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We construct an equation of state for massive neutron stars based on quantum chromodynamics
phenomenology. Our primary purpose is to delineate the relevant ingredients of equations of state that
simultaneously have the required stiffness and satisfy constraints from thermodynamics and causality.
These ingredients are (i) a repulsive density-density interaction, universal for all flavors, (ii) the color-
magnetic interaction active from low to high densities, (iii) confining effects, which become increasingly
important as the baryon density decreases, and (iv) nonperturbative gluons, which are not very sensitive to
changes of the quark density. We use the following “3-window” description: At baryon densities below
about twice normal nuclear density, 2n0, we use the Akmal-Pandharipande-Ravenhall (APR) equation of
state, and at high densities, ≥ ð4 − 7Þn0, we use the three-flavor Nambu-Jona-Lasinio (NJL) model
supplemented by vector and diquark interactions. In the transition density region, we smoothly interpolate
the hadronic and quark equations of state in the chemical potential-pressure plane. Requiring that the
equation of state approach APR at low densities, we find that the quark pressure in nonconfining models
can be larger than the hadronic pressure, unlike in conventional equations of state. We show that consistent
equations of state of stiffness sufficient to allow massive neutron stars are reasonably tightly constrained,
suggesting that gluon dynamics remains nonperturbative even at baryon densities ∼10n0.
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I. INTRODUCTION

As the Relativistic Heavy Ion Collider and the Large
Hadron Collider continue to push the limits of our exper-
imental knowledge of hot dense quantum chromodynamics
(QCD), neutron stars are the only cosmic laboratories in
which we can study the structure of cold dense QCD [1–5].
The recent discoveries of neutron stars with masses M ≃
2M⊙ (M⊙ is the solar mass), including the binary milli-
second pulsar J1614-2230 with mass ð1.97� 0.04ÞM⊙ [6]
and the pulsar J0348þ 0432 with mass ð2.01� 0.04ÞM⊙
[7] (also PSR J1311-3430 [8]), together with recent
simultaneous determinations of neutron star masses and
radii [9,10] pose particular challenges to the theoretical
construction of the neutron star equation of state.
On the one hand, the existence of these massive stars

suggests that the equation of state must be stiffer than
conventional hadronic descriptions of matter including
hyperons. Furthermore, the central baryon density in
neutron stars with masses ∼2M⊙ well exceeds twice
nuclear matter density n0 and may reach as high as
∼10n0. To understand why such high mass stars are stable
requires a knowledge of the equation of state at baryon
densities nB over a range ∼1 − 10n0. However, we cannot
at present reliably calculate the equation of state over such a
range; the densities are too high to apply reliably conven-
tional hadronic equations of state, and too low to apply
perturbative QCD.

This situation motivates us to investigate the properties
of strongly correlated quark matter, intermediate between
the hadronic and perturbative QCD phases, and ask how
the properties of such matter is constrained by neutron
star observations. Using a schematic quark model, we
manifestly take into account quark degrees of freedom,
while including interaction effects such as vector repulsion
between quarks, known from hadron spectroscopy, color-
magnetic diquark interactions, and six-quark interactions
arising from the axial anomaly. We examine the roles of
these interactions and find that it is possible, within a
reasonable parameter range, to construct an equation of
state that (i) is sufficiently stiff to include stable stars with
M ∼ 2M⊙, (ii) satisfies the thermodynamic constraint that
the baryon number density be an increasing function of the
baryon chemical potential, ∂nB=∂μB > 0, and (iii) is con-
sistent with the (suggestive) causality constraint that the
speed of sound (at zero frequency) not exceed the speed of
light [11,12]. While these conditions provide relatively
tight constraints on the quark matter equation of state, it is
nonetheless possible to construct the desired equation of
state using quark model parameters compatible with the
hadron spectroscopy.
To further motivate the picture of strongly correlated

quark matter, we briefly review the domain of applicability
of hadronic and perturbative QCD equations of state.
Conventional hadronic equations of state are constrained
by experimental data at low energy and density,
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e.g., two-body hadronic scattering below the pion produc-
tion threshold, the masses and level structure of light nuclei,
and nuclear matter around nuclear saturation density n0.
While hadronic equations of state include the relevant
physics in the low-density regime in which their parameters
are fit, with increasing density multiple meson exchanges,
many-baryon interactions, and virtual baryonic excitations
become increasingly important. (The systematics can be
most clearly seen in the chiral effective theory approach
[13–15].) In nucleonic potential models [16], the three-
body nucleon interaction is crucial to reproducing nuclear
matter properties at nB ≃ n0, and its contribution to the
energy density can even be comparable (and of opposite
sign) to that of the two-body force at nB ∼ 2n0. Beyond
baryon densities nB ≫ n0, a well-defined expansion in
terms of static two-, three-, or more, body forces no longer
exists.
The equation of state of perturbative QCD [17–19] relies

on a picture of weakly coupled quarks and gluons.
A current state-of-the-art calculation in this regime, to
second order in the strong interaction fine structure con-
stant αs, with strange quark mass corrections [18], finds a
relatively strong dependence of the QCD equation of state
on the renormalization scale below the quark chemical
potential μ ∼ 1 GeV, which corresponds to a baryon
density ∼102n0. Such dependence indicates that nonper-
turbative effects remain quite important in the lower-
density range relevant to neutron stars.
In constructing a phenomenological QCD equation of

state here, we follow the spirit of the “3-window” approach
of Masuda, Hatsuda, and Takatsuka [20] that interpolates
between a nuclear equation of state at low density and a
quark equation of state at high density. At densities below
2n0 we adopt the hadronic Akmal-Pandaripande-Ravenhall
(APR) equation of state [16] (denoted in their paper as
A18þ δvþ UIX�). At densities above 4–7 n0, where a gas
of baryons of radius 0.4–0.5 fm would begin to percolate
[21], we employ a three-flavor Nambu–Jona-Lasinio (NJL)
quark model including vector and diquark interactions.

While we use the NJL model to be specific, our discussions
are more general. In the intermediate region, where purely
hadronic or purely quark descriptions are not appropriate,
we construct an equation of state using a smooth poly-
nomial interpolation in the baryon chemical potential–
pressure (μ,P) plane. In this plane the pressure must be
a continuous and monotonically increasing function of μ.
One cannot rule out the possibility of a first order transition
as the baryon density increases; such a transition would
appear as a discontinuity in the first derivative, ∂P=∂μ.
The 3-window approach is quite different from the

conventional hybrid one in which one regards the quark
and hadronic phases as distinct. In the latter, the quark
pressure at given μ must, with increasing μ, intersect the
hadronic pressure from below, and moreover must remain
larger than the hadronic pressure at larger μ. By regarding
the hadronic equation of state at density larger than ∼2n0 as
a valid description of matter, such a hybrid construction
implicitly selects out possible forms of quark equations of
state; in order to have an intersection, the quark pressure
must be larger than that of the hadronic phase as large μ.
Such quark equations of state are typically soft, and as a
consequence hybrid stars with larger quark cores tend to
have smaller masses. In contrast, in the 3-window
approach, we construct high-density quark equations of
state independently of assuming a trustworthy high-density
hadronic pressure; at high density, the resulting quark
pressure at given μ does not have to grow fast and may
remain smaller than the pressure extrapolated from the
hadronic phase. Such quark equations of state tend to be
stiff, and a star with large quark core can have a large mass.
Within this schematic 3-window description, we aim to

incorporate the following effects known from observed
hadronic spectroscopy: (i) A repulsive flavor-independent
density-density interaction [22], which stiffens the equation
of state [Fig. 1(a)]. (ii) The attractive color-magnetic
interaction, relevant at all densities, which reduces the
average single quark energy [Fig. 1(b)]. This effect is
similar to that observed in the constituent quark model [23],

FIG. 1 (color online). Pressure vs quark chemical potential for several equations of state. The black line is the APR result [16]
(A18þ δvþ UIX� without pion condensation): the bold line for nB < 2n0 and thin dotted line for nB > 2n0. Various effects are
successively added to the standard NJL model: (a) a repulsive density-density interaction, which stiffens the NJL equation of state,
(b) the color-magnetic interaction (diquark correlation), which reduces the average quark energy at all densities, and (c) confining
effects, which suppress the artificially large pressure in NJL models at low density down to the APR pressure, discussed in the text.
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in which the average quark energy in a nucleon is reduced
from the constituent quark mass, ∼340 MeV, to one-third
of the nucleon mass, ∼313 MeV. As we show, this effect
plays an important role in ensuring that the interpolated
equation of state satisfies thermodynamic constraints.
(iii) Confinement, which, at low densities, traps quarks
into baryons and forbids quarks to contribute significantly
to the pressure. As we describe, the NJL model, which does
not include confinement, has a higher pressure at low
density than nuclear models. The requirement that the
interpolated pressure merges smoothly into APR at low
densities [Fig. 1(c)] effectively suppresses such excess
pressure.
The present approach of interpolating between a had-

ronic and an NJL-based quark picture makes the tacit
assumption that the behavior of the gluon sector does not
change appreciably over the range 0≲ nB ≲ 10n0 and, in
particular, that the gluons do not add a bag constant, Bg, to
the energy (and subtracted from the pressure) when the
nonperturbative gluons become perturbative. The bag
constant measures the energy difference between the trivial
(perturbative vacuum) and the nonperturbative vacuum.
With the zero-point of the energy set to make the QCD
(nonperturbative) vacuum energy zero, the perturbative
vacuum has positive energy. Thus, whenever we consider
the extreme conditions under which nonperturbative effects
disappear, we must include the bag constant in addition to
the contributions of the perturbative effects. However, the
stability of massive neutron stars does not permit gluon
condensation at the QCD scaleΛQCD ∼ 0.2 GeV to produce
a gluonic bag constant, Bg ∼ Λ4

QCD, since such a term
would, as we argue, too greatly soften the equation of state;
we, thus, exclude the possibility of such a term. On the
other hand, a quark bag constant, Bq of order Λ4

QCD

associated with restoration of chiral symmetry, is unavoid-
able in the NJL model [24].
We extrapolate NJL parameters obtained via hadron

phenomenology at nB ∼ n0 to high-density quark matter
(nB ∼ 10n0) [25,26], an approach that is consistent with the
observation from analyses for a large number of colors, Nc,
that gluon dynamics is insensitive to quark loop effects [27].
This paper is organized as follows. In Sec. II, we briefly

describe the hadronic and quark models adopted in this
study. In Sec. III A, we examine interaction effects on the
quark equation of state. In Sec. IV, we construct the
interpolated equation of state. In particular, we explain
the difference between the present 3-window description
and conventional equations of state which introduce a first-
order phase transition between hadronic and quark matter
in [1,28–31]. As we see the constraints from thermody-
namics and causality are quite important. In Sec. V, we
solve the Tolman-Oppenheimer-Volkoff (TOV) equation
and examine the resulting mass-radius (M-R) relation of
neutron stars. Section VI is devoted to a summary and
outlook.

We use the following conventions: gμν ¼
diagð1;−1;−1;−1Þ, γ5 ¼ γ†5, and the charge conjugation
operator C is iγ0γ2. The flavor and color Uð3Þ generator
matrices τiði ¼ 0;…; 8Þ and λaða ¼ 0;…; 8Þ are com-
posed, respectively, of the identity and Gell-Mann matrices,
and are normalized as tr½τiτj� ¼ 2δij and tr½λaλb� ¼ 2δab.
We work in units in which c and ℏ ¼ 1.

II. MODELS

In this section we briefly summarize the features of the
hadronic (APR) and quark (NJL) matter equations of state
employed in this paper. APR will be used to describe low-
density matter, nB < 2n0, while the NJL model will be used
at high densities, nB > ð4–7Þn0. The precise density
beyond which we adopt a fully quark description of matter
will depend upon details of the interpolation, as discussed
in Sec. IV.

A. The APR equation of state

In this work we adopt the A18þ δvþ UIX� version of
the APR equation of state to describe low-density hadronic
matter [16]. This equation of state, based on the Argonne
v18 two-body potential, which fits hadronic scattering data
very well, and the Urbana IX three-body interaction, which
is important to explain nuclear saturation properties,
includes charge neutrality and β equilibrium. The δv
indicates the inclusion of relativistic corrections. For
simplicity, we adopt the APR version excluding neutral
pion condensate, which emerges at nB ∼ 1.4n0. The APR
model includes only nucleonic degrees of freedom, and
does not take into account hyperons, whose interactions
with nucleons and among themselves are not well deter-
mined. Typical models of nucleon-hyperon interactions
predict hyperon onset at a density nB ∼ 2–3n0. We restrict
our application of APR to nB < 2n0.

B. The NJL equation of state

1. The Lagrangian

In descriptions of quark matter, we adopt a three-flavor
Nambu–Jona-Lasinio model with Lagrangian density

L ¼ q̄ði∂ − m̂Þqþ Lð4Þ þ Lð6Þ; ð1Þ

where q is a quark field with color, flavor, and Dirac

indices, m̂ is the quark current mass matrix, and Lð4Þ ¼
Lð4Þ
σ þ Lð4Þ

V þ Lð4Þ
d and Lð6Þ ¼ Lð6Þ

σ þ Lð6Þ
σd are four- and

six-quark interaction terms, respectively, chosen to reflect
the symmetries of QCD. The four-quark interactions
possess ULð3Þ × URð3Þ symmetry for flavors, while the
six-quark interactions reflect the UAð1Þ anomaly.
The first of the four-quark interactions describes sponta-

neous chiral symmetry breaking,
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Lð4Þ
σ ¼ G

X8
i¼0

½ðq̄τiqÞ2 þ ðq̄iγ5τiqÞ2� ¼ 8Gtrðϕ†ϕÞ; ð2Þ

where G > 0 (attractive), and ϕij ¼ ðq̄RÞjaðqLÞia is the
chiral operator with flavor indices i; j (summed over the
color index a).
The second of the four-quark terms [32],

Lð4Þ
V ¼ −gVðq̄γμqÞ2; ðgV > 0Þ; ð3Þ

describes the repulsive density-density interaction, analo-
gous to ω-meson exchange in nuclear matter.
The third of the four-quark terms,

Lð4Þ
d ¼ H

X
A;A0¼2;5;7

½ðq̄iγ5τAλA0Cq̄TÞðqTCiγ5τAλA0qÞ

þ ðq̄τAλA0Cq̄TÞðqTCτAλA0qÞ�;
¼ 2Htrðd†LdL þ d†RdRÞ; ðH > 0Þ; ð4Þ

describes attractive diquark pairing, where τA and λA0

(A; A0 ¼ 2; 5; 7) are the antisymmetric generators of U(3)
flavor and SU(3) color, respectively. The structure of the
interaction can be understood as the color-magnetic inter-
action in the 2 → 2 scatterings of quarks in s-wave, spin-
singlet, flavor- and color- antitriplet channel. The operators
ðdL;RÞai ¼ ϵabcϵijkðqL;RÞjbCðqL;RÞkc are diquark operators of
left- and right-handed chirality.
Next we discuss the six-quark interactions responsible

for the UAð1Þ anomaly [33]. The first term involves the
product of the chiral condensates of different flavors,

Lð6Þ
σ ¼ −8Kðdetfϕþ H:c:Þ; ðK > 0Þ; ð5Þ

where detf denotes the determinant with respect to flavor
indices. The second term couples the chiral and diquark
condensates [34],

Lð6Þ
σd ¼ K0ðtr½ðd†RdLÞϕ� þ H:c:Þ; ðK0 > 0Þ: ð6Þ

At tree level, these two interactions may be related via a
Fierz transformation, which leads to the conclusion
K0 ¼ K. However, renormalization effects will, in general,
destroy this equality so that at the mean-field level we may
treat K and K0 as independent parameters, but with K0 ∼ K.

2. Electric and color charge neutrality constraints

In order to avoid energetically expensive static long-
range electric Coulomb interactions and color flux tube
configurations in stable homogeneous quark matter, we
impose the local electric and color charge neutrality
constraints

nQðxÞ ¼ naðxÞ ¼ 0. ða ¼ 1;…; 8Þ; ð7Þ

where nQ is the local electric charge density, and the na are
the local color densities. These conditions are enforced
via standard Lagrange multipliers—with the appropriate
chemical potentials coupled to the electric and color charge
densities, respectively [35].
Introducing the charge chemical potential μQ, we add to

the Lagrangian the terms

LQ ¼ μQðq†Qq − l†i liÞ; ði∶summedÞ; ð8Þ

where Q ¼ diagð2=3;−1=3;−1=3Þ is the quark charge
operator for ðu; d; sÞ quarks, in units of the proton charge
e. The li ¼ ðe; μ; τÞ are lepton fields and mi the lepton
masses. We may safely omit contributions from μ- and
τ- leptons since their populations are vanishingly small in
the density range of interest [20].
Colors and flavors in dense matter are coupled through

the diquark interactions of Lð4Þ
d . Thus, an asymmetry in

quark flavor densities (e.g., a 2SC phase) leads to a
corresponding net quark color density. Most generally
case, we should introduce eight independent color chemical
potentials [36]. However, for the diquark pairing structures
considered in this paper, all color densities except n3 ¼
hq†λ3qi and n8 ¼ hq†λ8qi automatically vanish [37]. Thus,
we only need to add the terms

L3;8 ¼ μ3q†λ3qþ μ8q†λ8q ð9Þ

to constrain the system. The values of ðμQ; μ3; μ8Þ will be
tuned to satisfy the neutrality conditions.

3. Mean-field equation of state

The mean fields for the chiral condensate and quark
densities are

σi ¼ hq̄iqii; n ¼
X3
i¼1

hq†i qii: ð10Þ

Below we write ðσ1; σ2; σ3Þ ¼ ðσu; σd; σsÞ for later con-
venience. For the diquark mean fields, we write

di ¼ hqTCiγ5Riqi; ð11Þ

where

ðR1; R2; R3Þ≡ ðτ7λ7; τ5λ5; τ2λ2Þ: ð12Þ

With these definitions, the diquark condensates ðd1; d2; d3Þ
correspond to ðds; su; udÞ quark pairings, respectively.
The thermodynamic potential may be computed from the

mean-field particle propagators in terms of these mean
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fields; the inverse of the propagator SðkÞ, can be read off
from the mean-field Lagrangian [34],

S−1ðkÞ ¼
�
k − M̂ þ μ̂γ0 iγ5ΔiRi

−iγ5Δ�
i Ri k − M̂ − μ̂γ0

�
; ð13Þ

where the effective mass matrix has diagonal elements,

Mi ¼ mi − 4Gσi þ Kjϵijkjσjσk þ
K0

4
jdij2; ð14Þ

while the three diquark pairing amplitudes,

Δi ¼ −2di
�
H −

K0

4
σi

�
; ð15Þ

and the effective chemical potential matrix,

μ̂ ¼ μ − 2gVnþ μ8λ8 þ μQQ; ð16Þ

are color and flavor dependent.
For each momentum, the inverse propagator is a 72 × 72

matrix. There is spin degeneracy, so maximally there are 36
independent eigenstates in the presence of the flavor and
color asymmetry. In the Nambu-Gor’kov formalism, the
eigenenergies appear as pairs, ðϵ;−ϵÞ. The single particle
contribution to the thermodynamic potential is

Ωsingle ¼ −2
X18
j¼1

Z
Λ d3k
ð2πÞ3

�
T ln ð1þ e−jϵjj=TÞ þ Δϵj

2

�
;

ð17Þ

where Δϵj ¼ ϵj − ϵfreej ; here Λ is an ultraviolet cutoff. The
μ dependence is hidden in the eigenvalue ϵj. Because
Eq. (13) cannot be inverted analytically, the eigenvalues
must be computed numerically for each momentum [38].
In order to remove the double-counting of interactions

typical of mean-field treatments, we must also include in
the thermodynamic potential the terms

Ωcond ¼
X3
i¼1

�
2Gσ2i þ

�
H −

K0

2
σi

�
jdij2

�

− 4Kσ1σ2σ3 − gVn2: ð18Þ

These terms are positive (σi < 0), except for the final term.
The quark matter thermodynamic potential is

Ωbare
q ¼ Ωsingle þΩcond:. However, there still remains the

nontrivial choice of the “zero” of the thermodyanmic
potential. For discussions of neutron star masses, this
procedure is extremely important because in general
relativitity, the absolute energy density, as in the TOV
equation, and not simply its deviation from the QCD
vacuum, is physically relevant. Given that the cosmological

constant is extremely small compared to the QCD scale, we
set the origin of the thermodynamic potential to zero at zero
quark density and temperature. Thus in constructing the
quark matter equation of state, we will use the renormalized
thermodynamic potential

Ωqðμ̂; TÞ≡Ωbare
q ðμ̂; TÞ − Ωbare

q ðμ̂ ¼ T ¼ 0Þ; ð19Þ

which vanishes at T ¼ μ̂ ¼ 0.
Finally, the electron contribution to the thermodynamic

potential is the standard

Ωe ¼ −2T
X
λ¼�

Z
d3 k
ð2πÞ3 ln ð1þ e−ðEeþλμQÞ=TÞ; ð20Þ

with Ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

e

p
, and where we recall that the

electron chemical potential is μe− ¼ −μQ.
Writing the total thermodynamic potential as

Ω ¼ Ωq þ Ωe, the thermodynamic state of the system is
determined minimizing the free energy with respect to
the seven condensates fσi; di; ng under the neutrality
conditions

nQ;3;8 ¼ −
∂Ω

∂μQ;3;8
¼ 0; ð21Þ

which yields the “gap equations.”

0 ¼ −
∂Ω
∂σi ¼ −

∂Ω
∂di ; n ¼ −

∂Ω
∂μ : ð22Þ

Below we solve these self-consistent equations using the
method outlined in [37]. Whenever we encounter regions in
the solution suggestive of first-order phase transitions, we
explicitly compare Ω in the relevant phases to determine
which local minima is gives the lower free energy. For the
ground state we calculate at a nonzero but very small
temperature ∼0.1me, which makes the numerical calcu-
lations faster and more stable.

4. The NJL parameters

For the model outlined above, we identify two distinct
sets of parameters: ðΛ; mu;d; ms; G; KÞ and ðgV;H;K0Þ. The
first set is fixed by matching to QCD vacuum phenom-
enology. In this work we will use the set by Hatsuda and
Kunihiro (HK)[25] (Table I), which gives the vacuum
effective masses for light flavors, Mu;d ≃ 336 MeV, and
strange quark, Ms ≃ 528 MeV. The second set of param-
eters does not manifestly affect the quantities in QCD
vacuum at the mean-field level; we, therefore, treat them as
free parameters, but of the same order of magnitude as the
first set, based upon Fierz transformations connecting the
associated interaction vertices in the absence of any known
anomalous suppression. Briefly, we will investigate
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gV ¼ 1 − 2G,H ¼ 1 − 1.5G, and K0 ¼ 0 and K0 ¼ K. The
choice of these values will be explained in Sec. III.

III. QUALITATIVE EFFECTS ON THE QUARK
EQUATION OF STATE

In this section we examine a number of qualitative effects
related to the quark matter equation of state.

A. When do the quark equations of state
become stiff?

We begin our discussion of stiffening of the equation of
state by considering a schematic expression for the quark
sector equation of state (see also [29]). For simplicity, we
presently consider only matter in a single phase, ignoring
any complications arising from phase transitions. In this
context, the energy density may be parameterized in terms
of the quark density as

εðnÞ ¼ c1n4=3 þ c2n2=3 þ c−2n2 þ B; ð23Þ

where n ∼ p3
F with pF the quark Fermi momentum. The

first term is the kinetic energy contribution. The second
term contains contributions from both diquark pairing on
the Fermi surface (∼ − p2

FΔðpFÞ2) and mass corrections
(∼þ p2

FMðpFÞ2), where we assume that Δ;M ≪ pF. (The
limit M ≪ pF is applicable for all quarks, even strange, at
high density, where chiral restoration occurs, and is
applicable for u and d quarks at intermediate density.)
The third term represents the density-density interaction.
The last term is the bag constant Bð> 0Þ. We neglect, for
large pF, the density dependence of the pairing gaps, as
well as that of the bag constant.
Differentiating (23) yields the chemical potential

μ ¼ ∂ε=∂n, from which the pressure P ¼ μn − ε is

P ¼ ε

3
−
2

3
c2n2=3 þ

2

3
c−2n2 −

4

3
B: ð24Þ

The first term is the kinetic pressure, while the remaining
terms correspond to corrections arising from the mecha-
nisms discussed above. For given ε, the pressure becomes
large when c2 < 0 and c−2 > 0. The former condition is
met when the quarks interact attractively near the Fermi
surface. The latter condition simply expresses the

requirement that the density-density interaction should
be repulsive in order to stiffen the equation of state.
More generally, for stiff equations of state, the coefficients
cm≥2 should be negative, while cm<0 should be positive.
Finally, a smaller value of the bag constant also tends to
stiffen the equation of state.

B. Quark and gluon bag constants: Bq and Bg

To consider the impact of the quark and gluon bag
constants, we begin by supposing that both the quark and
gluon sectors are weakly interacting and that all quark and
gluon condensates are vanishingly small. In the absence of
perturbative corrections, the equation of state is then

PðμÞ ¼ c0μ4 − B; εðμÞ ¼ 3c0μ4 þ B; ð25Þ

where c0 ¼ NcNf=12π2 is a function of the number of
quark colors Nc and flavors Nf , and the net bag constant is
sum of quark and gluon contributions, B ¼ Bq þ Bg.
The existence of the bag constant changes the energy-

pressure relation from ε ¼ 3P to ε − 4B ¼ 3P. Therefore, a
smaller B enhances P at given ε, stiffening the equation of
state. In fact, for a three flavor ideal quark gas with a bag
constant, the maximum neutron star mass scales as [41,42]

Mmax ≃ 1.78M⊙
�
155 MeV

B1=4

�
2

; ð26Þ

while the corresponding radius scales as

R≃ 9.5

�
155 MeV

B1=4

�
2

km: ð27Þ

Thus, smaller values of B give rise to more massive, larger
neutron stars.
In the NJL model, the quark bag constant at large density

appears automatically when the gap in the Dirac sea is
closed through chiral restoration. As a result, its value be
computed explicitly as

BNJL
q ≡ ½ΩðMeff ¼ mÞ − ΩðMeff ¼ MÞ�T¼μ¼0; ð28Þ

where Meff is the effective mass in the quark energy; Meff
becomes the current quark mass (m) in the perturbative
vacuum and the dynamically generated mass (M) in the
chiral symmetry-broken vacuum. In the HK parameter set
with vacuum effective masses Mu;d ¼ 336 MeV and
Ms ¼ 528 MeV, the bag constant is

BNJL
q ≃ 284 MeV=fm3 ¼ ð219 MeVÞ4: ð29Þ

Naively substituting this value into Eq. (26), we obtain a
maximum neutron star mass ∼0.9M⊙, which less than 1=2
the mass of observed massive stars. This low maximum

TABLE I. Three common parameter sets for the three-flavor
NJL model: the average up and down bare quark mass mu;d,
strange bare quark mass ms, coupling constants G and K0, and 3-
momentum cutoff Λ [25,39,40], with Λ, mu;d, and ms in MeV.

Λ mu;d ms GΛ2 KΛ5

HK [25] 631.4 5.5 135.7 1.835 9.29
RHK [39] 602.3 5.5 140.7 1.835 12.36
LKW [40] 750.0 3.6 87.0 1.820 8.90
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mass indicates the importance of interaction effects in order
to sustain massive neutron stars.
Typical values of the bag constant used previously

[16,42] are in the range B1=4 ∼ 150 − 200 MeV. The bag
constant used in [42] to construct strange quark stars,
Bsq ≃ ð155 MeVÞ4, is one-fourth of the NJL bag constant,
Bsq ≃ BNJL

q =4. For a three-flavor free quark gas with Bsq,
the star mass is relatively large,≃1.78M⊙, but still does not
reach ∼2M⊙; doing so requires including interactions.
Since the value of the bag constant is not precisely known,
we employ the NJL value (29) for consistency. As noted,
we should also consider a gluon bag constant, Bg ∼ Λ4

QCD

when gluons become perturbative at some large quark
density. However, because the quark bag constant in the
NJL model alone already provides considerable softening
of the equation of state, a significant contribution from the
gluonic bag constant is unlikely in our equation of state, as
we show later in Sec. IV C.
One might argue that considering a gluonic bag constant

is unnecessary because the gluons are integrated out in
determining the interactions in the NJL model, and thus the
quark bag constant already contains the gluonic contribu-
tions. This is not quite correct. In the NJL model, the long-
range components of the gluons such as those producing
confinement are certainly not taken into account; integrat-
ing out the long-range components generally produces
nonlocal interactions among quarks, which are not present
in the NJL model. Therefore, we must consider the
contributions from long-range gluons separately, and not
simply ignore the gluonic bag constant.

C. Repulsive density-density interaction: gV
The repulsive quark vector interaction is inspired by

the repulsive density-density interaction in nuclear
matter, described, e.g., by omega meson exchange [43].
Extrapolating the picture of nuclear matter to the strongly
correlated quark matter domain, we anticipate that the
quark vector coupling is of similar magnitude to the
hadronic coupling scale gV ∼G.
Reference [44] demonstrated that the vector coupling

should be gV ∼ 2G in order to explain the lattice results on
the curvature of the chiral restoration line near zero density
[45]. (Note that the coupling constant G here corresponds
to half that used in Ref. [44].) In the following, we focus
mainly on the value gV ¼ 2G.
The inclusion of a vector coupling smooths out chiral

symmetry restoration [44] because the density-density
repulsion forbids a rapid increase of the baryon density,
and as a result the chiral transition also does not occur
rapidly. Indeed, beyond a particular critical coupling, a
first-order chiral transition is turned into a smooth
crossover.
Intuitively, an increasing repulsive vector force stiffens

the equation of state, P vs ε, as shown in Fig. 2. While the

NJL equation of state is considerably softer than APR for
small vector couplings, when gV is sufficiently large the
NJL equation of state can achieve a stiffness on par with
APR across a wide range of densities. By increasing gV
sufficiently, we can obtain an equation of state within the
present framework stiff enough to support neutron star
masses ∼2M⊙.
On the other hand, increasing gV makes it more difficult

to interpolate between the APR and NJL regimes. This
challenge is seen in the plots of nBðμÞ and PðμÞ in Fig. 3,
where for both P and nB, the APR and NJL curves become
more widely separated in μ as gV increases. One might
imagine that the matching could be performed rather
simply by allowing a first-order phase transition in the
interpolated region; however, a first-order transition, a
sudden increase in nB is simply a kink in P vs μ, which
does not help the interpolation.
A part of the difficulty of interpolating between APR and

NJL is that the constituent quark mass for light flavors is
Mu;d ≃ 336 MeV, larger than the one-third of the nucleon
mass. Accordingly, the PðμÞ curve in the NJL model tends
be below that of APR. We next discuss two-body corre-
lations mediated by the color magnetic interaction, which
tend to shift the PðμÞ curves to the left, rendering the
interpolation procedure more feasible.

D. Two-body correlations: The color magnetic
interaction H

At high density, quarks undergo BCS pairing (diquark
condensation) as a consequence of the color magnetic
interaction. Pairing reduces the energy density by an
amount δε ∼ −p2

FΔ2 or, equivalently, enhances the pressure
by δP ∼þp2

FΔ2.
We expect correlation effects among the quarks to

increase with decreasing density. Eventually three-quark
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FIG. 2 (color online). Pressure vs energy density for several
NJL parameter sets and APR. The bold lines for the NJL
equations of state indicate that nB > 4n0. As gV increases, the
NJL equation of state becomes noticeably stiffer. APR is also
plotted for comparison, in bold for nB < 2n0, and as double dots
in the region above, where we do not use APR.
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correlations must be dominant in the hadronic phase. One
path to three-quark correlations is increasing diquark
correlations plus diquark-single quark correlations beyond
that described by the standard choice of the diquark
coupling H ¼ 0.75 − 1.0 G, based on Fierz transformation
of the one-gluon exchange type vertex. In this range, we do
not find significant effects of H on the equation of state in
the density range of interest. A diquark mean field appears
only when the Fermi surface becomes sufficiently large to
overcome chiral symmetry breaking effects. However,
diquark correlations, which can exist even without a large
Fermi sea, reduce the energy of a pair to less than twice the
effective quark mass. To simulate such effects within the
present mean-field approach, we allow the diquark mean
field to reduce the single quark energy at all densities by
exploring somewhat larger values H ¼ 1.0 − 1.5 G than
the standard.
As shown in Sec. III A, pairing tends to stiffen the

equation of state in the high-density regime. Figure 4 shows
the development of constituent quark masses and mean-
field pairing gaps; as μ increases, quark matter first appears
in a 2SC phase in which only up and down quarks are
paired (Δud ≠ 0, Δus ¼ Δds ¼ 0), and later evolves into a

CFL phase in which all three quark flavors pair
(Δud;Δds;Δsu ≠ 0). At T ¼ 0 the 2SC-CFL transition
appears to be first order for all NJL parameter sets.
However, given that this transition occurs at relatively
low density (nB < 4n0), the quark model results must be
treated with caution.
Two-body correlations are also important at low den-

sities. For example, in the constituent quark model, color
magnetic interactions between quarks, in the presence of
confinement, reduces the nucleon mass from three times the
constituent quark mass, ≃3 × 340 ¼ 1020 MeV by some
80 MeV to its physical value. Since confinement, by
localizing the quarks into a spatial region ∼Λ−3

QCD, increases
the quark kinetic energies, as well as adding the energy of
color flux tubes—of typical length ∼Λ−1

QCD and energy
∼σΛ−1

QCD, where σ is the string tension—the energy gain
from the color magnetic interaction must exceed∼30 MeV.
The diquark interaction, H, treated in mean field,

qualitatively simulates the reduction in the average quark
energy at low density that results from pairing effects. As
the magnitude of the diquark interaction increases, the
curves of the thermodynamic variables as functions of μ are
shifted leftwards to lower chemical potential, as shown in
Fig. 5. Thus, by including effects of pairing, one is able to
maintain the stiff equation of state produced by a relatively
large vector coupling, while at the same time enabling a
smooth interpolation between the NJL and APR equations
of state for all thermodynamic variables.
Figure 6 demonstrates the impact of pairing on the

stiffness of the NJL equation of state. The discontinuous
change of ε at fixed P reflects the first-order 2SC-CFL
phase transition. While for 0 < H < 1.5 G, the equations
of state exhibit softening immediately following the 2SC-
CFL transition, as the quark density increases further,
pairing effects stiffen the equation of state for all NJL

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

G
ap

s 
(G

eV
)

μ (GeV)

Mu
Md
Ms
Δds
Δsu
Δud

FIG. 4 (color online). Chiral and diquark gaps as a function of
quark chemical potential for K0 ¼ 0, gV ¼ 2.0 G, H ¼ 1.5 G.
With increasing density, the system undergoes a first-order phase
transition from the 2SC to the CFL phase. The gaps are shown as
bold lines for nB > 4n0.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

n B
 / 

n 0

μ (GeV)

V/G = 0.0
gV/G = 1.0
gV/G = 2.0

APR (nB < 2n0)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

P
 (

G
eV

/fm
3 )

μ (GeV)

V/G = 0.0
gV/G = 1.0
gV/G = 2.0

APR (nB < 2n0)

H=K’=0,  g

H=K’=0,  g

FIG. 3 (color online). Normalized baryon density nB=n0 (top
panel) and pressure P (bottom panel) as a function of quark
chemical potential μ for several NJL parameter sets and APR.
Typically, the baryon density and pressure in the APR rise
faster at lower chemical potential than in NJL which has a
larger effective quark mass, M ≃ 336 MeV, than 1=3 of the
nucleon mass.

KOJO et al. PHYSICAL REVIEW D 91, 045003 (2015)

045003-8



parameter sets, relative to the no-pairing case. Moreover,
when the pairing is sufficiently strong (H > 1.5 G), the
equation of state is stiffer than without pairing (H ¼ 0)
across the entire density range.
We note that for large H, the quark pressure at given μ

exceeds the APR pressure even at very low densities. Taken
at face value, this would suggest that even at very low
densities the ground state of QCD matter is quark rather
than hadronic matter. However, as we discuss in Sec. IV,
this high pressure is an unphysical consequence of the NJL
model not being confining at low densities.

E. Chiral-diquark coupling: K0

We now turn to the axial anomaly-induced coupling
between the chiral and diquark condensates. The impor-
tance of the anomalous coupling K0 depends on the size of
the chiral and diquark condensates. For K0 > 0, this
coupling favors the coexistence of chiral and diquark
condensates [34]. Thus, as K0 increases from zero the
diquark condensate emerges at lower chemical potential
and the chiral condensate persists to higher chemical
potential.
Figure 7 shows the impact of K0 on the NJL equation of

state. We note that while increasing K0 from 0 to K slightly
stiffens the equation of state, its impact is much smaller
than that of gV or H. Since the K0 term in the Lagrangian
can be read as a diquark interaction with an interaction
strength proportional to the chiral condensate, the effect of
K0 can be largely absorbed by the variation of gV and H;
thus, in the following we do not study the variation of K0 in
detail but take K0 ¼ K as a canonical value.

IV. INTERPOLATED EOS

We now discuss constructing an interpolated equation of
state, PðμÞ that smoothly joins the equations of state of the
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low-density APR model to the high-density NJL model.
The first step in defining an interpolation method for
joining the hadronic and quark sectors is to determine
the “overlap region” in which the two equations of state
will be merged. Beginning in the low-density hadronic
regime described by APR, we expect that as density
increases, corrections from many-body forces, hyperon
degrees of freedom, multiple meson exchanges and the
like, will become important above nB ∼ 2n0. Thus, we fix
the lower boundary of the interpolation to n< ≡ 2n0.
As the density decreases in the quark regime, confining

effects, which trap quarks into baryons, become increas-
ingly important. Assuming that the radius of a typical
baryon is rB ∼ 0.4 − 0.5 fm, baryons begin to percolate at
around nB ∼ 4 − 7n0. Thus, we set the upper boundary of
the interpolation to n> ≡ 4 − 7n0, with the precise location
determined by the details of the given NJL parameter set
being used.
In the intermediate density regime at a given chemical

potential, the pressure of the interpolated equation of state
should be lower than the NJL pressure extrapolated to
lower densities (Fig. 8). This follows from the fact that
nonconfining models yield excess quark populations at
given chemical potential, due to the unphysically small
energy cost of having quarks present. In other words, were
the confining effects of QCD incorporated in the descrip-
tion of the quark phase, the pressure, especially in dilute
region, would be significantly suppressed. This situation is
quite analogous to the “semi”-QGP picture for finite
temperature QCD [46] in which an “overpopulated” quark
pressure is suppressed by Polyakov loop effects, until
thermal quarks and gluons exhibit quasiparticle behavior
at temperatures beyond ∼2–3Tc, where Tc is the pseudoc-
ritical temperature for deconfinement [47].
The present 3-window description is quite different from

the conventional one involving a first-order hadron-quark
phase transition [1]. In the latter case, the quark pressure at
low density of nonconfining models must be smaller than
the hadronic one, in order to ensure the intersection of the
quark and hadronic pressure at reasonable density. This is
achieved either by restricting the quark model parameters
or by introducing a bag constant to lower the quark
pressure. Such choices, however, generally affect the quark
matter equation of state not only in the (presumably
unreliable) low-density limit, but also in the high-density
regime in which it should be reliable.

A. Thermodynamic constraints

Having discussed the qualitative aspects of a hadron-
quark interpolation, we now briefly review the thermody-
namic constraints imposed on this interpolation which are
necessary to ensure that the interpolated equation of state is
physical. These constraints are as follows: (i) The pressure
PðμÞ must be continuous everywhere. (ii) nBðμÞ ¼
ð∂P=∂μÞ=Nc must be a monotonically increasing function

in order to ensure stability of the system with respect to
phase separation ∂2P=∂μ2 ¼ Nc∂nB=∂μ > 0. (iii) In addi-
tion, one physically expects that the speed of sound must be
less than the speed of light: c2s ¼ ∂P=∂ε < 1 [11,12].
These conditions tightly constrain possible interpolations
of the equation of state.

B. Interpolation method

We now describe a particular method for constructing a
phenomenological quark-hadron equation of state. To
interpolate in the variables μ-P, we employ a simple
polynomial interpolation function, defining an Nth-order
polynomial interpolant for the pressure,

PðμÞ ¼
XN
m¼0

bmμm; for μ< < μ < μ>; ð30Þ

where μ< and μ> are defined as the points where nBðμ<Þ≡
n< ¼ 2n0 and nBðμ>Þ≡ n> ¼ 4 − 7n0. The coefficients
bm are chosen to satisfy the matching conditions at the
boundaries of the interpolating interval. At μ ¼ μ<:

PAPRðμ<Þ ¼ Pðμ<Þ;
∂PAPR

∂μ
����
μ<

¼ ∂P
∂μ

����
μ<

;… ð31Þ

and at μ ¼ μ>:

PNJLðμ>Þ ¼ Pðμ>Þ;
∂PNJL

∂μ
����
μ>

¼ ∂P
∂μ

����
μ>

;…: ð32Þ

The number of derivatives that one matches at each
boundary is a matter of choice. In general, matching more

FIG. 8 (color online). Schematic illustration of confining effects
on the hybrid quark-hadron equation of state, PðμÞ, here
normalized by the Stefan-Boltzman gas for Nf ¼ 3. Effects of
confinement are strong at lower density, suppressing the excess
NJL pressure. The boundaries of the interpolated equation of state
are ðn<; n>Þ ¼ ð2.0; 5.0Þn0.
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derivatives results in a smoother interpolation, but at the
same time increases the probability of producing unphys-
ical artifacts in the interpolating region (e.g., inflection
points in PðμÞ which violate thermodynamic constraints).
Here we match up to second-order derivatives at each
boundary, which ensures that the pressure, number
density, and number susceptibility are continuous.
Correspondingly, these six boundary conditions require
that Eq. (30) has six terms (N ¼ 5).

C. Interpolated EOS

Figure 9 shows the interpolated equation of state PðμÞ,
with the interpolation boundaries ðn<; n>Þ ¼ ð2.0; 5.0Þn0.
For illustration, we consider two NJL parameter sets

ðgV;HÞ ¼
� ð2.0; 1.5Þ G ðset IÞ
ð2.0; 0.0Þ G ðset IIÞ ; ð33Þ

with K0 ¼ K in both cases. For n> ≃ 4nB, set I satisfies all
the conditions demanded by the thermodynamic con-
straints, as we verify shortly. One cannot, however, within
the present polynomial interpolation, construct a sensible
interpolation for set II, because at the interpolation boun-
daries the APR and NJL pressures are rather widely
separated in μ, a possibility noted in Sec. III D. This wide
separation in μ requires a small slope of the interpolated
pressure, but at the same time the slope must be larger than
the slope of the APR pressure at the lower boundary,
because of the compressibility condition ∂2P=∂μ2 > 0.
The interpolated equation of state has a region of
∂nB=∂μ < 0, as is clearly seen in the plot of nBðμÞ
in Fig. 10.

The result presented in Fig. 10 does not preclude
constructing a sensible interpolated pressure for set II.
As one sees in Fig. 10, it is possible to join the low and high
baryon density curves with a nondecreasing function of μ.
The present exercise shows that the class of interpolating
functions for set II is much more restrictive than for set I.
For example, if there is a first-order phase transition
between the hadronic and quark regions, the possible
density discontinuities are smaller for set II than set I.
More detailed treatments of the interpolation region are
beyond the scope of the present work and we henceforth
restrict our consideration to the simple polynomial inter-
polation, rejecting NJL parameter sets, such as II, incapable
of being joined with APR in a thermodynamically con-
sistent manner.
Figure 11 shows the pressure vs energy density for

parameter set I. In this case, the high-density equation of
state is as stiff as APR extrapolated into the region beyond
nB ¼ 2n0. From Fig. 12, we observe that the causality
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constraint is satisfied when the high-density boundary, n>,
is varied from 4n0 to 7n0. If we take n> ≲ 4n0, however, we
find that c2s > 1, a putative violation of causality.
Finally, we consider the possible impact of a gluonic bag

constant, Bg ∼ ð200 MeVÞ4 ≃ 0.2 GeVfm−3, which should
be included when the gluon sector becomes perturbative.
This contribution reduces the pressure in the quark matter
region by 30–40%, which makes it extremely difficult to
interpolate between the hadronic and quark regimes with-
out violating the condition ∂nB=∂μ > 0 (cf. Fig. 9). At the
same time, the bag constant increases the energy density by
Bg, so the resulting equation of state becomes significantly
softer. Strictly speaking, even in this situation it would be
possible to construct equations of state by increasing gV and
H significantly from our current choices; however the
current choices for these couplings are already relatively
large and it is difficult to identify a mechanism that would
significantly increase either coupling in the dense regime.
Thus, we conclude that Bg should be very small in the
quark matter equation of state, even at nB ∼ 10n0; the
gluons remain condensed and nonperturbative.

V. MASS-RADIUS RELATION

By solving the TOV equation for a given value of the
baryon density at the center, we construct a family of stars
whose masses and radii are functions of ncB. The M-ncB
relation for the equation of state with NJL parameters
ðgV;H;K0Þ ¼ ð2 G; 1.5 G; KÞ is shown in Fig. 13, where
we have taken n> ¼ 5n0 as in the previous section. To
examine effects of the quark bag constant associated with
chiral restoration, we also show results for the three-flavor
free quark gas with bag constants Bq ¼ BNJL ¼
ð219 MeVÞ4 and Bq ¼ ð155 MeVÞ4. In the NJL model
by itself, the quark bag constant is so large that neutron star
masses are restricted toM < M⊙. However, we note that as
the bag constant decreases, neutron star masses rise, so that

models yielding smaller bag constants allow more mas-
sive stars.
We see in Fig. 13 that the MðncBÞ curves for our

interpolated equation of state and APR are quite similar,
a not too surprising result given that our chosen NJL
parameter set yields an equation of state quite similar to
APR. However, while the thermodynamic properties of the
two systems are similar, the underlying effective degrees of
freedom are quite different. Indeed, APR is well known for
its extreme stiffness at high densities, but the effect of
hyperonic degrees of freedom in the hadronic sector are
expected to reduce this stiffness. On the other hand, our
NJL treatment of the quark sector includes strange quarks
from the beginning, and is capable of producing a
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FIG. 13 (color online). Neutron star mass as a function of
central baryon density, ncB. We display curves corresponding
to our interpolated equation of state for ðgV; H; K0Þ ¼
ð2 G; 1.5 G; KÞ and n> ¼ 5n0, as well as APR with and without
the three-nucleon interaction, and the three-flavor free quark gas
with bag constants Bq¼BNJL¼ð219MeVÞ4 and Bq¼ð155MeVÞ4.
The vertical arrows indicate the boundaries of the interpolation
region for the interpolated equation of state.

FIG. 14 (color online). Mass-radius relation for neutron stars
with several equations of state (same as Fig. 13).
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sufficiently stiff equation of state to support stars whose
masses exceed 2M⊙ [20].
Figure 14 shows the M-R relation for the interpolated

equation of state with parameter set I. For most central
densities the stellar radius is ∼11–12 km, which is com-
patible with observational data [9,10]. However, the radius
at which the mass starts to rise in the M-R plot is sensitive
to the properties of the hadronic equation of state for
n0 ∼ 1.0–2.0n0, with different hadronic equations of state
yielding radii differing by up to ∼2 km [20].

VI. SUMMARY

In this paper we have constructed a phenomenological
equation of state over the range of baryon densities nB ∼
1–10n0 by interpolating between the low-density hadronic
APRequation of state and the high-densityNJLquarkmodel.
In so doing, we explored a number of relevant ingredients of
the equation of state needed to realize neutron stars of mass
∼2M⊙, while satisfying necessary thermodynamic and
causality constraints. These requirements constrain the form
of the interpolated equation of state and allow one to infer
qualitative effects regarding the intermediate density region
between the hadronic and quark regimes. The repulsive
density-density interaction, color-magnetic interaction, and
confining effects play a vital role in determining the structure
of the equation of state. A crucial result is that the gluonic bag
constant must be small, i.e., the gluons must remain strongly
coupled throughout the density region of interest in massive
neutron stars; the gluon sector remains nonperturbative even
at ∼10n0. One reaches a similar conclusion from studies of
quarkyonic matter [27,48,49], in which nonperturbative
gluons in quark matter play a crucial role.
We have also emphasizedwhy the threewindowmodel of

interpolation [20] is capable of producing stiffer equations of
state than conventional hybrid equations of state involving
first-order phase transitions. As opposed to conventional
models,which require the intersection of quark and hadronic
PðμÞ curves, we propose that the quark pressure PðμÞ based
on nonconfining models need not (and even should not)
intersect the hadronic equation of state before the inclusion
of confining effects. While this observation is not directly
applicable at low density (where we did not use the NJL
model), it results in a much wider range of possible high-
density quark equations of state. As a result, we are able to
explore a region of parameter space that has been omitted
from prior studies, while still producing a stiff equation of
state required to support massive neutron stars.
In this work we have not taken into account possible

meson condensed phases, by which we mean condensates in
which the order parameter has the quantum number of a
mesonic field. Such condensates have been studied in a
nuclear context [50–52] as well in quark matter, e.g.,
inhomogeneous diquark [4] and chiral [5] condensates. If
extant, such exotic phases would likely occur in the neither
purely hadronic nor purely quark density region in which we

have interpolated. Thus one cannot directly take over
previous results for meson condensates, including the
strength, or density discontinuity, of the first-order phase
transition to the condensed phase. For a given hadronic
equation of state at low density and quark equation of state at
high density, the strength of such a phase transition is
bounded. Although we have, for simplicity, considered only
a smooth interpolation scheme, one should more generally
allow for such exotic phases; then the smooth PðμÞ curve
used in thisworkwould be replaced by onewith a small kink,
keeping the positive curvature of PðμÞ in the interpolation.
We anticipate that even with condensates at intermediate
density, it will still be possible to find a reasonable parameter
set for the color-magnetic and vector interactions that is
compatible with the existence of massive stars. The issue of
exotic phases remains open until we can reliably estimate the
high-density quark equations of state. Further studies are
needed to understand better the impact of exotic phases on
the in-mediumNJLparameters and in turn, their implications
for the description of massive neutron stars.
In order to improve the description of the intermediate

densitymatter in neutron stars it is important to further refine
our understanding of the hadronic equation of state near
nB ∼ ð1–3Þn0. In particular, amore careful assessment of the
importance of many-body interactions and the emergence of
hyperons is required. Further constraints may be obtained
fromheavy-ion collisions, including strangeness production
[53], and lattice QCD calculations of hyperon-nucleon
interactions [54]. Studies of the density dependence of
nuclear forces in terms of quarks and gluons play a crucial
role in determining when (and why) quarks emerge as the
proper degrees of freedom at high density. It would be
desirable in the future to extend to finite temperature the
present approach to the equation of state to enable us to
address dynamical questions such as applications to heavy
ion collisions, and neutron star cooling. It is also important
to obtain an improved estimate of the quark bag constant, for
were it much smaller than the NJL estimate used here, the
softening associated with chiral restoration would be sig-
nificantly reduced and large vector and diquark couplings
would not be necessary to obtain a stiff quark matter
equation of state within the present context.
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