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The Hawking temperature for the Schwarzschild black hole is divergent when the mass of the black hole
vanishes; however, the corresponding geometry becomes the Minkowski spacetime whose intrinsic
temperature is zero. In connection with this issue, we construct a nonsingular temperature which follows
the Hawking temperature for the large black hole, while it vanishes when the black hole is completely
evaporated. For the thermodynamics significances of this modified temperature, we calculate thermody-
namic quantities and study phase transitions. It turns out that even the small black hole can be stable below
a certain temperature, and the hot flat space is always metastable so that it decays into the stable small black
hole or the stable large black hole.
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I. INTRODUCTION

Bekenstein has suggested that a black hole should have
an entropy which is proportional to the area of the horizon
[1–3], and Hawking has shown that there is radiation from
the black hole through the analysis for the origin of the
entropy from the point of view of quantum field theory
[4]. The Hawking temperature could be defined generi-
cally as TH ¼ ℏκH=ð2πÞ, where κH is the surface gravity at
the horizon. Subsequently, the thermodynamics of the
black hole based on this temperature has been one of the
most important issues in black hole physics [5–7], so that
there have been much intensive study of thermodynamics
and phase transitions in various black holes [8–25]. Such
phase transitions could be easily read off from the
behaviors of the heat capacity and the free energy. In
particular, considering the Schwarzschild black hole in a
cavity which defines the isothermal surface [7], it was
shown that the hot flat space is more probable than the
large black hole below a critical temperature, while the
large black hole is more probable than the hot flat space
above the critical temperature. In fact, the most essential
ingredient in the thermodynamics of black holes is to
define the black hole temperature such as the Hawking
temperature for the Schwarzschild black hole given as
TH ¼ ℏ=ð8πGMÞ from the surface gravity, where G and
M are the gravitational constant and the mass of the black
hole, respectively. However, it shows that the temperature
is proportional to the inverse of the mass, and it is
divergent when the mass of the black hole vanishes,
although the black hole disappears and its metric becomes
the Minkowski spacetime.

The conventional method to resolve the above singular
behavior of the Hawking temperature for the Schwarzschild
black hole is to introduce the Planck mass as a cutoff MP in
the regime of the generalized uncertainty principle (GUP)
[26–32], and then the GUP temperature is obtained as
TGUP ¼ M=ð4πÞ½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M2

P=M
2

p
� [33]. It produces the

well-known Hawking temperature for the large black hole,
and it is finite at M ¼ MP. Thanks to this cutoff, the
Hawking temperature can be regular as long as M ≥ MP;
however, it requires the remnant which has a nonvanishing
temperature at the order of the Planck mass. Moreover, the
stability of the remnant is not warranted since the heat
capacity of the remnant approaches negative zero [34]. There
have been extensive studies of the thermodynamics of black
holes using the GUP temperature, [35–38], and the dis-
cussion for the above issues of GUP by deforming the
Einstein-Hilbert action which leads to the formation of a zero
temperature stable remnant [39].
On the other hand, there has been another nontrivial

attempt to derive the entropy and temperature which give
eventually finite results when the mass of the black hole
goes to zero by defining a new temperature based on the
argument of the high order of quantum corrections [40,41].
It turns out that the entropy goes to zero, while the
temperature is still divergent when the black hole evapo-
rates completely. Note that one parameter in the temper-
ature is replaced by a mass-dependent one, so that it is
possible to make the temperature finite as was shown in
Ref. [40]; however, it is still nonvanishing when the mass of
the black hole goes to zero. Now, one might wonder how to
get the entropy and temperature which follow the well-
known ordinary Hawking temperature and entropy and the
vanishing temperature and entropy at the end state of the
black hole without any remnants.
In this work, we would like to present a nonsingular

temperature without resort to the cutoff in the UV region.
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Of course, the complete quantum gravity beyond the
Planck scale is not yet known, but for our purpose, we
just demand two boundary conditions—that the temper-
ature should follow the ordinary Hawking temperature for
the large black hole and vanish when the mass of the black
hole becomes zero. The latter condition is plausible if the
end state of evaporation of the black hole naturally becomes
the Minkowski spacetime without the remnant. In Sec. II,
we start with a somewhat general finite temperature,
satisfying the above two boundary conditions. Apart from
these conditions, we assume that the entropy of the black
hole is positive, and it also vanishes when the mass of the
black hole goes to zero. At last, we determine the most
simple but regular temperature satisfying the desired
asymptotic behaviors among infinite number of ways to
reach the Minkowskian spacetime. In Sec. III, in order to
exhibit the thermodynamic behaviors of the temperature,
the above nonsingular temperature will be localized in the
cavity following the work in Ref. [7]. Then, we find that the
localized temperature has two extrema, so that there exist
two critical masses of M0 and M1 compared to the single
critical mass M1 in the standard calculation in the cavity.
The conventional thermodynamic calculation showed that
the small black hole is always unstable; however, in this
case it will be shown that the small black hole can also be
stable. Next, in order for studying phase transition based on
the newly defined temperature, the free energies will be
considered for the hot flat space, the small black hole, and
the large black hole, respectively. Then, we find a
Hawking-Page-type phase transition between the small
black hole and the large black hole. Additionally, we find
that the hot flat space is always metastable, and it decays
into the small black hole or the large black hole. Finally, the
conclusion and discussion are given in Sec. IV.

II. NONSINGULAR TEMPERATURE OF THE
BLACK HOLE

In the Schwarzschild black hole, the Hawking temper-
ature becomes singular at M → 0, so that it is a nontrivial
task to describe this region properly by means of the
ordinary Hawking temperature. So, let us assume that the
Hawking temperature can be modified in such a way that
the temperature of the black hole vanishes when the mass of
the black hole goes to zero while it follows the behavior of
the well-known Hawking temperature for the large black
hole. For this purpose, let us write temperature as

T ¼ 1

8πGM
tðMÞ; ð1Þ

where tðMÞ should be chosen in order to satisfy the two
boundary conditions mentioned earlier and a more or less
general expression in terms of polynomial expansion of the
mass can be written as

tðMÞ ¼
P

n
i¼0 aiðMMP

Þ1þαiP
n
i¼0 biðMMP

Þ1þβi þ C
; ð2Þ

where t ∼M1þα0 forM → 0 and t ∼Oð1Þ forM → ∞, and
αi, βi, and C are positive constants with αn ¼ βn.
Additionally, αi < αj, βi < βj for i < j, and an ¼ bn.
Note that the similar ansatz for the temperature appeared
with the same spirit in terms of the expansion of integer
powers in Ref. [40]; however, any fractional powers are
allowed in Eq. (2) without loss of generality. Compactly,
the modified temperature for the black hole can be rewritten
as

T ¼ 1

8πGM

P
n
i¼0 aiðMMP

Þ1þαiP
n
i¼0 biðMMP

Þ1þβi þ C
: ð3Þ

Then, the entropy calculated from the first law of thermo-
dynamics,

S ¼
Z

dM
T

; ð4Þ

still respects the Bekenstein-Hawking entropy for the large
black hole as S ∼ 4πGM2. On the other hand, the entropy
(4) for the small mass can be calculated as

S¼ 8πGMPC
a0

Z �
MP

M

�
α0
dM ∼

8>><
>>:

− 1
Mα0−1 for α0 > 1;

lnM for α0 ¼ 1;

M1−α0 for 0< α0 < 1;

ð5Þ

where we neglected the subleading terms. Note that the
entropy is negative divergent for α0 ≥ 1, and it vanishes for
0 < α0 < 1 when M → 0. As a result, we obtain the
additional condition of 0 < α0 < 1 in order for the positive
entropy.
The most simple form of the modified temperature (3)

without loss of generality corresponds to n ¼ 0, which is
written as

T ¼ 1

8πGM

�
1þ 1

α

�
MP

M

�
1þα

�
−1
; ð6Þ

where we used the relation of M2
P ¼ G−1, α0 ¼ β0,

a0 ¼ b0, and in particular chose a0C−1 ¼ α0 in order to
make the temperature a maximum at M ¼ MP. After
calculations, α0 was replaced by α for simplicity, so that
0 < α < 1 in Eq. (6). The behavior of the temperature (6) is
illustrated in Fig. 1 which shows the modified temperature
following the Hawking temperature asymptotically and
eventually vanishing when the mass of the black hole goes
to zero. So, eventually, there is no remnant after complete
evaporation of the black hole, and the corresponding
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geometry becomes the Minkowski spacetime. It is com-
patible with the fact that the Minkowski spacetime has no
intrinsic temperature.
By using Eq. (4), the entropy corresponding to the

modified temperature (6) is calculated as

S ¼ 4πGM2 þ 8π

αð1 − αÞ
�
M
MP

�
1−α

; ð7Þ

where the entropy vanishes for M → 0. It becomes the
Bekenstein-Hawking’s area law of the entropy for the large
black hole. As a result, the temperature and entropy vanish
at the end state of the black hole. The difference from the
previous works [40,41] comes from the fact that even the
temperature can be zero when the mass of the black hole
goes to zero if we use the fractional power of expansion in
the temperature expression (6).

III. THERMODYNAMIC QUANTITIES
AND PHASE TRANSITION

In connection with the modified temperature (6), we
are going to calculate the relevant thermodynamic quan-
tities which will be employed in order to investigate
thermodynamic phase transitions. Let us first consider the
cavity as a boundary with a radius r to study quasilocal
thermodynamics along the line of the procedure in
Ref. [7]. Then, the local temperature measured at the
boundary is given as

T loc ¼
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2GM=r
p

¼ 1

8πGM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GM=r

p
�
1þ 1

α

�
MP

M

�
1þα

�
−1
; ð8Þ

which is shown in Fig. 2(a). It shows that there are two
extrema:one is the localmaximumatM ¼ M0 and theother is
the local minimum at M ¼ M1. Let us now define the large
black hole where M > M1 and the small black hole where
M < M1 for convenience. FromFig. 2(a), it can be shown that
there is one small black hole for 0 < T < T0, two small black
holes and one large black hole T0 < T < T1, and one large
black hole for T > T1, respectively. The similar black hole
states can be found in the noncommutative black hole [42–45]
and the Horova-Lifshitz black hole [46–48]; however, the
remnant associatedwith theparameterwhichcharacterizes the
model was required.
Note that the entropy (7) is independent of the size of the

cavity in quasilocal thermodynamics [49] since the degrees
of freedom of the black hole should be independent of the
observer located at the radial distance r [50]. Applying the
first law of thermodynamics, the total thermodynamic
internal energy within the boundary r is obtained as

Eloc ¼
Z

M

0

T locdS

¼ r
G
−

r
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2GM
r

r
; ð9Þ

which is the same with the energy obtained from the
conventional Hawking temperature [7,51]. Using Eq. (9),
the heat capacity at fixed r is calculated as

CV ¼
�∂Eloc

∂T loc

�
r

¼ 8πGM2ð1 − 2GM
r Þð1þ 1

α ðMP
M Þ1þαÞ

ðMP
M Þ1þαð1 − 2GM

r þ 1
α
GM
r Þ − 1þ 3GM

r

: ð10Þ

As seen from Fig. 2(b), the large black hole in M > M1 is
stable since the heat capacity is positive, which is the same
with the ordinary behavior of the heat capacity in the
Schwarzschild black hole. However, the small black hole
can be either stable or unstable depending on the size of the
black hole, so that it is stable for M < M0 and unstable for
M0 < M < M1. After all, it turns out that the small black
hole forM < M0 can be nucleated like the large black hole,
which makes the phase transition nontrivial.
Next, let us calculate the free energy of the black hole in

order to study phase transition between the black holes and
the hot flat space. Using Eqs. (7), (8), and (9), the free
energy of the black hole is easily obtained as

Fbh
on ¼ Eloc − T locS

¼ r
G
−

r
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2GM
r

r

−
4πGM2 þ 8πGM2

P
αð1−αÞ ðMMP

Þ1−α

8πGM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GM

r

q
ð1þ 1

α ðMP
M Þ1þαÞ

: ð11Þ

0 Mp
M

T

FIG. 1 (color online). The modified temperature is plotted by
setting the constants as MP ¼ 1 and α ¼ 1=2 in Eq. (6). The
temperature follows the Hawking temperature asymptotically and
vanishes at M → 0. The maximum temperature appears at the
Planck mass.
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Note that for the limit ofMP=M → 0, Eq. (11) is reduced to
the well-known free energy of the black hole in the
conventional thermodynamics of the Schwarzschild black
hole [7], and the free energy of the hot flat space also
becomes zero, Fhfs

on ¼ 0. In this case, as seen from Fig. 3(a),
the large black hole is more probable than the hot flat space
above the critical temperature Tc, and the hot flat space is
more probable below the critical temperature Tc.
We are now in a position to discuss the free energy (11)

explicitly. The behavior of the stable large black hole in
Fig. 3(b) is essentially the same as that of the conventional
one in Fig. 3(a). The difference comes from the behavior of
the small black hole since the unstable small black hole in
Fig. 3(b) starts with the positive free energy at T0 but is
terminated with the negative free energy at T1. Note that the

free energy of the unstable small black hole is always
positive in any temperature in Fig. 3(a). Moreover, the free
energy of the newly defined stable small black hole in
Fig. 3(b) is always negative in T < T1, and the free energy
of the hot flat space is still Fhfs

on ¼ 0 since the free energy
(11) vanishes for M → 0, so that the free energy of the
stable small black hole is lower than the free energy of the
hot flat space. So, the hot flat space can collapse not only
to the stable large black hole for T > T1 but also to the
stable small black hole for T < T0. In particular, as for
T0 < T < T1, the Hawking-Page-type critical phenomenon
can appear between the stable small black hole and the
stable large black hole, which is compared to the conven-
tional phase transition between the hot flat space and the
stable large black hole as seen from Fig. 3(a). Thus, the

M0 M1

M0

T1

T0

Tloc

M0 M1
M

CV

FIG. 2 (color online). The local temperature (a) and the heat capacity (b) are plotted by setting the constants as G ¼ 1, α ¼ 1=2, and
r ¼ 10, respectively. Figure (a) shows that the number of states of the black hole is subject to the temperature. In Fig. (b), the large black
hole in M > M1 is always stable, but the small black hole is stable for M < M0 whereas it is unstable for M0 < M < M1.

T0 Tc
Tloc

F0

Fon

unstable small BH

stable large BH

T1T0
Tloc

F1

F0

Fon

Tc

unstable small BH

stable small BH

stable large BH

FIG. 3 (color online). The ordinary free energy and the modified free energy are plotted, respectively. The constants are chosen as
G ¼ 1, α ¼ 1=2, and r ¼ 10. The phase transition appears between the hot flat space and the stable large black hole in Fig. 3(a), while it
happens between the stable small black hole and the stable large black hole in Fig. 3(b). Tc is a critical temperature and the other
temperatures in Fig. 3(b) were defined in Fig. 2(a).
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stable small black hole is more probable for T0 < T < Tc
and the stable large black hole is more probable for
Tc < T < T1. Additionally, the hot flat space in T0 < T <
T1 decays into the stable small black hole or the stable large
black hole eventually.

IV. CONCLUSION AND DISCUSSION

When the Schwarzschild black hole completely evapo-
rates, the metric describing the system becomes the
Minkowski spacetime, although the Hawking temperature
is divergent; however, the Minkowski spacetime does not
have its own intrinsic temperature since there is no event
horizon. In this work, we considered the modified temper-
ature for the Schwarzschild black hole by requiring two
conditions: that it should follow the Hawking temperature
for the large black hole and vanish when the mass of the
black hole goes to zero. The modified temperature was
designed in order to show the regular behavior of the
temperature of the black hole without encountering any
singularity when M → 0. On the other hand, the several
constants in the temperature (6) imply that there are an
infinite number of ways for the modified temperature to
reach the origin; however, we fixed the constants in such a
way that the maximum value of the temperature appears at
the Planck scale and fortunately only a single constant
remains unfixed. So the simplest form of the temperature
could be obtained, but it shares the above two conditions.
By the use of this temperature, thermodynamic quantities
were calculated in order to study thermodynamic stability
and phase transition of the black hole along the well-
established procedure. It turns out that there is a single state
of the stable small black hole for T < T0 or the stable large
black hole for T > T1. For T0 < T < T1, there are three
black hole states which consist of the two small black holes
and one large black hole. Apart from the existence of the
stable small black hole, the most interesting thing to be
distinguished from the standard thermodynamics is that the
flat space is no longer a stable state thermodynamically in
any temperature since it should always decay into the stable
small black hole or the stable large black hole, so that the
final state becomes a black hole state.
Finally, the method for the present regular temperature

requires an explanation about the limitations of the present

approach since we assumed a certain modification of the
Hawking temperature as a function of the black hole mass
but did not discuss the origin of such a modification. First
of all, the temperature (6) derived from the polynomial
expansion of the black hole mass is, indeed, not unique
even in spite of the plausibility of reproducing the conven-
tional Hawking temperature; for example, another type
of temperature such as T ¼ 1=ð8πGMÞð1 − e−kðM=MpÞ1þαÞ,
where k is an arbitrary positive constant, also satisfies the
two boundary conditions mentioned in Sec. II. To fix the
physically meaningful temperature uniquely and figure out
what happens at the end state of evaporation of the black
hole, the complete theory of quantum gravity covering the
trans-Planckian regime should be defined. The second
limitation of our approach is that we employed the classical
metric for the local Tolman temperature as seen from
Eq. (8), which is a temporary expedient. In particular, one
can expect that such a modified temperature (6) comes from
a change in the spacetime geometry, so that the local
temperature (8) changes accordingly. Note that modifica-
tions in the geometry could have a nontrivial effect on our
analysis and an impact on the physics of small black holes.
This was noticed in the GUP regime, which yields the
corresponding GUP temperature, and the classical geom-
etry should be changed according to the modification of the
uncertainty relation [39]. Based on this fact, using the one-
to-one correspondence between the GUP and the GUP
temperature, a corresponding modified uncertainty relation,
which is written as ΔxΔpþ ð2lp=αÞð2lp=ΔxÞαΔp ≥ 1,
can also be derived straightforwardly from Eq. (6). This
modified uncertainty relation will modify the classical
geometry similar to the result in Ref. [39] so that the local
temperature will be changed somehow near the horizon
and, consequently, the thermodynamic behaviors of small
black holes may be different from the present results. This
deserves further study, which we hope will appear in the
future.
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