13, each production vertex has a sloped “incoming”
line and horizontal “exchange” line: a vertex VL has the
incoming line on the left, and the “exchange” line is on the

LLL RRR RRL RLL

(43)(32)(21) (12)(23)(34) (12)(23)(43) (43)(32)(12)

((21)(13)(43)

LRL(2)

(23)(43)(31)

LRL(1)

(34)(42)(12)

RLR(2)

(12)(32)(24)

RLR(1)

LLR(3)

(34)(42)(21)

(23)(34)(41) (23)(31)(14) (21)(13)(34)

LRR(1) LRR(2) LRR(3)

LLR(2)

(32)(21)(14)

LLR(1)

(32)(24)(41)

FIG. 13. The helicity structure of the 14 terms in Figs. 1–3.

1 2 3 4 5

A B

1

2

3

4

FIG. 14. An interpretation of the helicity graphs in Fig. 4.
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rhs. In our example of Fig. 14, all vertices are of the type
“L.” One easily translates this into the other diagrams of
Fig. 12: for a production vertex of the type “L,” energy-
discontinuity line enters to the left of the produced particle.
In this way, each of the 14 terms has a uniquely defined
sequence of subscripts. On the other hand, a given sequence
“LR” may belong to several terms.
Next one writes down the corresponding multiple

Sommerfeld-Watson integrals; the examples of the 2 → 3
and the 2 → 4 processes suggest a correspondence between
a given hexagraph and the trigonometric denominators
of the Sommerfeld-Watson integral. Let us, once more,
consider the term “LR(1)” of the 2 → 4 process. For the
Regge-pole contribution to this partial wave we had the
following collection of trigonometric factors:

1

Ω21Ω13Ω3

Ω1Ω2Ω3

1

Ω2
2

VLðaÞVRðbÞ

¼ Ω1

Ω2

Ω23

Ω13

VLðaÞ
Ω21

VRðbÞ
Ω23

: ðA22Þ

Here the first group of trigonometric factors on the lhs
results from the three 1= sin factors in the Sommerfeld-
Watson integrals, and the second group results from the
three d functions. The third group arises from the produc-
tion vertices, if we agree to write each production vertex in
the form (A20) or (A21): for a vertex of type “L”we insert a
factor 1= sin παright, while for a vertex of type “R” we insert
a factor 1= sin παleft. In this way we obtain the trigono-
metric factors of Regge-pole factors used in Sec. III.
For the Regge cut in the t2 channel we modify Eq. (A22)

as follows. Since there is no particle pole in the t2 channel,
we leave the d function of the t2 channel as in Eq. (A4) and
make use of Eq. (A5); this eliminates the factor Ω2 in the
second group. Next, instead of the two production vertices
of the particles “a” and “b” (which led to the factor 1=Ω2

2),
we use a new factor

Ω2i

Ωi
; i ¼ 1: ðA23Þ

Here the label “i” refers to one of the two t channels
neighboring the t2 channel containing the Regge cut; it is
the t channel to which, in the Sommerfeld-Watson integral,
the angular momentum j2 couples. In our case, this is the t1
channel. Combining all these factors we arrive at

FLRð1Þ ¼
1

Ω21Ω13Ω3

Ω1Ω3

Ω21

Ω1

WΩ2

¼ WΩ2

Ω13

: ðA24Þ

This leads to the trigonometric factor of the Regge cut used
in Sec. III.
Let us generalize our rules for the Regge poles to the

2 → 5 case. Figure 13 contains those trigonometric factors
which follow from the Sommerfeld-Watson integral. As an
example, in the first term the notation (43)(32)(21) stands
for the factors

1

Ω43Ω32Ω21

; ðA25Þ

where Ωlm ¼ sin πðωl − ωmÞ ¼ sin πðjl − jmÞ. To make
contact with Eq. (A22), we still need to add the last factor
1=Ω1. The remaining groups in Eq. (A22) are easily
generalized to the 2 → 5 case. In this way one derives
the trigonometric factors for the Regge poles listed
in Sec. II.
Turning to Regge cuts, the above rules for the 2 → 4 case

can be used directly. As an example, we consider in Fig. 13
the term “LLR(1)” and derive the factors for the short
Regge cut in the ω3 channel. We find

1

Ω32Ω21Ω14Ω4

Ω1Ω2Ω4

1

Ω2

Ω32

Ω2

VLðaÞWω3

¼ Ω1

Ω2Ω21Ω14

VLðaÞWω3

¼ Ω1

Ω2

Ω24

Ω14

VLðaÞ
Ω21

Wω3

Ω24

; ðA26Þ

in agreement with Eq. (2.51) in Sec. II.
This completes our formulation of the rules for the

determination of the trigonometric factors. It is straightfor-
ward to apply these rules to the 2 → 5 amplitude and to
verify all the trigonometric factors listed in Sec. II. In a
forthcoming paper we will make use of these rules for the
investigation of the 2 → 6 scattering amplitude. As we have
said before, the rules for the Regge cuts are partly heuristic
and a more systematic derivation is needed. At present,
their justification comes from the results which are obtained
with these rules.

APPENDIX B: COMPARISON WITH THE
RESULTS OF THE PREVIOUS PAPER

In our previous paper we started from the Regge-pole
expressions, and we determined the phases and the analytic
expressions of the subtraction terms inside the Regge-cut
contribution. They were derived from the condition that the
remaining Regge-pole terms are finite and conformally
invariant. Following these requirements we were led to
introduce, for the long Regge cuts, linear combinations of
partial waves which slightly differ from the one used in the
present paper.
In order to see the connection with our present paper, we

summarize a few results. For the short cut in ω3, for which
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we used the same partial-wave decomposition as in the
present paper, we found the subtraction

δfω3
¼ − sin πðωb þ ωcÞ þ 2 cos πω3

ΩbΩc

Ω3

: ðB1Þ

This should be compared with the subtraction in 2Wω3

found in Eq. (4.10); the latter coincides with the weak-
coupling limit of Eq. (B1).
For the long cut we found it convenient to use a

decomposition which differs from the one used in the
present paper. Let us list the phase structures of the four
participating kinematic regions:

τ1τ4∶ ie−πðω2þω3Þðeiπωaδfaω2ω3
þ eiπωcδfcω2ω3

Þ; ðB2Þ

τ1τ2τ4∶ ie−iπω3ðeiπωaδfaω2ω3
þ eiπωcδfcω2ω3

− eiπωaδfω3
Þ;
ðB3Þ

τ1τ3τ4; ie−iπω2ðeiπωaδfaω2ω3
þ eiπωcδfcω2ω3

− eiπωcδfω2
Þ;
ðB4Þ

τ1τ2τ3τ4∶ iðe−iπωaδfaω2ω3
þ e−iπωcδfcω2ω3

− e−iπωaδfω3
− e−iπωcδfω2

Þ: ðB5Þ

For the subtractions we found the expressions

δfaω2ω3
¼ −

Ωc

Ωac

Ω2aΩbΩ3c

Ω2Ω3

þ δfω3
ðB6Þ

and

δfcω2ω3
¼ −

Ωc

Ωac

Ω2aΩbΩ3c

Ω2Ω3

þ δfω2
: ðB7Þ

With these subtractions we have shown that, after
combining them with the Regge-pole terms, all unwanted
pole contributions cancel, and for the remainder function
we were left with the conformally invariant Regge-pole
terms:

τ1τ4∶ cos πωac; ðB8Þ

τ1τ2τ4∶ − cos πωab; ðB9Þ

τ1τ3τ4∶ − cos πωbc; ðB10Þ

τ1τ2τ3τ4∶ eiπωbaeiπωbc : ðB11Þ

All these expressions are valid to all orders in the coupling
constant. Let us now compare Eqs. (B2)–(B5) with
Eqs. (5.30)–(5.33). We introduce

~Wω2ω3;L

Ω32

¼ Wω2ω3;L

Ω32

þ ΩaWω3

Ω2

; ðB12Þ

~Wω2ω3;L

Ω23

¼ Wω2ω3;L

Ω32

þWω2
Ωc

Ω3

ðB13Þ

and denote the subtraction terms inside ~Wω2ω3;L, ~Wω2ω3;R by
δ ~Wω2ω3;L, δ ~Wω2ω3;R. Obviously we need the identity

2

�
eiπω2

δ ~Wω2ω3;L

Ω32

þ eiπω3
δ ~Wω2ω3;R

Ω23

�

¼ eiπωaδfaω2ω3
þ eiπωcδfcω2ω3

: ðB14Þ

One easily verifies that this equation is fulfilled if we
impose the following relations between the subtraction
terms δ ~Wω2ω3;L, δ ~Wω2ω3;R and δfaω2ω3

, δfcω2ω3
:

2δ ~Wω2ω3;L ¼ Ω3aδfaω2ω3
þΩ3cδfcω2ω3

; ðB15Þ

2δ ~Wω2ω3;R ¼ Ω2aδfaω2ω3
þΩ2cδfcω2ω3

: ðB16Þ

Inserting Eqs. (B6) and (B7) into this we find

2δ ~Wω2ω3;L ¼ ΩbaΩa − Ω3a sin πðωb þ ωcÞ

þ 2 cos πω2

Ω3aΩbΩc

Ω2Ω3

; ðB17Þ

which in the weak-coupling limit becomes

2δ ~Wω2ω3;L≈π2
�
ðωb−ω3ÞðωaþωcÞþ2ωaωc−2

ωaωbωc

ω3

�
:

ðB18Þ

For the subtraction 2δ ~Wω2ω3;R we find analogous results,
and in the weak-coupling limit the combination becomes

2
δ ~Wω2ω3;L − δ ~Wω2ω3;R

πω32

¼ π

�
−ðωa þωcÞ þ 2

ωaωbωc

ω2ω3

�
:

ðB19Þ
It agrees with the subtraction term obtained in Eq. (4.27).
We thus have shown that the results of our previous

paper are fully consistent with those of the present paper.
Moreover, as discussed in Sec. VI, they can be used to
generalize some of our weak-coupling results beyond
leading order.
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TABLE I. Phases for the 2 → 5 scattering amplitude.

a1 a2 c1 c2 c3

e−iπðω1−ω2þω3Þ e−iπðω1−ω2þω3Þ e−iπω3 e−iπω3 e−iπω3

e−iπð−ω2þω3Þ e−iπð−ω2þω3Þ e−iπð−ω1þω3Þ e−iπð−ω1þω3Þ e−iπð−ω1þω3Þ

e−iπðω1−2ω2þω3Þ e−iπðω1−2ω2þω3Þ e−iπð−ω2þω3Þ e−iπð−ω2þω3Þ e−iπð−ω2þω3Þ

e−iπðω1−ω2Þ e−iπðω1−ω2Þ 1 1 1

e−iπðω1−ω2þω3−ω4Þ e−iπðω1−ω2þω3−ω4Þ e−iπðω3−ω4Þ e−iπðω3−ω4Þ e−iπðω3−ω4Þ

e−iπðω1−ω2þω3−ω4Þ e−iπðω1−ω2þω3−ω4Þ e−iπðω3−ω4Þ e−iπðω3−ω4Þ e−iπðω3−ω4Þ

e−iπω2 e−iπω2 e−iπω1 e−iπω1 e−iπω1

e−iπω3e−iπðω2−ω4Þ e−iπω3eiπðω2−ω4Þ e−iπω3e−iπð−ω1þω4Þ e−iπω3e−iπðω1−ω4Þ e−iπω3e−iπðω1−ω4Þ

e−iπω1 e−iπω1 e−iπω2 e−iπω2 e−iπω2

e−iπω3e−iπðω1−ω4Þ e−iπω3e−iπðω1−2ω2þω4Þ e−iπω3e−iπð−ω2þω4Þ e−iπω3e−iπð−ω2þω4Þ e−iπω3e−iπðω2−ω4Þ

e−iπðω1−ω2þω4Þ e−iπðω1−ω2þω4Þ e−iπω4 e−iπω4 e−iπω4

1 1 e−iπðω2−ω1Þ e−iπðω2−ω1Þ e−iπðω2−ω1Þ

e−iπðω3−ω4Þ e−iπðω3−ω4Þ e−iπω3e−iπðω1−ω2−ω4Þ e−iπω3e−iπð−ω1−ω2þω4Þ e−iπω3e−iπð−ω1þω2−ω4Þ

(Table continued)
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