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We calculate the ultraviolet to infrared evolution and analyze possible types of infrared behavior for
several asymptotically free chiral gauge theories with gauge group SUðNÞ and massless chiral fermions
transforming according to a symmetric rank-2 tensor representation S and N þ 4 copies (flavors) of a
conjugate fundamental representation F̄, together with a vectorlike subsector with chiral fermions in
higher-dimensional representation(s). We construct and study three such chiral gauge theories. These have
respective vectorlike subsectors comprised of (a) p copies of fermions in the adjoint representation,
(b) N ¼ 2k even and p copies of fermions in the antisymmetric rank-k tensor representation, and (c) p
copies of fSþ S̄g fermions. Results are presented for beta functions, their infrared zeros, and predictions
from the most-attractive-channel approach for the formation of bilinear fermion condensates. Importantly,
we show that for these theories, the expected ultraviolet to infrared evolution obeys a conjectured inequality
concerning the field degrees of freedom for all values of the parametersN and p characterizing each theory.
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I. INTRODUCTION

The question of how the properties of an asymptotically
free chiral gauge theory change as a function of the
Euclidean momentum scale μ at which one measures these
properties is of fundamental physical interest. For suffi-
ciently large μ in the deep ultraviolet (UV), a theory of this
type is weakly coupled and can be described by perturba-
tive methods. As μ decreases, the gauge coupling increases,
as described by the renormalization group (RG) and
associated beta function. To understand the infrared (IR)
properties of a strongly coupled chiral gauge theory has
long been, and continues to be, an outstanding goal in
quantum field theory. If the theory satisfies the ’t Hooft
global anomaly-matching conditions, then it might confine
and produce massless gauge-singlet composite spin-1=2
fermions [1–10]. Alternatively, the strong gauge interaction
could produce bilinear fermion condensates. A chiral gauge
theory that does not contain any vectorlike fermion sub-
sector is defined as being irreducibly chiral. If a chiral
gauge theory has an irreducibly chiral fermion content,
then these fermion condensates necessarily break the chiral
gauge symmetry [8,10–14], whereas if it contains a vector-
like fermion subsector, then condensates of fermions in this
vectorlike subsector may preserve the gauge symmetry. In
both cases, the fermion condensates break global chiral
flavor symmetries. In general, there can be several stages of
condensate formation at different momentum scales, with a
resultant sequence of gauge and/or global symmetry break-
ing. Here and below, we restrict our consideration to
asymptotically free chiral gauge theories that have no
anomalies in gauged currents, as is required for renorma-
lizability. Thus, in the models that we construct, the
numbers of chiral fermions in various representations of
the gauge group are chosen to satisfy this requirement.

Further, we restrict this paper to theories with only gauge
and fermion fields but without any scalar fields.
There are several methods that one can use to investigate

the ultraviolet to infrared evolution of a chiral gauge theory.
These include (i) (perturbative) calculation of the beta
function and analysis of possible IR zeros of this beta
function; (ii) use of the most-attractive-channel (MAC)
approach, which can suggest in which channel(s) bilinear
fermion condensates are most likely to form [12] if the
coupling gets sufficiently strong in the infrared; and (iii) a
conjectured inequality involving the perturbative degrees
of freedom in the massless fields [8,15]. We will denote this
as the conjectured DFI, where DFI stands for degree of
freedom inequality. As was shown in [8] and discussed
further in [9,10], if the types of UV to IR evolution involving
either formation of fermion condensates with associated
spontaneous chiral gauge and global symmetry breaking or
confinement with production of massless composite fer-
mions were to occur over a sufficiently large range of
fermion contents (specifically, a sufficiently large range of
values of p in the Sp model reviewed in Sec. III), these
would violate the conjectured degree-of-freedom inequality.
Hence, assuming the validity of the conjectured degree-of-
freedom inequality imposes significant restrictions on the
behaviors of these theories. Moreover, as noted in [10], the
type of UV to IR evolution that would obey the degree-of-
freedom inequality over the greatest range of p values is not
the one favored by the MAC approach. These results lead
one to inquire whether it is possible to achieve the goal
of constructing chiral gauge theories where the expected
type(s) of UV to IR evolution obey the conjectured degree-
of-freedom inequality throughout the full range of param-
eters specifying the fermion contents of these theories.
In this paper we report a successful achievement of this

goal and give several examples of such theories. Our
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theories have the gauge group SUðNÞ and massless chiral
fermions transforming according to a symmetric rank-2
tensor representation of SUðNÞ, denoted S, and N þ 4
copies (i.e., flavors) of a conjugate fundamental represen-
tation, denoted F̄, together with a vectorlike subsector
consisting of p copies of massless chiral fermions in
higher-dimensional representation(s). Because SU(2) has
only (pseudo)real representations, it does not yield a chiral
gauge theory, so we restrict our considerations to chiral
gauge theories having a gauge group SUðNÞ with N ≥ 3.
We construct and analyze three theories of this type. In the
first two, the higher-dimensional representation R of the
fermions in the vectorlike subsector is self-conjugate, i.e.,
R ¼ R̄. These theories have p copies of chiral fermions in
(a) the adjoint representation, Adj, and (b) for N ¼ 2k even,
p copies of chiral fermions in the k-fold antisymmetric
tensor representation, denoted ½N=2�N ¼ ½k�2k. For proper-
ties that are common to both of these two theories, we will
use the generic symbol Rsc to refer to the respective self-
conjugate (sc) representations. In the third type of theory,
(c), the vectorlike subsector is comprised of p copies of
pairs of fermions of the form fRþ R̄g with R ¼ S. Each of
these three types of chiral gauge theories thus consists
of an irreducibly chiral subsector, namely the S and N þ 4

copies of F̄ fermions, together with a vectorlike subsector.
Although we shall refer to these as three theories, each one
is really a two-parameter class of theories depending on N
and p.
We have chosen the representation R of the fermions

in the vectorlike subsector of the theories studied in this
paper so that for values ofN and p that lead to a sufficiently
strong gauge coupling in the infrared and associated
formation of bilinear fermion condensates, the most attrac-
tive channel for condensation involves the fermions in the
vectorlike subsector and is of the form R × R̄ → 1, where
here, the symbol 1 denotes a singlet under SUðNÞ. This
contrasts with the theory studied in [8–10], which has a
vectorlike subsector consisting of p copies of massless
fermions transforming as fF þ F̄g. In that theory, the most
attractive channel is S × F̄ → F rather than F × F̄ → 1. For
each of our new chiral gauge theories, we present results on
beta functions, IR zeros of the respective beta functions,
and predictions from the most attractive channel approach.
We then demonstrate that in each theory, for each type
of expected UV to IR evolution, the conjectured degree-
of-freedom inequality is obeyed throughout the full param-
eter range.
If the gauge theory is irreducibly chiral, then the gauge

invariance forbids any fermion masses in the Lagrangian.
For our purposes we will assume that the masses of the
fermions in vectorlike subsector are also zero. This
assumption does not entail a significant loss of generality,
because, generically, if a fermion in the vectorlike subsector
had a nonzero mass m, then as the reference scale μ
decreases below m, one would integrate this vectorlike

fermion out of the low-energy effective theory applicable
below that scale, and the result for the infrared behavior
would be equivalent to a theory without this fermion.
This paper is organized as follows. In Sec. II we discuss

our general theoretical framework and methods of analysis.
Section III is devoted to a brief review of a theory studied
previously in [8–10]. In Sec. IV we explain the basic
strategy that we use to construct our chiral gauge theories.
In Secs. V and VI we present and analyze two new chiral
gauge theories with vectorlike subsectors having fermions
transforming according to self-conjugate representations of
the gauge group. In Sec. VII we discuss the global flavor
symmetry group for these two types of theories. For the
values of N and p that lead to strong coupling in the
infrared and fermion condensation, we then analyze, in
Sec. VIII, the further evolution into the infrared of the low-
energy effective field theory that is applicable below the
scale of this initial condensation. In Sec. IX we demonstrate
that for both of these new chiral gauge theories with a given
SUðNÞ gauge group, the expected UV to IR evolution
obeys the conjectured degree-of-freedom inequality for the
full range of values of p. Section X is devoted to the
analysis of the third type of chiral gauge theory, with
the type-(c) vectorlike subsector. Again, we show that the
conjectured degree-of-freedom inequality is obeyed for this
theory. Our conclusions are given in Sec. XI, and some
relevant formulas are included in the Appendix.

II. THEORETICAL FRAMEWORK AND
METHODS OF ANALYSIS

In this section we discuss the theoretical framework
and methods of analysis that we use. As noted above, we
consider asymptotically free chiral gauge theories with
gauge group G ¼ SUðNÞ and denote the gauge coupling
measured at a Euclidean momentum scale as gðμÞ. It is also
convenient to use the quantities αðμÞ ¼ gðμÞ2=ð4πÞ and

aðμÞ≡ gðμÞ2
16π2

¼ αðμÞ
4π

: ð2:1Þ

(The argument μ in these couplings will often be
suppressed in the notation.) Without loss of generality,
we write all fermion fields in terms of left-handed chiral
components.

A. Beta function

The ultraviolet to infrared evolution of the gauge
coupling is described by the beta function, βg ¼ dg=dt,
or equivalently,

βα ¼
dα
dt

¼ g
2π

βg ð2:2Þ

where dt ¼ d ln μ. This has the series expansion
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βα ¼ −2α
X∞
l¼1

blal ¼ −2α
X∞
l¼1

b̄lαl; ð2:3Þ

where we have extracted an overall minus sign, bl is the
l-loop coefficient, and b̄l ¼ bl=ð4πÞl. The n-loop beta
function, denoted βα;nl, is given by Eq. (2.3) with the upper
limit on the l-loop summation equal to n instead of∞. The
property of asymptotic freedom means that βα < 0 for
small α. With the minus sign extracted in the perturbative
expansion (2.3), this is satisfied if b1 > 0. The one-loop
and two-loop coefficients b1 [16] and b2 [17] are inde-
pendent of the scheme used for regularization and renorm-
alization, while the bl with l ≥ 3 are scheme dependent.
If b2 < 0, then the two-loop beta function, βα;2l, has an

IR zero at

αIR;2l ¼ 4πaIR;2l ¼ −
4πb1
b2

: ð2:4Þ

For sufficiently small fermion content, b2 is positive, but as
one enlarges the fermion content in the theory, the sign of
b2 can become negative while the theory is still asymp-
totically free, yielding an infrared zero in βα;2l at the above
value. If a theory has such an infrared zero in the beta
function, then, as the reference scale μ decreases from large
values in the ultraviolet, αðμÞ increases toward this infrared
zero. If this IR zero occurs at sufficiently weak coupling,
one expects that the theory evolves from the UV to the
IR without confinement or spontaneous chiral symmetry
breaking (SχSB), to a non-Abelian Coulomb phase.
In this case, the infrared zero of beta is an exact IR fixed
point (IRFP) of the renormalization group, and as μ → 0
and the beta function vanishes, and the theory exhibits
scaling behavior with nonzero anomalous dimensions. This
phenomena was discussed for vectorial gauge theories
in [17,18].

B. Most-attractive-channel approach

In a theory whose UV to IR evolution leads to a gauge
coupling that is strong enough to produce fermion con-
densates, one method that has been widely used to predict
which type of condensate is most likely to form is the most-
attractive-channel (MAC) approach [12]. Let us consider a
condensation channel in which fermions in the representa-
tions R1 and R2 of a given gauge group form a condensate
that transforms according to the representation Rcond of this
group, denoted

R1 × R2 → Rcond: ð2:5Þ

An approximate measure, based on one-gluon exchange, of
the attractiveness of this condensation channel, is

ΔC2 ¼ C2ðR1Þ þ C2ðR2Þ − C2ðRChÞ; ð2:6Þ

where C2ðRÞ is the quadratic Casimir invariant for the
representation R [19], and RCh ≡ Rcond. At this level of
one-gluon exchange, if ΔC2 is positive (negative), then the
channel is attractive (repulsive). The most attractive chan-
nel is the one that yields the maximum (positive) value of
ΔC2. The MAC approach predicts that if, a priori, several
condensation channels could occur, then the one that
actually occurs is the channel that has the largest (positive)
value of ΔC2. The MAC method was applied, for example,
in efforts to build reasonably UV-complete models with
dynamical electroweak symmetry breaking [14]. These
models made use of asymptotically free chiral gauge
interactions that became strongly coupled, naturally leading
to the formation of certain condensates (of fermions subject
to the chiral gauge interaction) in a hierarchy of scales
corresponding, via inverse powers, to the observed genera-
tional hierarchy of Standard Model fermion mass scales. In
these previous applications of the MAC approach, and also
in our present application, one bears in mind that the MAC
method is based on the one-gluon exchange and hence is
only a rough guide to the nonperturbative phenomenon of
fermion condensation.
An analysis of the Schwinger-Dyson equation for the

propagator of a massless fermion transforming according
to the representation R of a gauge group G shows that,
in the ladder (i.e., iterated one-gluon exchange) approxi-
mation the minimum value of α for which fermion con-
densation occurs in a vectorial gauge theory is given
by the condition that 3αcrC2ðRÞ=π ¼ 1, or equivalently,
3αcrΔC2=ð2πÞ ¼ 1, since ΔC2 ¼ 2C2ðRÞ in this case [20].
Therefore, an estimate is that as μ decreases and αðμÞ
increases, condensation will first occur in a given channel
Ch when αðμÞ increases through a critical value

αcr;Ch ∼
2π

3ΔC2ðRÞCh
; ð2:7Þ

where we have labelled C2ðRÞ with a subscript for the
channel Ch. This estimate will be of particular interest
for the most attractive channel. Clearly, because of the
strong-coupling nature of the fermion condensation
process, Eq. (2.7) is only a rough estimate. A measure
of the likelihood that the coupling grows large enough in
the infrared to produce fermion condensation in a given
channel Ch is the ratio

ρIR;Ch ≡ αIR;2l
αcr;Ch

: ð2:8Þ

If this ratio is significantly larger (smaller) than unity, one
may infer that condensation in the channel Ch is likely
(unlikely). As with the caveats given above concerning the
MAC, in using this ratio ρIR;Ch, one is cognizant of the
theoretical uncertainties due to the strong-coupling nature
of the physics.
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C. Degree-of-freedom inequality

A quantity that can give interesting predictions for
renormalization-group evolution involves the relevant per-
turbative field degrees of freedom in the effective field
theory that is applicable at a given reference scale, μ. From
the study of second-order phase transitions and critical
phenomena in statistical mechanics and condensed matter
physics, one is familiar with the Wilsonian thinning of
degrees of freedom as one changes the scale on which one
measures physical quantities from short distances (UV) to
large distances (IR). Given the correspondence between
the inverse distance and the reference momentum scale μ,
one may naturally expect a similar decrease (or non-
increase) of dynamical degrees of freedom in a quantum
field theory as μ decreases from large values in the
ultraviolet to small values in the infrared. In conformal
field theory in d ¼ 2 dimensions, it has been proved that a
certain quantity that can be interpreted as a measure of the
degrees of freedom (the central charge of the associated
Virasoro algebra) decreases as a function of the renorm-
alization-group flow [21].
Given that a theory is asymptotically free, the gauge

coupling approaches zero in the deep ultraviolet as μ → ∞,
so that one can identify and enumerate the perturbative
degrees of freedom in the fields. Depending on the theory, it
may also be true that in the deep infrared, as μ → 0, the
residual (massless) particles are weakly interacting, so that
again one can describe them perturbatively and enumerate
their degrees of freedom. Although one is describing the
UV to IR evolution of a zero-temperature quantum field
theory, a natural approach to the enumeration of the
perturbative degrees of freedom in the fields is provided
by envisioning a finite-temperature field theory, where the
temperature T corresponds to the Euclidean scale, μ, and
using the count embodied in the free energy density, FðTÞ.
This is given by

FðTÞ ¼ fðTÞ π
2

90
T4 ð2:9Þ

with

f ¼ 2Nv þ
7

4
Nf þ

7

8
Nf;Maj þ Ns; ð2:10Þ

where Nv and Ns are the number of vector and (real) scalar
fields, and Nf and Nf;Maj are the number of chiral
components of Dirac and Majorana fermions in the theory,
respectively [22,23]. Assuming that the relevant fields
become free in the respective UV and IR limits, we define

fUV ¼ fð∞Þ; fIR ¼ fð0Þ: ð2:11Þ
Since the theories that we consider are required to be
asymptotically free, we can always identify the Lagrangian
fields in the deep UV and hence calculate fUV .

In accord with experience in statistical mechanics,
Ref. [15] conjectured the degree-of-freedom inequality

Δf ≡ fUV − fIR ≥ 0 ð2:12Þ

for vectorial gauge theories, and Ref. [8] extended this
conjecture to chiral gauge theories. In [8] this conjecture
was applied to analyze several asymptotically free chiral
gauge theories. Subsequent studies have investigated the
possible types of IR behavior involving strong coupling
and condensate formation; Refs. [9,10] are particularly
relevant for our current work.
As noted above, since we restrict our study to asymp-

totically free theories, the condition that the theory becomes
free as μ → ∞ is always satisfied. There are three types
of situations where the condition that the fields are also
weakly coupled in the IR is satisfied. In all of these we can
calculate fIR. In the first of these, the theory evolves to
an exact, weakly coupled IR fixed point, so that the field
degrees of freedom in the massless fields are the same as
they were in the UV, up to small, calculable perturbative
corrections, which obey the inequality (2.12) [8,15]. In the
second type of situation, there is global and/or gauge
symmetry breaking at one or more scales, so that as μ
decreases below these scales toward the infrared, in the
applicable low-energy effective field theory, the remaining
massless particles are Nambu-Goldstone bosons (NGBs)
resulting from the spontaneous chiral symmetry breaking.
Since the NGBs have only derivative interactions among
themselves, which vanish as

ffiffiffi
s

p
=Λ → 0, where

ffiffiffi
s

p
is the

center-of-mass energy and Λ denotes the scale of chiral
symmetry breaking, it follows that these NGBs become
free in the infrared limit. A third type of possible situation
is one in which the chiral gauge interaction confines and
produces massless gauge-singlet composite fermions. The
interactions between these gauge-singlet fermions involve
higher-dimension operators and hence are also weak in
the infrared. In some models, the second and third types of
behavior can occur together [10].
A direct test of the conjectured degree-of-freedom

inequality (2.12) for asymptotically free chiral gauge
theories would probably require lattice simulations.
However, because of fermion doubling on the lattice (in
which a single continuum fermion produces 2d fermion
modes on a d-dimensional Euclidean lattice, with half
corresponding to one sign of γ5 and the other half
corresponding to the opposite sign of γ5), it has been
challenging to simulate chiral gauge theories via lattice
methods. A different approach to testing the validity of the
conjecture is to study its application to vectorial gauge
theories. These have the advantage that they can be
simulated on the lattice, and there are well-understood
ways of dealing with fermion doubling so that in the
continuum limit one should be able to determine the actual
number, Nf, of active fermions. Ongoing lattice studies of
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the infrared behavior of various vectorial gauge theories,
such as a gauge theory with G ¼ SUð2Þ and Nf ¼ 6 Dirac
fermions in the fundamental representation [24], are mak-
ing progress in testing the conjectured degree-of-freedom
inequality.

III. THE Sp THEORY

In this section we review the properties of a chiral gauge
theory that has been studied before [4,5,8–10] and provides
motivation for our present work. The reader who is familiar
with this material could skip this section and proceed to
Sec. IV. This theory, which we denote the Sp model, has
the gauge group SUðNÞ and massless chiral fermions
transforming according to
(1) a symmetric rank-2 tensor representation, S, with

corresponding field ψab
L ¼ ψba

L ,
(2) N þ 4 copies of chiral fermions in the conjugate

fundamental representation, F̄, with fields χa;i;L,
i ¼ 1;…; N þ 4, and

(3) a vectorlike subsector consisting of p copies of pairs
of chiral fermions transforming as fF þ F̄g, with
fields χaj;L and χa;j;L, j ¼ 1;…; p.

Here and below, a; b; c… are gauge indices and i; j;… are
copy (i.e., flavor) indices.
The one- and two-loop coefficients in the beta function

of this theory are

ðb1ÞSp ¼ 3N − 2 −
2p
3

ð3:1Þ

and

ðb2ÞSp ¼ 13

2
N2 − 15N þ 1

2
þ 6N−1 þ p

�
−
13N
3

þ N−1
�
:

ð3:2Þ

The coefficient ðb1ÞSp decreases with p and vanishes at
p ¼ pb1z;Sp ¼ ð9=2ÞN − 3, where the subscript bnz stands
for “bn equals zero.” Asymptotic freedom requires
ðb1ÞSp > 0, i.e.,

p <
9

2
N − 3: ð3:3Þ

The two-loop coefficient is positive for small p and
decreases through zero to negative values as p increases
through the value

pb2z;Sp ¼ 3ð13N3 − 30N2 þ N þ 12Þ
2ð13N2 − 3Þ : ð3:4Þ

In the interval

ðIpÞSp∶ pb2z;Sp < p < pb1z;Sp ð3:5Þ

the two-loop beta function has an infrared zero, which
occurs at the value

αIR;2l;Sp ¼ 8πNð9N − 6 − 2pÞ
pð26N2 − 6Þ − 39N3 þ 90N2 − 3N − 36

:

ð3:6Þ

Clearly, the two-loop perturbative calculation that yields
this result (3.6) is most accurate if p is near the upper end
of the interval ðIpÞSp, where αIR;2l;Sp is small, and becomes
less reliable as p approaches the lower end of the
interval ðIpÞSp.
For this theory, the most attractive channel for fermion

condensation is

S × F̄ → F; ð3:7Þ

with attractiveness measure

ΔC2 ¼ C2ðSÞ ¼
ðN þ 2ÞðN − 1Þ

N
for S × F̄ → F:

ð3:8Þ

Hence, for this channel,

ρIR;S×F̄ ≡ αIR;2l;Sp
αcr;S×F̄

¼ 12ð9N − 6 − 2pÞðN þ 2ÞðN − 1Þ
pð26N2 − 6Þ − 39N3 þ 90N2 − 3N − 36

:

ð3:9Þ

This ratio exceeds unity for

p < pcr;Sp ¼ 3ð49N3 − 18N2 − 95N þ 60Þ
2ð25N2 þ 12N − 27Þ : ð3:10Þ

If p is only slightly less than pb1z, then ρIR;S×F̄ ≪ 1, so
the UV to IR evolution is expected to be a deconfined,
weakly coupled non-Abelian Coulomb phase. Here, also
taking into account perturbative corrections to the free-field
count of field degrees of freedom, the DFI is obeyed [8].
If p is sufficiently small [with either p ∈ ðIpÞSp or

1 ≤ p < pb2z;Sp], then the theory becomes strongly
coupled in the infrared. For these values of p, one possible
type of UV to IR evolution could produce confinement
with massless, gauge-singlet composite fermions [4] and no
spontaneous chiral symmetry breaking. Alternately, there
could be fermion condensation in the most attractive
channel (3.7), breaking the gauge group SUðNÞ to
SUðN − 1Þ and also breaking global flavor symmetries.
The associated fermion condensate has the form

hψabT
L Cχb;i;Li: ð3:11Þ
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Without loss of generality, one may pick a ¼ N and i ¼ 1.
The fermions involved in this condensate gain dynamical
masses, and one then constructs the low-energy effective
field theory applicable at lower scales. The coupling in this
low-energy theory continues to grow and is again expected
to produce a condensate in the most attractive channel,
S × F̄, where now S and F̄ refer to representations of
SUðN − 1Þ. This process continues sequentially until the
original SUðNÞ gauge symmetry in the UV is completely
broken.
The degree-of-freedom measure in the UV is

fUV;Sp ¼ 2ðN2 − 1Þ þ 7

4

�
NðN þ 1Þ

2
þ ðN þ 4þ 2pÞN

�
:

ð3:12Þ

For the possible type of UV to IR evolution that leads
to confinement and massless composite fermions (labeled
with the subscript sym), one finds [8]

fIR;Sp;sym ¼ 7

4

�
1

2
ðN þ 4þ pÞðN þ 3þ pÞ

þ pðN þ 4þ pÞ þ 1

2
pðpþ 1Þ

�
: ð3:13Þ

Here and below, the subscripts after IR in a quantity such as
fIR;Sp;sym refer to the theory (here, the Sp theory) and then,
after the semicolon, the type of UV to IR evolution. Thus,
for this type of UV to IR flow,

ðΔfÞSp;sym ≡ fUV;Sp − fIR;Sp;sym

¼ 1

4
½15N2 þ 7N − 50 − 14pð4þ pÞ�: ð3:14Þ

[Here, in the symbol ðΔfÞSp;sym, the first subscript iden-
tifies the theory and the subscripts after the semicolon
identify the type of UV to IR evolution; the same notation is
used for the other theories to be discussed.] The difference
ðΔfÞSp;sym is positive if and only if

p < −2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15N2 þ 7N þ 6

14

r
: ð3:15Þ

For the type of UV to IR flow involving sequential
fermion condensation in the S × F̄ → F channels

fIR;Sp;S×F̄ ¼ 2Nð4þ pÞ þ 1

þ 7

4

�
NðN − 1Þ

2
þ 4N þ 2pN

�
: ð3:16Þ

Consequently, for this type of UV to IR flow,

ðΔfÞSp;S×F̄ ≡ fUV;Sp − fIR;Sp;S×F̄

¼ 1

4
½15N2 − 25N − 12 − 8pN�: ð3:17Þ

This is positive if and only if

p <
15N2 − 25N − 12

8N
: ð3:18Þ

If, for a givenN, the upper bounds (3.15) and (3.18) were
substantially greater than the value of pcr;Sp in Eq. (3.10),
then they would not be important, since in this region,
toward the upper end of the interval ðIpÞSp, one would
expect that the UV to IR evolution would be to a
deconfined non-Abelian Couolmb phase, for which the
conjectured DFI is obeyed. However, these upper bounds
(3.15) and (3.18) are less then pcr;Sp. For example, for
N ¼ 3, we have pb2z;Sp ¼ 24=19 ¼ 1.263 (to the given
floating point accuracy) and pb1z;Sp ¼ 21=2 ¼ 10.5, so the
interval ðIpÞSp consists of the values 2 ≤ p ≤ 10.
Furthermore, for this N ¼ 3 value, pcr;Sp ¼ 6, so that
for p≲ 6, one may anticipate that the UV to IR evolution
would plausibly involve strong coupling, as embodied
in the two types of evolution discussed above, namely
confinement with massless composite fermions and no
spontaneous chiral symmetry breaking or production of
fermion condensates and associated gauge and global
symmetry breaking. Now

N ¼ 3 ⇒ ðΔfÞSp;sym > 0 if p <
−14þ 9

ffiffiffi
7

p

7
¼ 1.402;

ð3:19Þ

so that if this UV to IR evolution leading to massless
composite fermions without any spontaneous chiral
symmetry breaking were to occur for values in the strongly
coupled range of p, 2 ≤ p≲ 6, then it would violate
the conjectured degree-of-freedom inequality (2.12).
Furthermore,

N ¼ 3 ⇒ ðΔfÞSp;S×F̄ > 0 if p < 2: ð3:20Þ

Hence, if the UV to IR evolution were to lead to condensate
formation in the successive S × F̄ channels of the SUðNÞ
theory, the SUðN − 1Þ theory, etc., then it would violate the
conjectured DFI for much of the strongly coupled range of
values of p, including 2 ≤ p≲ 6.
In general, the Sp model is a two-parameter theory,

depending on both N and p. An interesting limit is

LNP∶ N → ∞; p → ∞

with r≡ p
N

fixed and αðμÞN finite: ð3:21Þ
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We denote this as the LNP (largeN and p) limit [25]. In this
LNP limit, the resultant theory evidently depends only on
the single parameter r. We define

rbnz ≡ lim
LNP

pbnz

N
; n ¼ 1; 2: ð3:22Þ

One has

rb1z ¼
9

2
ð3:23Þ

and

rb2z ¼
3

2
ð3:24Þ

so that the analogue of ðIpÞSp for this LNP limit is

ðIrÞSp∶ 1.5 < r < 4.5: ð3:25Þ

Further,

rcr;S×F̄ ≡ lim
LNP

pcr;S×F̄

N
¼ 147

50
¼ 2.94: ð3:26Þ

We define a rescaled degree-of-freedom measure that is
finite in the LNP limit, namely

f̄ ≡ lim
LNP

f
N2

: ð3:27Þ

One has

f̄UV;Sp ¼ 37

8
þ 7

2
r; ð3:28Þ

f̄IR;Sp;sym ¼ 7

8
þ 7

2
rð1þ rÞ; ð3:29Þ

and

f̄IR;Sp;S×F̄ ¼ 7

8
þ 11

2
r: ð3:30Þ

Consequently, for the type of UV to IR evolution that
leads to confinement and massless composite fermions,
which might occur in the strongly coupled IR regime where
r≲ 3,

ðΔf̄ÞSp;sym ≡ f̄UV;Sp − f̄IR;Sp;sym ¼ 15 − 14r2

4
: ð3:31Þ

This would obey the conjectured DFI only if [8,10,26]

r <

ffiffiffiffiffi
15

14

r
¼ 1.035: ð3:32Þ

For the possible type of UV to IR evolution that leads
to sequential fermion condensation in the S × F̄ → F
channels,

ðΔf̄ÞSp;S×F̄ ≡ fUV;Sp − f̄IR;Sp;S×F̄ ¼ 15 − 8r
4

: ð3:33Þ

This would obey the conjectured DFI only if

r <
15

8
¼ 1.875: ð3:34Þ

Both of the upper limits (3.32) and (3.34) are well below
the upper bound from asymptotic freedom, r < 4.5.
Importantly, they are also below the value of r ∼ 3 where
the estimate Eq. (3.26) suggests that strong-coupling
behavior occurs. Hence, in this Sp model, there is con-
siderable uncertainty in the overall prediction for the
UV to IR evolution in the case where this involves strong
coupling. Assuming the validity of the conjectured degree-
of-freedom inequality, this DFI would forbid two types of
strongly coupled UV to IR evolution that would otherwise
be inferred to be likely, namely confinement without any
spontaneous chiral symmetry breaking in the intervalffiffiffiffiffiffiffiffiffiffiffiffiffi
15=14

p
< r≲ 3 and condensate formation in the MAC

with attendant gauge and chiral symmetry breaking in the
interval 15=8 < r≲ 3.
This property of the Sp model, noted in [8] and further

discussed in [9,10], provides a motivation for the goal of
constructing asymptotically free chiral gauge theories
where the likely type(s) of UV to IR evolution is (are)
in agreement with the conjectured degree-of-freedom
inequality for the full range of fermion contents (as para-
metrized here by the value of p). We have achieved this
goal, as we report in the present work.
We include a parenthetical remark here. In the Spmodel,

although not favored by the MAC criterion, if there were
condensation of the fermions in the vectorlike subsector in
the F × F̄ → 1 channel, followed at lower scales by either
confinement with massless composite fermions or sequen-
tial condensate formation in the S × F̄ → F channels, then

f̄IR;Sp;F×F̄;sym ¼ f̄IR;Sp;F×F̄;S×F̄

¼ 7

8
þ rð2þ rÞ: ð3:35Þ

Hence, for this type of UV to IR evolution,

ðΔf̄ÞSp;F×F̄;S×F̄ ≡ f̄UV;Sp − f̄IR;Sp;F×F̄;S×F̄

¼ 1

4
ð15þ 6r − 4r2Þ: ð3:36Þ

This is positive for

RENORMALIZATION-GROUP EVOLUTION OF CHIRAL … PHYSICAL REVIEW D 91, 045004 (2015)

045004-7



r <
3þ ffiffiffiffiffi

69
p

4
¼ 2.83: ð3:37Þ

Thus, of the various possible types of UV to IR evolution in
the Sp theory, the type that obeys the DFI conjecture over
the largest range of r is condensation in the F × F̄ → 1
channel, followed at lower scales by either confinement
with massless composite fermions or sequential condensate
formation in the S × F̄ → F channels. But the initial
condensation in this type of evolution is not the one
favored by the MAC criterion, which, instead favors initial
and then sequential condensation in the S × F̄ → F chan-
nels of the SUðNÞ then S × F̄ → F condensation in the
SUðN − 1Þ theory, and so forth, until the SUðNÞ gauge
symmetry is completely broken.

IV. STRATEGY FOR CONSTRUCTION OF
NEW CHIRAL GAUGE THEORIES

Our general method for constructing the chiral gauge
theories presented here is as follows. We take the gauge
group to be G ¼ SUðNÞ and include, as the irreducibly
chiral sector of the theory, fermions transforming as the
S and ðN þ 4Þ copies of F̄. We choose the vectorlike
subsector to consist of p copies of fermions that transform
according to representation(s) R of G such that the channel

R × R̄ → 1 ð4:1Þ

is more attractive than other channels. (For some of our
theories, R ¼ R̄.) In the theories that we consider, the next-
most-attractive channel is

S × F̄ → F: ð4:2Þ
The ΔC2 attractiveness measures for these channels are

ΔC2 ¼ 2C2ðRÞ for R × R̄ → 1 ð4:3Þ
and

ΔC2 ¼ C2ðSÞ ¼
ðN þ 2ÞðN − 1Þ

N
for S × F̄ → F̄;

ð4:4Þ

so the condition that the R × R̄ → 1 channel is more
attractive than the S × F̄ → F̄ channel is that

ΔC2ðRÞ ¼ 2C2ðRÞ >
ðN þ 2ÞðN − 1Þ

N
: ð4:5Þ

In all the cases that we consider, this guarantees that the
R × R̄ → 1 channel is the most attractive channel in which
condensation thus occurs first as the theory evolves from
the UV to the IR. Consequently, if the fermion content is
such that the running coupling αðμÞ becomes sufficiently

large in the infrared, then, because the MAC is (4.1), the
fermion condensation at the highest energy scale occurs
among the fermions in the vectorlike subsector of the
model, via the channel R × R̄ → 1. The resultant low-
energy effective field theory applicable below this scale is
thus comprised of the irreducible chiral sector of the theory,
equivalent to the p ¼ 0 special case of the full theory, with
just the S fermion and the N þ 4 copies of the F̄ fermion.
As reviewed in Sec. III, the various possible types of UV to
IR evolution of this p ¼ 0 theory obey the conjectured
degree-of-freedom inequality [8–10].

V. THEORY WITH R ¼ Adj

A. Particle content

In this section we construct and study a chiral gauge
theory with gauge group SUðNÞ and fermion content
consisting of chiral fermions transforming according to
(1) a symmetric rank-2 tensor representation, S, with

corresponding field ψab
L ¼ ψba

L ,
(2) N þ 4 copies (also called “flavors”) of chiral fer-

mions in the conjugate fundamental representation,
F̄, with fields χa;i;L, i ¼ 1;…; N þ 4, and

(3) p copies of chiral fermions in the adjoint represen-
tation, denoted Adj, with fields ξab;j;L, j ¼ 1;…; p.

Here and below, a; b; c… are gauge indices and i; j are
copy indices. We call this the Adj theory by reference to the
choice of the representation R ¼ Rsc for the fermions in the
vectorlike subsector. This fermion content is summarized in
Table I. As noted above, we restrict our discussion toN ≥ 3
because SU(2) has only (pseudo)real representations and
hence a gauge theory based on the gauge group SU(2) is
not chiral. This theory thus depends on the two integer
parameters, N ≥ 3 and p ≥ 0, with an upper limit on p
given by Eq. (5.5) below. We will sometimes use the Young
tableaux and for S and F̄. The irreducibly chiral
sector of this theory is comprised of the S and the N þ 4

copies of F̄ fermions, and the vectorlike subsector is
comprised of the Adj fermions. Because of this self-
conjugate nature of Rsc, the Adj fermions may be consid-
ered to be Majorana. Thus, if one were to remove the
irreducibly chiral part of this theory and consider the part
containing the gauge fields and the Adj fermions alone, the
dynamical particle content in the Lagrangian would be
analogous to the gluons and gluinos of an N ¼ 1 super-
symmetric SUðNÞ gauge theory.
We recall that since the contribution to the triangle

anomaly from S satisfies [27]

AnomðSÞ ¼ ðN þ 4ÞAnomðFÞ; ð5:1Þ

and since

AnomðRÞ ¼ −AnomðR̄Þ; ð5:2Þ
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it follows that the set of chiral fermions S plus ðN þ 4Þ
copies of F̄ yields a theory that is free of anomalies
in gauged currents. Furthermore, from Eq. (5.2), it
follows that for any self-conjugate representation Rsc,
AnomðRscÞ ¼ 0. Hence, we are free to add fermions
transforming according to a self-conjugate representation
to a chiral gauge theory that is free of anomalies in gauged
currents and it will retain this anomaly-free property. We
use this fact here with Rsc ¼ Adj.

B. Beta function

The beta function for this Adj theory is given by Eq. (2.3)
with the one-loop coefficient

ðb1ÞAdj ¼
1

3
½ð9 − 2pÞN − 6� ð5:3Þ

and the two-loop coefficient

ðb2ÞAdj ¼
1

6
½ð39 − 32pÞN2 − 90N þ 3þ 36N−1�: ð5:4Þ

(See the Appendix for general formulas for b1 and
b2.) These coefficients contain the maximal scheme-
independent information about the dependence of the
gauge coupling on the reference scale, μ. This information
will suffice for our present purposes. Higher-loop effects
for vectorial theories and effects of scheme transformations
on higher-loop terms in the beta function for gauge theories
have been studied in [28–35].
We denote the values of p for which ðb1ÞAdj ¼ 0 as

pb1z;Adj (where the subscript stands for b1 zero). This value
is [36]

pb1z;Adj ¼
3ð3N − 2Þ

2N
: ð5:5Þ

Our requirement that the model should be asymptotically
free means that βα < 0 for small α. This is equivalent to the
condition that b1 > 0 or, if b1 vanishes, then the further
requirement that b2 > 0. Now ðb1ÞAdj > 0 if and only if
p < pb1z;Adj, i.e.,

p <
3ð3N − 2Þ

2N
: ð5:6Þ

This means that the set of physical, integral values of p
allowed by our requirement of asymptotic freedom are
0 ≤ p ≤ 3 forN ¼ 3; 4; 5; 6 and 0 ≤ p ≤ 4 forN ≥ 7. Note
that if N ¼ 6 and p ¼ 4, then b1 ¼ 0, so one must examine
the sign of b2 to determine if the theory is asymptotically
free or not, and for this case ðb2ÞAdj is negative, hence
excluding it from consideration. Here and below, for a
given theory and value of N, we will denote the maximum
allowed value of p as pmax.
As a consequence of the asymptotic freedom of the

theory, the beta function always has a zero at α ¼ 0, which
is a UV fixed point (UVFP) of the renormalization group.
In general, the two-loop beta function, βα;2l, has an IR zero
if b2 has a sign opposite to that of b1, i.e., if b2 is negative.
For p ¼ 0, ðb2ÞAdj > 0, so βα;2l has no IR zero. As p
increases, ðb2ÞAdj decreases and eventually passes through
zero to negative values, giving rise to an IR zero of βα;2l;Adj.
Let us denote the value of p where b2 vanishes as pb2z;Adj.
This is

pb2z;Adj ¼
3ð13N3 − 30N2 þ N þ 12Þ

32N3
: ð5:7Þ

In Table II we list values of pb1z;Adj and pb2z;Adj for this
theory. The value pb2z;Adj is less than the upper bound on p,
pb1z;Adj, i.e.,

pb2z;Adj < pb1z;Adj: ð5:8Þ

This inequality is proved by analyzing the difference,

pb1z;Adj − pb2z;Adj ¼
3ð35N3 − 2N2 − N − 12Þ

32N3
: ð5:9Þ

This difference is positive for all physical N. Hence, for p
in the interval [36]

ðIpÞAdj∶ pb2z;Adj < p < pb1z;Adj; ð5:10Þ

TABLE I. Properties of fermions in the chiral gauge theories with vectorlike subsector consisting of p copies of
fermions in the self-conjugate representation R ¼ Rsc. The entries in the columns are (i) fermion, (ii) representation
of the SUðNÞ gauge group, (iii) number of copies, and representations (charges for Abelian factors) of the respective
factor groups in the global flavor symmetry group: (iv) SUðN þ 4ÞF̄, (v) SUðpÞRsc

, (vi) Uð1Þ1, (vii) Uð1Þ2. The
notation for the fermion ξ in the Rsc is generic; specifically, this is ξab;i;L for the Adj model and ξa1;…;ak

i;L for the AT
model (with N ¼ 2k). See text for further discussion.

Fermion SUðNÞ No. copies SUðN þ 4ÞF̄ SUðpÞRsc
Uð1Þ1 Uð1Þ2

S∶ ψab
L 1 1 1 N þ 4 2pTRsc

F̄∶ χa;i;L N þ 4 1 −ðN þ 2Þ 0
Rsc∶ ξL Rsc p 1 0 −ðN þ 2Þ
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this theory is asymptotically free, and βα;2l;Adj has an IR
zero. The actual physical, integral values of p in the interval
ðIpÞAdj depend on the value of N. There are several
different sets of N and p values where this IR zero is
physical:

ðIpÞAdj∶ 1 ≤ p ≤ 3 if 3 ≤ N ≤ 6;

1 ≤ p ≤ 4 if 7 ≤ N ≤ 12;

2 ≤ p ≤ 4 if N ≥ 13: ð5:11Þ

These different cases follow from two properties. First,
pb1z;Adj (continued to real numbers) is a monotonically
increasing function of N for physical N and ascends
through the value 4 as N increases through the value
N ¼ 6. Second, for N > ð1þ ffiffiffiffiffiffiffiffiffiffi

1081
p Þ=30 ¼ 1.129

and hence for the range N ≥ 3 relevant here, pb2z;Adj

is a monotonically increasing function and increases
through 1 at N ¼ 12.7922 (the largest root of
7N3 − 90N2 þ 3N þ 36). Hence, if N ≥ 13, the lowest
value of p ∈ ðIpÞAdj is p ¼ 2, as indicated in (5.11).
For values of N and p where βα;2l;Adj has a physical IR

zero, it occurs at

αIR;2l;Adj ≡ 4πaIR;2l;Adj ¼ −4π
ðb1ÞAdj
ðb2ÞAdj

¼ 8πN½ð9 − 2pÞN − 6�
ð32p − 39ÞN3 þ 90N2 − 3N − 36

: ð5:12Þ

In using this result, it should be recalled that, in general, an
IR zero of a beta function at αIR;2l ¼ −4πb1=b2 can be
reliable if jb2j is not too small, i.e., when αIR;2l is not too

large for the perturbative calculation to be applicable. In
Table III we list values of αIR;2l;Adj.
It is of interest to consider the limit [25]

N → ∞ with ζðμÞ≡ αðμÞN finite and p fixed:

ð5:13Þ

In this limit,

lim
N→∞

pb1z;Adj ¼
9

2
ð5:14Þ

and

lim
N→∞

pb2z;Adj ¼
39

32
¼ 1.21875; ð5:15Þ

so that the interval ðIpÞAdj becomes

TABLE III. Values of αIR;2l;Adj and ρIR;Adj×Adj in the Adj theory
for an illustrative range of values of N and, for each N, the values
of p in the respective interval ðIpÞAdj.
N p αIR;2l;Adj ρIR;Adj×Adj

3 1 1.96 5.63
3 2 0.471 1.35
3 3 0.0982 0.281

4 1 2.34 8.95
4 2 0.470 1.80
4 3 0.120 0.457

5 1 2.75 13.1
5 2 0.448 2.14
5 3 0.121 0.579

6 1 3.24 18.6
6 2 0.4215 2.415
6 3 0.117 0.669

7 1 3.88 25.9
7 2 0.395 2.64
7 3 0.110 0.738
7 4 0.00504 0.0337

8 1 4.75 36.3
8 2 0.370 2.82
8 3 0.104 0.793
8 4 0.00784 0.0599

13 2 0.275 3.42
13 3 0.0768 0.954
13 4 0.0109 0.135

14 2 0.261 3.49
14 3 0.0728 0.973
14 4 0.01075 0.144

15 2 0.249 3.56
15 3 0.0692 0.991
15 4 0.0106 0.152

TABLE II. Values of pb1z;Adj and pb2z;Adj in the Adj theory as
functions of N.

N pb2z;Adj pb1z;Adj

3 0.3333 3.5000
4 0.5391 3.7500
5 0.6690 3.9000
6 0.7578 4.0000
7 0.8222 4.0714
8 0.8708 4.1250
9 0.90895 4.1667
10 0.9396 4.2000
11 0.9647 4.2773
12 0.9857 4.2500
13 1.0035 4.2692
14 1.0187 4.2857
15 1.0320 4.3000
102 1.1906 4.4700
103 1.2159 4.4970
∞ 1.21875 4.5000
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lim
N→∞

ðIpÞAdj∶
39

32
< p <

9

2
; ð5:16Þ

containing the physical, integral values p ¼ 2; 3; 4. In the
large-N limit (5.13), the combination of α, or equivalently,
a, and N that remains finite is

ζ ≡ lim
N→∞

αN: ð5:17Þ

Correspondingly, the rescaled beta function that is finite has
the form

βζ ≡ dζ
dt

; ð5:18Þ

where, as in Eq. (2.2), t ¼ ln μ. In this limit, for physical
p ∈ ðIpÞAdj, the (rescaled, finite) βζ;2l, has an IR zero at

ζIR;2l;Adj ¼
8πð9 − 2pÞ
32p − 39

: ð5:19Þ

The approach to this limit of N → ∞ involves correction
terms that are powers in 1=N:

NαIR;2l;Adj ¼
8πð9 − 2pÞ
32p − 39

−
96πðpþ 48Þ
ð32p − 39Þ2N þO

�
1

N2

�
:

ð5:20Þ

One may compare the approach to the N → ∞ limit here
with that in a (vectorial) SUðNÞ gauge theory with Nf

fermions in the fundamental representation in the limit
N → ∞,Nf → ∞with the ratioNf=N fixed and finite [and
αðμÞN a finite function of μ], denoted by the LNN limit
in [30]. In that case [29,30] the leading correction term to
the limit was suppressed like 1=N2 instead of 1=N, and the
correction terms formed a series in powers of 1=N2 instead
of powers in 1=N. Hence, the approach to the N → ∞ limit
here is not as rapid as in the LNN limit.

C. Analysis of UV to IR Flows

Because of the asymptotic freedom of the theory, i.e.,
the fact that the beta function is negative for small α, it
follows that, as the Euclidean reference momentum scale μ
decreases from the ultraviolet toward the infrared, αðμÞ
increases. There are several possibilities for the behavior
that can occur:
(1) First, if the beta function has an IR zero at a

sufficiently small value of α ¼ αIR, then one expects
that the theory will evolve into the infrared without
any spontaneous chiral symmetry breaking. In this
case, the IR zero of βα is an exact IRFP of the
renormalization group, so that as μ → 0, the theory
exhibits scale invariance with nonzero anomalous
dimensions. In the IR limit μ → 0, one anticipates

that the theory is in a deconfined, massless non-
Abelian Coulomb phase.

(2) For smaller values of p, the IR zero of the beta
function is larger, and correspondingly, αðμÞ be-
comes larger as μ decreases from the UV to the IR.
Then the strongly coupled gauge interaction can
produce fermion condensates that break global and
possibly also local gauge symmetries. This behavior
also applies if p is sufficiently small that the beta
function has no IR zero, so that αðμÞ keeps increas-
ing with decreasing μ until it exceeds the interval
where the perturbative beta function describes its
evolution. In this general category of UV to IR
evolution, there can be a sequence of condensate
formations at various energy scales.

(3) In the strongly coupled case (including both the
subcases where the beta function has an IR zero
at sufficiently large coupling and where the beta
function has no IR zero), an alternate possibility is, if
the fermion content satisfies the ’t Hooft anomaly-
matching conditions [1], then the gauge interaction
might confine and produce massless gauge-singlet
composite fermions.

The beta function describes the growth of αðμÞ as the
reference momentum scale μ decreases from the UV to the
IR. If the fermion content is such that the beta function has
no IR zero, then the interaction definitely becomes strongly
coupled in the infrared. If, on the other hand, the beta
function does have an IR zero, then one must investigate
how large the value of the coupling is at this zero. In
conjunction with knowledge of the probable channel in
which fermions may condense and the corresponding
estimate of the minimum critical coupling, αcr that triggers
this condensation, one can then draw a plausible inference
as to whether the condensation takes place or whether,
in contrast, the theory evolves into the infrared without
any fermion condensation or associated spontaneous chiral
symmetry breaking.
The only composite fermions that one can form are those

of the p ¼ 0 theory, and we find that these do not match the
global anomalies of Gfl;Rsc [given below in Eq. (7.1) for
Rsc ¼ Adj]. This rules out the possibility that the original
theory can form massless composite fermions involving the
full set of massless fermions in the theory with p > 0. As we
will discuss below, however, if the UV to IR evolution leads
to sufficiently strong coupling so that there is condensation
in the Rsc × Rsc → 1 channel, giving the Rsc fermions
dynamical masses, then in the low-energy effective field
theory below the condensation scale, with these fermions
removed, the descendant theory is equivalent to the original
theory with p ¼ 0. In this descendant theory (called the
SF̄ theory below), further evolution into the infrared might
produce massless gauge-singlet composite fermions.
To obtain information concerning the likely type of UV

to IR evolution among types 1 and 2 in the list above, as a
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function of p, we first identify the most attractive channel,
which is

Adj × Adj → 1: ð5:21Þ

This clearly preserves the SUðNÞ gauge symmetry, and has
attractiveness measure

ΔC2 ¼ 2N for Adj × Adj → 1: ð5:22Þ

In particular, this channel is more attractive than the
S × F̄ → F channel, in accordance with the inequality
(4.5). Quantitatively, the difference in ΔC2 values for these
two channels is

ΔC2ðAdj × Adj → 1Þ − ΔC2ðS × F̄ → FÞ

¼ N2 − N þ 2

N
; ð5:23Þ

which is positive for all physicalN. The condensates for the
Adj × Adj → 1 channel are

hξaTb;i;LCξba;j;Li; i; j ¼ 1;…; p: ð5:24Þ

From Eq. (5.22), we obtain the rough estimate of
the minimal critical coupling for condensation in the
Adj × Adj → 1 channel:

αcr;Adj×Adj ≃ π

3N
: ð5:25Þ

Thus, an approximate indication of the size of the IR fixed
point relative to the size that would lead to the formation of
fermion condensates in the channel (5.21) is the ratio

ρIR;Adj×Adj ≡ αIR;2l;Adj
αcr;Adj×Adj

¼ 24N2½ð9 − 2pÞN − 6�
ð32p − 39ÞN3 þ 90N2 − 3N − 36

: ð5:26Þ

As p decreases, αIR;2l increases. Therefore, considering N
and p as being extended from the non-negative integers to
the non-negative real numbers, one can calculate a rough
estimate of the critical value of p, denoted pcr;Adj×Adj, such
that, as p decreases through this value, αIR;2l increases
through the value αcr;Adj×Adj. This critical value of
pcr;Adj×Adj is thus obtained by setting ρIR;Adj×Adj ¼ 1

and solving for p, yielding

pcr;Adj×Adj ≃ 3ð85N3 − 78N2 þ N þ 12Þ
80N3

: ð5:27Þ

This critical value pcr;Adj is a monotonically increasing
function of N for physical N, increasing from 67=30 ¼
2.23 for N ¼ 3 and, as N → ∞,

lim
N→∞

pcr;Adj×Adj ¼
51

16
¼ 3.1875; ð5:28Þ

where the limit is approached from below as N increases.
We list values of the ratio ρIR;Adj×Adj in Table III for

several illustrative values of N and p. For all of the values
of N presented in this table, the respective values of the
ratio ρIR;Adj×Adj for p ¼ 4 are much smaller than 1, so that
one can conclude that for p ¼ 4, the theory evolves from
the UV to a scale-invariant, non-Abelian Coulomb phase in
the IR. As is evident from Table III, for a given N, as p
decreases, αIR;2l;Adj increases. As this IR coupling becomes
of O(1), the uncertainties in the use of perturbation theory
increase. For most of the p ¼ 3 cases shown with various
N, the ratio ρIR;Adj×Adj is sufficiently close to 1 that, taking
account of these uncertainties, one cannot draw a definite
conclusion as to whether fermion condensate does or does
not take place. For the cases shown in Table III with p ¼ 1
[where this is in ðIpÞAdj] and p ¼ 2, the ratio ρIR;Adj×Adj is
substantially larger than 1, so that in these cases, one
expects that the gauge interaction becomes strong enough
to produce fermion condensation in the channel (5.21).
In the large-N limit defined above,

lim
N→∞

ρIR;Adj×Adj ¼
24ð9 − 2pÞ
32p − 39

: ð5:29Þ

In particular,

lim
N→∞

ρIR;Adj×Adj ¼
24

89
¼ 0.270 for p ¼ 4; ð5:30Þ

lim
N→∞

ρIR;Adj×Adj ¼
72

57
¼ 1.26 for p ¼ 3; ð5:31Þ

lim
N→∞

ρIR;Adj×Adj ¼
24

5
¼ 4.80 for p ¼ 2 ð5:32Þ

(where the floating-point results are given to the indicated
accuracy). Hence, in this large-N limit, since the limit of
the ratio ρIR;Adj×Adj for p ¼ 4 is sufficiently small com-
pared to 1 that it is plausible that in the IR the theory is in a
deconfined Coulombic phase, while if p ¼ 3, ρIR;Adj×Adj is
too close to unity for one to be able to draw a definite
conclusion. Finally, if p ¼ 2, then ρIR;Adj×Adj is sufficiently
large compared with 1 that one expects that the theory can
produce bilinear condensates in the most attractive channel,
as discussed above.
We continue with the analysis of the UV to IR evolution

for the smaller values of p that produce a strongly coupled
gauge interaction. As the momentum scale μ decreases
through a scale denoted ΛAdj, αðμÞ exceeds αcr;Adj, and,
from our discussion above, we infer that the gauge
interaction produces the bilinear fermion condensates
(5.24) in the MAC, Adj × Adj → 1. These condensates
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preserve the SUðNÞ gauge symmetry and the Uð1Þ1 global
symmetry, while breaking the Uð1Þ2 and SUðpÞ global
symmetries (these global symmetries are defined in
Sect. VII). By the use of a vacuum alignment argument
[37], one can plausibly infer that the condensates (5.24)
have i ¼ j, with i ¼ 1;…; p and hence preserve an SOðpÞ
global isospin symmetry defined by the transformation

ξab;i;L →
Xp
j¼1

Oijξ
a
b;j;L; O ∈ SOðpÞ: ð5:33Þ

Just as light quarks gain dynamical, constituent quark
masses of order ΛQCD due to the formation of hq̄qi
condensates in quantum chromodynamics (QCD), so also,
the pðN2 − 1Þ components, ξab;i;L, of the Adj fermions
involved in these condensates pick up a common dynamical
mass of order ΛAdj.
At scales μ < ΛAdj, the analysis proceeds by integrating

out the massive ξab;j;L fermions, constructing the low-energy
effective field theory applicable for these lower scales, and
then exploring the further evolution of this descendant
theory into the infrared. Since the condensation (5.24)
gives dynamical masses to all of the Adj fermions ξab;j;L,
j ¼ 1;…; p, the low-energy effective theory below this
condensation scale ΛAdj is just the p ¼ 0 theory. Since the
evolution of this theory is the same as for our second type
of chiral gauge theory, we first study this second theory, and
then discuss the further IR evolution.

VI. THEORY WITH N ¼ 2k AND R ¼ ½N=2�N
A. Particle content

In this section we construct and study a chiral gauge
theory with gauge group G ¼ SUðNÞ with even N ¼ 2k,
and fermions transforming according to
(1) a symmetric rank-2 tensor representation, S, with

corresponding field ψab
L ¼ ψba

L ,
(2) N þ 4 copies chiral fermions in the conjugate

fundamental representation, , with fields χa;i;L,
i ¼ 1;…; N þ 4, and

(3) p copies of chiral fermions in the totally antisym-
metric k-fold tensor representation ½N=2�N ¼ ½k�2k,
with fields ξa1…ak

j;L , j ¼ 1;…; p.
We again label this theory by the representation of the
fermions in the vectorlike subsector, namely AT,
for antisymmetric k-fold tensor. This fermion content is
summarized in Table I.
The representation ½k�N has the dimension (for general

N)

dimð½k�NÞ ¼
�
N
k

�
ð6:1Þ

and satisfies the equivalence property

½N − k�N ¼ ½k�N: ð6:2Þ

Here we have used the standard notation for the binomial
coefficient, ðabÞ≡ a!=½b!ða − bÞ!�. An important property
that follows from Eq. (6.2) that we will use here is the fact
that for our case of interest,N ¼ 2k, the representation ½k�2k
is self-conjugate:

½k�2k ¼ ½k�2k: ð6:3Þ

Combining the self-conjugate property of ½N=2�N ¼ ½k�2k
with the relation (5.2), it follows that

Anomð½k�2kÞ ¼ 0: ð6:4Þ

Thus, this theory has the same irreducibly chiral sector as
the theory discussed in the previous section, and a vector-
like subsector that consists of the p copies of the fermions
in the ½N=2�N representation.

B. Beta function

We calculate that the one- and two-loop terms in the beta
function of this theory are, in terms of k ¼ N=2,

ðb1ÞAT ¼ 6k − 2 −
pð2k − 2Þ!
3½ðk − 1Þ!�2 ð6:5Þ

and

ðb2ÞAT ¼ 52k3 − 60k2 þ kþ 6

2k
−
pkð43þ 6kÞð2k − 2Þ!

12½ðk − 1Þ!�2 :

ð6:6Þ

For small p, ðb1ÞAT is positive, and as p increases, ðb1ÞAT
decreases and passes through zero as p exceeds the value

pb1z;AT ¼ 6ð3k − 1Þ½ðk − 1Þ!�2
ð2k − 2Þ! : ð6:7Þ

The requirement that the theory should be asymptotically
free is thus satisfied if

p <
6ð3k − 1Þ½ðk − 1Þ!�2

ð2k − 2Þ! : ð6:8Þ

This upper bound decreases rapidly as a function of
k ¼ N=2, so that as k increases, eventually the requirement
of asymptotic freedom precludes any nonzero value of p.
Thus, the AT theory has no asymptotically free large-N
limit with nonzero p, in contrast to the Adj and SS̄ theories
constructed and studied here and the Sp theory reviewed in
Sec. III.
The beta function of the AT theory has an IR zero if b2 is

negative. For small p, ðb2ÞAT is positive, and it decreases
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through zero to negative values as p (continued to the real
numbers) increases through the value

pb2z;AT ¼ 6ð52k3 − 60k2 þ kþ 6Þ½ðk − 1Þ!�2
k2ð6kþ 43Þð2k − 2Þ! : ð6:9Þ

We observe that pb1z;AT > pb2z;AT . This is proved by
considering the difference,

pb1z;AT − pb2z;AT

¼ 6ð18k4 þ 71k3 þ 17k2 − k − 6Þ½ðk − 1Þ!�2
k2ð43þ 6kÞ½ð2k − 2Þ!� : ð6:10Þ

This difference is positive for all k values of relevance here
(with k extended to the positive reals, it is positive for
k > 0.3724). By itself, this inequality does not guarantee
that there is an integral value of p that lies above pb2z;AT

and below pb1z;AT, but in fact we find that for each relevant
case, there are one or more such integral values. These then
define the respective intervals ðIpÞAT ,

ðIpÞAT∶ pb2z;AT < p < pb1z;AT ð6:11Þ

for each k. For the (integral) values of p ∈ ðIpÞAT , the beta
function of the SU(2k) AT theory has an IR zero. We list the
values of pb1z, pb2z, pmax, and ðIpÞAT in Table IV. Note that
for the cases G ¼ SUðNÞ with k ≥ 2 under consideration
here, the requirement of asymptotic freedom allows non-
zero values of p only for k ≤ 5.
For a given N ¼ 2k with a nonvacuous interval ðIpÞAT ,

the βα;2l has an IR zero at

αIR;2l;AT ¼ −
4πðb1ÞAT
ðb2ÞAT

ð6:12Þ

where ðb1ÞAT and ðb2ÞAT were given in Eqs. (6.5) and (6.6)
above. We list the values of αIR;2l;AT in Table V.

C. UV to IR evolution

Here we analyze the UV to IR evolution of this AT chiral
gauge theory. By construction, the most attractive channel
involves fermion condensation in the channel (4.1), with
R ¼ ½N=2�N ¼ ½k�2k in this case, i.e.,

½N=2�N × ½N=2�N → 1: ð6:13Þ

This preserves the SUðNÞ gauge symmetry and has the
attractiveness measure

ΔC2 ¼ 2C2ð½N=2�NÞ ¼
kð2kþ 1Þ

2
; ð6:14Þ

where we have used the result for C2ð½k�NÞ given in the
Appendix. The condensates are

hϵa1;…a2kξ
a1;…;akT
i;L Cξakþ1;…;a2k

j;L i; i; j ¼ 1;…; p:

ð6:15Þ

By a vacuum alignment argument, one may infer that
these condensates have i ¼ j [37]. To show that the channel
(6.13) is more attractive than the next-most-attractive
channel, S × F̄ → F, we examine the difference

ΔC2ð½N=2�N × ½N=2�N → 1Þ − ΔC2ðS × F̄ → FÞ

¼ 2C2ð½N=2�NÞ − C2ðSÞ ¼
2k3 − 3k2 − 2kþ 2

2k
: ð6:16Þ

This difference is positive for all values of k ≥ 2 of
interest here.
If the beta function has no IR zero, then as the scale μ

decreases and αðμÞ increases, it will eventually become

TABLE IV. Values of pb1z;AT , pb2z;AT , pmax, and the intervals
ðIpÞAT as functions of N in the AT model with gauge group
SUðNÞ with N ¼ 2k.

N pb2z;AT pb1z;AT pmax ðIpÞAT
4 2.509 15 14 3 ≤ p ≤ 14
6 1.590 8 7 2 ≤ p ≤ 7
8 0.665 3.3 3 1 ≤ p ≤ 3
10 0.235 1.2 1 p ¼ 1

TABLE V. Values of αIR;2l;AT and ρIR;AT in the AT theory for
the relevant values of N and, for each N, the values of p in the
respective interval ðIpÞAT .
N p αIR;2l;AT ρIR;AT

4 3 11.170 26.67
4 4 3.371 8.05
4 5 1.8345 4.38
4 6 1.178 2.81
4 7 0.814 1.94
4 8 0.583 1.39
4 9 0.422 1.01
4 10 0.305 0.728
4 11 0.215 0.514
4 12 0.144 0.345
4 13 0.0871 0.208
4 14 0.0398 0.095

6 2 4.021 20.16
6 3 0.974 4.88
6 4 0.460 2.29
6 5 0.242 1.21
6 6 0.125 0.625
6 7 0.0508 0.255

8 1 1.290 11.08
8 2 0.183 1.57
8 3 0.0241 0.207

10 1 0.0360 0.473
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large enough to cause condensation, which, according to
the MAC criterion, will be in this channel (6.13). If the beta
function does have a zero, then the next step in the analysis
is to determine how the value of the coupling at this zero
compares with αcr for the most attractive channel, (6.13).
Substituting (6.14) into the general formula for Eq. (2.7),
we calculate

αcr;AT ¼ 4π

3kð2kþ 1Þ : ð6:17Þ

As discussed above, an approximate measure of how strong
the coupling gets in the infrared, compared with the
minimum critical value for condensation in the MAC, is
then given by the ratio

ρIR;AT ≡ αIR;2l;AT
αcr;AT

: ð6:18Þ

We list values of ρIR;AT for the relevant N and p in Table V.
In cases where condensation occurs in this theory we
denote the scale at which it occurs as Λ½N=2�N .

1. AT theory with G ¼ SUð4Þ
In this subsection and the following ones we discuss

three illustrative cases with various values of N ¼ 2k and
their corresponding intervals ðIpÞAT . For each value of N, if
p is nonzero and p < pb2z, i.e., below the lower end of the
interval ðIpÞAT , then the theory has no IR fixed point, even
an approximate one, so that the gauge coupling continues to
grow in the infrared and will cause condensation in the
MAC. Hence, we restrict our consideration here to
p ∈ ðIpÞAT . The reader is referred to Tables IV and V
for numerical values of relevant quantities. As indicated in
Table IV, for this SU(4) AT theory the interval ðIpÞAT is
3 ≤ p ≤ 14. For p in this interval, βα;2l;AT has an IR zero at

N ¼ 4∶ αIR;2l;AT ¼ 8πð15 − pÞ
55p − 138

: ð6:19Þ

The ratio ρIR;AT is

N ¼ 4∶ ρIR;AT ¼ 60ð15 − pÞ
55p − 138

: ð6:20Þ

As listed in Table V, for the range of p from 3 to 7, this ratio
takes on values decreasing from 26.7 to 1.94, all well above
unity. Thus, one may plausibly expect that for these values
of p, in the UV to IR evolution, as the reference scale μ
decreases sufficiently and the running coupling approaches
αIR;2l;AT , the gauge interaction will become strong enough
to cause fermion condensation in the most attractive
channel, ½2�4 × ½2�4 → 1. For p ¼ 8; 9; 10; 11, ρIR;AT has
the respective values 1.39, 1.01, 0.728, 0.514. Given the
theoretical uncertainties in these estimates, the IR behavior

might or might not involve the formation of the condensates
(6.15). For the largest values of p, namely p ¼ 12; 13; 14,
ρIR;AT has the respective values 0.345, 0.208, 0.095, so for
these cases, it is likely that the theory evolves from the UV
to a scale-invariant, deconfined, Coulombic IR phase. This
inference is, of course, most reliable for the largest allowed
value of p, namely p ¼ 14, which leads to the smallest
value of αIR;2l;AT and ρIR;AT . As discussed above, in the
cases where there is condensate formation and chiral
symmetry breaking, the IRFP is only approximate, while
in the cases where there is no such chiral symmetry
breaking the IRFP (calculated to all orders) is exact.

2. AT theory with G ¼ SUð6Þ
In the SU(6) (i.e., k ¼ 3) AT theory, ðIpÞAT is the interval

2 ≤ p ≤ 7. For p in this interval, βα;2l has an IR zero at

N ¼ 6∶ αIR;2l;AT ¼ 16πð8 − pÞ
3ð61p − 97Þ : ð6:21Þ

The ratio ρIR;AT is

N ¼ 6∶ ρIR;AT ¼ 84ð8 − pÞ
61p − 97

: ð6:22Þ

As listed in Table V, for 2 ≤ p ≤ 7, this has the respective
values 20.16, 4.89, 2.29, 1.21, 0.625, 0.255. Thus, for
p ¼ 2, p ¼ 3, and p ¼ 4, it is likely that condensation
occurs in the MAC, ½3�6 × ½3�6 → 1 channel; for p ¼ 7, it is
likely that there is no condensation; and for the middle two
values p ¼ 5 and p ¼ 6, taking account of the intrinsic
theoretical uncertainties, one cannot give a very definite
prediction from this analysis.

3. AT theory with G ¼ SUð10Þ
In the SU(10) (k ¼ 5) AT theory, the interval

ðIpÞAT reduces to just a single nonzero value, p ¼ 1,
and the resultant αIR;2l;AT ¼ 0.036, yielding the ratio
ρIR;AT ¼ 0.473. It is thus likely that this theory evolves
from the UV to the IR to a non-Abelian Coulomb phase,
although there are obvious uncertainties in this inference
due to the strong-coupling physics involved.

VII. GLOBAL FLAVOR SYMMETRY FOR
THEORIES WITH SELF-CONJUGATE R

In analyzing the global flavor symmetry of these chiral
gauge theories, it is useful to consider a more general class
of theories, in which the vectorlike fermion subsector is
comprised of fermions transforming under a general self-
conjugate representation, R ¼ Rsc. The results will then
be applied to the two specific theories discussed above,
namely those with G ¼ SUðNÞ, N ≥ 3, and Rsc ¼ Adj;
and the AT theory with G ¼ SUðNÞ with even N ¼ 2k,
k ≥ 2, and Rsc ¼ ½N=2�N .
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The classical global chiral flavor symmetry of a theory in
this class of theories is

Gfl;cl;Rsc
¼ Uð1ÞS ⊗ UðNþ 4ÞF̄ ⊗ UðpÞRsc

¼ Uð1ÞS ⊗ SUðNþ 4ÞF̄ ⊗ Uð1ÞF̄ ⊗ SUðpÞRsc
⊗ Uð1ÞRsc

:

ð7:1Þ

The representations of the fermions in the two theories with
R ¼ Rsc under this symmetry are given in Table I. The
corresponding global unitary transformations are

ψab
L → USψ

ab
L ; US ∈ Uð1ÞS; ð7:2Þ

χa;i;L →
XNþ4

j¼1

ðUF̄Þijχa;j;L; UF̄ ∈ UðN þ 4ÞF̄; ð7:3Þ

and

ξi;L →
Xp
j¼1

ðURsc
Þijξj;L; URsc

∈ UðpÞRsc
ð7:4Þ

where we have suppressed the SUðNÞ gauge indices in
Eq. (7.4), which applies to each theory with the corre-
sponding ξ field, i.e., ξab;i;L in the Adj theory and ξa1;…;ak

i;L in
the AT theory.
Each of the three global U(1) symmetries is broken by

the instantons of the SUðNÞ gauge theory [38]. One may
define a three-dimensional vector of anomaly factors,

~v ¼ ðNSTðSÞ; NF̄TðF̄Þ; NRsc
TðRscÞÞ

¼
�
N þ 2

2
;
N þ 4

2
; pTRsc

�
; ð7:5Þ

where the basis is ðS; F̄; RscÞ, and we have inserted the
values NS ¼ 1, NF̄ ¼ N þ 4, and NRsc

¼ p. One can
construct two linear combinations of the three original
currents that are conserved in the presence of SUðNÞ
instantons. The fermions have charges under these global
U(1) symmetries given by the vectors

~QðjÞ ≡ ðQðjÞ
S ;QðjÞ

F̄ ; QðjÞ
Rsc

Þ; j ¼ 1; 2; ð7:6Þ

where j ¼ 1 for Uð1Þ1 and j ¼ 2 for Uð1Þ2. The condition
that the corresponding currents are conserved, i.e., the
Uð1Þj global symmetries are exact, in the presence of
instantons is that

X
f

NfTðRfÞQðjÞ
f ¼ ~v · ~QðjÞ ¼ 0 for j ¼ 1; 2: ð7:7Þ

As indicated, this condition is equivalent to the condition
that the vectors of charges under the Uð1Þ1 and Uð1Þ2
symmetries are orthogonal to the vector ~v. [Note that the

condition (7.7) does not uniquely determine the vectors
~QðjÞ, j ¼ 1; 2.] It will be convenient to choose the first

vector, ~Qð1Þ, so that Qð1Þ
Rsc

¼ 0. We thus choose

~Qð1Þ ¼ ðN þ 4;−ðN þ 2Þ; 0Þ: ð7:8Þ

For the vector of charges under Uð1Þ2, we choose

~Qð2Þ ¼ ð2pTRsc
; 0;−ðN þ 2ÞÞ: ð7:9Þ

[Note that in contrast to Gram-Schmidt orthogonalization

of the three vectors ~v, ~Qð1Þ, and ~Qð2Þ, here it is not necessary
that ~Qð1Þ · ~Qð2Þ ¼ 0.]
The actual nonanomalous global chiral flavor symmetry

group of the class of chiral gauge theories with R ¼ Rsc is
then

Gfl;Rsc
¼ SUðN þ 4ÞF̄ ⊗ SUðpÞRsc

⊗ Uð1Þ1 ⊗ Uð1Þ2:
ð7:10Þ

For the two respective theories with (i) Rsc ¼ Adj
and (ii) Rsc ¼ ½N=2�N , Eqs. (7.9) and (7.10) apply with
(i) TRsc

¼ TðAdjÞ ¼ N and (ii) T ½N=2�N given by Eq. (A8) in
the Appendix. We summarize these properties in Table I.
In general, one must also check to see if either of the

chiral gauge theories with Rsc ¼ Adj or Rsc ¼ ½N=2�N
satisfies the ’t Hooft anomaly-matching conditions, which
are necessary conditions for the possible formation of
massless gauge-singlet composite fermions. The possible
gauge-singlet fermions can be described by wavefunctions
of the form

Bij ¼ F̄a;i;LSabL F̄b;j;L; 1 ≤ i; j ≤ N þ 4: ð7:11Þ

Given the minus sign from Fermi statistics and the fact that
Sab is a rank-2 symmetric tensor representation ( ) of
SUðNÞ, it follows that Bij ¼ −Bji, i.e., Bjk is a rank-2

antisymmetric tensor representation ( ) of the SUðN þ 4ÞF̄
factor group in the global flavor symmetry group Gfl.
There are thus ðN þ 4ÞðN þ 3Þ=2 components of Bij. The
charges of Bij under the two global Abelian factor groups
in Gfl;Rsc

, Uð1Þk, k ¼ 1; 2 are determined by the relation

QðkÞ
B ¼ QðjÞ

S þ 2QðkÞ
F̄ ; k ¼ 1; 2: ð7:12Þ

Hence,

Qð1Þ
B ¼ −N ð7:13Þ

and

Qð2Þ
B ¼ 2pTRsc

: ð7:14Þ
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We find that the global anomalies of a theory with these
massless composite fermions do not match those of the
original Gfl group except in the degenerate case p ¼ 0.
This p ¼ 0 case describes a descendant low-energy effec-
tive field theory that occurs if there is condensation in the
Rsc × Rsc → 1 channel, and will be discussed below.

VIII. ANALYSIS OF LOW-ENERGY EFFECTIVE
THEORY FOR μ < ΛRsc

In the cases where the values of N and p are such as to
lead to the respective bilinear fermion condensates (5.24) or
(6.15) at the corresponding scales ΛAdj or Λ½N=2�N , we
analyze the further UV to IR evolution below these scales.
We denote these scales generically as ΛRsc

. Because of this
condensation, the p fermions ξab;i;L involved in the con-
densate (5.24) in the Adj model and the p fermions ξa1;…;al

i;L

involved in the condensate (6.15) in the AT theory gain
dynamical masses of order ΛAdj and Λ½N=2�N , respectively.
For momentum scales μ slightly below the condensation

scale ΛRsc
, the resultant global symmetry is

G0
fl ¼ SUðN þ 4ÞF̄ ⊗ SOðpÞ ⊗ Uð1Þ1: ð8:1Þ

Here the SUðN þ 4ÞF̄ ⊗ Uð1Þ1 is a global chiral symmetry
operating on the massless S and F̄ fermions, leaving their
covariant derivatives invariant, while the SO(p) is a global
isospin symmetry of the condensate in each of our two
theories with R ¼ Rsc, or equivalently, the corresponding
effective mass term. These mass terms are

ΛAdj

Xp
i¼1

ξaTb;i;LCξ
b
a;i;L þ H:c: ð8:2Þ

in the Adj theory and

Λ½N=2�N
Xp
i¼1

hϵa1;…a2kξ
a1;…;akT
i;L Cξakþ1;…;a2k

i;L i þ H:c: ð8:3Þ

in the AT theory produced by the bilinear fermion con-
densations in these respective theories. This SO(p) sym-
metry also leaves the covariant derivatives of these ξ fields
invariant.
The spontaneous symmetry breaking of the initial non-

anomalous global symmetry Gfl in Eq. (7.10) to the final
global symmetry (8.1) produces

oðSUðpÞÞ þ 1 − oðSOðpÞÞ ¼ pðpþ 1Þ
2

ð8:4Þ

massless Nambu-Goldstone bosons, where oðHÞ denotes
the order of a group H.
As the reference scale μ decreases well below ΛRsc

,
we integrate these now-massive ξ fermions out of the

low-energy (LE) effective field theory (LEEFT) applicable
for μ ≪ ΛRsc

. Focusing on the infrared region μ ≪ ΛRsc
,

with the ξ fermions integrated out, both the theory with
Rsc ¼ Adj and the theory with Rsc ¼ ½N=2�N reduce to the
same low-energy descendant theory, with (massless) S
fermion and N þ 4 copies of F̄ fermions. We denote this
as the SF̄ theory. This theory has been well studied in the
past [2,4,8–10,12]. We recall the results from these earlier
studies that we will need for our present analysis.
The value of fUV for the SF̄ model, which we denote as

fUV;SF̄M (M standing for model), is given by the p ¼ 0

special case of Eq. (9.1), namely

fUV;SF̄M ¼ 2ðN2 − 1Þ þ 7

4

�
NðN þ 1Þ

2
þ ðN þ 4ÞN

�
:

ð8:5Þ

The SF̄ theory is invariant under a nonanomalous global
flavor symmetry group

Gfl;SF̄M ¼ SUðN þ 4ÞF̄ ⊗ Uð1ÞSF̄: ð8:6Þ

For this theory the three-dimensional vector (7.5) reduces
to a two-dimensional vector with the third entry deleted,
and the vector of charges that is orthogonal to it and hence
defines the charge assignments of the Uð1ÞSF̄ is given by
the first two entries in Qð1Þ, namely

~Qð1Þ ¼ ðN þ 4;−ðN þ 2ÞÞ: ð8:7Þ

The SF̄ theory is asymptotically free, so the gauge
coupling continues to grow as μ decreases. The beta
function of this SF̄ theory has one-loop and two-loop
coefficients given by Eqs. (5.3) and (5.4) with p ¼ 0 or
equivalently, the p ¼ 0 special case of Eqs. (3.1) and (3.2).
In the relevant range N ≥ 3, b2 is positive. Since b1 and b2
thus have the same sign, the beta function, calculated to the
maximal scheme-independent order of two loops, does not
have any IR zero. Hence, as μ decreases from the UV to the
IR, the running coupling αðμÞ increases, eventually exceed-
ing the region where the perturbatively calculated beta
function is applicable.
There are two possible types of UV to IR evolution in the

SF̄ theory. First, the strongly coupled gauge interaction
may produce bilinear fermion condensates. The most
attractive channel is S × F̄ → F, with condensates

�XN
b¼1

ψabT
L Cχb;i;L

�
: ð8:8Þ

Without loss of generality, one may take a ¼ N and i ¼ 1
for the first condensate. This breaks the SUðNÞ gauge
symmetry down to SUðN − 1Þ, so that the 2N − 1 gauge
bosons in the coset SUðNÞ=SUðN − 1Þ gain masses of
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order this scale of condensation, which we denote ΛN . The
fermions ψNb

L and χb;1;L with b ¼ 1;…; N involved in this
condensate also gain dynamical masses of order ΛN. In the
low-energy theory applicable for scales μ < ΛN , these now
massive fermions are integrated out.
The descendant theory is again asymptotically free,

so the gauge coupling inherited from the SUðNÞ theory
continues to increase. There is then a second condensation,
again in the MAC, S × F̄ → F channel, breaking the gauge
symmetry from SUðN − 1Þ to SUðN − 2Þ. Without loss
of generality, we may take the breaking direction to be
a ¼ N − 1 and the F̄ fermion involved in the condensate to
be labeled as χb;2;L, so that this condensate is

�XN−1

b¼1

ψN−1;bT
L Cχb;2;L

�
: ð8:9Þ

We denote the scale at which this occurs as ΛN−1. The
2N − 3 gauge bosons in the coset SUðN − 1Þ=SUðN − 2Þ
gain masses of order ΛN−1 and the fermions SN−1;b

L and
χb;2;L with b ¼ 1;…; N − 1 involved in this condensate
gain dynamical masses of order ΛN−1. This sequential
breaking via condensation in the respective S × F̄ → F
channels continues at the scales ΛN−2, etc. until the gauge
symmetry is completely broken. Thus, the sequence of
gauge symmetry breaking is

SUðNÞ → SUðN − 1Þ → � � � → SUð2Þ → ∅: ð8:10Þ
The gauge bosons in the respective cosets SUðNÞ=
SUðN − 1Þ, SUðN − 1Þ=SUðN − 2Þ, etc. gain masses of
order ΛN, ΛN−1, etc, as do the components of the fermions
involved in the respective condensates.
Considering the SF̄ theory, for this type of UV to IR

evolution [8–10],

fIR;SF̄M;S×F̄ ¼ 8N þ 1þ 7

4

�
NðN − 1Þ

2
þ 4N

�
; ð8:11Þ

where here the subscript SF̄M means the SF̄model, and the
subscript SF̄ refers to the condensation channel. For the SF̄
model, with this type of UV to IR evolution, one then has

ðΔfÞSF̄M;S×F̄ ¼ fUV;SF̄M − fIR;SF̄M;S×F̄

¼ 15N2 − 25N − 12

4
: ð8:12Þ

This is positive for all relevant values of N. [For N
extended to the positive reals, it is positive for
N > ð25þ ffiffiffiffiffiffiffiffiffiffi

1345
p Þ=30 ¼ 2.056.]

The low-energy effective SF̄ theory applicable below
ΛRsc

could also undergo a different type of flow deeper
into the infrared, namely one leading to confinement
with massless gauge-singlet composite fermions with

wavefunctions (7.11). In this case, for this SF̄ theory,
considered in isolation,

fIR;SF̄M;sym ¼ 7

4

�ðN þ 4ÞðN þ 3Þ
2

�
: ð8:13Þ

Hence, for this type of UV to IR evolution,

ðΔfÞSF̄M;sym ¼ 15N2 þ 7N − 50

4
: ð8:14Þ

This is positive for all relevant values of N. [For N ex-
tended to the positive reals, it is positive for N >
ð−7þ ffiffiffiffiffiffiffiffiffiffi

3049
p Þ=30 ¼ 1.607.] Thus, for both of these types

of UV to IR evolution of the SF̄ theory, the conjectured
degree-of-freedom inequality (2.12) is obeyed.

IX. COMPARISON WITH
DEGREE-OF-FREEDOM INEQUALITY

We now combine the results for the SF̄ theory with our
calculations of UVand IR degree-of-freedom counts for the
different types of UV to IR evolution in the Adj and AT
chiral gauge theories and compare with the conjectured
degree-of-freedom inequality (2.12).

A. UV count

Given that we have required our theories to be asymp-
totically free, they are weakly coupled in the UV, so we can
identify the perturbative degrees of freedom and calculate
fUV . From the general formula (2.10), we have

fUV;Rsc
¼ 2ðN2 − 1Þ þ 7

4

�
NðN þ 1Þ

2
þ ðN þ 4ÞN

�

þ 7

8
p dimðRscÞ; ð9:1Þ

where the respective terms represent the contributions of
the SUðNÞ gauge fields, the S fermions, theN þ 4 copies of
F̄ fermions, and the Rsc fermions. Explicitly, for the Adj
theory,

fUV;Adj ¼ 2ðN2 − 1Þ þ 7

4

�
NðN þ 1Þ

2
þ ðN þ 4ÞN

�

þ 7

8
pðN2 − 1Þ ð9:2Þ

and for the AT theory, with N ¼ 2k,
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fUV;AT ¼ 2ðN2 − 1Þ þ 7

4

�
NðN þ 1Þ

2
þ ðN þ 4ÞN

�

þ 7

8
p

�
N

N=2

�
; ð9:3Þ

where ðabÞ is the binomial coefficient.

B. f IR calculations

Next, we calculate fIR for the two types of chiral gauge
theories discussed above in the cases where the UV to IR
evolution involves a high-scale condensation in the respec-
tive channels (5.21) or (6.13), followed by sequential
condensations in the S × F̄ → F channel. Taking account
of the pðpþ 1Þ=2 NGBs from the higher-scale symmetry
breaking at ΛRsc

, we find, for either of these two types of
chiral gauge theories, for this type of infrared evolution
below ΛRsc

,

fIR;Adj;Adj×Adj;S×F̄ ¼ fIR;AT;½k�2k×½k�2k;S×F̄

≡ fIR;Rsc;Rsc×Rsc;S×F̄

¼ 8N þ 1þ 7

4

�
NðN − 1Þ

2
þ 4N

�
þ pðpþ 1Þ

2
; ð9:4Þ

where the subscript Rsc identifies the chiral fermion
representation in the vectorlike subsector, the next subscript
Rsc × Rsc is shorthand for the MAC Rsc × Rsc → 1 in
which the highest-scale condensation takes place, and the
last subscript, S × F̄ or sym are shorthand for the two types
of IR flow in the low-energy descendant theory, namely
sequential S × F̄ → F condensation formation and gauge
and global symmetry breaking in the descendent theory,
or confinement with formation of massless composite
fermions and retention of exact chiral symmetry (sym)
in the infrared. Thus, the subscripts here and below placed
after the semicolon in quantities such as fIR;Adj;Adj×Adj;S×F̄
refer to the sequence of steps in the UV to IR evolution.
For the alternate type of evolution involving high-scale

condensation in the respective channels (5.21) or (6.13),
followed by confinement leading to massless gauge-singlet
composite fermions, we calculate, for either of our two
types of chiral gauge theory with R ¼ Rsc,

fIR;Adj;Adj×Adj;sym ¼ fIR;AT;½k�2k×½k�2k;sym

≡ fIR;Rsc;Rsc×Rsc;sym

¼ 7

4

�ðN þ 4ÞðN þ 3Þ
2

�
þ pðpþ 1Þ

2
: ð9:5Þ

C. Comparison with DFI for Adj theory

Using these inputs, we can now calculate Δf for these
chiral gauge theories and compare with the conjectured
degree-of-freedom inequality (2.12). For both theories, if

the UV to IR evolution is such as to lead to a deconfined
non-Abelian Coulomb phase, the perturbative degrees of
freedom are the same as in the UV, so the DFI is obeyed.
(The perturbative corrections also obey the DFI [8,15].)
We first discuss the possible cases for the theory with

R ¼ Adj. If N and p are such that the gauge interaction
produces the high-scale condensation in the channel (5.24),
followed by Eqs. (8.4) with (8.11), we calculate

ðΔfÞAdj;Adj×Adj;S×F̄ ≡ fUV;Adj − fIR;Adj;Adj×Adj;S×F̄

¼ 1

8
½30N2 − 50N − 24þ 7pN2 − 11p − 4p2�: ð9:6Þ

This is positive for p satisfying the upper bound

p <
1

8

h
7N2 − 11þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49N4 þ 326N2 − 800N − 263

p i
:

ð9:7Þ

The upper bound on the right-hand side of Eq. (9.7) is
larger than the upper limit on p imposed by the requirement
of asymptotic freedom, (5.6). Hence, the conjectured
degree-of-freedom inequality (2.12) is obeyed for all N
and allowed p with this type of UV to IR evolution.
For the case where the low-energy effective SF̄ theory

confines without any spontaneous chiral symmetry break-
ing, producing massless composite fermions, we calculate

ðΔfÞAdj;Adj×Adj;sym ≡ fAdj;UV − fIR;Adj;Adj×Adj;sym

¼ 1

8
½30N2 þ 14N − 100þ 7pN2 − 11p − 4p2�: ð9:8Þ

This is positive for p satisfying the upper bound

p <
1

8

h
7N2 − 11

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49N4 þ 326N2 þ 224N − 1479

p i
: ð9:9Þ

The upper bound on the right-hand side of Eq. (9.9) is
larger than the upper limit on p imposed by the requirement
of asymptotic freedom, (5.6). Hence, the conjectured
degree-of-freedom inequality (2.12) is also obeyed for
all N and allowed p with this type of UV to IR evolution.
As illustrative numerical examples, we may consider the

casesN ¼ 3 andN ¼ 4. In these cases, the respective upper
bounds on p from Eq. (5.6) are p ≤ 3, while the respective
values of the right-hand side of (9.7) are 14.64 and 27.57
and the respective values of the right-hand side of (9.9) are
16.26 and 29.01. Note that if p is close to the upper bound
pb1z arising from the requirement of asymptotic freedom,
then b1 is small, so that αIR;2l is sufficiently small that the
UV to IR evolution is to a non-Abelian Coulomb phase,
so that one knows that the DFI is satisfied without going
through the present analysis.
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These expressions simplify in the limit N → ∞ (with p
fixed) in Eq. (5.13). We define rescaled degree-of-freedom
measures that are finite in this limit, of the form

f̄ ≡ lim
N→∞

f
N2

: ð9:10Þ

[We use the same notation, f̄ for this N → ∞ limit and for
the quantity (3.27) defined in the LNP limit; the context
will always make clear which limit is meant.] We calculate

f̄UV;Adj ¼
37þ 7p

8
; ð9:11Þ

f̄IR;Adj;Adj×Adj;S×F̄ ¼ f̄IR;Adj;Adj×Adj;sym ¼ 7

8
; ð9:12Þ

and hence

ðΔf̄ÞAdj;Adj×Adj;S×F̄ ¼ ðΔf̄ÞAdj;Adj×Adj;sym
¼ 30þ 7p

8
: ð9:13Þ

This obviously obeys the conjectured degree-of-freedom
inequality (2.12).

D. Comparison with DFI for AT theory

We next calculate Δf for the AT chiral gauge theory
with gauge group G ¼ SUðNÞ with even N ¼ 2k and
Rsc ¼ ½N=2�N ¼ ½k�2k. As noted above, for values of N
and p such that the UV to IR evolution is to a deconfined
non-Abelian Coulomb phase in the IR, the perturbative
degrees of freedom are the same as in the UV, and the
conjectured degree-of-freedom inequality is obeyed.
If N and p are such that the gauge interaction produces

high-scale condensation in the channel (5.21) followed at
lower scales by condensations in the successive S × F̄ → F
channels in SUðNÞ, SUðN − 1Þ, etc., then, using Eqs. (8.4)
and (8.11), we compute

ðΔfÞAT;½k�2k×½k�2k;S×F̄ ≡ fUV;AT − fIR;AT;½k�2k×½k�2k;S×F̄

¼ 1

8
½30N2 − 50N − 24þ 7pdR − 4pðpþ 1Þ�; ð9:14Þ

where here dR ≡ ð N
N=2Þ. This is positive for p satisfying the

upper bound

p <
1

8

h
7dR − 4

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
480N2 − 800N − 368þ 49d2R − 56dR

q i
: ð9:15Þ

The upper bound on the right-hand side of Eq. (9.15) is
larger than the upper limit on p imposed by the requirement
of asymptotic freedom, (6.8). Hence, the conjectured
degree-of-freedom inequality (2.12) is also obeyed for

all N and allowed p with this type of UV to IR evolution
in the AT model.
For the alternate type of UV to IR evolution in which

the low-energy effective SF̄ theory confines without any
spontaneous chiral symmetry breaking, producing massless
composite fermions, we calculate

ðΔfÞAT;½k�2k×½k�2k;sym ≡ fAT;UV − fIR;AT;½k�2k×½k�2k;sym

¼ 1

8
½30N2 þ 14N − 100þ 7pdR − 4pðpþ 1Þ�: ð9:16Þ

This is positive for p satisfying the upper bound

p <
1

8

h
7dR − 4

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
480N2 þ 224N − 1584þ 49d2R − 56dR

q i
: ð9:17Þ

The upper bound on the right-hand side of Eq. (9.17) is
larger than the upper limit on p imposed by the requirement
of asymptotic freedom, (6.8). Hence, the conjectured
degree-of-freedom inequality (2.12) is also obeyed for
all N and allowed p with this type of UV to IR evolution
in the AT model.
As numerical examples, for N ¼ 4 and N ¼ 6, the

respective upper bounds on p from Eq. (6.8) are p ≤ 14
and p ≤ 7, while the respective right-hand sides of (9.15)
are 14.05 and 38.86 and the respective right-hand sides
of (9.17) are 16.22 and 40.56. As before, it should be noted
that if p is close to the upper bound from asymptotic
freedom, b1 is small, so that αIR;2l is sufficiently small that
the UV to IR evolution is to a non-Abelian Coulomb phase,
so that one knows that the conjecture degree-of-freedom
inequality (2.12) is satisfied.

X. A CHIRAL GAUGE THEORY WITH SS̄
VECTORLIKE SUBSECTOR

A. Particle content

In this section we construct and study a chiral gauge
theory with gauge group SUðNÞ and (massless) chiral
fermion content such that the irreducibly chiral part of
the theory is the same as in our previous two theories,
and the vectorlike subsector consists of p copies of
fermions in fRþ R̄g where R is a non-self-conjugate
higher-dimensional representation, namely the symmetric
rank-2 tensor, S. Explicitly, the chiral fermions include
(1) a symmetric rank-2 tensor representation, S, with

corresponding field ψab
i;L ¼ ψba

i;L, where i ¼ pþ 1,
(2) N þ 4 copies of chiral fermions in the conjugate

fundamental representation, F̄, with fields χa;j;L,
where j ¼ 1;…; N þ 4, and

(3) p copies of chiral fermions fSþ S̄g in the sym-
metric rank-2 tensor and conjugate tensor represen-
tations, with fields ψab

i;L and ψab;i;L, i ¼ 1;…; p.
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This fermion content is summarized in Table VI. It is again
clear that this theory is free of any anomalies in gauged
currents. We will refer to this as the SS̄ theory.

B. Beta function

The one- and two-loop terms in the beta function of this
theory are

ðb1ÞSS̄ ¼ 3N − 2 −
2pðN þ 2Þ

3
ð10:1Þ

and

ðb2ÞSS̄ ¼
1

2
ð13N2 − 30N þ 1þ 12N−1Þ

−
2p
3
ð8N2 þ 19N − 12N−1Þ: ð10:2Þ

The values of pb1z;SS̄ and pb2z;SS̄ are listed in Table VII.
As p increases, the coefficient ðb1ÞSS̄ decreases and passes
through zero as p ascends through the value

pb1z;SS̄ ¼
3ð3N − 2Þ
2ðN þ 2Þ : ð10:3Þ

The asymptotic freedom requirement requires b1 > 0, i.e.,

p <
3ð3N − 2Þ
2ðN þ 2Þ : ð10:4Þ

There are two marginal cases to consider, consisting of
values of N and p for which ðb1ÞSS̄ ¼ 0, so that one must
determine the sign of ðb2ÞSS̄ to see if the theory is
asymptotically free. These are the pairs ðN; pÞ ¼ ð6; 3Þ
and (22, 4). However, for both of these cases, ðb2ÞSS̄ is
negative, so they are excluded by the condition of asymp-
totic freedom. The upper bound pb1z;SS̄, is a monotonically
increasing function of N for all physical N, increasing from
2.1 for N ¼ 3 and approaching the limiting value 4.5 from
below as N → ∞. The resultant physical, integral values of
p that are allowed by the inequality (10.4) are

p ¼ 0; 1; 2 if 3 ≤ N ≤ 6;

p ¼ 0; 1; 2; 3 if 7 ≤ N ≤ 22;

p ¼ 0; 1; 2; 3; 4 if N ≥ 23: ð10:5Þ

For small p values, ðb2ÞSS̄ is positive, so the two-loop beta
function βα;2l has no IR zero. The coefficient ðb2ÞSS̄
decreases and passes through zero to negative values as
p increases through the value

ðpb2zÞSS̄ ¼
3ð13N3 − 30N2 þ N þ 12Þ
4ðN þ 2Þð8N2 þ 3N − 6Þ : ð10:6Þ

This is a monotonically increasing function of N for all
physical N, increasing from the value 24=125 ¼ 0.192 at
N ¼ 3 and approaching the limiting value 39=32 ¼
1.21875 from below as N → ∞. We list the values of
pb1z;SS̄ and pb2z;SS̄ in Table VII. Since pb1z;SS̄ > pb2z;SS̄, it
follows that there is an interval ðIpÞSS̄ of values of p for
which βα;2l has an IR zero. This zero occurs at
αIR;2l;SS̄ ¼ −4πðb1ÞSS̄=ðb2ÞSS̄, where these coefficients
were given above. As N → ∞, the product αIR;2l;SS̄N
approaches the same limit as for the Adj model, given
above in Eq. (5.19).

TABLE VI. Properties of fermions in the SS̄ theory with vectorlike subsector consisting of p copies of fermions in
the fSþ S̄g representations. The entries in the columns are (i) fermion, (ii) representation of the SUðNÞ gauge
group, (iii) number of copies, and representations (charges for Abelian factors) of the respective factor groups in the
global flavor symmetry group Gfl;SS̄: (iv) SUð1þ pÞS; (v) SUðN þ 4ÞF̄, (vi) SUðpÞS̄, (vi) Uð1Þ1, (vii) Uð1Þ2. See
text for further discussion.

Fermion SUðNÞ No. copies SUð1þ pÞS SUðN þ 4ÞF̄ SUðpÞS̄ Uð1Þ1 Uð1Þ2
S∶ ψab;i

L 1þ p 1 1 N þ 4 0
F̄∶ χa;j;L N þ 4 1 1 −ð1þ pÞðN þ 2Þ pðN þ 2Þ
S̄∶ ψab;k;L p 1 1 0 −ðN þ 4Þ

TABLE VII. Values of pb1z;SS̄ and pb2z;SS̄ in the SS̄ theory, as
functions of N.

N pb2z;SS̄ pb1z;SS̄

3 0.1920 2.1000
4 0.3433 2.5000
5 0.4573 2.7857
6 0.5456 3.0000
7 0.6159 3.1667
8 0.6730 3.3000
9 0.7203 3.4091
10 0.7602 3.5000
20 0.9642 3.9455
25 1.0106 4.0555
50 1.1098 4.2692
102 1.1630 4.3824
103 1.2131 4.4880
∞ 1.21875 4.5000
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C. Global flavor symmetry

The classical global chiral flavor symmetry of this theory is

Gfl;cl;SS̄ ¼ Uð1þ pÞS ⊗ UðN þ 4ÞF̄ ⊗ UðpÞS̄
¼ SUð1þ pÞS ⊗ Uð1ÞS ⊗ SUðN þ 4ÞF̄ ⊗ Uð1ÞF̄ ⊗ SUðpÞS̄ ⊗ Uð1ÞS̄: ð10:7Þ

The representations of the various fermion fields under this
symmetry are given in Table VI. The corresponding global
unitary transformations are

ψab
i;L →

X1þp

j¼1

ðUSÞijψab
j;L; US ∈ Uð1þ pÞS; ð10:8Þ

χa;i;L →
XNþ4

j¼1

ðUF̄Þijχa;j;L; UF̄ ∈ UðN þ 4ÞF̄; ð10:9Þ

and

ψab;i;L →
Xp
i¼1

ðUS̄Þijψab;j;L; US̄ ∈ UðpÞS̄: ð10:10Þ

Each of the three global U(1) symmetries is broken by
SUðNÞ instantons. As before, we define the vector

~v ¼ ðNSTðSÞ; NF̄TðF̄Þ; NS̄TðS̄ÞÞ

¼
�
ð1þ pÞ

�
N þ 2

2

�
;
N þ 4

2
; p

�
N þ 2

2

��
; ð10:11Þ

where the basis is ðS; F̄; S̄Þ, and we have used the values
NS ¼ 1þ p, NF̄ ¼ N þ 4, and NS̄ ¼ p. In the same
manner as before, we can construct two linear combina-
tions of the three original currents that are conserved in the
presence of SUðNÞ instantons. These have charges given by

~QðjÞ ≡ ðQðjÞ
S ; QðjÞ

F̄ ; QðjÞ
S̄
Þ; j ¼ 1; 2; ð10:12Þ

where j ¼ 1 for Uð1Þ1 and j ¼ 2 for Uð1Þ2. Next, we apply
the conditions (7.7) and solve for the vectors of charges
~Qð1Þ and ~Qð2Þ under the nonanomalous global symmetries
Uð1Þ1 and Uð1Þ2. The condition (7.7) does not uniquely

determine the vectors ~QðjÞ, j ¼ 1; 2. We choose

~Qð1Þ ¼ ðN þ 4;−ð1þ pÞðN þ 2Þ; 0Þ ð10:13Þ

and

~Qð2Þ ¼ ð0; pðN þ 2Þ;−ðN þ 4ÞÞ: ð10:14Þ

Then the (nonanomalous) global chiral flavor symmetry
group of the theory is

Gfl;SS̄ ¼ SUð1þ pÞS ⊗ SUðN þ 4ÞF̄
⊗ SUðpÞS̄ ⊗ Uð1Þ1 ⊗ Uð1Þ2: ð10:15Þ

For a givenN and p that would lead to strong coupling in
the infrared, we check if the infrared theory could consist
of confined, gauge-singlet massless composite fermions
that satisfy the ’t Hooft anomaly-matching conditions. The
possible gauge-singlet fermions that could, a priori, form
are described by the wavefunctions

Bijk ¼ F̄a;i;LSabj;LF̄b;k;L; with

1 ≤ i; k ≤ N þ 4; 1 ≤ j ≤ 1þ p ð10:16Þ

and

B0
ijk ¼ ðF̄†Þai;LS̄ab;j;LðF̄†Þbk;L; with

1 ≤ i; k ≤ N þ 4; 1 ≤ j ≤ p: ð10:17Þ

The composite fermion Bijk transforms as a rank-2 anti-
symmetric tensor of SUðN þ 4ÞF̄ and a fundamental
representation of SUð1þ pÞS. From the analogue of the
relation (7.12), its charges under the two global Abelian
factor groups in Gfl;SS̄, Uð1Þk, k ¼ 1; 2, are

Qð1Þ
B ¼ −N − 2pðN þ 2Þ ð10:18Þ

and

Qð2Þ
B ¼ 2pðN þ 2Þ: ð10:19Þ

The composite fermion B0
ijk transforms as a rank-2 con-

jugate antisymmetric tensor of SUðN þ 4ÞF̄ and a funda-
mental representation of SUðpÞS̄. Its charges under the two
global Abelian factor groups in Gfl;SS̄, Uð1Þk, k ¼ 1; 2, are
determined by the relation

QðkÞ
B0 ¼ QðkÞ

S̄
− 2QðkÞ

F̄ ; k ¼ 1; 2: ð10:20Þ

Hence,
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Qð1Þ
B0 ¼ 2ð1þ pÞðN þ 2Þ ð10:21Þ

and

Qð2Þ
B0 ¼ −ðN þ 4Þ − 2pðN þ 2Þ: ð10:22Þ

We find that a hypothetical low-energy theory with these
two massless composite fermions would not satisfy the
’t Hooft anomaly-matching conditions for any nonzero
value of p. [In the p ¼ 0 case, the theory degenerates to the
SF̄model, for which there is only the one type of composite
fermion (7.11), and the dynamics in the strongly coupled
case would allow the formation of this massless composite
fermion.] As with the Adj and AT theories, in the present SS̄
theory, ifN and p are such that the theory becomes strongly
coupled in the infrared, then the resultant fermion con-
densation in the S × S̄ → 1 channel leaves, as the descend-
ant low-energy effective field theory below the scale of
this condensation, the SF̄ theory. This is equivalent to the
original SS̄ theory with p ¼ 0.

D. UV to IR evolution

In order to investigate the nature of the UV to IR
evolution in this SS̄ theory, we first note that, again by
design, the most attractive channel is

S × S̄ → 1; ð10:23Þ

preserving the SUðNÞ gauge symmetry. This has the
attractiveness measure

ΔC2ðS × S̄ → 1Þ ¼ 2C2ðSÞ ¼
2ðN þ 2ÞðN − 1Þ

N
:

ð10:24Þ

That this is larger than the ΔC2 for the next-most-attractive
channel S × F̄ → F is clear since

ΔC2ðS × S̄ → 1Þ − ΔC2ðS × F̄ → FÞ
¼ C2ðSÞ > 0: ð10:25Þ

Using the rough estimate (2.7), the minimal critical
coupling for condensation in the channel (10.23) is

αcr;S×S̄ ¼
πN

3ðN þ 2ÞðN − 1Þ : ð10:26Þ

In order to get an approximate measure of the size of the
coupling at the IR fixed point as compared with the
minimum size for condensation, we define the ratio

ρIR;S×S̄ ≡ αIR;2l;SS̄
αcr;S×S̄

; ð10:27Þ

depending on N and p ∈ ðIpÞSS̄. In Table VIII we list
values of this ratio for a range of N and p values.
As N → ∞ (with p fixed [25]), the ratio ρIR;S×S̄

approaches the same limit as ρIR;Adj×Adj in the Adj
model, namely Eq. (5.29), and the specific values for the
allowed range p ¼ 4, 3, 2 are the same as were given in
Eqs. (5.30)–(5.32). Also, the same comments about the
likely evolution to various IR phases that were made in the
N → ∞ limit there also apply here.

E. Comparison with DFI

Since the theory is asymptotically free and hence
weakly coupled in the UV, one can enumerate the pertur-
bative field degrees of freedom, with the result

fUV;SS̄M ¼ 2ðN2 − 1Þ þ 7

4

�
ð2pþ 1ÞNðN þ 1Þ

2

þ ðN þ 4ÞN
�
; ð10:28Þ

where here and below, the subscript SS̄M means SS̄ model.
For values of N and p such that the beta function has an IR
zero αIR;2l at a value significantly smaller than αcr;SS̄, i.e.,
for which ρIR;SS̄;S×S̄ is well below unity, one expects that the
UV to IR evolution of this theory will not involve any
spontaneous chiral symmetry breaking but instead will lead
to a deconfined non-Abelian Coulomb phase in the infra-
red. In this case, as for the other two theories discussed
above, at the weakly coupled perturbative level, fUV ¼ fIR,
and the perturbative corrections obey the conjectured
degree-of-freedom inequality (2.12).

TABLE VIII. Values of αIR;2l;SS̄ and ρIR;S×S̄ for 3 ≤ N ≤ 8 in
the SS̄ theory, and, for each N, the values of p ∈ ðIpÞSS̄.
N p αIR;2l;SS̄ ρIR;S×S̄

3 1 0.684 2.18
3 2 0.0278 0.0885
4 1 0.857 3.68
4 2 0.113 0.486
5 1 0.989 5.29
5 2 0.153 0.819
6 1 1.106 7.04
6 2 0.173 1.10
7 1 1.219 8.98
7 2 0.182 1.34
7 3 0.015 0.111
8 1 1.334 11.15
8 2 0.186 1.55
8 3 0.0245 0.204
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For values of N and p such that the beta function has no
IR zero or an IR zero αIR;2l that is moderately large, i.e., for
which ρIR;SS̄;S×S̄ ≳Oð1Þ, one expects that as the reference
scale μ decreases sufficiently, the gauge coupling will
become large enough to produce a bilinear fermion con-
densate, and this condensate is expected to be in the most
attractive channel, (10.23). We denote the scale at which
this happens as ΛSS̄. The associated condensate is

hψab T
i;L Cψab;j;Li: ð10:29Þ

A vacuum alignment argument suggests that the dynamics
would yield condensates with i ¼ j, which would thus take
the values i ¼ j ¼ 1;…; p, namely

�Xp
i¼1

ψabT
i;L Cψab;j;L

�
: ð10:30Þ

The condensate (10.30) preserves an SOðpÞ isospin
symmetry defined by

ψab
i;L →

Xp
i¼1

Oijψ
ab
j;L;

ψab;i;L →
Xp
i¼1

Oijψab;j;L: ð10:31Þ

Here the orthogonal transformation O ∈ SOðpÞ is in 1-1
correspondence with the special case of unitary trans-
formation in SUðpþ 1ÞS that, furthermore, leaves the
i ¼ pþ 1 component of the (pþ 1)-dimensional vector
ðψab

1;L;…;ψab
pþ1;LÞT unchanged, and is also a special case

of the unitary transformation in SUðpÞS̄. Assuming that
the condensate takes the form (10.30), this process breaks
the initial (nonanomalous) global flavor symmetry group
Gfl;SS̄ to

G0
fl;SS̄ ¼ SOðpÞ ⊗ SUðN þ 4ÞF̄ ⊗ Uð1Þ0: ð10:32Þ

Here the SUðN þ 4Þ is (7.3), and the Uð1Þ0 is the linear
combination of Uð1Þ1 and Uð1Þ2 for which the fields
ðS; F̄; S̄Þ have charges of the form Q ¼ ða; b;−aÞ. The
2p chiral fermions involved in the condensate (10.29),
namely the S fields ψab

i;L and the S̄ fields ψab;i;L with
i ¼ 1;…; p, gain dynamical masses of order ΛSS̄. Note that
this leaves the (pþ 1)th component ψab

i;L with i ¼ pþ 1

still massless. It follows that the number of Nambu-
Goldboson bosons produced by this spontaneous symmetry
breaking of Gfl;SS̄ to G0

fl;SS̄ is

oðGfl;SS̄Þ − oðG0
fl;SS̄Þ ¼

pð3pþ 5Þ
2

: ð10:33Þ

In the low-energy effective field theory applicable at
scales μ ≪ ΛSS̄, one integrates out the now-massive S and S̄
fermions ψab

i;L and ψab;i;L with i ¼ 1;…; p. The resultant
global flavor symmetry group describing the massless
degrees of freedom in this low-energy effective theory is
just that of the SF̄ model, Gfl;SF̄ given in Eq. (8.6).
The further evolution of this SF̄ theory into the infrared

and the two possibilities of confinement without chiral
symmetry breaking or sequential condensate formation
in the SF̄ → F channel and associated gauge and global
symmetry breaking have been reviewed above. From these
we can calculate the resultant IR degrees of freedom and
check the degree-of-freedom inequality (2.12).
For the S × S̄ → 1 condensation followed by sequential

S × F̄ condensations in the SUðNÞ theory, SUðN − 1Þ
theory, etc., we have

fIR;SS̄M;S×S̄;S×F̄ ¼ 8N þ 1þ 7

4

�
NðN − 1Þ

2
þ 4N

�

þ p
2
ð3pþ 5Þ

¼ Nð7N þ 113Þ
8

þ 1þ p
2
ð3pþ 5Þ:

ð10:34Þ

Hence,

ðΔfÞSS̄M;S×S̄;S×F̄ ≡ fUV;SS̄M − fIR;SS̄M;S×S̄;S×F̄

¼ 1

4
½15N2 − 25N − 12þ pf7NðN þ 1Þ − 2ð3pþ 5Þg�:

ð10:35Þ

This is positive for all N and p values of relevance here.
Explicitly, for (non-negative) p, ðΔfÞSS̄M;S×S̄;S×F̄ is positive
if

p <
1

12

h
7NðN þ 1Þ − 10

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49N4 þ 98N3 þ 269N2 − 740N − 188

p i
: ð10:36Þ

The right-hand side of Eq. (10.36) is greater than the upper
bound pb1z allowed by asymptotic freedom. For example,
for N ¼ 3, the physical, integral values of p are required by
asymptotic freedom to be ≤ 2, whereas the right-hand side
of (10.36) is 12.95; and for N ¼ 4, asymptotic freedom
again requires p ≤ 2, whereas the right-hand side of
(10.36) is 22.61, and similarly for larger values of N.
For a UV to IR evolution involving SS̄ → 1 condensa-

tion followed by confinement without spontaneous chiral
symmetry breaking, we find

YAN-LIANG SHI AND ROBERT SHROCK PHYSICAL REVIEW D 91, 045004 (2015)

045004-24



fIR;SS̄M;S×S̄;sym ¼ 7

4

�ðN þ 4ÞðN þ 3Þ
2

�
þ pð3pþ 5Þ

2

ð10:37Þ

and hence

ðΔfÞSS̄M;S×S̄;sym ≡ fUV;SS̄M − fIR;SS̄M;S×S̄;sym

¼ 1

4
½15N2 þ 7N − 50þ pf7NðN þ 1Þ − 2ð3pþ 5Þg�:

ð10:38Þ

This is positive for all N and p values of relevance here.
Explicitly, for (non-negative) p, ðΔfÞSS̄M;SS̄;SF̄ is positive if

p <
1

12

h
7NðN þ 1Þ − 12

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49N4 þ 98N3 þ 269N2 þ 28N − 1100

p i
: ð10:39Þ

The right-hand side of Eq. (10.39) is greater than the upper
bound pb1z allowed by asymptotic freedom. For example,
for N ¼ 3, p ≤ 2 for asymptotic freedom, while the right-
hand side of (10.39) is 13.63; and for N ¼ 4, again, p ≤ 2
for asymptotic freedom, while the right-hand side of
(10.39) is 23.23, and similarly for larger values of N.
In the N → ∞ limit (5.13) (with p fixed), we have

f̄UV;SS̄ ¼
37þ 14p

8
ð10:40Þ

and

f̄IR;SS̄M;S×S̄;S×F̄ ¼ f̄IR;SS̄M;S×S̄;sym ¼ 7

8
; ð10:41Þ

and hence

ðΔf̄ÞSS̄M;S×S̄;S×F̄ ≡ f̄UV;SS̄M − f̄UV;SS̄M;S×S̄;S×F̄

¼ ðΔf̄ÞSS̄M;S×S̄;sym ≡ f̄UV;SS̄M − f̄UV;SS̄M;S×S̄;sym

¼ 15þ 7p
4

: ð10:42Þ

This difference is manifestly positive, in agreement with the
conjectured degree-of-freedom inequality (2.12).

XI. CONCLUSIONS

In summary, we have constructed three asymptotically free
chiral gauge theories and analyzed their renormalization-
group evolution from the ultraviolet to the infrared. These
theories have the gauge group SUðNÞ and massless fermions
transforming according to a symmetric rank-2 tensor repre-
sentation, S, and N þ 4 copies of a conjugate fundamental

representation, F̄, together with a vectorlike subsector with p
copies of fermions in higher-dimensional representation(s).
We first studied two theories with the vectorlike fermions
in different self-conjugate representations, namely theories
withp copies of fermions in (a) the adjoint representation and
(b) in the antisymmetric rank-k tensor representation of
SUð2kÞ. We have also studied a third type of theory, with a
vectorlike subsector consisting of p pairs of fermions trans-
forming as fSþ S̄g. We have presented results on beta
functions, IR zeros of these beta functions, and possible types
of UV to IR evolution. In analyzing fermion condensate
formation, we have made use of the most-attractive-channel
approach. We have shown that for these three types of chiral
gauge theories, the various types of likely UV to IR evolution
satisfy the conjectured degree-of-freedom inequality (2.12)
for all relevantvaluesofN andp. It is hoped that thenewchiral
gauge theories constructed and analyzed here may serve as
useful theoretical laboratories for the study of chiral gauge
theories in future work.
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APPENDIX: BETA FUNCTION COEFFICIENTS
AND RELEVANT GROUP INVARIANTS

For reference, we list the one-loop and two-loop coef-
ficients [16,17] in the beta function (2.3) for a non-Abelian
chiral gauge theory with gauge group G and a set of chiral
fermions comprised of Ni fermions transforming according
to the representations fRig:

b1 ¼
1

3

�
11C2ðGÞ − 2

X
Ri

NiTðRiÞ
�

ðA1Þ

and

b2 ¼
1

3

�
34C2ðGÞ2 − 2

X
Ri

Nif5C2ðGÞ þ 3C2ðRiÞgTðRiÞ
�
:

ðA2Þ

We list below the group invariants that we use for the
relevant case G ¼ SUðNÞ. We have C2ðGÞ ¼ C2ðAdjÞ ¼
TðAdjÞ ¼ N, and, as in the text, we use the symbols F
for and S for . We have

C2ðFÞ ¼
N2 − 1

2N
; TðFÞ ¼ 1

2
; ðA3Þ

C2ðSÞ ¼
ðN þ 2ÞðN − 1Þ

N
; TðSÞ ¼ N þ 2

2
; ðA4Þ
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C2ð½k�NÞ ¼
kðN þ 1ÞðN − kÞ

2N
; ðA5Þ

and

Tð½k�NÞ ¼
1

2

�
N − 2

k − 1

�
: ðA6Þ

Hence, for our case N ¼ 2k,

C2ð½k�2kÞ ¼
kð2kþ 1Þ

4
ðA7Þ

and

Tð½k�2kÞ ¼
ð2k − 2Þ!
2½ðk − 1Þ!�2 : ðA8Þ
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