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Using recently developed nonrelativistic numerical simulation code, we investigate the stability
properties of compact astrophysical objects that may be formed due to the Bose-Einstein condensation
of dark matter. Once the temperature of a boson gas is less than the critical temperature, a Bose-Einstein
condensation process can always take place during the cosmic history of the Universe. Because of dark
matter accretion, a Bose-Einstein condensed core can also be formed inside massive astrophysical objects
such as neutron stars or white dwarfs, for example. Numerically solving the Gross-Pitaevskii-Poisson
system of coupled differential equations, we demonstrate, with longer simulation runs, that within
the computational limits of the simulation the objects we investigate are stable. Physical properties of
a self-gravitating Bose-Einstein condensate are examined both in nonrotating and rotating cases.
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I. INTRODUCTION

A central issue in modern cosmology is the dark matter
problem (see [1] for an extensive review of recent results in
the search for dark matter). Considering the existence of
dark matter on galactic and extragalactic scales is neces-
sitated by two fundamental sets of observations: the
rotation curves of spiral galaxies and the mass discrepancy
in clusters of galaxies.
Galaxy rotation curves [2–4] compellingly indicate a

failure of Newtonian gravity or standard general relativity
on these scales in the absence of dark matter. The conflict
between predicted and observed rotation curves can be
resolved by postulating the existence of invisible dark
matter forming a spherical halo around galaxies. Similarly,
postulating dark matter can account for the apparent deficit
in the virialized mass of galaxy clusters.
In most popular models, dark matter is cold and

pressureless. A generic class of candidate dark matter is
known by the acronym WIMP (weakly interacting massive
particles—for a review of the particle physics aspects of
dark matter, see [5]).
Candidate dark matter particles have extremely small but

nonzero interaction cross sections with normal baryonic
matter. Therefore, their direct experimental detection may
be possible. Dark matter heating due to WIMP annihilation
processes was also proposed as an alternative to fusion as
the process that powered early, first-generation stars in the
Universe [6–8], resulting in a dark star. These models are
predicated on the existence of antiparticle partners to

proposed dark matter particles, but can potentially lead
supermassive dark stars with masses of the order of
ð105–107ÞM⊙ [8].
Inert or feebly annihilating dark matter, on the other

hand, may play a role in present-day main sequence stars.
Even a small spin-dependent interaction cross section
(∼10−37 cm2) between dark matter particles and protons
can provide an energy transport mechanism with dramatic
effects, limiting the mass of such dark matter particles to
values greater than 5 GeV [9].
Particles in a dilute Bose gas can form a quantum

degenerate condensate [Bose-Einstein condensate (BEC)]
by occupying the same quantum state at low temperatures.
Such states have been investigated in the laboratory using
laser and evaporative cooling techniques (for recent
reviews, see [10–15]).
For a particle of mass m in an ensemble in thermo-

dynamic equilibrium at temperature T, the thermal
wavelength is

λT ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2πℏ2

kBmT

s
; ð1Þ

where kB is Boltzmann’s constant. When the thermal
wavelength exceeds the interparticle distance l, overlapping
particles become correlated. The interparticle distance and
the particle density n are connected by the relationship
nl3 ≃ 1. Therefore, the condition λT > l can be reexpressed
as nλ3T > 1, yielding the transition temperature [16,17]:

Tc ¼
2πℏ2n2=3

kBm
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In the astrophysical context, BEC phenomena have been
studied as a possible source of dark matter [18]. Rotating
BEC halos were also discussed [19]. The possibility that
the superfluid interior of compact astrophysical objects
may be at least partially in the form of a BEC [20], and the
possible presence of a boson condensate in stars and their
stability properties [21], were also investigated. In these
contexts, the BEC can be described as a nonrelativistic
degenerate gas with a barotropic equation of state.
However, the stability of self-gravitating BECs remains

an open question. Chavanis and Harko [20] studied the
dynamics of a nonrotating BEC star and found it to be
stable. More recently, this result was confirmed using a
simple thermodynamic argument [22]. On the other hand,
Guzmán [23] found that the self-gravitating BEC halos
described in [20] are unstable, and that, furthermore, a
relationship exists between the halo size and the BEC self-
interaction parameter, which may be untenable (see also
[24]). However, Toth [25] showed that these difficulties
arise from the inappropriate application of the Thomas-
Fermi approximation, and recommended the use of a
different density profile as an approximate static solution.
In the present paper, we investigate the stability of self-

gravitating BECs using numerical software code that was
originally developed to study two-dimensional condensates
in the laboratory [26–29]. The code was later extended to
study three-dimensional self-gravitating condensates [30]
and further refined to eliminate instabilities due to the
choice of the initial condensate profile [25]. The hypo-
thetical objects of our study are made of ultralight bosons.
This is dictated by computational necessity, not physics.
The spatial resolution of the simulation must be below the
Compton wavelength λC. Therefore, to keep the number of
iterations computationally manageable, the linear scale of
the simulation volume cannot be more than a few hundred
times λC.
Nonetheless, even with this restriction in place, our

approach can be employed to study a range of astrophysical
objects using modest computational resources (e.g., desk-
top computers). Our investigations focus on compact BEC
stars and extended BEC galactic halos. In this paper, we
report our findings on the stability of BEC stars; results of
our ongoing efforts to study extended galactic halos will be
reported elsewhere.

II. BOSE-EINSTEIN CONDENSATES

Below the critical temperature, T < Tc, bosons have a
tendency to occupy a single quantum mechanical state,
forming a BEC. This results in quantum effects becoming
evident on a macroscopic scale.

A. The Gross-Pitaevskii equation

If we treat a BEC as a classical object, the wave function
of the condensate satisfies the nonlinear Schrödinger

equation (NLSE), also called the Gross-Pitaevskii equation
(GPE) [10–15]. Therefore, the dynamics of weakly inter-
acting particles of confined and dilute BECs below the
critical temperature are described by a mean-field time-
dependent macroscopic wave function, Ψðt; rÞ, which we
normalize such that

Z
jΨj2d3r ¼ N; ð3Þ

where N is the total particle number. The wave function is
related to the condensate density ρðt; rÞ ¼ mjΨðt; rÞj2
(where m is the particle mass) and phase,
φ ¼ tan−1ðImΨ=ReΨÞ, through the Madelung transforma-
tion, Ψ ¼ jΨjeiφ ¼

ffiffiffiffiffiffiffiffiffiffiffi
m−1ρ

p
eiφ.

Interparticle collisions are described by the s-wave
scattering length, denoted by the letter a. In a sufficiently
dilute condensate, characterized by an average interparticle
distance that is much greater than a, particle interactions are
binary interactions that are characterized by a contact
interaction potential, V intðr; r0Þ ¼ gδðr − r0Þ, where g is
the scattering coefficient and δ is the Dirac δ-function. The
coupling constant g is related to the scattering length by the
equation

g ¼ 4πℏ2a
m

: ð4Þ

This effective interaction is attractive if g < 0, repulsive
otherwise. The N-particle Hamiltonian that corresponds to
this pseudopotential can be written as

Ĥ ¼
XN
i¼1

�
−
ℏ2

2m
∇2

i þ VðriÞ
�
þ
X
i<j

gδðri − rjÞ; ð5Þ

where ∇i ¼ ∂=∂ri and VðriÞ represents external potentials.
This leads to the following NLSE:

iℏ
∂Ψ
∂t ¼

�
−
ℏ2

2m
∇2 þ V − μþ gjΨj2

�
Ψ; ð6Þ

which is the Gross-Pitaevskii equation [10–15].
In (6), we also introduced the chemical potential μ. In a

thermodynamical system, the chemical potential is defined
as the amount μ ¼ ∂E=∂N by which the internal energy E
of the system changes if we introduce an additional particle
while keeping the entropy and volume fixed. Below the
critical temperature, T < Tc, the chemical potential is well
approximated by μðTÞ ¼ −kT lnð1þ 1=NÞ≃ 0, and thus it
can be ignored for large N. Hence, from now on, we
assume μ ¼ 0.
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B. Self-gravitating systems

In a self-gravitating system with no external potential,
the potential V is the gravitational potential that is deter-
mined from Poisson’s equation for gravity:

∇2V ¼ 4πGρ ¼ 4πGmjΨj2; ð7Þ

where G is Newton’s gravitational constant. Together with
Eq. (6), these equations form what is known the Gross-
Pitaevskii-Poisson (GPP) system of equations.
For a self-gravitating system, the GPE can be derived

using the variational principle from the energy functional
(cf. [15,31]):

E ¼ ℏ2

2m
j∇Ψj2 þ 1

2
VjΨj2 þ 1

2
gjΨj4: ð8Þ

(Note that the factor of 1=2 multiplying V is required to
avoid double counting the gravitational potential energy
between two regions of the condensate.)
From (8), the total energy of the system can be

calculated as

Etot ¼ Ekin þ Epot þ Eint; ð9Þ

where the kinetic energy Ekin, (gravitational) potential
energy Epot, and internal energy Eint are given by,
respectively,

Ekin ¼
Z

ℏ2

2m
j∇Ψj2d3r; ð10Þ

Epot ¼
Z

1

2
Vj∇Ψj2d3r; ð11Þ

Eint ¼
Z

1

2
gjΨj4d3r: ð12Þ

To achieve a stable self-gravitating object, it is necessary
to choose a coupling coefficient (4) that is positive. For an
initial estimate a0 for the scattering length a, we use

a0 ¼ Gm3ðR=πℏÞ2; ð13Þ

which is derived from the Thomas-Fermi approximation
[18,24]. Since we do not rely on that approximation, other
values for a are of course also possible.

C. Quantization of circulation

In a frame of reference that is rotating in the xy-plane
with angular velocity Ω, the GPE is written as

iℏ
∂Ψ
∂t ¼

�
−
ℏ2

2m
∇2 þ V þ gjΨj2 −ΩLz

�
Ψ; ð14Þ

where Lz ¼ −iℏðx∂y − y∂xÞ.
Formation of observable quantum vortices represents

one the most remarkable properties of BECs. The GPE
permits topologically nontrivial solutions, such as vortices
with nonzero fluid circulation and zero density. These
vortices appear as density holes with quantized circulation.
Vortices may decay by colliding, or dissipate at the
condensate surface or through other dissipative mecha-
nisms. Vortex creation is influenced by the shape and
size of the condensate and the nature and form of the
potential V.
When a superfluid rotates about a fixed axis at a low

enough frequency, it remains stationary. When the rotation
frequency exceeds a critical value, quantized vortex lines
may appear; vortices form near the surface [32] and enter
the condensate. The emergence of vortices reduces the
free energy of the system and they become energetically
favorable [33].
The GPE is formally similar to the Ginzburg-Landau

equation, which describes a superfluid withΨ as a complex
order parameter field. Any rotation of the fluid must be in
the form of vortex lines, which introduce quantum circu-
lation. The phase φ of the order parameter around any
closed contour K must be 2πq, where q ¼ 0;�1;�2;…:

I
K
∇φ · dl ¼ 2πq: ð15Þ

The gradient of the phase describes the local velocity flow:
v ¼ ℏm−1∇φ [15]. The superfluid rotation induced by a
vortex line can be expressed as the circulation, Γ, about K:

Γ ¼
I
K
v · dl ¼ 2πq

ℏ
m
; ð16Þ

which is an integer multiple of 2πℏ=m. This shows that
circulation is quantized in units of 2πℏ=m. For jqj > 1 the
system is unstable. Also from Eq. (16) it follows that the
velocity around a single circular vortex of radius r is

v ¼ Γ
2πr

¼ qℏ
mr

: ð17Þ

There is an energy barrier between nonvortex and vortex
states. The superfluid has identically vanishing vorticity
(∇ × v ¼ ℏm−1∇ × ∇φ ¼ 0) everywhere excluding singu-
lar (vortex) lines. The minimum density grows to the bulk
value over a length scale of the order of the healing length
[32]. As we move away from the vortex, the velocity slowly
decreases. If we move towards the vortices, then the
superfluid density tends to zero.
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D. Choice of units

In the remainder of this paper, we choose to use a
dimensionless form of the GPE, which is obtained by using
units such that ℏ ¼ 1 and m ¼ 1:

i
∂Ψ
∂t ¼

�
−
1

2
∇2 þ V þ gjΨj2 − ΩLz

�
Ψ: ð18Þ

This choice fixes two of the three fundamental units (e.g.,
time and mass), whereas the third unit can be chosen as a
matter of convenience. After restoring units, the total
condensate mass can be obtained as M ¼ Nm.
We note that the dimensionless GPP system is invariant

under the following set of transformations:

t → λ2t; r → λr; V → λ−2V;

g → λ−2κ−2g; G → λ−4κ−2G; Ψ → κΨ: ð19Þ

Under these rescalings, the GPP system will read as

κi
λ2

∂Ψ
∂t ¼

�
−

κ

2λ2
∇2 þ κ

λ2
V þ κg

λ2
jΨj2 − κΩ

λ2
Lz

�
Ψ; ð20Þ

λ−4∇2V ¼ λ−44πGjΨj2: ð21Þ

In particular, choosing a value of κ ≠ 1 amounts to
rescaling N → κ2N and G → κ−2G. This rescaling is
computationally convenient, as it allows all quantities to
be represented as single-precision floating point numbers.

III. THE NUMERICAL CODE

Our present study is based on a previously developed
numerical solution of the GPE [26–29], which was
obtained using the Crank-Nicholson method in combina-
tion with Cayley’s formula [34], in the presence of an
isotropic trapping potential (for a numerical investigation of
BECs in the presence of anisotropic traps, see [35,36]). In
particular, the use of Cayley’s formula ensures that the
numerical solution remains stable, and the unitarity of the
wave function is maintained.
The code was later extended to study three-dimensional

self-gravitating condensates [30] by incorporating a sol-
ution of the gravitational Poisson equation using the
relaxation method, and by introducing a novel initial
estimate for the condensate density to eliminate instabil-
ities [25].

A. Discretization of the GPE

Given the time-dependent Schrödinger’s equation in the
general form,

i
∂Ψ
∂t ¼ ĤΨ; ð22Þ

the value Ψnþ1 of the wave function at the ðnþ 1Þth time
step is obtained from the known values Ψn at the nth time
step by solving the following equation:

�
1þ 1

2
iΔtĤ

�
Ψnþ1 ¼

�
1 −

1

2
iΔtĤ

�
Ψn: ð23Þ

After evaluating the right-hand side given Ψn, the left-hand
side can be solved for Ψnþ1 algebraically. If Ĥ is a linear
operator, this is a linear system of equations for the
unknown values Ψnþ1.
This is elegantly demonstrated in the one-dimensional

case, where the Hamilton operator is given by

Ĥ ¼ −
1

2

∂2

∂x2 þ U: ð24Þ

The second derivative can be approximated as a finite
difference as follows:

∂2Ψ
∂x2 ¼ Ψk−1 − 2Ψk þΨkþ1

ðΔxÞ2 : ð25Þ

Substituting Eq. (25) into (23), we find that

�
1 −

iΔt
2

�
U þ 1

ðΔxÞ2
��

Ψnþ1
k −

iΔt
4ðΔxÞ2 ðΨ

nþ1
k−1 þΨnþ1

kþ1Þ

¼
�
1 −

iΔt
2

�
U þ 1

ðΔxÞ2
��

Ψn
k þ

iΔt
4ðΔxÞ2 ðΨ

n
k−1 þΨn

kþ1Þ:

ð26Þ

If the values of Ψn on the right-hand side are known,
Eq. (26) represents an algebraic system of equations for the
values of Ψnþ1 that appear on the left-hand side. The
equations are linear if the generic potential U is not itself a
function of Ψ. Moreover, the form of this system of
equations is tridiagonal, and therefore it can be solved
highly efficiently by using the Thomas algorithm [34].
In the three-dimensional case, one could proceed with

solving for Ψnþ1 directly, but since the system (26) is no
longer tridiagonal, the efficiency of the numerical pro-
cedure is lost. Therefore, it is better to use the alternating-
direction implicit method, which requires the calculation of
the one-dimensional solution in the x, y, and z directions,
usingΔt=3 for the time step, andU=3 for the potential. This
method works because the Hamilton operator can be
represented as a sum of three operators, Ĥ ¼ P

3
i¼1 Ĥi,

i ¼ x; y; z, allowing us to solve numerically using frac-
tional time steps as follows:

Ĥi ¼ −
1

2

∂2

∂x2i þ
1

3
U; for i ¼ x; y; z: ð27Þ
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Substituting these expressions into Eq. (26), that is,
replacing U with U=3 and Δx, respectively, with Δx, Δy or
Δz, and by using a time step of Δt=3, we obtain the three
fractional iteration steps that correspond to a full iteration
with time step Δt.
In the case of the GPE, the generic potential U is

nonlinear, as it includes the self-interaction potential gjΨj2.
This nonlinear term can be dealt with by a simple recursion
that converges rapidly. Specifically, we calculate the non-
linear term on the left-hand side by substituting Ψn in place
ofΨnþ1, and solve the system of equations; we then use this
solution to recalculate the nonlinear term and solve again,
until convergence is obtained. As the nonlinear term is
cubic, convergence is rapid.

B. Numerical solution of Poisson’s equation

For the solution of Poisson’s equation, we employ the
relaxation method, a moderately efficient algorithm. This
method is based on the finite differences approximation of
the second derivative in Poisson’s equation:

∇2V ¼ ∂2V
∂x2 þ ∂2V

∂y2 þ ∂2V
∂z2

¼ Vðx − Δx; y; zÞ − 2Vðx; y; zÞ þ Vðxþ Δx; y; zÞ
Δx2

þ Vðx; y − Δy; zÞ − 2Vðx; y; zÞ þ Vðx; yþ Δy; zÞ
Δy2

þ Vðx; y; z − ΔzÞ − 2Vðx; y; zÞ þ Vðx; y; zþ ΔzÞ
Δz2

þOðΔ2Þ; ð28Þ

where Δ2 is the largest of Δx2, Δy2, and Δz2.
Equation (28) can be solved for Vðx; y; zÞ. The relaxation

method amounts to obtaining refined approximations of
Vðx; y; zÞ using the iteration formula,

Vkþ1ðx; y; zÞ ¼
Δx2Δy2Δz2

2ðΔx2Δy2 þ Δy2Δz2 þ Δz2Δx2Þ

×

�
Vkðx − Δx; y; zÞ þ Vkðxþ Δx; y; zÞ

Δx2

þ Vkðx; y − Δy; zÞ þ Vkðx; yþ Δy; zÞ
Δy2

þ Vkðx; y; z − ΔzÞ þ Vkðx; y; zþ ΔzÞ
Δz2

− 4πGjψ j2
�
: ð29Þ

This method is accurate, but does not converge rapidly.
Its efficiency in the context of the GPP system can be
improved, however, by observing that jψ j2 changes very
little between subsequent time steps. Therefore, using the

values of Vðx; y; zÞ from the preceding time step as the
initial estimate for Vðx; y; zÞ in the new iteration leads to
very rapid convergence, with a satisfactory solution often
emerging after just a few iterations.
For a full description and implementation of the numeri-

cal code, see [30].

C. Initial and boundary conditions

Numerically solving a system of coupled differential
equations requires a set of initial and boundary conditions.
Specifically, solving the Gross-Pitaevskii equation requires
an initial field configuration Ψðx; y; zÞ at t ¼ 0. In turn, the
numerical solution of Poisson’s equation for gravity needs
boundary conditions in the form of values Vðxmin; y; zÞ,
Vðxmax; y; zÞ, Vðx; ymin; zÞ, Vðx; ymax; zÞ, Vðx; y; zminÞ, and
Vðx; y; zmaxÞ, respectively. We obtain suitable initial con-
ditions by postulating an initial density profile in the form

jΨj ∝
���� sin r=r0r=r0

����
3

; ð30Þ

which is a good approximation of the numerical solution of
the time-independent GPE [25]. We choose a value for r0 to
yield a condensate of the desired size, and a proportionality
factor to obtain the desired total condensate mass. The
phase of the condensate is initially vanishing: φ ¼ 0. As
demonstrated in [25] and confirmed using the numerical
code, this initial density profile yields stable numerical
solutions.
During the simulation, the condensate is assumed to

vanish, Ψ ¼ 0, at the boundaries of the simulation volume.
The gravitational potential V at the simulation volume is
given by V ¼ −GN=r (where r is the distance from the
center of the simulation volume), corresponding to the
Newtonian potential of a spherically symmetric condensate
of N particles.

IV. MODEL AND RESULTS

Presently, our research focuses on the properties of a
nonrotating or slowly rotating pure Bose star composed of
ultralight bosons. (Stars that contain a mixture of bosons
and ordinary matter require a hydrodynamical extension of
our simulation code, which is not presently available.) The
parameters of the Bose stars that we investigated are
dictated both by physics and by the limits of our computa-
tional approach.

A. The mini-boson star

A Bose star is simulated with a mass M ¼ M⊙ ¼
2 × 1030 kg (one solar mass). The Schwarzschild radius
corresponding to one solar mass is RS ¼ 2GM=c2 ≃ 3 km
(c is the speed of light). We chose a radius of R ¼ 50 km
for our investigations, which is sufficiently large such that
relativistic effects due to strong gravitational fields will
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remain small (of order 2GM=c2R≃ 0.06), and the non-
relativistic GPE remains a valid approximation for a
qualitative study.
Such compact Bose stars were previously studied by Lee

and Pang [37], who referred to these objects as mini-boson
stars, a term that we adopt. In our case, however, bosons
form a condensate and our investigation is not restricted to
spherically symmetric (nonrotating) objects.
The simulation volume must be significantly larger than

the simulated star to ensure that the star does not interact
too much with the nonphysical boundaries of the volume.
After experimentation, we chose a simulation box with
coordinates that extend from −440 to þ440 km. Our
simulation code divides space into cells, with the execution
time being a polynomial function of the number of cells.
Too many cells slow down the simulation unacceptably. For
practical simulations, we use 80 cells, so the cell size is
11 × 11 × 11 km.
If we take this cell size to be the Compton half wave-

length of the BEC particle, 1
2
λ ¼ 11 km, the corresponding

mass is m¼h=cλ≃10−46kg≃5.6×10−11 eV. This is the
maximum Bose particle mass that we can simulate using a
spatial resolution of 11 km. We note that this mass is also
consistent with the relativistic upper limit of∼1.5×10−46kg
for a boson mass forming a 1M⊙ star [38], as well as some
dark matter models involving ultralight bosons.
The time that corresponds to a Compton wavelength of

22 km is approximately 70 μs. This determines the maxi-
mum allowable simulation time step. In most simulations,
we use τ ¼ 10 μs as our simulation time step.
With these considerations in mind, we chose units for the

purpose of simulating a BEC stellar remnant or stellar core
as follows. First, we measure masses and lengths in the
following units:

1½M� ¼ 10−46 kg≃ 5.61 × 10−11 eV; ð31Þ

1½L� ¼ 1 km: ð32Þ

Given ℏ≃ 10−34 m2 kg s−1, these choices determine our
unit of time:

1½T� ¼ 1 μs: ð33Þ

In these units, G¼ 6.67×10−78 ½L�3=½M�½T�2. Furthermore,
a Bose star of one solar mass, M ¼ 2 × 1030 kg, contains
N ¼ 2 × 1076 particles.
These quantities can be rescaled (see Sec. II D above):

Using κ ¼ 10−38 allows us to rescale G → 0.0667 and
N → 2. It must be emphasized that the physical conclu-
sions are unaffected by this rescaling.

B. Numerical stability

As we experimented with our simulation code, there
were indications that, during a longer simulation run, the

object may become unstable. This behavior was expected,
due to the relatively coarse spatial and time resolution of the
simulation, as well as the fact that the condensate unavoid-
ably interacts with the simulation wall, where the boundary
condition jΨj ¼ ϕ ¼ 0 is enforced. However, it was
important to characterize the onset of any instability due
to nonphysical parameters of the simulation, and to dis-
tinguish these nonphysical instabilities from real physical
effects. Specifically, we investigated the impact of the finite
size of the simulation volume element, the finite time step,
and the finite extent of the simulation volume.
In particular, we performed four long-duration, 100-

second simulation runs (with run times amounting to
several weeks each on desktop-class hardware) to see
the onset and evolution of any computational instability.
The parameters in these simulations were identical, except
for the nonphysical values of the time step and spatial
resolution, which are summarized in Table I.
The results are shown in Fig. 1. The stability of the

simulation is characterized by observing supposedly con-
served quantities, namely, the total energy and particle
number, in each of the four cases.
The principle of energy conservation dictates that the

total energy should be constant. If it is not, absent any
programming errors, the result is due either to interaction
with the walls of the simulation volume or numerical

TABLE I. Four Bose star simulation runs with varying non-
physical parameters.

Run Time step (μs) Spatial grid

Case 1 10 80 × 80 × 80
Case 2 20 80 × 80 × 80
Case 3 5 80 × 80 × 80
Case 4 10 60 × 60 × 60
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FIG. 1 (color online). Nonconservation of energy and particle
number as a result of the simulation interacting with nonphysical
parameters.
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limitations. In the latter case, the outcome should depend
on the choice of time step and volume element size in a
predictable manner: the finer grained the simulation is, the
less the total energy should deviate from a constant
value. And this is indeed what we see in the top panel
of Fig. 1.
The behavior of the total particle number is similar. The

evolution of the GPE should be unitary; we did not
introduce dissipation or other interactions with the envi-
ronment that would change N. On the other hand, once
again the finite size of the simulation volume and finite
integration steps can affect the stability of N. As Fig. 1
shows, all simulations show a small oscillation appearing
after approximately ten seconds of simulation time. This
oscillation may be a result of interaction with the walls.
However, the magnitude of the oscillations, which are of
Oð1%Þ and the point of onset of a systemic deviation from
the conserved particle number both depend on the non-
physical integration parameters. Videos of these simula-
tions are available online [39].
These results allowed us to find a conservative set of

nonphysical parameters for simulations of Oð1Þ seconds
(corresponding to ∼160 low altitude orbits) of a compact
Bose (mini-boson) star, ensuring that the nonphysical
parameters have no impact on the simulation outcome.

C. Stability of stationary and rotating Bose stars

Is a Bose star stable? Guzmán et al. argued [23] that it is
not. However, the mass profiles [18] that they examined
were constructed on the basis of the Thomas-Fermi
approximation. More recently, de Souza and Pires [40]
claimed that with appropriately chosen values for the
particle mass and the scattering length, the Thomas-
Fermi approximation can lead to stable solutions.
Nonetheless, we found that the Thomas-Fermi profile leads
to unstable numerical solutions; the reason for this was
explored in Ref. [25].
The nonrotating mini-boson star that was the subject of

our investigation of numerical stability described in the
preceding section was found to be robustly stable within the
numerical limits of the simulation code, at least for several
seconds. (While this may sound like a short amount of time
for an astrophysical object, we are reminded that for a
compact object of one solar mass and 50 km radius, the
orbital period near the object’s surface is only about 6 ms;
therefore, a one-second simulation run amounts to over 160
such orbits, which is more than sufficient to judge the
stability of a self-gravitating object.)
Stability, in this case, was characterized by the fact that

so long as the simulation remained numerically stable, the
spatial distribution of the density ρ remained constant; only
the phase ϕ of the wave functionΨ evolved as a function of
time. From this we conclude that a stable mini-boson star is
possible and consistent with the properties of the GPP
system.

We also investigated a few cases (see Table II) where the
star was given an initial rotation, by introducing a nonzero
Ω for an initial number of iterations. Given our choice of
units, angular velocity is measured in radians per micro-
second. For an R ¼ 50 km sphere, the equatorial circum-
ference is 2πR≃ 314 km. A tangential velocity of
c ¼ 3 × 105 km=s corresponds to 955 revolutions per
second, or ∼0.006 rad=μs. In order to remain within the
approximately nonrelativistic regime, therefore, angular
velocities must be less than 10−3 rad=μs. Moreover, the
orbital velocity of a one solar mass object at a radius of
50 km is ∼51.6 × 103 m=s, which corresponds to
10−3 rad=μs.
We performed a test run of a very rapidly rotating

condensate (Ω ¼ 10−3 rad=s). The condensate was unsta-
ble (see animations at [39]), which is hardly surprising,
since the equatorial velocity was approximately equal to the
orbital velocity. Interaction between the condensate and
asymmetries in the simulation algorithm (e.g., the evalu-
ation order singles out a preferred direction) resulted in an
increasing “wobble,” with the condensate ultimately collid-
ing with the walls of the simulation volume. Clearly, by this
point, the simulation was unphysical.
When we used lower rotational velocities, however,

the condensate remained stable over the simulated
duration. These simulations, at angular velocities of Ω ¼
3 × 10−3 rad=μs and Ω ¼ 10−4 rad=μs corresponded to
∼53 and ∼16 full rotations, respectively, over the simulated
duration of one second. Therefore, we conclude that our
simulations demonstrate that even a rapidly rotating mini-
boson star can remain stable.
We were puzzled by the lack of any obvious formation of

vortices. Viewing plots of the phase ϕ, however, revealed
possible vortex formation outside the nominal radius of the
Bose star. This suggests that if any quantized vortices form
as a result of rotation, these will form at the surface of the
Bose star, and may not be able to penetrate the interior that
has increasing density.

D. Exploring the parameter space

The parameter space of this simulation is vast, even if we
leave nonphysical parameters out of consideration.
We began to explore systematically the parameter space

by varying the values of the radius R of the condensate, the
total particle number (hence, the mass), cases of rotation vs

TABLE II. The rotating mini-boson star.

Run Box size (km) Ω (rad/s)

Case 5 880 10−3

Case 6 880 3 × 10−4

Case 7 880 No rotation
Case 8 280 10−4
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no rotation, and the magnitude of the coupling constant.
Specifically, we investigated 36 different scenarios that are
depicted in Table III, by varying N, R, g, andΩ, this time in
a 480 × 480 × 480 km3 simulation volume.
These 36 cases all yielded stable mini-boson stars

(see Fig. 2, depicting the simulated objects after 100,000
iterations amounting to one second of simulation time).
While the density plots of these Bose objects are

essentially static, the phase of the wave function is strongly
time dependent. Animations of these 36 cases are available
online [39]. The phase diagrams also confirm what we
learned earlier: that no vortex lines enter the interior of the
object and, if any vortices form, they do so in the very dilute
regions at the object’s surface.

Our simulation also yielded values for the gravitational
potential, internal, and kinetic energies of the condensate.
These show a consistent dependence on the scattering
length, as shown in Fig. 3. As expected, the total energy is
negative in all cases, which is an obvious condition for
stability.
Last, we note that in accordance with Eq. (19), a change

of units such that ½L�→λ½L�, ½T�→λ2½T�, and ½M�→λ−1½M�
(corresponding to unit transformations such that λ2 ¼ κ−1)
leaves all results unchanged. Thus, a one-second simulation
of a one solar mass mini-boson star with a 50 km radius,
consisting of 5.6 × 10−11 eV particles, is identical to a
100-second simulation of a 0.1 solar mass Bose star with a
500 km radius, consisting of 5.6 × 10−12 eV particles.
Therefore, our numerical results on stability characterize
entire classes of BEC objects related to each other by such
transformations of units.

TABLE III. The 36 cases in the parameter space that were investigated. See text for details.

N ¼ 2 × 1076 1 × 1076 4 × 1076

a=a0 Ω R ¼ 50 km 80 km 50 km 80 km 50 km 80 km

1 0 Case 11 Case 12 Case 13 Case 14 Case 15 Case 16
0.0001 Case 21 Case 22 Case 23 Case 24 Case 25 Case 26

0.5 0 Case 31 Case 32 Case 33 Case 34 Case 35 Case 36
0.0001 Case 41 Case 42 Case 43 Case 44 Case 45 Case 46

2 0 Case 51 Case 52 Case 53 Case 54 Case 55 Case 56
0.0001 Case 61 Case 62 Case 63 Case 64 Case 65 Case 66

FIG. 2 (color online). End stages of the 36 simulations shown in
the same order as in Table III, after 100,000 iterations corre-
sponding to one second of elapsed time. Plots depict density cross
sections with an area of 480 × 480 km2 in the xy-plane at z ¼ 0,
with z being the rotation axis in a coordinate system centered on
the Bose star. Cross sections remained static during the simu-
lations. The color scale is dynamic, for maximum contrast.

FIG. 3 (color online). The negative gravitational potential
energy (cross-hatched area) to which the positive contributions
of the kinetic energy and internal potential energy (hatched areas)
are added to yield the total energy of the system, as given by
Eq. (9) (solid red line). These quantities are plotted against the
scattering length a. In our chosen units, the particle number N is
in units of 1076 particles (N ¼ 2, i.e., 2 × 1076 particles, corre-
sponds to one solar mass). The scattering length is measured in
km, whereas the energy is in units of 1048 J.

ENIKO J. M. MADARASSY AND VIKTOR T. TOTH PHYSICAL REVIEW D 91, 044041 (2015)

044041-8



V. CONCLUSIONS

Our simulations demonstrate that a self-gravitating BEC
is stable, and that any apparent instability in the simulation
is purely an artifact of the finite time and spatial resolution
of the simulation itself. By suitably choosing nonphysical
parameters, we can achieve both rotating and nonrotating
stable mini-boson stars.
The main limitation of our approach is that we numeri-

cally evolve the BEC wave function in space, and thus the
spatial grid size used in the numerical model must be
smaller than the anticipated wavelength of the wave
function. We estimate this wavelength as the Compton
wavelength of the BEC particle, which yields an upper limit
on the BEC particle mass for a given object size and grid
resolution. (A possible way to overcome this limitation is to
run the simulation in Fourier space [41].)
Our simulation is based on the nonrelativistic Gross-

Pitaevskii equation, which loses its validity in the relativ-
istic regime. In practical terms, this means a lower limit on
the BEC star’s radius for a given mass. To explore more
compact objects, such as objects with the size of a neutron
star, relativistic code will be required.
Presently, our simulation code can only model pure BEC

stars containing little or no normal matter. While this
may be good enough to explore the theoretical stability

of a self-gravitating BEC object, clearly any real star would
contain significant quantities of nonrelativistic and relativ-
istic gas. A future simulation may incorporate the (rela-
tivistic) hydrodynamic equations that govern the behavior
of this gas, as well as any interaction terms between the
BEC and the gas. (A different approach to the problem of
Bose-Einstein condensation inside compact astrophysical
objects, using the semiclassical Hartree-Fock framework,
was presented in [42].)
Even with these limitations, our simulation results are

instructive. One particular topic of interest is the apparent
lack of vortex formation, which we believe is due to the fact
that any vortices forming near the Bose star’s surface have a
hard time penetrating into the interior. Clearly, this topic of
vortex formation in a self-gravitating, rotating Bose star
deserves further investigation.
Our most important conclusion remains, however, that a

range of possible mini-boson stars is stable in numerical
simulations, and we saw no indication that Bose stars that
are beyond our present capabilities (purely due to computa-
tional constraints) would behave differently.
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