PHYSICAL REVIEW D 91, 045005 (2015)

Analytic structure of the n = 7 scattering amplitude in N' = 4 SYM theory
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In this second part of our investigation [1] of the analytic structure of the 2 — 5 scattering amplitude in
the planar limit of A" = 4 super Yang-Mills theory in multi-Regge kinematics we compute, in all kinematic
regions, the Regge-cut contributions at leading order. The results are infrared finite and conformally

invariant.
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I. INTRODUCTION

It is now well established that the Bern-Dixon-Smirnow
(BDS) conjecture [2] for the maximally helicity-violating
n-point scattering amplitude in the planar limit of the
N = 4 super Yang-Mills (SYM) theory is incomplete for
n > 6. One of the first indications for this was found in
Refs. [3,4] and in Ref. [5]. Corrections to the BDS formula
have been named “remainder functions” R,,, and in recent
years major efforts have been made for determining these
remainder functions, in particular the remainder function
Ry for the case n = 6. The function R4 has been calculated
for two, three [6—18], and four loops [19] and even several
attempts have been made for the n =7 case up to two
loops [20-23].

When trying to go beyond this loop expansion, it has
turned out to be useful to consider a special kinematic limit,
in particular the multi-Regge limit. For the n = 6-point
amplitude the comparison of the BDS conjecture with the
leading-logarithmic approximation which extends over all
orders of the coupling constant, has shown that the BDS
formula fails in two major aspects:

(1) the Regge pole contributions do not have the correct

phase structure in all kinematic regions;

(2) it does not contain the Regge-cut contributions
which are predicted by leading-log calculations.
Therefore, it is the remainder function which con-
tains Regge-cut contributions.

A careful analysis has shown that this cut contribution

vanishes both in the Euclidean region and in the physical
region where all energies are positive. It is nonzero only in
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special kinematic regions, named “Mandelstam regions”:
these are physical regions where some of the energy
variables are positive, and others negative (“mixed
regions”’; the precise definition will be given later on).
These results have also been generalized beyond the
leading-logarithmic approximation, and there is no doubt
that the multi-Regge limit plays a key role for the
determination of the remainder functions.

To construct the remainder function in the multi-Regge
limit it is therefore necessary to consider all possible
kinematic regions and to find the correct structure of the
Regge-pole and Regge-cut contributions. The first step is
the analysis of the Regge-pole contributions. It is well
known that in non-Abelian gauge theories the gauge bosons
Reggeize, and in the leading approximation the 2 — n + 1
production amplitudes can be written in a simple factoriz-
ing form with exchange of Reggeized gluons in all ¢
channels. Beyond the leading approximation this factoriz-
ing form of the Regge-pole contribution remains valid
in the region where all energies are positive, but the
production vertices become complex-valued functions.
This factorizing representation is equivalent to another
representation, in which the scattering amplitude is written
as a sum of k,, different terms,l where each of them has a
distinct set of nonvanishing simultaneous energy disconti-
nuities: in this representation the agreement with the
Steinmann relations is explicit.

When applying these results to the planar amplitudes
of =4 SYM theory, an important difference between
planar and fully signatured amplitudes was discovered
[3,4,24]. Namely, the simple factorized form of the

'"The numbers k, coincide with the Catalan numbers C,, with
C,=1,1,2,514,42, ... forn =0,1,2,3,4,5, .... They satisfy
the recurrence relation C,,,; = > /=0 C;C,_,.
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Regge-pole contributions is valid in the physical region
where all energy variables are positive (and also in the
Euclidean region), but it takes a different form in other
regions, in particular in the Mandelstam regions mentioned
before. In the latter region the Regge-pole contribution
has a term which contains an unphysical singularity and
requires the existence of Regge-cut contributions with the
same phase structure. In the sum, the singular terms
contained in the Regge poles and in the Regge-cut con-
tributions cancel, leading to a sum of IR-finite and
conformal-invariant pole and cut contributions.

In a recent paper [1] we have started a systematic study
of these Regge-pole and Regge-cut contributions. We
found it instructive to first return to the six-point case,
and then developed tools which allow us to extend to
higher-order scattering amplitudes, in particular to the
seven-point amplitude. As the first step we have analyzed
the Regge-pole contribution. Particular attention has been
given to the appearance of unphysical pole singularities,
and we have outlined, for the 2 — 5 scattering amplitudes,
that these pole singularities have to be canceled by Regge-
cut contributions. As a result, we have found that, in all
kinematic regions, the scattering amplitude can be written
as a sum of conformal-invariant Regge-pole contributions
and Regge-cut amplitudes (a brief summary is presented in
Appendix B). Whereas our construction was designed to
find explicit conformal expressions for the Regge-pole
contributions (valid to all orders in the coupling constant),
we did not determine the explicit expressions of the Regge-
cut contribution. It is the purpose of the present paper, to
complete our program by computing the Regge-cut con-
tribution. To this end we have to develop a slightly different
strategy which allows one to compute, from energy dis-
continuities, Regge-cut contributions. At present we will
restrict ourselves to the weak-coupling limit, but a next-to-
leading-order (NLO) calculation is within reach. Again, our
main focus is on the seven-point amplitude. The extension
to the eight-point case is under way.

It may be useful to make a few preparatory remarks on
our tools. Our calculations will make use of the analytic
structure of scattering amplitudes in multi-Regge kinemat-
ics, and we will compute, via unitarity integrals, energy
discontinuities. To be a bit more specific, we first write the
scattering amplitude as a sum of several terms: for the six-
point case we have five terms, for the seven-point amplitude
14 terms, for the eight-point cases 42 terms and so on. Each
term is written as a multiple Sommerfeld-Watson integral,
where the integrand consists of a product of complex
energy factors and a real-valued coefficient function, the
partial wave, which depends upon the angular momentum
variables, the squared momentum transfers and the Toller
angles. The phase structure is contained in the energy
factors only. The partial waves are written as sums of the
Regge contributions, Regge poles and Regge cuts. Whereas
the pole contributions have been analyzed in our previous
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paper, the focus of this paper will be on the Regge-cut
singularities: we will compute them from energy disconti-
nuities, i.e. our calculations will boil down to unitarity
integrals. This is the point where, at present, we restrict
ourselves to the weak-coupling approximation, since inside
the unitarity integrals we will insert the leading-log
expressions of the scattering amplitudes.

An important ingredient in this construction is the
observation that Regge-pole and Regge-cut contributions
come with products of trigonometric factors which have to
be determined before the energy discontinuities can be
addressed. The origin of these trigonometric factors is the
factorization of the Regge-pole contribution which, in the
case of planar scattering amplitudes, leads to the appear-
ance of unphysical pole singularities. As we have discussed
already in our previous paper, these singularities must
cancel in the scattering amplitude, i.e. in the sum of the
partial-wave contributions. This is the place where the
existence of Regge cuts becomes mandatory. As an
important part of our calculations we will find a systematic
way of computing these trigonometric factors.

There exists an extensive literature on Regge theory,
mainly on Regge poles [25,26]. One of the key concepts is
the introduction of signature: in order to define proper
analytic continuation in the angular momentum plane, one
has to define combinations of amplitudes which are even or
odd under crossing. Many general results in Regge theory
(e.g. signature conservation rules) cannot be considered
without signature. In the context of AdS/CFT duality we
consider the limit of large N, and are thus led to planar
amplitudes to which signature does not apply. A priori,
therefore, it is not clear to what extent results from the
literature can be used.’ Nevertheless, in our calculations we
will adopt results of Regge theory, and we have to view
them as assumptions: their validity has to be justified by the
results. The key features which we consider as “proof of
consistency” are as follows.

(1) Agreement with perturbation theory, wherever re-
sults on multiparticle scattering amplitudes are
available.

(2) After removing those IR-singular pieces which are
part of the BDS formula, the remainder function has
to be IR finite; and

(3) Conformal invariance: for the 2 -4 and 2 — 5
scattering amplitudes our construction has been
completed and satisfies the constraints, and for the
2 — 6 scattering amplitude results will be pub-
lished soon.

Our paper will be organized as follows. We begin
(Sec. II) with the 2 — 5 scattering amplitude, define our
ansatz (the sum of 14 terms), and we list the trigonometric
factors for the Regge-pole contributions. We then discuss
these factors for the Regge-cut contributions and formulate

*We thank A. White for a helpful discussion on this point.
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Terms without Regge cuts. For the produced particles we also use the labels a, b, c.

FIG. 2. Terms which contain Regge-cut contributions: two doublets (a) and (b).

rules which can be also used for higher-point amplitudes. In
order to illustrate our strategy of using energy disconti-
nuities we make a digression (Sec. IV) and complete the
construction of Regge cuts in the 2 — 4 case. In Sec. V we
return to the 2 — 5 case and calculate, via energy dis-
continuities, the Regge-cut contribution. Finally, in Sec. VI
we list our predictions for the scattering amplitude in
different kinematic regions. A few details of our calcu-
lations of the 2 — 5 scattering amplitude are presented in
Appendix A and a table, and a brief summary of the results
of our previous paper is given in Appendix B.

II. ANALYTIC STRUCTURE AND
TRIGONOMETRIC COEFFICIENTS

We begin with the analytic structure of the seven-point
amplitude. In multi-Regge kinematics the scattering ampli-
tude can be written as a sum of 14 terms (Figs. 1 and 2)
which we will name ““analytic decomposition”:

T = Z Tijkv

where each subscript “i,j,k” is related to a production vertex
and takes the values L (left) or R (right). In the planar
approximation for the 2 — 5 amplitude each term belongs
to a maximal set of nonoverlapping energy discontinuities™:

we write each term as a multiple Sommerfeld-Watson
integral, where the integrand consists of a product of
energy factors and of a real-valued partial wave which
depends upon momentum transfers #; = —g? and angular
momenta @w; = j; — 1 and contains the singularities in the

(2.1)

*For signatured amplitudes there exist additional nonplanar
contributions [27]. Some of them can be derived from configu-
rations which are planar in a crossed channel.

angular momentum plane. As an example, the first term
reads as follows:

!/
T, — S////da) da)zda)3 dw)
(27i)*

X (=534)" (=5234) "2 (=81234) " (—=8) "
X Frpp(t, by, 13, 143 0, @, 05, @f)). (2.2)
We denote these partial waves by F;j. As we have said
already, the subscripts take the values R or L, and their
origin is discussed in Appendix A. Each partial wave may
consist of several contributions which contain Regge-pole
or Regge-cut singularities:

pole Regge cut 1 Reggecut 1
Fijk_szk +Fljk —|—Fuk + ...

(2.3)
In particular, all 14 terms contain a Regge pole piece. A
Regge cut in the 73 channel is contained in all those terms
which contain the discontinuity in s3 (RLR and LLR),
and a Regge cut in the 7, channel in the terms with a
nonvanishing discontinuity in s, (LRL and LRR). Finally,
the long Regge cut extending over the ¢, and t; channels is
contained in the first two terms of the triplets LLR and
LRR: they all have the discontinuity in §;,3.

From the decomposition in Eq. (2.1) we derive the
scattering amplitudes in different kinematic regions.
Following the notations introduced in Ref. [1], we will
label the different kinematic regions by products 7;7;....
Each factor 7; stands for a “twist” of the corresponding
t;-channel state and takes us into a “crossed” channel. For
example, the configuration 7,7, has twists in the ¢; and #4
channels and denotes the kinematic region where the three
produced particles have become “incoming particles.”
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FIG. 3. Terms which contain Regge-cut contributions: two

triplets (c) and (d).

Further examples can be found in Ref. [1]. The choice of
the kinematic region determines the phases of the energy
factors after their analytic continuation. Each of the 14
terms, therefore, comes with a certain phase, and in their
sum cancellations may occur. Prominent examples are the
region where all squared energies are positive (each
positive energy s; comes with a phase e¢~*) and the
Euclidean region where all energies are negative (each
negative energy has a factor 1). In both regions, all terms
containing Regge cuts sum up to zero, and only Regge-pole
contributions remain.

To understand the existence of Regge cuts it is necessary
to say a few words about the connection between the
decomposition (2.1) and Feynman diagrams. In multi-
Regge kinematics, the sum of relevant Feynman amplitudes
for a 2 — n+ 1 multiparticle production process can be
decomposed according to the analytic structure, and it can
be written as a sum of multiple dispersion integrals in the
energy variables; in Regge theory these dispersion integrals
can be used to define Froissart-Gribov partial-wave pro-
jections which contain the Regge singularities. This leads
to the decomposition (2.1). However, the existence of
Regge cuts in the scattering amplitude can most easily
be understood if we go back to the Feynman amplitudes
[i.e. prior to the decomposition (2.1)]. As an example, let us

P
" @) P
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return to the Regge cut in the planar 2 — 4 amplitude
(Fig. 4): let us consider the kinematic region where all
energies are positive. It is well known [28] that, as a rule,
Regge cuts cancel in planar diagrams. In Fig. 4(a) this
cancellation is easily seen [24]: introducing Sudakov
variables k = ffip, + app + k| and concentrating on the
a integral of the k loop momentum in the left-hand part of
the diagram, the two singularities coming from the poles of
line “a” and “b” lie on the same side of the integration
contour and thus lead to a vanishing integral. However,
when analytically continuing into the kinematic region
s,85 > 0, 81, 8012, 53, S103 < 0 the poles of the lines b and
b’ move to the other sides of the integration contours and
the Regge cut remains. In fact, the particles “1” and “2” are
in the initial state, and the diagram becomes “physically
nonplanar.” This leads to the following Mandelstam con-
dition: in order to have a nonvanishing Regge-cut con-
tribution, one needs, at both ends of the two-Reggeon cut,
nonplanar a (f) integrals. For the 2 — 4 production
amplitude this is achieved by analytically continuing in
s; and s3, i.e. by twisting the #; and #3 channels. This
Mandelstam condition can easily be applied to more
general 2 — n scattering processes with n > 4.

Returning to the decomposition (2.1), we have already
stated that Feynman diagrams in the multi-Regge limit may
contribute to several terms in this decomposition. In each
term, the content of the Regge singularity of the partial
waves Fj is independent of the kinematic region. The
vanishing of a Regge-cut contribution in Feynman diagrams
(so-called Amati-Fubini-Stanghellini cancellation), in the
decomposition (2.1) therefore translates into a cancellation
between different terms. Applying the Mandelstam criterion
to the kinematic region of all energies being positive or
negative, we immediately see that Regge cuts must cancel
for all 2 — n processes. In contrast, there exist Mandelstam
regions (“mixed” regions) where some energies are positive,
and others are negative. As an example, for 2 — 5, we
have the Mandelstam region s; = sgi, Sg12, S0123> S4 =
845, 8345, $2345 < O;S2,S3,S234,S >0 (ln our notation,
7174). In this region, a Regge-cut contribution extending
over the t, and t; channels exists.

Further details on the decomposition are presented in
Appendix A. Here we list the energy factors which
determine the phases of the scattering amplitudes:

(b)

FIG. 4. Mandelstam criterion for the Regge cut in the 2 — 4 scattering amplitude (wavy lines denote Reggeons, and straight lines
denote scalar particles). (a) The simplest diagram illustrating the Mandelstam criterion. (b) A generalization (enhanced diagram) in
which the propagators a and «’ are replaced by sets of ladder diagrams (Reggeons).
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LLL: (—54)5(—=5345)"2 (—S2345) " (=), (2.4)
RRR: (=51)“2(=S012)"" (=S0123) > (—5)“, (2.5)
RRL: (=54)?%(=51)®2(=5012)"3 (—=5)*, (2.6)
RLL: (=s1)"12(=54)" (=8345) "2 (=5)".  (2.7)
Next we list the doublets:
RLR: ay = (=s51)"12(=53)" (=5234) "2 (=5)"2,
ay = (=51)”2(=53)"2(=50123) " (—5)™ (2.8)
and
LRL: by = (=55)"2 (=5012)“13 (—54) " (=),
by = (=52)3 (=54) "5 (=51234) " (=5)"". (2.9)
Finally, we list the two triplets:
LLR: ¢; = (=53)"2(=5123)" (=S0123) " (—5)™,
Cy = (—=53)"2(=5123) " (=81234) " (=5)",
3= (—53) "% (=5234) 2 (=51234) " (—5)" (2.10)
and
LRR: dy = (=57)"3(=5123) " (=S1234) ™ (=5)"",
dy = (=52)"2 (=S123) ™ (=50123) " (—5) ™,
d3 = (=52)" (=S012) " (=50123) (=), (2.11)

It should be noted that in these expressions, for simplicity,
we have disregarded x factors as well as energy scales.
Details are described in Ref. [I1]. Depending on the
kinematic regions, these energy factors lead to different
phases. A complete list of phases in the different kinematic
regions is presented in Appendix B.

Let us now discuss the form of the partial waves. Regge-
pole contributions are contained in all partial waves,
whereas Regge cuts can be contained only in those partial
waves which have nonvanishing energy discontinuities
along the Regge cut. In detail, partial waves which have
a cut in the energy s, (s3) are expected to have a short
Regge cut in the #, (#3) channel: LRL and LRR (RLR and
LLR). The long Regge cut in the @, and @5 channels can
contribute only to the partial waves with a nonvanishing
energy discontinuity in the s153: LLR and LRR.

Let us go through the partial waves; the simplest of these
are the Regge-pole contributions. In most of the partial
waves, these Regge-pole contributions contain trigonomet-
ric factors which are closely related to Regge factorization.
For the case of signatured 2 — 4 scattering amplitudes, it
has been shown in Ref. [25] that the property of Regge
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factorization and the analytic decomposition (2.1) are
compatible only if the Regge poles contain special combi-
nations of trigonometric factors. One of our tasks is to
generalize this and to find the corresponding factors for
the case 2 — 5 (and for higher n > 5). This is done in
Appendix A where we formulate general rules for comput-
ing these factors.

One of the peculiar features of these factors is that, in
certain kinematic regions, they contain unphysical singu-
larities of the type ~1/ sin 7w, which should not be present
in scattering amplitudes (and certainly do not appear in
perturbation theory). In our previous paper [1] we have
discussed these singular terms in detail: starting from the
Regge-factorized form of the 2 — n + 1 scattering ampli-
tude we have calculated the Regge-pole contributions to
the scattering amplitude in all different kinematic regions.
In particular, for the 2 — 4, and for the 2 — 5 cases we
presented a full list of these singular terms and of the
kinematic regions where they appear. Here it is important to
note the difference between signatured and planar ampli-
tudes. In planar amplitudes, these singular terms coming
from the Regge poles have to cancel against Regge-cut
contributions: in fact, in Ref. [1] we have already derived
the phase structure of the Regge cut which allows one to
absorb and cancel these singular terms. In the present paper
we will complete this discussion by computing the full
Regge-cut amplitudes. This leads to the conclusion that, for
the planar amplitudes, the existence of Regge-cut contri-
butions is necessary for obtaining scattering amplitudes
which are free from unphysical singularities.

For signatured amplitudes the situation is slightly differ-
ent. In order to obtain signatured amplitudes we form even
or odd combinations of different kinematic regions. As
an example, we return to the simplest case of the 2 — 4
amplitude, and list the two regions with singular terms:

75 e~ imm |:em(wa+wb) —Djeinwr 274 b
2

i . .Cosmw,€2,Q,
—e " {Coszza)ab—f—lsmﬂ(a)a—ka)b)— ZT“ s
2

(2.12)

TITyT3: — [e‘i”(“’"“"b) + 2ie~m %]
2

Q.Q
= - {cos Wy, — isinz(w, + wp) + 21'%] )

Q
(2.13)

In the signatured amplitude the singular terms appear in the
following combination:
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cos T, €2,€2;,

=2it73(e7"2 + 1,) . ,
2

(2.14)

i.e. the singularities cancel for odd signature 7, = —1, and
there is no need for a Regge cut in the ¢, channel. At the
same time, because of signature conservation, the signa-
tured amplitude cannot contain a Regge-cut composed of
two (odd-signatured) gluons in the #, channel. The situation
will be different for even signature 7, = +1: the singularity
in the Regge pole is present, and signature conservation
admits the two-Reggeon cut.

Let us now address the trigonometric factors for the
2 — 5 scattering amplitude. With the notations

Q; = sin 7w;, Q;; = sinz(w; — w;),

(2.15)
wij = w; — CUJ
and
2 2, |2
o, :_LKln|%2| R / SW 11 qul N
4 A 8 g1 — q2"2
4 9217 |g3]*
w, =——Ih———5— (2.16)
8 " |qy — g3
the results for the first four partial waves are’
Vi(a) Vi(b) Vi(c)
PR = 2k 2.17
b Q Qp Q7 ( )
Vr(a) V(D) Vr(c)
Fhoe = X 2.18
RRR Qpn Qy Q' ( )
Vv Ve(b)V
Qp Qy Q3
Vv Vi(b)V
Qp Qpn Q4
Here the vertex functions are given by
Vi(a) = sinz(w; —w,) = Qyq,
VL((l) = Sinﬂ(a)z — a)a) = Qza. (221)

Next we consider the two doublets which contain Regge
poles and cuts. We write

o Fpole @3 —cut

Frer(y = RLR(1) + FRLR(I)’ (222)

“In the following it will be understood that our expressions for
the partial waves have to be multiplied with the Born amplitudes
and with the Regge-pole propagators, e.g. 1 /(@) — @), etc. The
Born amplitude carries a factor s; its sign will be included when
we present results for Regge-pole and Regge-cut contributions
for the different kinematic regions.
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1 —
Frire) = Frure) + Frize): (2.23)
and
It W, —cut
Frrey) = Fi(ieim + FLkLc(l;)’ (2.24)
1 —
Frrue) = Flrio) + Fiic): (2.25)

The pole and cut terms differ by their singularities in the
angular momentum planes @, @,, and w;. However, later
on we will see that the cut pieces will contain subtractions
related to the Regge-pole terms. For the pole terms we have
the trigonometric factors (see Appendix A)

_ ©Q4Q4 Vi(a) Vi (b) Vg(c)

Fpole _ s 2.26
RLR(I) 93 942 le 932 934 ( )
proe 2 QuVel@ Vi) Vele) ;) o)

@ Q0 Qn Qn  Qy

and

proe 2 Vi@ Valb)Vile) (g g

(1) Q2 QIS QZI 923 Q43
FILX;;eL - Q3 Qy, Vi (a) Vr(b) VL(C)‘ (2.29)

(2) Q2 931 QZI 923 Q43

Next we have to find the trigonometric factors of the w;-cut
contribution. We first observe that, in the region where
all energies are positive, the two partial waves Fpryp()
and Fpgrr) come with the same phase (Appendix A).
The absence of the Regge cuts implies that they must be
opposite and equal. We make the ansatz

VR(CZ) Ww3;RLR

@3—cut
Per) =70, "q,
— \% (a)W ‘RLR
w3—cut VR w3;
R = g oy (2.30)

The form of the first factor, V£§?> follows from the require-

ment of Regge factorization, whereas the existence of the
denominator 1/€,, can be deduced from a study of the
kinematic region 7,74. Namely, in this region the Regge
cut is expected to be present, and the amplitude has to
be free from unphysical singularities. From the energy
factors of Fpgypy and Fgrrrpy we have the phases
e—ilr(w3+w|—wz)e—iﬂ((uz—w4) and e—iﬂ((u3+w]—u}z)e—ilr(a)4—w2), ie.
in the difference we find a factor 2i sin z(w, — w,) which
just cancels this denominator. With a similar argument for
the partial waves Fpp; (1) and Fpgp ;) we put
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Woire Vi(c)

F(uz—cut _
LRL(1) — 4
) Q; Qs

por—eut _ Wore Vi(c)
LRLQ) Q3 Qg3

(2.31)

Finally we turn to the triplets which contain Regge poles
and two types of cuts: a “short” one and a “long” one. In
detail

o Fpole

w3—cut Wy —w3—cut
LLR(1) +F +F 1 ’

FLLR(I) LLR(1) LLR(1)

o Fpole @3 —cut W —w3—cut

Frire) = LLR(2) + FLLR(Z) + FLLR(2) )

1 03—
Frirp) = FIZOL;(s) + FL)ZRC(I;I)' (2.32)
Similarly
1 —cut —w3—cut
Frrera) = FE(;eje(l) + F(Z;eRc(li) + F(Z);R(z}i) -
1 —cut —w3—cut
Frrr)y = F E(;e(;e(z) +F (ﬁeRc(l;) +F fﬁ%R&(];) -
1 -
Frrri3) = FE(;QZ(S) + F(ZfeRC(l;t)' (2.33)

Again, the pole and cut terms differ by their singularities
in the complex angular momentum planes. The Regge-pole
terms are (see Appendix A)

FE%; . — &% VL(a) VL(b> VR<C) , (234)
M Q3Qp4 Q Q3 Qy
ngl;(z) 4934, Vi (a) Vi (b) V(<) . (235)
Q30,,Q4 Qy Q3 Qg
®) Q3Q4p Q) Q3 Qy
For the second triplet
Fﬁ(zz N = Q, Q) Vi(a) Vr(b) VR(C)’ (2.37)
W Q,Qu Q Qp3 Qg
Flz(;;;@) _ Q1 Q34 Vi (a) V(D) Vi(c) . (238)
Q) Q31Qp4 Qyp Qo3 Qg
@) Q3 €y Q3 Qg

For the short cut in the w; channel we observe that, for
positive energies, the absence of the Regge cut requires the
cancellation of the three partial waves Fy;r(1), Frrr(2), and
Fp1r@)- Therefore, in the ansatz

PHYSICAL REVIEW D 91, 045005 (2015)
Fa)3—cut — VL(a) Wa)3;LLR
=X —_—
LLR(1) Qo

Qy; Qyy

VL(CI) Wm3;LLR

w3 —cut
FL3LR(3) =3 Q) Qo (2.40)
the sum of the coefficents x; must be zero:
X1 + X + X3 = 0 (241)

In order to obtain more information for the x;, we compute
the contribution of the w5 cut to the scattering amplitude.
Namely, in the region 7,74 where this Regge cut is expected
to be present, we have

Fa;3—cut + Fw3—cut N 2i€_i”(w1+w3>ei”w2 VR(CZ)

RLR(1) RLR(2) Q. WorLR
(2.42)
and
_ _ _ . Vi(a) i
F (Ii)}LRc(lit) +F Ci)iRc(;t) +F CZZRC(?) = —2ixs gL22 ¢ TWoiLLrs
(2.43)
where we have used x; + x, = —x3. Taking the sum of the

last two equations and observing the Regge-factorization
formula

ngj)emwz + VngiTl)eimul — eimoa, (2.44)
we are led to the identifications
x3=-1 (2.45)
and
Wourir = Woyre = W, (2.46)

The result for the sum of all five terms then becomes

RLR(1) + RLR(2) + LLR(1) + LLR(2) + LLR(3)

— 2i€—i7r(w1 +w3) eimm, sz )

(2.47)

Next we consider the region z;7,74. We find
VL (a) (xle—ilr(u)l—a)4—(z)2)

4 xze—iﬂ(au—a)l—wz) 4 x,;e—iﬂ(a)z—wl—am))ww
3 3

eilrw4 N eilrw] ) W
X1 X2 ws3*
QZ4 921 '

= =2ie" "™V, (a) < (2.48)
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The coefficients x; and x, must be chosen to cancel the
unphysical singularities ~1/Q,;, ~1/Q,,; furthermore,
they must satisfy x; + x, = —x3 = 1. The solution of these
conditions is

Q Qy

2.49

X = Qz 914 ( )
Q4 €y

=——. 2.50

X2 Q, Q, ( )

With these findings the trigonometric factors of the w; cut
become

Ql 924 VL (a) ng

F{1}3—Cut
LLR(1) — QZ S2]4 921 924
Fw3—cut _ %% VL( ) st
LLR(2) QZ Q41 921 924 ’
_ vV, (a) W,
Fw3 cut _ L(a) 3 (251)

LLR() Q) Qp

An analogous argument applies to the short cut in the @,
channel, and the trigonometric factors become

Qu Q3 Wo, Vr(c)

sz—cut ,
LRR(1) — Qz Q41 Q31 Qay
ot _ Q1 Q34 Wo, VR(C)
LRR@2) — Q% Q14 Qy Qyy
_ W, Vr(c)
wr,—cut _ ""wy VR
Firri) = Qn O (2.52)
Finally, the long-cut term has the form
wy—w3—cut __ wyw3;L
FLLR(I) B QpQyy
W o wn:
wy—w3—cut __ wyw3;L
Frire = 0,0, (2.53)
and
W0
wy—w3—cut __ wyw33R
FLRR(]) B Q3Qy;
W0
wy—w3—cut __ wr,w3;R
Firroy = 000 (2.54)

As discussed before, the absence of this Regge cut in the

kinematic region where all energies are positive requires
—w3—cut
LLR(1) *

FIiroy . the same argument applies to Flirehy cut

@y —w3—cut
and FLRR(Z) .

This completes our derivation of the trigonometric
factors for Regge poles and Regge cuts of all 14 terms.

the cancellation of the two partial waves F??

PHYSICAL REVIEW D 91, 045005 (2015)

Our construction of the trigonometric factors for the Regge
cuts has followed the line of arguments given in our
previous paper [1]: we required that in all kinematic regions
the scattering amplitudes satisfy Regge factorization and
are free from unphysical singularities. In Appendix A we
make use of these results and formulate rules for the Regge
cuts which generalize those of the Regge poles. These rules
can also be used for the 2 — 6 amplitude. At present we
do not know how to “derive” these rules; as we have said
before, the justification will come from the IR finiteness
and conformal invariance of our final results.

We conclude this section with a few comments on the
Regge-pole contributions. First, in our previous paper [1]
our discussion of Regge-pole contributions has started from
the factorizing expression. This representation is equivalent
to the decomposition (2.1). To illustrate this, we go into the
region of positive energies. With the identity

Q Q5  QQy - (2.55)
Q3 Qp Q3 Qy
it is easy to see that the sum of two pole terms, F %‘2;(1) and
F 2‘2;( ») can be written as
Vr(a) Vi (b) Vr(c)
pole pole R L R
Friray T Frire) = Q, Qn (2.56)

where the arrow indicates that we have multiplied the
partial waves with their phases. Similarly,

L V(@) Ve(b) Vi(e)

pole pole
Frreoy T Firep) = o 0 On (2.57)
For the triplets we need the identities
%921934 &% Q4 932 — (2.58)
Q3 Qo Q. Q3Q14  Q3Qy
and
&921934 &% Q4 Q21 1 (2.59)
Qy€Q31Q1; Q3 Q2 Q41
and obtain
Vi(a) V(D) Vk(c)
pole pole pole L L R
Frorey T Frire) T Frire) = Q, Q, QO
(2.60)
and
Vi(a) Vr(b) Vi(c)
pole pole pole L R R
Frrray T Frrre) T Frrre) — Q) Q) Q-
(2.61)
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When combining the results of all 14 partial waves, it is
convenient to use identities such as (2.44). In this way
one obtains, for the sum of all 14 terms, the factorizing
expression

Tpole
L(t))] 1] [52]"2 ]3] 54| T (24)

in(w,+o,+w,) e—iﬂ(a)l +wytwstwy)

=e (2.62)
As far as the other kinematic regions are concerned, it
is possible—but much more tedious—to perform similar
calculations for the other kinematic regions and to arrive at
the same results as those listed in Ref. [1].

III. A DIGRESSION: THE 2 — 4
SCATTERING AMPLITUDE

To illustrate our future strategy we briefly return to the
well-studied case of the 2 — 4 scattering [1,24]. We begin
with the ansatz consisting of five terms. We write

Tyos =TrL +Trr +Tre + Trray + Trre)- (3:1)
Each term has an energy factor which—depending on the
kinematic region—determines the phase:

LL: (=53)%(=s19)" (=5)",  (32)
RR: (=5 (=s02) (=), (33)
RL: (=5))7(=53)% (=5)", (3.4

LR(1): (=52) (=s012)" (=),

LR(Q): (=)™ (i) (=5)".  (3.5)

The first three terms have Regge poles only. For the last two
partial waves we write a sum of Regge-pole and Regge-cut
contributions. We have from Ref. [3]

Vi(a)Vi(b)

Fpole _ )
LL 921 932 ’ (3 6)
Vr(a) Vr(b)
Fpole R 7
0, 57
Vr(a) Vi (D)
Fpole R )
“T 0, 59
ole cul
Frray = Frpay + Fika
_ VL(a) VR(b) &% W(uz (3 9)

QZ] 923 QZ £213 S—213 ,

PHYSICAL REVIEW D 91, 045005 (2015)
__ ppole
Frro) = FLR(2) + F%(z)

Vi(a) V(b) Q3 Qn | W,

B QZI 923 92931 931.

(3.10)
In the next step we describe the derivation of the function
W,,. To this end, we consider single-energy discontinu-
ities’ of the full scattering amplitude. It is important to
observe that, when calculating discontinuities, we have to
take into account all five terms in Eq. (3.1). Furthermore,
in each term there may be different Regge contributions,
Regge poles and Regge cuts. The former ones are known,
and they contain singular terms ~1/€Q,. We will find that
these singular pieces in the Regge poles will also be
“inherited” by the Regge-cut contributions. Only at the
end, when the full scattering amplitude is computed, will
we show that these singularities completely cancel in all
kinematic regions.

First we consider, in the kinematic region of positive
energies, the discontinuity in s, which is contained only in
the two partial waves F ,. From the Regge pole we obtain

—e—iloitwy) Vi(@)Vi(b) , (3.11)
Q
whereas the contribution of the Regge cut reads
e—i(ml+w3)ei7zw2 sz‘ (3 12)

The discontinuity of the full scattering amplitude therefore
becomes

dlSC12T2_>4 = .. .A]z,

_Vi(a)Vr(D)
Q

(3.13)

A12 — e—i(m]+w3) < + L Ww2> ,

where the dots indicate that we have left out the integration
symbols and the energy factors. Here the important result
is the singular term ~1/Q,: since the lhs is computed from
the unitarity integral and has no singularity, the Regge-cut
amplitude W, on the lhs must contain a singular term
which cancels the singularity from the Regge pole.

So far our results are valid to all orders in the coupling
constant. The energy discontinuities have to be calculated
from unitarity integrals, and at this stage the restriction in
accuracy enters. In Ref. [4] the discontinuities in s, have
been calculated in the leading approximation. Restricting
ourselves to this approximation we can neglect the phases
and obtain

We define disc, f(x) =L(f(x+ie) - f(x—ie)); disc,(=s)” =
—|s|® sinrw = —|s|Q.
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| wm

FIG.5. The RPRR production vertex. (a) Vertex decomposition to 'local' and 'non-local' piece. (b) Vertex multiplication by the Green's
function leads to: reggeization of the local piece and appearance of Regge cut.

Wo, = Ag + 522022
)
= A12+ﬂ'<a)2 — W, — Wy +waa)b)' (314)
w>

This is not yet our final result. In Ref. [4] we have discussed
that the RPRR vertex consists of a “local” and a “nonlocal”
piece [Fig. 5(a)]. The former piece does not couple to a
Regge cut. It satisfies the bootstrap condition in the 7,
channel: at leading order this condition implies that the
vertex does not depend upon the momenta k and ¢, — k
separately, but only upon the sum g,. As a result, when
multiplying the production with the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) color-octet Green’s function, the
local term Reggeizes, whereas the second one leads to
the Reggeon cut [Fig. 5(b)]. Finally, when the two
production vertices are combined, we arrive at the terms
illustrated in Fig. 6. Inserting this into Eq. (3.14), the terms
~m, — w, — o, cancel. What is left is the Regge-cut piece
(second diagram in Fig. 6): we separate the infrared-
divergent lowest-order (one-loop) term® from the infrared
finite cut amplitude which we denote by f,, and obtain

V3
A = —ﬂ(wz—wa—Wh)+§V13 +f(u2’ (3'15)
where
YK |Cli|2|Qk|2
Vi =502 (3.16)
4 g - Qk|2’12

Since the term V5 is neither infrared finite nor conformal
invariant, we introduce the phase

®We follow the notation of Ref. [1].

vk, |illgsllkall ksl
by=nVizto,+tw,) =x LTI}
: ko + kp[*lgo|?
(3.17)
and write
(o +w,) | O3
Ap = —n(w; — 0, — @) _f'i_?_kfwz

(3.18)

The resulting Regge-cut amplitude, f,, , is defined to begin
with at least one iteration of the color-octet BFKL kernel
and is given by

s o(v,n)
_1\n _22 -1
S A (G
() ()
k,4qi kyq1

(here we have included one of the @ integrals from the
Sommerfeld-Watson integral representation). The calcula-
tion of the unitarity integral and impact factors which leads
to this expression has been described in Ref. [4] and will
not be repeated here. We still write the expression for f,,, in

a slightly more general form [29,30] which also specifies
the energy scale s,. We introduce the anharmonic ratios

(3.19)

o (=9)(=s) _ (=s3)(=1)
Y (o) (=s123)” (=s123)(=12)” (3.20)
o (=s)(n)
’ (=so12)(=12)°
and the complex-valued variable w
AL
*jg- (3.21)

We write
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(—w2 +tw, +w,)

FIG. 6. The sy, discontinuity A, of the 2 — 4 scattering amplitude.

w\2 [ dv
_1 n . 7@*
- (=1) <w*> 2zi "

X [(_V u2u3) oln) — 1} y,n|w|2iy' (322)

It is important to note that this expression is conformal
invariant. To summarize the construction of f,, , the impact
factor ®,, has its origin in the “nonlocal” piece of the
RPRR production vertex only (i.e. from the full RPRR
production vertex we first have to remove the “local” term),
and from the BFKL Green’s function we remove the one-
loop contribution. Our final result for W, thus becomes

a)aa)b_ﬂ(a)a"i_wb)_'_%_l_f
wy*

o =t 2 2

(3.23)

At the end of this section we will show that the first two
terms, which coincide with the leading approximation of
the “subtraction” defined in Ref. [1], will cancel parts of the
Regge pole, leaving what we call the “conformal Regge
pole.” The last two terms are conformally invariant, and f,,,
defines the “conformally invariant Regge-cut” amplitude.

Before we conclude this digression on the 2 — 4
amplitude, we want to make several comments. First,
our choice of computing the discontinuity in the kinematic
region where all energies are positive was not unique.
Alternatively, we could also compute the discontinuity in s,
in another kinematic region, e.g. in the region 7;75:

TlT3 dlSC12T2 4 = A‘ilzﬁ,

Vi(a)Vr(b)
Q,

(3.24)

7173 __ —iﬂa}
At =- Wo,

The phases are different from those of the positive-energy
result in Eq. (3.14). They reflect the fact that, in the
unitarity integral, the amplitudes on both sides of the
unitarity integral, have their phases, and they clearly
depend upon the kinematic region where the unitarity
integral is computed. In the weak-coupling limit, these
phases can be neglected and we obtain the same result
for W,,,.

Next, it is also instructive to consider other disconti-
nuities, e.g. in the total energy s. In the region of positive
energies we obtain

diSCxT2_>4 = “'As’
Q,Vi(a)e™ ™2 —Q,V; (a)e™ 7@

A= o
y Q3 Vi(b)e 7 — Q,V, (b)e~
Q)3
+ eil@r—ws) glno2yy (3.25)

whereas in the region 7,75 the result is much simpler:

Qagb

71730 AT = —
Q

+ eI, (3.26)

Let us verify that these different expressions for W, all
coincide in the weak-coupling limit. To see this in detail,
we first note that, after neglecting the phases, A}, and A}
coincide:

(3.27)

We are thus led to compare the two equations

We, = A+ ”Lzaw%
(2]

W,
= A12 + 7[(0)2 —w, —wp + h) (328)

(05)

and
W,, = A, + 122 (3.29)
@

The reason why these seemingly different expressions
for W, coincide, lies in the application of the bootstrap
relations. As we have explained above, for the discontinuity
in 55, A, we have applied the bootstrap condition in the #,
channel which, in Eq. (3.14), leads to the cancellation of the
terms ~ @, — @, — @y, In contrast, for the discontinuity in
s, namely A, we apply the bootstrap condition to the #; and
t; channels; we illustrate the result in Fig. 7. This leads
directly to the second piece on the rhs of Fig. 5, which
results from the nonlocal piece of the RPRR production
vertex. With this observation, W, in Eq. (3.29), agrees
with Eq. (3.28), i.e. both energy discontinuities lead to the
same answer. This equality can also be seen directly by
comparing the second term on the rhs of Fig. 7 and the rhs
of Fig. 6: for the a integral on the lhs (and for the f integral
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P -

FIG. 7.

on the rhs) of the Green’s function there are two ways of
closing the integration contour which give the same answer.

As we have explained above, in this last part of our
discussion, we had to restrict ourselves to the leading-
logarithmic approximation. This was because, in evaluating
the energy discontinuities via unitarity integrals, so far we
have used only the leading approximation for the scattering
amplitudes. Fortunately, all building blocks for an NLO
calculation are known: the RPR production vertex, the
RPRR vertex, the gluon trajectory function, and the boot-
strap condition. So it is possible to verify that our con-
struction of the Regge-cut piece can also be done at NLO.

In the final step we put the pieces together and compute,
for different kinematic regions, the full scattering ampli-
tude. In Ref. [1] we have presented a full list of the Regge-
pole contributions. They can be derived from the phases in
Eq. (3.5) and the pole pieces in Eq. (3.10); in Ref. [1] we
found a slightly simpler method of calculation. For the two
most interesting regions 7,73 and 77,73, we found the
following results:

. , Q.0
775 e~ imm |:em(wa+wb) — Djeimwy 274 b
2

= g7 [cos AWy, + isinz(w, + w,)

- Ziw} , (3:30)
Q,
. ) Q
T|TpT3: — [e"”(wa+ﬂ’b) 4 je~in® @Da b}
2
Q,.Q
= - {cos AWy, — isinz(w, + wy) + 21%} )
Q,
(3.31)

These regions contain the Regge-cut contributions. From
Egs. (3.5), (3.9), and (3.10) we derive the phase structure of
the cut contributions:

71731 2ie" "W, | (3.32)

717573 2iW,,,. (3.33)

Combining poles and cuts we arrive at

PHYSICAL REVIEW D 91, 045005 (2015)

The s discontinuity A of the 2 — 4 scattering amplitude.

7173 e {cos AWy, + isinz(w, + wp)

Q0
0 SOOI | 2iWw2] , (3.34)
Q,
TITyT3: — [cos AWy, — isinz(w, + wy)
Q0
+ 21""0”‘;# - 2iWa,2} . (3.35)
2

These results are valid for all orders. We recall that W, is a
real-valued function and contains no further phases.

Since, for the Regge-cut contribution W, , we have only
the leading-logarithmic result and we can approximate
Egs. (3.34) and (3.35):

7175 e [coszw)ab +in(w,+w,)— 2in e +2iWw2} ,
w3

(3.36)

T|ToT3: — {cos Wy, — in(w, + op) + 2ig e _ 2iWw2} .
)

(3.37)

When inserting the result (3.23) for the Regge-cut ampli-
tude into Eq. (3.36) we immediately notice the cancellation

of the singular terms, “’w—‘;’b and of the terms ~ w, + ;. We
obtain
T]T3: e_i”‘”2 [COS ﬂ'a)ab + i5|3 + ZIfwz], (338)
T|1TpT3 . — [COS W, — i613 - 2ifa)2]- (339)

Our phase 653 coincides with the phase contained in the
BDS amplitude [3].

We thus have found that the scattering amplitude can
be written as a sum of the conformal-invariant Regge-pole
term, coszw,,, and a conformal-invariant and infrared-
finite Regge-cut term [24]. Whereas the pole term is given
by an all-order expression, the derivation of the cut term has
been presented here only in the leading approximation.
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IV. 2 - 5: COMPUTING REGGE-CUT
CONTRIBUTIONS FROM ENERGY
DISCONTINUITIES

Returning now to the 2 — 5 scattering amplitude, we
proceed in the same way as in the 2 — 4 case. Our ansatz, a
sum of 14 terms, has already been described in Sec. II,
and we have listed the trigonometric factors. In this section
we calculate the Regge-cut contributions via energy
discontinuities.

A. Short Regge cuts: discontinuity in s3

We begin with the discontinuity in s3 = s34; it receives
contributions from the doublet RLR and the triplet LLR.
These are the five partial waves which contain the short cut
in w;. For simplicity we chose the kinematic region where
all energies are positive. Together with the phases listed in
Appendix B (Table I), the Regge-pole terms of the two
partial waves RLR(1) and RLR(2) are found to lead to

RLR

e—in’(w1+w4) VR(CI)
=..- Vi(b)Vg(c),
— I

disc3(T5§];(l) 4 Pl (2))

(4.1)

where, as before, the dots indicate that we have left out the
integration symbols and the energy factors. From the three
partial waves LLR(1), LLR(2), and LLR(3) we obtain

. I I I
discy, (TIL)(;;?(I) + TEOL;(Z) + TIZOL;@))

e—izr(w2+w4) vV, (Cl)

=g ViB)Va(e).

(4.2)

Their sum equals

Tpole + Tpole

. 1 1
discs(Th %y + T LLR(1) LLR(2) T

ole
rer() T LTrere) T T k)

LLR(3)
Vi (b)Vr(c)
Q3 '

- = e—iﬂ(w1+w2+w4)eimu(,

(4.3)

Next we consider the contributions of the Regge-cut term.
From the doublet RLR we have

disc,, (Tgix(1) + Thir(s)

= . ‘e—in(w1+w2+w4)eiﬂa)3 VR (a) eir | , (44)
QIZ s
whereas the triplet LLR yields
. @3—cut @3—cut @3—cut
dlSC3(TL3LRC(u1) + Tszc(g) + TLSLRC(I;))
= .e—in(w1+w2+w4)eiﬂw3 VL (a) eimm W(u ) (45)
3

921

Their sum equals

PHYSICAL REVIEW D 91, 045005 (2015)

. w3 —cut w3—cut w3 —cut w3 —cut w3 —cut
dlSC3(TR3LR(1) + Trrre) T Toirey + Tiire) TLiR(3))

= 'e—in(w1+w2+w4)eiﬂwa eimms Ww3 ) (46)
We finally note that the long-cut pieces in LLR(1) and
LLR(2) cancel each other and do not contribute to the s;
discontinuity in the positive-energy region.

As a result, the discontinuity in s; = s34 of the full
scattering amplitude T,_s in the region of only positive
energies equals

RACIA0

A34 — e—ilt(a)1+wg+w4)eiﬂwa
3 93

+ ei”“’3Ww3).
(4.7)

We mention that in other kinematic regions the results are
similar, e.g.

VL(b)Vi(c)

T)T4" A;ELTA — e—iﬂw]eimua _
2 93

+ e—izm)3 Ww3> .

(4.8)

The important feature of these expressions is the singular
term from the Regge-pole contribution: similar to the 2 — 4
case, on the lhs the energy discontinuity is computed from
unitarity integrals and thus is free from the unphysical
pole ~1/ sin zws. Hence, on the rhs, the function W, must
compensate the singularity.

Let us now evaluate Eq. (4.7) in the weak-coupling
approximation. We proceed exactly in the same way as we
have described for the 2 — 4 case and obtain

, o
Ww; = A34 + 71'(603 —wp —w. + Z) b) . (49)
3

For the computation of the discontinuity on the lhs we, as
before, decompose the production vertices into “local” and
“nonlocal” pieces and make use of the bootstrap equation.
This removes, on the rhs of Eq. (4.9), the terms w5, @}, and
., and we arrive at the analogue of Eq. (3.23):

[QJXOR T 524
Ww3:71' @5 —E(a)b—i—a)c)—l—?—i—f@, (410)
where
Sy = a(Voy + @ + @,). (4.11)

The integral representation for f,, is easily derived from
Eq. (3.19). As expected, the partial wave in Eq. (4.10)
consists of a “subtraction” (first two terms) which will be
shown to cancel against the unwanted parts of the Regge-
pole terms. It agrees with the result obtained in our previous
paper [cf. Appendix B]. The piece “% 04 + fo,” represents
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the conformal-invariant and infrared-finite Regge-cut
amplitude.

B. Long cut: discontinuity in s,3

Let us now turn to the long Regge-cut contribution

PHYSICAL REVIEW D 91, 045005 (2015)

and

. —cut
disc 3 ( T2 -cu

), —cut
LRR(1) + TZ;QRC(I;))

which is contained in the two triplets: LLR(1), LLR(2), = ... — e i) pmizey — Dy (), (4.15)
LRR(1), LRR(2). In order to determine W, ,, we consider £
the discontinuity in s,3. For simplicity we again take all
energies to be positive. We begin with the Regge-pole
contribution: Finally for the long cut
di Po ole Tpole
isci23 (T 1 r(y y LLR(Z)) isc oy (T2-00 4 st
) ) VL(b) 12335 LLR(1) LLR(2)
= ... —em@te)y, (a)e™ ™2 =2V (c) (4.12)
Q3Q32 = .E_iﬂ(a)]+(‘)4)€_iﬂ(‘)32 eimm w0331 (416)
Q3
and
. I I
d180123(TL(;£3( 1) + Ti(;e;( )) and
. _ Ve(b
== e—lﬂ(a)1+{1}4) VL (a)e—umn3 o S(z ) VR( ) (413)
258423
_ _ . diseis (T ey + Trike )
Next we consider the short cuts in w; and @,. We find
= .e—iﬂ(m, +wy) e~ im0 pims W 03;R (4 17)
. t cut Q
dlSC123(Tz)LRC(u) + TZ)ZR(UQ 23
== e—iﬂ((u]+(1)4)e—iﬂo)32 VL (a) @3 (414)
2 The sum of all terms equals
|
A123 _ e—i”(wl+(04) {e""“”” <eiﬂwz w3 L VL (a)W(U3 _ VL (a)VL (b) VR(C))
32 Q Q302
© geinom <e,.,m,3 mosk_ Wa,Ve(e) VL<a)vR(b)vR(c>>} ' (4.18)
Q3 Q Q€03
[
So far the results for the discontinuity are valid to all orders. which we can also write in the form
In the weak-coupling limit we find for the sum of all terms
WrgWpW3:  Wg w3,
Ay =—n—""""— W, —W
123 T P o, s w, s 1
W W Az = 5 (014 =024 = 613) + fuywy = fu, = fuy, (4.21)
+ 3L — YW wyw3iR . (419)
T3
Let us first evaluate the discontinuity on the lhs which ih
we illustrate in Fig. 8. Similarly to the 2 — 4 case we W
decompose the structure of the RPRR and the RRPR
production vertices. After separating the one-loop contri-
butions we obtain S1a = 1(Vyis + 0, + @,). (4.22)

T
__V13

T
Y V14 + fw2w3 )

2
Joy = far

Az = —nwy, +

-z V24 (4.20)

For f,,,, we have the integral representation [31]
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a b c

RS
MNMLW + A e“‘» )

FIG. 8. Illustration of the discontinuity A,; in the weak-coupling limit.

foo = Z ,,1+n2//d1/1d1/2 1 ; (k;@)wl (k q3>w1+2 (_S2>a)(yl,nl)
o 2n, i vy + 3 \qikj, qiky S02

—s3\2wm) (ki qi\ =3 (kyq\ 71
x C(vy, vy, 0y, 1y) <$> (q%kg ok o %

where the subscript “sub” indicates that we have subtracted the one-loop contribution, and the function C(v, v», ny, ny) is
the “central emission vertex” as defined in Ref. [31] [cf. Eq. (19)].

It may also be useful to write this Regge-cut amplitude in terms of anharmonic ratios. We introduce the six anharmonic
ratios

: (4.23)

sub

~ (=s0123)(=52) (=S234)(—11) (=s1)(=t3)

Uy = , Uy = —————%, Uy = ———"~
1 (=502 (=513) 2 (=51 (—12) 1 (=son)(-1)
- - —s4)(—t
Uy = (=51234)(=53) ’ Uyy = (=54)(=12) ’ Uzy = (=s012)(—t4) (4.24)
(=$123)(—5234) (=$234)(=13) (=s0123)(=13)”
and the complex-valued variables w,
k k
=BZa oy, S0 (4.25)
91k, 92k,
The integral representation becomes
dvydv .
foro, = 2 Z nl+n2< ) ( ) // : 2 D(vy, )" |wy P20 (= fugruz) =)
ny,ny
X Cvy, 12, 1y, 1) (= fuggizy) = #2"2) |W2|2w2q’(1/27 12) lsup- (4.26)
Returning to the energy discontinuity we insert Eq. (4.21) into Eq. (4.19) and obtain
W(th(l)z' - Ww 3 Wy o W,0p0. T 1
2osl 23’R+_Ww;+Ww_:ﬂib__(wa"i_wc)_'—_ém_"fww' (427)
T3y (0} N 2 [OF] WHrW3 2 2 273

We notice that the single discontinuity is not sufficient to determine W, .., and W, ,, .x separately. However, it fixes the
combination which appears in the leading approximation of the scattering amplitude. On the rhs of Eq. (4.27) we again find
the subtraction terms which will be canceled by the Regge-pole contributions, and the conformal-invariant Regge-cut
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FIG. 9. The s discontinuity A of the 2 — 5 scattering amplitude.

contribution. The subtraction term agrees with the result of
our previous paper (see Appendix B).

For comparison, we also consider another discontinuity
in the total energy s in the kinematic region 7;74. First,
one has to write the Regge-pole contribution. After some
algebra we find for the sum of all partial waves

. pole
disc, E Tip =

where, again, the dots stand for the @ integrals and energy
factors. For later purposes it will be convenient to use the
identity

QaQch < —i Qb
2%a""o0" % __ Qa einwy 70
£22g23 93923

Q,Q,Q,

- 4.2
Q0,05 (4.28)

g, >
_|_ e—mwz v QC'
Q,Q3,

(4.29)

Next we consider the short w5 cut, contained in the doublet
RLR

disc,(Tgy 1) + Thigy) = - ™ Véfj) W,, (4.30)
and in the triplet LLR
dise, (T + T4 + T4
= ...emims g—lvéif‘) W,,. (4.31)

Their sum equals

disc, (Teynt + Tring) + Toantn + Toing) + Toia)

Q)
= .. LW, 4.32
i W, (4.32)

An analogous result holds for the short cut contained in
the doublet LRL and in the triplet LRR. Finally, the
contributions of the long cut are

wrw3;L

£232
(4.33)

. W, —@3—cut wy—w3—cuty —inws
dlSCS(TLLR(l) + TR0 )=...e

and

w,w3;R
Q23
(4.34)

. W —w3—Ccut w3—@wy—cuty —inw,
disc (T zpt) + Trkrp) ) =---€

The full discontinuity in s becomes

inw inw
Q,Q,Q. "W, .. —e" W, R
9293 'Q'32

—in(wy+w3)

AfH =e

+ e+i7m)2 %Wa); + eilm)3W %
N 3

. 4.35
- (435)

To proceed further let us restrict ourselves to the leading-
logarithmic approximation. We obtain

Wﬂ’zw3:L B sz%;
T3y
,Wp0,
— .

T1T4 __
A =

W,

R w w
+ W, +—W
W - W3

4.36
P (4.36)

For the lhs we use the bootstrap relations in the #; and #,
channels and obtain the result illustrated Fig. 9. As we did
before, we isolate on the rhs the IR-divergent one-loop
term:

A1114 _ 1

T
614 - E(wa + a)c) +fw2a)3’

where f, ., is given in Eq. (4.23). We thus find for W,,, ,,.
in the leading-logarithmic approximation

Weaoil = Weaw.: %) W,
w,w3;L wr,®3;R + Pa Wm3 + Ww, Le
w3y 20) Gk
0,0,0, T 1
:”aibc__(a)a—’—wc) +_514 +fw2(u3’ (438)

WHrW3 2 2

which agrees with our previous result (4.27).

V. THE 2 — 5 SCATTERING AMPLITUDES IN
DIFFERENT KINEMATIC REGIONS

In this final section we put pieces together and compute
the scattering amplitudes. As we have mentioned before, in
the region where all energies are positive all Regge-cut
contributions cancel, and we are left with the Regge-pole
terms only. They have been computed in Ref. [1]. Most
importantly, in some kinematic regions singular terms
appear, e.g. ~1/Q,. We will show that the Regge-cut
contributions will remove all these unwanted singularities.
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We begin with the kinematic region z,7,4. In this region,
only the short Regge cut in the w; channel is nonzero,
whereas both the short cut in the @, channel and the long
cut vanish. From Egs. (2.4)-(2.11) we derive, for the
product of the partial waves and their phase factors the
following contributions to the scattering amplitude:

Fa)3—cut + Fa)3—cut N 2i€_iﬂ(a,l+w3)ei,m,2 VR(a) W

(5.1)

RLR(1) RLR(2) Q, “
and
- - - Vi(a) _.
cut cut cut .V L —
Frirgy T Flirgy t Fiirp) = 20 Oy ¢ TBW ),

(5.2)

Taking the sum of the last two equations and observing the
identity (2.44), we obtain the result

RLR(1) + RLR(2) + LLR(1) + LLR(2) + LLR(3)

_ 2ie—i7z((u|+w3)eiﬂwa Wa)3' (53)
Similarly for the region 7,7374
TaT3Ty 1 2ieT 1MW, (5.4)

We combine these Regge-cut results with the Regge poles
which are taken from Ref. [1]:

) . . Q0
To7y " e—m(wl-&-wg)emwn |:em(wb+wc) — Dieim®s b2%c
3

— e—iﬂ(w|+a)3)eiﬂa)u |:COS ”(wb _ wc)

+isinz(w, + @) — icos%nggc}, (5.5)
TyT3T4. — e~ 701 el [e‘i”(“’h+w<') + 2ie~im®s %]
3
= — 71 plT0 {cos (o, — w,)
—isinz(w, + o.) + 21'%35%9‘} . (5.6)

When combining these Regge-pole expressions with
the Regge cuts in Egs. (5.3) and (5.4) [with W, from
Eq. (4.10)], one easily verifies the cancellation between the
subtraction terms in W, and parts of the Regge-pole
contributions. The results for the scattering amplitudes are

o741 €O o0 [cos @y, + i34 + 2if,,).  (5.7)

ToT3Tyt — €™ [cos mwy, — 164 — 2if ). (5.8)
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The expressions for the two regions 7,73 and 7,7,73 can
easily be obtained by symmetry considerations.

For the remaining kinematic regions we have to calculate
the contributions of the short cuts and of the long cut. First
we complete our calculations of the short cut in ws:

7174 2ie” " g—z W, (5.9)
TityTy: — 2iemims Va(za) W, (5.10)
T|T3Ty4 " Zig—z W, (5.11)
T1ToT3T4: — 20 Véz(j) W, (5.12)

Next we turn to the long cut which is contained in the
two triplets: LLR(1), LLR(2), LRR(1), and LRR(2). Their
contributions to the scattering amplitude are

W .
. gy —m3—cut @) —@3—cut :—imwy | @203 L
T|T4: FLLR(]) +FLLR(2) — 2ie —_—

32
(5.13)
—Wa— — i — . P L
117274 Flip0h) Mt F LIR() U Djemimm ginen BT
Q3
(5.14)
. sz—w3—cut + sz—m3—cut N 2.Ww2(o3:L (5 15)
T1T3%4 - L LR LLR(2) o , .
32
e —y— . :L
T1TyTtyt P+ Fpip et — 2igrinon —2osil
32
(5.16)
and
. sz—wg—cut + sz—a)3—cut DY —inw, Ww2w3IR
T1%4- L LRR(1) LRR(2) te B
(5.17)
T T Ta " Ffuz—w3—cut + sz—a)3—cut Y Ww2w3:R (5 18)
192%4 - D LRR(1) LRR(2) Q ’ :
23
. pwy—w3—cut Wy —w3—cut . _inw, inw w03 R
T173T4. F F — Qje Ty 23"
143%4 - T LRR(1) + LRR(2) Q)
(5.19)
i —@y— . ‘R
T|TpT3T4 " FZ);R(‘()% 4 Ff;R%) W, pjeminwy 20
23
(5.20)
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The sum of all four F‘z’g:(’;)—cut +

—w3—cut —y—cut t
F;’ZLR(’(”> cu +F(Z’§€R“(") cu +F‘Z;R“(") ' can be combined

into

contributions,

77— 2je—in(@y+w3) |:em:w2 wryw3;L + el wyw3:R ’
32 23

(5.21)
o~ ] W msR
TITyT4. — 2ie w3 [e’”wz T ooyl Le inws 03} ’
Q3 Qs
(5.22)
.o . wa:L . wrnR
111374: — 2le—mwz |:elﬂw2 & + elfra)3 3 :| ,
Q3 Qs
(5.23)
T1TyTaTy: — 21 |:e_i”“’2 oozl + e—imws Ww2m3;R:| ]
32 Qys
(5.24)

One easily verifies that the regions 7,74 and 7,737, which
contain the short cut in w5 receive no contribution from the
long cut. Similarly, the regions 7,73 and 7, 7,75 contain only
the Regge poles and the short @, cut.

Before we combine the contributions of the long cut with
short cuts and Regge poles, let us pause for a moment and
take a closer look at the long-cut contributions. The long
cut is obtained from the discontinuity in sy,3 (or the s
discontinuity). The structure of the long-cut expression
[square brackets in Egs. (5.21)-(5.24)] is illustrated in
Fig. 10 (for the weak coupling see also Fig. 8). It consists
of impact factors on the left and on the right sides of the
two-Reggeon cut which, because of Regge factorization,
are the same as in the 2 — 4 scattering amplitude (in the
leading approximation they are illustrated in Fig. 5) and the
RRPRR production vertex in the center. The latter one is a
new element which, at the leading order, has been calcu-
lated in Ref. [31]. The phase structure contained in

gs. (5.21)—~(5.24) indicates that, beyond the leading
approximation, this production vertex must become com-
plex valued. It is instructive to recapitulate the RPR
production vertex in the BDS formula for 2 — 3 [1]. For
the different kinematic regions labeled by the 7 factors the
relevant phase factors are

PHYSICAL REVIEW D 91, 045005 (2015)

FIG. 10. Structure of the long Regge cut.

1: > e—iﬂ((ﬂ1+(1)2) <€i7m11 te inw, o ) e i (0)+a@y) zmua’
12
7 = e—i;rwz (eiﬂwl +e inw, ) — —mwzemwa
912
7 — e—i/m)] eiﬂ(l}[ + ma)z —lmul ema)u
912

17y = e _|_e—mw2 — e—mwa
921 £212

(5.25)

This phase structure allows for two equivalent descriptions:
either we write a sum of two terms with real-valued
coefficients V;(a) and Vg(a) (in agreement with the
Steinmann relations) or, alternatively, we use a factorized
representation with the complex-valued production vertex
e"a, Comparing the bracketed expressions with the square
brackets in Egs. (5.21)-(5.24) we find the same phase
structure. Therefore, for the RRPRR vertex in the center
of Fig. 10, we either retain the sum of the two terms with
real-valued coefficients contained in W, _,,..; and W
or we introduce a complex-valued production vertex. At
leading order, this vertex is real. In contrast to the Regge-
pole case in 2 — 3, we do not yet know the complex-valued
RRPRR vertex function beyond the leading order. It is
tempting to expect, again, some form of exponentiation.
Finally we combine the contributions of the long cut and
the short cut with the Regge-pole contributions which are
taken from the Appendix of Ref. [1]. The latter ones are

wy—w3;R>

T4 e in(®rtws) [em(wa+wb+wc) — Djein(wrtas) ;227;2%(} ’

(5.26)
i i o Q, Q0

T\ TyTy. — e |:em(—ma+mh+mc> — Djel®3 324;;30] ’

(5.27)
i i o Q,Q,Q,.

TIT3T,  — e im0 |:em(ma+wh—wc) _Ziemmzﬁ] ’

(5.28)
Q,,Q,Q5.

T\TyTTy " |:eizr(—wa+wb—wc)_2i 0,0 ] (5.29)

The contributions of the long cuts (5.21)—(5.24), together
with those of the short cut in w; (5.9)-(5.12) (and
analogous expressions for the short cut in w,) are
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) ) . W, . o Q . Q
s — 2ie—m(a)2+w3) < |:emw2 wy—w3;L 1 pimms wz—w3’R:| 4 pimm a’” w3 + eimo3 [0 c)
e Qs Qs Q, Q
) . W . QW ) W . W, Q.
— 2i€—ln(u}2+(113) (eum)z |: Wy —w3;L + a w3:| + ein®s |: Wy —w3;R + @ ‘:| ) , 5.30
Qs Q, Qo3 Q3 (5-30)
. i W(u —w;3;L P W{m—(u :R QZu Wm P Wa) Qc
T\ TyTy. — Die~imw3 ( |:elﬂ(1)2 2 W35 + o3 2 W35 :| _ 3 + i3 2
: Q3 Q3 Q) Q3
) . W . QW . w . W, Q. )
— Dje—inws | pinw, @)=y 4 w3 imws @y —03;R D277 pla , 5.31
le (e [ Q3 - Q, e Q)3 N Q3 M (5:31)
) ) W, . QW W, Q.
. —w3;L wr—w3;R a'V o @,=%3¢
T1T3Ty. — Die~immn ( |:emw2 Wy — W3 + eim®3 2~ W3 :| + ein®) 3 _ 2 )
Qs Q)3 Q, Q3
) ) Wy —wer QW . Wy —wir Wy, Q .
= Dje imwy inw, Wy~ W35 a’” w3 inws W)~ W35 [/ 1% iw, , 5.32
le (e [ Q3 - Q, e Q3 - Q3 @ (5:32)
. i Ww —w3;L i Ww —w3;R Q2a Ww Wuh Q3c
T TyT3T4 . — 2i ( {e"”"’z — iy 2] P2
Qs Q)3 Q, Q3
) Wy o QW ) Wy cwir W, Q . )
R =3} a’’ s —inw; Dy =35 Wr”7C W, e @ — 7@} . 5.33
l<e [ Q3 - Q, e Q)3 - Q; @¢ ¢ “ (5:33)
[
For the expressiqns on the rhs of thf:se equations we have Sia =a(Vig = Vo + 0, —@p), (5.39)
only weak-coupling-limit results. Disregarding the phases
and using Eq. (4.27) we find for the region 7,74 S13s = 7(Vis = Viz + @, — o), (5.40)
. . . O ON) .
e—tﬂ(w2+w3) <l514 + 2lfwzw3 iy ;22)3 c_ lﬂ.’((l)a —+ a)c)> 51234 = 7Z(V14 — V13 — V24 — W, — 0)5)- (541)

(5.34)
After combining this with the Regge-pole term, we find the

expected cancellation between the subtraction term and the
Regge-pole piece, and we arrive at

TIT4: b €_i”(w2+w3)(1 + iﬂ'CI)b + i514 + Zifa)zw3>‘
(5.35)

In the same way we compute the other regions and obtain

117740 = —e " (1 4 inw, — 18154 — 2i(fw2w3 _fw3>)’

(5.36)

7173740 = —e " (1 4 izw, — 6130 = 2i(fapey — fan))-

(5.37)

T1TpT3T4. — 1+ i51234 - i”wb + 2l(fw2w; - wa _f(l)g)’

(5.38)

where

Note that, in analogy with our remark at the end of the
2 — 4 section, the term V4 is the one-loop approximation
of the long Regge cut and is contained in the BDS formula;
the same holds for the terms V53 and V,, which represent
the one-loop approximations of the short cuts in the w, and
@5 channels.

Making use of the results from Ref. [1] we can slightly
generalize our results. As discussed in Appendix B, our
weak-coupling results for the partial waves are in agree-
ment with the subtractions predicted in Ref. [1], and in this
paper it was shown that they remove all the unwanted
pieces of the Regge-pole terms. Therefore, this part of our
results—the combination of subtraction terms with the
Regge-pole terms—can be generalized to all orders, and
our restriction to the leading-logarithmic approximation
only applies to the calculation of the Regge-cut contribu-
tions. From the second lines in Egs. (5.30)—(5.33) we infer
that the partial waves f,. (f,,) contained in W, (W, ) are
multiplied by phase factors ¢« or =/« (¢i™®e or e=7c ),
We therefore write

s

7174t = e OO [0 cos 1w, + 1814 + 2if 0,

(5.42)
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T1TTy. — —e 7173 [e”""<' COS T, — i6124

= 2i(f w0, = €™ f0,)]: (5.43)
717374 — —e 2 [ei™a oS wy,. — 1634
= 2i(f w0, = Fare™ )], (5.44)
CTaTyTat > [T i it |5
+ 2i(fw2w3 — fwze_i’“"f' — e_i”“’ufw3)]. (5.45)

In order to pass to the conformally invariant remainder
functions R7;m/_”_1k, we first recapitulate the relation
between our scattering amplitude, the BDS amplitude,
and the remainder function:

Tys =T x TBDPS x R. (5.46)
Here the BDS amplitude contains kinematic phases
(e.g. e~'™®2*®3) for the region 7,74), the exponentials of
production vertices (e, '™, ei"@ =" for the
regions T1T4, T1Tp, T4 T1T3T4, and T1T2T3T4, reSpeCﬁVely),
and the phases e . Finally, the Born amplitude 7™ is
proportional to s which, when introducing a further twist in
a t channel, produces a minus sign (for example, when
going from 7,7, to 7;7,74). These factors, therefore, have to
be taken into account in our expressions for the scattering
amplitudes in Egs. (5.42)—(5.45), before we arrive at the
remainder functions R;.

Before we write down our results for the remainder
functions we want to make a further comment on the
Regge-cut amplitude f,,,,. Since this amplitude is known
only to leading-order accuracy, we will not be able to write
all the phase factors for this term. Beyond the leading order
however, we know from our discussion after Eq. (5.24) and
from Egs. (5.30)—(5.33) that the RRPRR vertex becomes
complex. As a result, the amplitude f,, ,,, will also become
complex and the exponential of the production vertices can
no longer be disregarded. For the region 7,74 this means

inw, _ pinw,
e fa)za)3 ;L e fmyu; ‘R

Q3

(5.47)

—inw,
f w3 €

Our prediction for higher orders, therefore, is that the rhs of
Eq. (5.47) must be conformally invariant. Finally, it is
customary to present results for the product of the remain-
der functions and the phases e+ which are part of the
BDS formula.

With these modifications our final results for the
remainder function become’

"In our previous paper [1] the remainder function was defined
to include the sign changes due to the s factors of the Born term.
As a result, kinematic regions belonging to an odd number of 7
factors have a global minus sign.
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(5.48)

Rhluezﬁm = COS W4 + 1614 + 2if 4,00, »

—i01p4 — H ; i,
R7;717274e 1M = CoSmwyp, — 15124 - 2l(fa)2w3 —e (“fwg)’

(5.49)

—id _ : : inw,
Rz iz, €70 = COS T, — 8134 = 2if 4,0, — €7 f,),

(5.50)

io — LWy, LW, ;
R7;T|TzTgT4e 124 — o ba o be + 151234
; inw inw,
+2l(fw2m3_e hcfwz_e bafw3)'

Equations (5.7), (5.8), (5.48), (5.49), (5.50), and (5.51),
represent our final results. All unphysical singularities
have been canceled, and the final expressions consist
of conformally invariant Regge-pole and Regge-cut
contributions.

(5.51)

VI. SUMMARY AND CONCLUSIONS

In this paper we have completed our analysis of the
n =7 BDS scattering amplitude in the multi-Regge limit.
To summarize the result of this work, we once more list
the final results for the remainder function R;.. . ., in the
different Mandelstam kinematic regions labeled by
7;7;...7;. We follow the definitions given in our previous
paper [1]: from the expressions listed in the previous
section, we remove the kinematic phase factors and
exponents of the production vertices, e, e*im®s,
e*i7 which are already parts of the BDS formula. The
final expressions are sums of the conformally invariant
contributions of Regge poles and Regge cuts:

R7.1)r, €% = COS Ty, + 1634 + 2if,,, (6.1)
—isos . .
Ryt o, €70 = COS Wy, — 1034 = 2if ., (6.2)
R7TIT3el513 = COS T,y —+ i513 + 2ifw2, (63)
—iS . .
Rt 2y €718 = COS W, — 1613 — 2if,,,  (6.4)
5 _ . .
R7;T|T4el 4 = Cos W, + 1514 + 2lfa)2w37 (65)
—iSioy . . inw,.
R7;r|7:214€ o124 = cos TW,p — 15124 —2i (f(uza)3 — ¢! fm3)’
(6.6)

—i0134 — : H inw,
R7;T|T3T4e 13 = COS TWp, — 15134 - Zlfmza)3 —-e af(uz)’

(6.7)
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Riiyryeyr, €058 = €700 e 5153
+ 2i<fa)2w3 - eiﬂwbcfwz - emwbafwg)'
(6.8)

The Regge-cut amplitides f,,, f,, and f,,,, are explicitly
given in Eq. (3.19) and in Eq. (4.23), respectively. As stated
before, these Regge-cut contributions are valid only in the
weak-coupling approximation: this restriction comes from
the calculation of unitarity integrals in which we have used
leading-order amplitudes M,_,,, and from the use of
bootstrap relations. As explained at the end of the previous
section, at next-to-leading order the long-cut amplitude
Sanw, 18 €xpected to become complex. Since production
vertices have been calculated at NLO [32,33] and bootstrap
equations have been proven to be valid also at NLO
[34,35], all ingredients for a complete NLO analysis are
available.

It is important to note that recently both the n =6
[29,36] and n = 7 scattering amplitudes [37-39] in multi-
Regge kinematics have been investigated in the strong-
coupling region. The results show a remarkable consistency
between the structure at weak and strong coupling,
thus providing strong support for the AdS/CFT duality
hypothesis.
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APPENDIX A: PARTIAL WAVES AND
MULTIPARTICLE AMPLITUDES

In this appendix we review and present further details of
the Regge-pole analysis, derived from models [25] (scalar
field theories and dual amplitudes) and from S-matrix
theory [26,40-43].

We begin with a brief review of the simplest examples,
namely the 2 - 3 and 2 — 4 scattering amplitudes in
the multi-Regge limit, which have been discussed before.
The possible energy discontinuities of the 2 — 3 case are
illustrated in Fig. 10(a). In a Regge-pole description, one
starts from multiple partial-wave expansions in the crossed
channels. For the 2 — 3 case, such an expansion contains
the triple sum over the angular momenta in the #; and ¢,
channels, j; and j,, and the helicity variable n conjugated
to the Toller angle @ at the production vertex. As was
pointed out in Ref. [26], the definition of the multiple
partial wave and its subsequent analytic continuation to
complex values of angular momenta and helicity requires a
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\

~7

(a)

FIG. 11. (a) The two sets of energy discontinuities and (b) the
corresponding hexagraphs.

decomposition of the scattering amplitude into separate
pieces (spectral components), which correspond to the two
terms in Fig. 11. Each term allows for the construction of a
Froissart-Gribov partial wave, and the analytic continuation
can be done in two of the three angular momentum
variables j;, j, and n. The coupling of these variables is
illustrated as hexagraphs, shown in Fig. 11(b).
Disregarding all complications which are unnecessary
for the present discussion, we have

Trz = Z Z Z d{)‘n(cos 0, )u"d',’fo(cos 0,)

nojizn jpzn

XF(jlv.jZ?n;tl’tZ)? (Al)

where u = ¢/, and 0, and 0, denote the scattering angles
in the 7, and 7, channels, respectively. As mentioned before,
the Sommerfeld-Watson transformation and analytic con-
tinuation in j;, j, and n requires the decomposition into
two terms. The first one [left parts of Figs. 11(a) and 11(b)]
reads as

o1 dji  dn
), =
223 (2ni)? sin z(j; — n) sinzn
x Z dl! (cos 0y )ud"N (cos 0,)
N=0

XF(I)(jlﬂijn; tl’t2>’ (AZ)

i.e. we have put j, = n + N, where N € Z. Assuming the
existence of Regge poles at j; = a; and n = @, — N with
factorizing residues, we have for s; ~cosf; - oo and
sy ~ cos B, — oo, the Regge form
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Tgl—)ﬂ =57 s32ump (1) (—ay)

sin zwa, Vg (1, 1, )

sinz(a; — ay) [(—ap)p(1).  (A3)
Here we have used the fact that for large z,
()~ ()
T(1+)
and
r(11+,) - SI,I;”JF( J)- (A5)

The I' function on the rhs contains the particle pole in the ¢
channel. The vertex function V; (for a massive theory) is
analytic in # = u~! near 17 = 0. Moreover, since in the
multi-Regge limit # = u~' ~ 2, we can also write

Sinﬂ'(ll VR(II, t2, l/l)

T5ls = ST s (1) (—a)

x T(=a,)p(12).

sinz(a; — )

(A6)
Here the energy factors are in accordance with the singu-
larity structure illustrated in the upper line of Fig. 11(a) (left

part). In the same way, the right part of Fig. 11 corresponds
to the second part of the scattering amplitude:

7o __1 / / djs dn
23 (2mi)? sinz(j, — n) sinzn

X Z diN (cos 0, )ud’? (cos 0,)
N=0

(A7)
!

X F(2)(j17j27n;t17t2)'
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With Regge poles at j, = @, and n = @; — N we arrive at

sin 7[(12‘7L<t1 s tz, M)

(2) _ @ a
T = 1B()(—
23 = 82 AT () sinz(a, —ap)

x I'(=ap)p(12). (A8)
In the following it will be convenient to define
sinzay Vg(ty, ta, 1) = Ve(ty, 1y, u) (A9)
and
sinza, Vy (1, ta,u) = Vi (1. 1y, u0). (A10)

Note that this definition of the production vertices (apart
from constant factors) is in accordance with the notation
used in the main part of our paper.

We generalize this to higher-order amplitudes. Let us
consider the 2 — 4 case. Turning to the 2 — 4 process, we
only emphasize the new feature. Obviously, we now have
five different ways of drawing maximal sets of nonoverlap-
ping energy variables, and each such diagram has its own
hexagraph: focusing on the terms “3” and “4,” we have

7 _ 1 / / / dj dn, n
254 = 77 3 : — ; — -
(27i) sinz(j, —ny) sinz(n; — n,) sinzn,

Ni N,
Assuming the existence of Regge poles at

J2 = a,
we obtain

a; a a3 Q)

dn,
x Z Z uy' nzd”l+N] (cos 0))d7: (cos 0,)dyz ™ (cos 03)FO) (jy. ja, ja. th, tas 13, 11, 13). (All)
nlzal—Nl, n2:a3—N2 (A12)
sin zay sin za, Vi (1), 1y, ) U(=aa) Vi (ta, 13, 1) (=as)p(13) (A13)

3
T(2_>)4 = 57's5s7 U uy 2 X Bt (=ay)

sinz(a, — ;) sinz(a; — a3)

Here the energy factors in the first line can also be written as
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1 2
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3 4 5

FIG. 12. The five sets of energy discontinuities (upper row) and the corresponding hexagraphs (lower row).

az . a) a3

51 s2 S3 Uy Uy —s2

aj—az

(04
TR

(Al14)

which is in agreement with the energy-singularity structure of this term. Similarly, the fourth term corresponds to

o 1 /// d]2 dl’ll dn2
=4 (2mi)? sinz(j, — ny) sinz(n, — ny) sinzn,
xS0 i ulrdg, ™ (cos 01)d (cos 0)di M 03 0)F (1, o sttt i) (ALS)
Ny Ny
and
(4) a pa sin za, sin 7 Vi (11, ty, ) )D(=an) Vi(ta, 13, tt3)
T = t I'(— t Al6
24 sl 52 S3° ul U ﬂ( 1) ( ) sinn'(az —a3)sinﬂ(a3 —051) ( (13),6( 3) ( )
with
sl sy ut uy = 5570555, s (A17)

In order to exhibit Regge factorization we use the definitions (A9) and (A10) and rewrite Eqs. (A13) and (A16)

as follows:

3) sin oy sin 7z (

TS, = sP s sPul uf (1) )M (~ay )

a —az) Vi(t, b, uy)

Vr(ta, t3,u5)

and

ap o 03 Q)

p(t)(—ar)

“4) _
Tyoq=51885U; ”2

The trigonometric prefactors in Egs. (A18) and (A19) agree
with those of Egs. (3.9) and (3.10). The denominators
sin za; result from the definitions (A9) and (A10), i.e. from
the requirement that each production vertex can be written
in the form

Vi(tity uy)
sinz(a, —ay)

Vi(ty. by, uy)
— A20
o (A20)

or

I'(— I'(— t AlS
sin za, sinz(a; — az) sinz(a, — ay) (= sinz(a, — a3) (=as)flts)  (A18)
sin7m3 Sinﬂ.’(az—al) VL(ll,lz,Ml) VR(12,13,M2)

IN-a,) ————=T'(— t3). Al9
sinza, sinz(az — ay) sinz(a, — ay) ( aZ)siniz(az—og) (=a3)p(rs). - (A19)

|
1,1t 1,1
Vr(ti b, uy) _ Vr(ti, b, uy) (A21)

Sinﬂ(a1 —az) Q]z ’

where Q;; = sinz(w; — ;). Let us generalize the con-
struction of these trigonometric prefactors to general
2 — n — 2 amplitudes. We find it convenient to first draw
the hexagraphs. For the example of the 2 — 5 case, the 14
terms with energy discontinuities have been presented in
Figs. 1-3. Here we list the corresponding hexagraphs: as
suggested in the discussion of White [26,40], we note a
one-to-one correspondence between the decomposition
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el IR

LLL RRR

(43)(32)(21) (12)(23)(34)
LRL(1) LRL(2)

((21)(13)(43) (23)(43)(31)

RRL RLL

(12)(23)(43) (43)(32)(12)
RLR(1) RLR(2)

(34)(42)(12) (12)(32)(24)

S I

LLR(1) LLR(2) LLR(3)
(32)(21)(14) (32)(24)(41) (34)(42)(21)

LRR(1) LRR(2) LRR(3)
(23)(34)(41) (23)(31)(14) (21)(13)(34)
FIG. 13. The helicity structure of the 14 terms in Figs. 1-3.

(2.1) illustrated in Figs. 1-3 and different sequences of

analytic continuation in the complex helicity variables. A

connection between these two seemingly different argu-

ments can be seen as follows. As an example, we consider

the first hexagraph in Fig. 13 which we redraw in Fig. 14.

We can interpret Fig. 14 as a sequence of Reggeon
scattering subprocesses.

(i) The lowest horizontal line “1” can be attributed to

the Reggeon exchange between the incoming par-

ticle “1” and the outgoing cluster “2 +3 +4 + 5.

At the same time, this exchanged Reggeon can

be viewed as an “incoming Reggeon” for the

subprocess: Reggeon 1+ particle B — cluster

FIG. 14. An interpretation of the helicity graphs in Fig. 4.

“2 43 4+ 4+ 5”. Next, within this subprocess, the
horizontal line “2” denotes the exchange between
the incoming Reggeon “1” and the -cluster
“3+4+57; at the same time, it describes the
“incoming Reggeon” for the subprocess: Reggeon
2 + particle B — particles “3 +4 4+ 5.7

(i) For each production vertex, it is either the left or the
right Reggeon which plays the role of the “incom-
ing” Reggeon; correspondingly, the vertex carries
the subscript “L” or “R.” Figure 14 has only vertices
of a single type “L.” One easily sees that, for
the assignments LRL and RLR there exist two
possibilities, whereas for LLR and LRR we have
three terms.

(ii1)) Each horizontal dashed line denotes an “intermedi-
ate” state which belongs to a certain energy variable.
In our example, the sequence of energies corre-
sponds to §, Sj345, S345, and s45 = §4, in agreement
with the energy discontinuity structure of the first
graph of Fig. 1.

These hexagraphs allow for an easy understanding of the
labeling “LLL” etc. As discussed before, for the Regge
poles we have two types of production vertices, denoted by
V; and V. As can be seen easily from the “hexagraphs” in
Fig. 13, each production vertex has a sloped “incoming”
line and horizontal “exchange” line: a vertex V; has the
incoming line on the left, and the “exchange” line is on the
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rhs. In our example of Fig. 14, all vertices are of the type
“L.” One easily translates this into the other diagrams of
Fig. 12: for a production vertex of the type “L,” energy-
discontinuity line enters to the left of the produced particle.
In this way, each of the 14 terms has a uniquely defined
sequence of subscripts. On the other hand, a given sequence
“LR” may belong to several terms.

Next one writes down the corresponding multiple
Sommerfeld-Watson integrals; the examples of the 2 — 3
and the 2 — 4 processes suggest a correspondence between
a given hexagraph and the trigonometric denominators
of the Sommerfeld-Watson integral. Let us, once more,
consider the term “LR(1)” of the 2 — 4 process. For the
Regge-pole contribution to this partial wave we had the
following collection of trigonometric factors:

1 1
—Q,Q,Q, —V V(b
0,00 1322 39% L(a)Vg(b)

_ 9 Q3 Vi (a) Vr(b)

= A22
Q Q3 Qs (A22)

Here the first group of trigonometric factors on the lhs
results from the three 1/sin factors in the Sommerfeld-
Watson integrals, and the second group results from the
three d functions. The third group arises from the produc-
tion vertices, if we agree to write each production vertex in
the form (A20) or (A21): for a vertex of type “L”” we insert a
factor 1/ sin a1, While for a vertex of type “R” we insert
a factor 1/ sinzayq. In this way we obtain the trigono-
metric factors of Regge-pole factors used in Sec. III.

For the Regge cut in the 7, channel we modify Eq. (A22)
as follows. Since there is no particle pole in the #, channel,
we leave the d function of the 7, channel as in Eq. (A4) and
make use of Eq. (AS); this eliminates the factor Q, in the
second group. Next, instead of the two production vertices
of the particles “a” and “b” (which led to the factor 1/Q3),
we use a new factor

Q)

L =1
Q, !

(A23)

Here the label “i” refers to one of the two t channels
neighboring the ¢, channel containing the Regge cut; it is
the ¢ channel to which, in the Sommerfeld-Watson integral,
the angular momentum j, couples. In our case, this is the #,
channel. Combining all these factors we arrive at

F =—Q,Q; —W
LR(1) 92191393 1543 Q] Q)
_ Wo,

Q5

(A24)
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This leads to the trigonometric factor of the Regge cut used
in Sec. IIL

Let us generalize our rules for the Regge poles to the
2 — 5 case. Figure 13 contains those trigonometric factors
which follow from the Sommerfeld-Watson integral. As an
example, in the first term the notation (43)(32)(21) stands
for the factors

1
000y (429)
where Q,,, = sinz(w;, — ,,) = sinz(j; — j,,). To make
contact with Eq. (A22), we still need to add the last factor
1/Q,. The remaining groups in Eq. (A22) are easily
generalized to the 2 — 5 case. In this way one derives
the trigonometric factors for the Regge poles listed
in Sec. I

Turning to Regge cuts, the above rules for the 2 — 4 case
can be used directly. As an example, we consider in Fig. 13
the term “LLR(1)” and derive the factors for the short
Regge cut in the w5 channel. We find

1 1 Qs
——QQQ, ——=V 4
ORI T HalWe,

Q,
CQ0Qy
Qi Vi(a) W,
Q0 Q @

VL<a)Wm3

(A26)

in agreement with Eq. (2.51) in Sec. IL

This completes our formulation of the rules for the
determination of the trigonometric factors. It is straightfor-
ward to apply these rules to the 2 — 5 amplitude and to
verify all the trigonometric factors listed in Sec. II. In a
forthcoming paper we will make use of these rules for the
investigation of the 2 — 6 scattering amplitude. As we have
said before, the rules for the Regge cuts are partly heuristic
and a more systematic derivation is needed. At present,
their justification comes from the results which are obtained
with these rules.

APPENDIX B: COMPARISON WITH THE
RESULTS OF THE PREVIOUS PAPER

In our previous paper we started from the Regge-pole
expressions, and we determined the phases and the analytic
expressions of the subtraction terms inside the Regge-cut
contribution. They were derived from the condition that the
remaining Regge-pole terms are finite and conformally
invariant. Following these requirements we were led to
introduce, for the long Regge cuts, linear combinations of
partial waves which slightly differ from the one used in the
present paper.

In order to see the connection with our present paper, we
summarize a few results. For the short cut in w5, for which
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we used the same partial-wave decomposition as in the
present paper, we found the subtraction

ngc
. Bl
o B

8f wy, = —sinz(w;, + ,) + 2 cos nws

This should be compared with the subtraction in 2W,,
found in Eq. (4.10); the latter coincides with the weak-
coupling limit of Eq. (B1).

For the long cut we found it convenient to use a
decomposition which differs from the one used in the
present paper. Let us list the phase structures of the four
participating kinematic regions:

717y ie—ﬂ(a)2+w3) (eiﬂmu 5fa 4 eimoe

w3

(B2)

W3 )’

T1TyTy . ie—imu3 (ei”'”“5f(‘f,2w3 + eiﬂ(ucéf((i)za):; _ eiﬂ(l)aéwa)’
(B3)
T34} l'e—iirmz (eiim)u 6fa

inw. S fc inw,
W3 +e c5fm2m3 —ene 5fw2)’

(B4)
11707374 i(e7 TS fE A+ e SG
— eSS, — eSS, ). (B5)
For the subtractions we found the expressions
Qc QZaQbQ3c
a = —— 46 B6
W3 Qac Q293 + fa)3 ( )
and
Q. Q,,Q,Q
SF¢  — _ 2% 2%arfhRBe | op B7
fwza)3 Qac 9293 + fwz ( )
With these subtractions we have shown that, after

combining them with the Regge-pole terms, all unwanted
pole contributions cancel, and for the remainder function
we were left with the conformally invariant Regge-pole
terms:

T|T4: COSTW,, (B8)
TITyT4. — COSTW,y, (B9)
T|T3T4: — COS TWpe, (B10)

Ty ToT3Ty s €7 @baei™ e (B11)
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All these expressions are valid to all orders in the coupling
constant. Let us now compare Egs. (B2)—~(B5) with
Egs. (5.30)—(5.33). We introduce

Wa) w3 Wu) w3 Qa W{u
L R (B12)
932 932 QZ
Wﬂ)zfvz;L _ W(02(1)3;L T szQc (B13)
Qo3 Q3 Q

an~d denote tlle subtraction terms inside szwz Ls V~Va,2w3; r by
OW s OW o, 0,:r- Obviously we need the identity

2 (eimoz 5Ww2w3§L + eims 5Ww2a’3§R>
QSZ Q23

__ ,inw, a inw, 4
=e “§f0)20)3 +e Léf(uz(u;'

(B14)

One easily verifies that this equation is fulfilled if we
impose the following relations between the subtraction

7 1 a c .
terms 6Wm2m3;L’ 5W{uzm3;R and 6f W3 ° 5f W3 *

25W(1)20)3;L = QSuéfg)zm_; + 9306 2)20)3 ’ (BIS)
26W ik = Qa0 0, + @ocBf by (BI6)
Inserting Eqs. (B6) and (B7) into this we find
25V~V{uzm3;L = QhaQa - Q.’sa sin ”(wh + a)c)
Q;,Q,Q
2 —= < B17
+ 2 cos ww, 0,0, (B17)
which in the weak-coupling limit becomes
26‘7[/(1)2(1)31 ~ <(a),, —3) (v, +w.)+20,0.— 2%) )
3
(B13)

For the subtraction 25Ww2w3;1e we find analogous results,
and in the weak-coupling limit the combination becomes

0 VNVm w3 L T 6V~V(u w3;
) Hhw3iL 2 3’R:ﬂ<—(0)a+wc)+2w)‘
T3 W3
(B19)

It agrees with the subtraction term obtained in Eq. (4.27).

We thus have shown that the results of our previous
paper are fully consistent with those of the present paper.
Moreover, as discussed in Sec. VI, they can be used to
generalize some of our weak-coupling results beyond
leading order.
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TABLE 1. Phases for the 2 — 5 scattering amplitude.
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TABLE 1. (Continued)
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