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In this paper, we extend the study on the nonlinear power-law Maxwell field to dilaton gravity. We
introduce the ðnþ 1Þ-dimensional action in which gravity is coupled to a dilaton and power-law nonlinear
Maxwell field, and we obtain the field equations by varying the action. We construct a new class of higher
dimensional topological black hole solutions of Einstein-dilaton theory coupled to a power-law nonlinear
Maxwell field and investigate the effects of the nonlinearity of the Maxwell source as well as the dilaton
field on the properties of the spacetime. Interestingly enough, we find that the solutions exist provided one
assumes three Liouville-type potentials for the dilaton field, and in the case of the Maxwell field, one of the
Liouville potentials vanishes. After studying the physical properties of the solutions, we compute the mass,
charge, electric potential and temperature of the topological dilaton black holes. We also study
the thermodynamics and thermal stability of the solutions and disclose the effects of the dilaton field
and the power-law Maxwell field on the thermodynamics of these black holes. Finally, we comment on the
dynamical stability of the obtained solutions in four dimensions.
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I. INTRODUCTION

At the present epoch, the Universe expands with accel-
eration instead of deceleration along the scheme of the
standard Friedmann model [1]. This fact created much
more interest in the alternative theories of gravity in recent
years. One of the alternative theories of gravity is dilaton
gravity, which can be thought of as the low energy limit of
string theory. Indeed, in the low energy limit of string
theory, one recovers Einstein gravity along with a scalar
dilaton field which is nonminimally coupled to gravity and
other fields such as gauge fields [2]. The action of dilaton
gravity also contains one or more Liouville-type potentials,
which can result from the breaking of spacetime super-
symmetry in ten dimensions.
Many attempts have been made to construct exact

solutions of Einstein-Maxwell-dilaton (EMd) gravity in
the literature. For instance, exact asymptotically flat sol-
utions of EMd gravity with no dilaton potential have been
constructed in Refs. [3–6]. But, the asymptotic behavior of
the solutions of dilaton gravity with potential may be
neither flat nor (anti) de Sitter [(A)dS]. These kinds of
solutions which are neither asymptotically flat nor (A)dS
are interesting from different points of view. First, it is
speculated that the linear dilaton spacetimes which appear
as near-horizon limits of the dilatonic black holes may
show holography that can be considered as an indication of

the possible extensions of AdS/CFT correspondence [7].
Second, the range of validity of methods and tools
originally developed for, and tested in the case of, asymp-
totically flat or asymptotically AdS black holes may be
extended using such solutions. Third, in addition to black
holes with spherical horizon, there exist black hole sol-
utions with toroidal or hyperbolic event horizons, as in the
case of asymptotically AdS solutions. Having different
topologies for the horizon gives rise to different properties
for the black holes with drastically different black hole
thermodynamics. For instance, it was argued that
Schwarzschild-AdS black holes with toroidal or hyperbolic
horizons are thermally stable and the Hawking-Page phase
transition [8] does not occur [9], while Schwarzschild black
holes with spherical horizon are not stable. The topological
black holes are studied extensively in many aspects
[10–19]. Many authors have explored asymptotically non-
flat or non-(A)dS black hole solutions [5,6,10,20–32].
Static charged black hole solutions in the presence of
Liouville-type potential, with positive [20], zero or negative
constant curvature horizons, [21] have been discovered,
and properties of these solutions which are not asymptoti-
cally (A)dS have been studied [22]. Also, thermodynamics
of ðnþ 1Þ-dimensional dilaton black holes with unusual
asymptotics have been studied [33,34].
Here, we turn our investigation to dilaton gravity,

including the power-law Maxwell field term in the action.
This is motivated by the fact that, as in the case of the scalar
field which has shown that the particular power of the
massless Klein-Gordon Lagrangian shows conformal
invariance in arbitrary dimensions [35], one can have a
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conformally electrodynamic Lagrangian in higher dimen-
sions. Although the Maxwell Lagrangian loses its con-
formally invariant property in higher dimensions, the
Lagrangian ½− expð−4αΦ=ðn − 1ÞÞFμνFμν�ðnþ1Þ=4 is con-
formally invariant in ðnþ 1Þ dimensions. That is, this
Lagrangian is invariant under the conformal transformation
gμν → Ω2gμν and Aμ → Aμ. The studies on the black object
solutions coupled to a conformally invariant Maxwell field
were carried out in [36,37].
The motivation for studying solutions of Einstein

gravity with arbitrary dimensions is based on string theory
which predicts spacetime to have more than four dimen-
sions. Although it was thought for a while that the extra
spacial dimensions are of the order of the Planck scale,
recent theories suggest that if we live on a three-
dimensional brane in a higher dimensional bulk, it is
possible to have the extra dimensions relatively large and
still unobservable [38,39]. All gravitational objects
including black holes are higher dimensional in such a
scenario. Higher dimensional Ricci flat rotating black
branes with a conformally invariant power-Maxwell
source in the absence of a dilaton field have been
investigated in [40]. Thermodynamics of higher dimen-
sional topological dilaton black holes with a linear
Maxwell source have been explored in [10].
In this paper, we would like to construct a new class of

ðnþ 1Þ-dimensional topological black holes of dilaton
gravity in the presence of a power-law Maxwell field
½− expð−4αΦ=ðn − 1ÞÞFμνFμν�p, where we relax the con-
formally invariant issue for generality. Of course, the
solution exists for the case of a conformally invariant
source p ¼ ðnþ 1Þ=4. We find that the solution exists
provided one assumes three Liouville-type potentials. The
interesting point is that one of the Liouville potentials
vanishes for the case of the Maxwell field (p ¼ 1). We shall
investigate the thermal stability of the black holes and
explore the effects of nonlinearity of the Maxwell field on
the thermodynamics of these black holes.
This paper is structured as follows. In Sec. II, we

introduce the action of Einstein-dilaton gravity coupled
to a power-law Maxwell field, and by varying the action we
obtain the field equations. Then, we construct the exact
topological black hole solutions of this theory and inves-
tigate their properties. In Sec. III, we obtain the conserved
and thermodynamic quantities of the solutions and verify
the validity of the first law of black hole thermodynamics.
In Sec. IV, we study thermal stability of the solutions in
both canonical and grand canonical ensembles. The last
section is devoted to conclusions and discussions.

II. FIELD EQUATIONS AND SOLUTIONS

The action of ðnþ 1Þ-dimensional ðn ≥ 3Þ Einstein-
power Maxwell-dilaton gravity can be written as

S ¼ 1

16π

Z
dnþ1x

ffiffiffiffiffiffi
−g

p �
R −

4

n − 1
ð∇ΦÞ2

− VðΦÞ þ ð−e−4αΦ=ðn−1ÞFÞp
�
; ð1Þ

whereR is the Ricci scalar, Φ is the dilaton field, VðΦÞ is a
potential for Φ, and p and α are two constants determining
the nonlinearity of the electromagnetic field and the
strength of coupling of the scalar and electromagnetic
fields, respectively. F ¼ FληFλη, where Fμν ¼ ∂μAν −∂νAμ is the electromagnetic field tensor and Aμ is the
electromagnetic potential. The equations of motion can be
obtained by varying the action (1) with respect to the
gravitational field gμν, the dilaton field Φ, and the gauge
field Aμ, which yields the following field equations:

Rμν ¼ gμν

�
1

n − 1
VðΦÞ þ ð2p − 1Þ

n − 1
ð−Fe−4αΦ=ðn−1ÞÞp

�

þ 4

n − 1
∂μΦ∂νΦþ 2pe−4αpΦ=ðn−1Þð−FÞp−1FμλFν

λ;

ð2Þ

∇2Φ −
n − 1

8

∂V
∂Φ −

pα
2
e−4αpΦ=ðn−1Þð−FÞp ¼ 0; ð3Þ

∂μð
ffiffiffiffiffiffi
−g

p
e−4αpΦ=ðn−1Þð−FÞp−1FμνÞ ¼ 0: ð4Þ

We would like to find the static topological solutions of the
above field equations. The most general form of such a
metric can be written as

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2R2ðrÞhijdxidxj; ð5Þ

where fðrÞ and RðrÞ are functions of r which should be
determined, and hij is a function of coordinates xi which
span an ðn − 1Þ-dimensional hypersurface with constant
scalar curvature ðn − 1Þðn − 2Þk. Here k is a constant,
and it characterizes the hypersurface. Without loss of
generality, one can take k ¼ 0; 1;−1, such that the black
hole horizon in (5) can be a zero (flat), positive
(spherical), or negative (hyperbolic) constant curvature
hypersurface. The Maxwell equation (4) can be integrated
immediately to give

Ftr ¼
qe

4αpΦðrÞ
ðn−1Þð2p−1Þ

ðrRÞ n−1
2p−1

; ð6Þ

where q is an integration constant related to the electric
charge of the black hole. Substituting (5) and (6) in the
field equations (2) and (3), we arrive at
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f00 þ ðn−1Þf0
r þ ðn−1Þf0R0

R þ 2V
n−1 −

2½1þðn−3Þ�p
n−1

�
2q2ðrRÞ−2ðn−1Þ

2p−1 e
4αΦ

ðn−1Þð2p−1Þ

�
p
¼ 0; ð7Þ

f00 þ ðn−1Þf0
r þ ðn−1Þf0R0

R þ 2V
n−1 þ 4ðn−1ÞfR0

rR þ 2ðn−1ÞfR00
R þ 8fΦ02

n−1 − 2½1þðn−3Þp�
n−1

�
2q2ðrRÞ−2ðn−1Þ

2p−1 e
4αΦ

ðn−1Þð2p−1Þ

�
p
¼ 0; ð8Þ

f0

r
þ f0R0

R
þ ðn − 2Þf

r2
þ 2ðn − 1ÞfR0

rR
þ ðn − 2ÞR02f

R2
þ fR00

R
−
kðn − 2Þ
ðrRÞ2 þ V

n − 1
þ 2p − 1

n − 1
ð2q2ðrRÞ−2ðn−1Þ

2p−1 e
4αΦ

ðn−1Þð2p−1ÞÞp ¼ 0;

ð9Þ

fΦ00 þ Φ0f0 þ ðn−1ÞfΦ0
r þ ðn−1ÞfΦ0R0

R − n−1
8

dV
dΦ − pα

2

�
2q2ðrRÞ−2ðn−1Þ

2p−1 e
4αΦ

ðn−1Þð2p−1Þ

�
p
¼ 0; ð10Þ

where the prime denotes a derivative with respect to r.
Our aim here is to construct exact, ðnþ 1Þ-dimensional
topological solutions to the above field equations with an
arbitrary dilaton coupling parameter α. Calculations show
that there exist exact topological solutions of physical
interest, provided we take the dilaton potential with three
Liouville-type potentials as

VðΦÞ ¼ 2Λ1e2ζ1Φ þ 2Λ2e2ζ2Φ þ 2Λe2ζ3Φ; ð11Þ

where Λ1, Λ2, Λ, ζ1, ζ2 and ζ3 are constants. It is
important to note that in the case of topological black
holes of EMd theory, one only needs to take two terms in
the Liouville potential [10], while here we find that for a
power-law Maxwell source in dilaton gravity, we need to
add an additional term to the potential and consider
Liouville-type dilaton potentials with three terms.
In order to solve the system of equations (7)–(10) for

three unknown functions fðrÞ, RðrÞ and ΦðrÞ, we make the
ansatz

RðrÞ ¼ e2αΦðrÞ=ðn−1Þ: ð12Þ

Subtracting (7) from (8), after using (12), we find

Φ00 þ 2ðα2 þ 1ÞΦ02

αðn − 1Þ þ 2Φ0

r
¼ 0; ð13Þ

which has the following solution:

ΦðrÞ ¼ ðn − 1Þα
2ðα2 þ 1Þ ln

�
b
r

�
: ð14Þ

Substituting (12) and (14) into Eqs. (8)–(10), one can easily
show that these equations have a unique consistent solution
of the form

fðrÞ ¼ kðn − 2Þð1þ α2Þ2r2γ
ð1 − α2Þðα2 þ n − 2Þb2γ −

m

rðn−1Þð1−γÞ−1

þ 2ppð1þ α2Þ2ð2p − 1Þ2b−2ðn−2Þpγ
ð2p−1Þ q2p

Πðnþ α2 − 2pÞr−2½ðn−3Þpþ1�−2pðn−2Þγ
2p−1

−
2Λb2γð1þ α2Þ2r2ð1−γÞ

ðn − 1Þðn − α2Þ ; ð15Þ

where b is an arbitrary nonzero positive constant,
γ ¼ α2=ðα2 þ 1Þ, Π ¼ α2 þ ðn − 1 − α2Þp, and the con-
stants should be fixed as

ζ1 ¼
2

ðn − 1Þα ;

ζ2 ¼
2pðn − 1þ α2Þ
ðn − 1Þð2p − 1Þα ;

ζ3 ¼
2α

n − 1
;

Λ1 ¼
kðn − 1Þðn − 2Þα2

2b2ðα2 − 1Þ ;

Λ2 ¼
2p−1ð2p − 1Þðp − 1Þα2q2p

Πb
2ðn−1Þp
2p−1

: ð16Þ

It is worth noting that in the linear Maxwell case where
p ¼ 1, we have Λ2 ¼ 0, and hence the potential has
two terms. Indeed, the term 2Λ2e2ζ2Φ in the Liouville
potential is necessary in order to have solution (15) for
the field equations of the power-law Maxwell field in
dilaton gravity. Note that Λ remains as a free parameter
which plays the role of the cosmological constant, and
we assume it to be negative and take it in the standard
form Λ ¼ −nðn − 1Þ=2l2. The parameter m in Eq. (15)
is the integration constant which is known as the geomet-
rical mass and can be written in terms of the horizon
radius as
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mðrþÞ ¼
kðn − 2Þb−2γr

α2þn−2
α2þ1þ

ð2γ − 1Þðγ − 1Þðα2 þ n − 2Þ

þ 2ppð2p − 1Þ2b−2ðn−2Þγp
ð2p−1Þ q2pr

− α2−2pþn

ð2p−1Þðα2þ1Þ
þ

ðγ − 1Þ2ðα2 − 2pþ nÞΠ

þ b2γnr
−α2−n
α2þ1þ

l2ðγ − 1Þ2ðn − α2Þ ; ð17Þ

where rþ is the positive real root of fðrþÞ ¼ 0. In the
limiting case where p ¼ 1, solution (15) reduces to the
topological dilaton black holes of EMd gravity presented in
Ref. [10]. One may note that in the absence of a nontrivial
dilaton (α ¼ γ ¼ 0) for a linear Maxwell theory (p ¼ 1),
solution (15) reduces to

fðrÞ ¼ k −
m
rn−2

þ 2q2

ðn − 1Þðn − 2Þr2ðn−2Þ −
2Λ

nðn − 1Þ r
2;

ð18Þ
which describes an ðnþ 1Þ-dimensional asymptotically
AdS topological black hole with a positive, zero or negative
constant curvature hypersurface (see, for example,
Refs. [13,14]). One can easily show that the gauge potential
At corresponding to the electromagnetic field (6) can be
written as

At ¼
qb

ð2pþ1−nÞγ
ð2p−1Þ

ϒrϒ
; ð19Þ

where ϒ ¼ ðn − 2pþ α2Þ=½ð2p − 1Þð1þ α2Þ�. Let us dis-
cuss the range of parameters p and α for which our obtained
solutions have reasonable behavior and are physically more
interesting. There are two restrictions on p and α. The first
one is due to the fact that the electric potential At should
have a finite value at infinity. This leads to ϒ > 0:

n − 2pþα2

ð2p − 1Þð1þα2Þ > 0: ð20Þ

The above equation leads to the following restriction on the
range of p:

1

2
< p <

nþ α2

2
: ð21Þ

The second restriction comes from the fact that the term
includingm in spatial infinity should vanish. This fact leads
to the following restriction on α:

α2 < n − 2: ð22Þ
Thus, one can summarize (21) and (22) as follows:

for
1

2
< p <

n
2
; 0 ≤ α2 < n − 2; ð23Þ

for
n
2
< p < n − 1; 2p − n < α2 < n − 2: ð24Þ

It is worth mentioning that in the above ranges the dilaton
potential VðΦÞ has a lower finite limit in the range
1=2 < p < 1, where Λ2 < 0, and therefore the system is
stable. One can also easily see that in the above ranges, as in
the special cases of p ¼ 1 or α ¼ 0, the term including q in
fðrÞ vanishes at spacial infinity, as one expects. In addition,
onemaynote that in the allowed ranges ofp andα,Π is always
positive, and therefore the q term in fðrÞ is always positive.
Next, we study the physical properties of the solutions.

First, we investigate the asymptotic behavior of the
solutions. For α < 1, the last term in fðrÞ is dominant at
infinity. Thus, in order to have a positive value for fðrÞ at
infinity, Λ < 0. On the other hand, for α > 1, the first term
in the metric function is dominant at large r, and therefore k
should be equal to −1 or zero. It is notable to mention that
these solutions do not exist for the string case where α ¼ 1
in the k ¼ �1 cases. Also, it is worth mentioning that the
solution is well defined in the allowed ranges of α and p.
Next, we look for the curvature singularities. The
Kretschmann scalar RμνλκRμνλκ diverges at r ¼ 0, it is finite
for r ≠ 0, and it goes to zero as r → ∞. Thus, there is an
essential singularity located at r ¼ 0.
As we mentioned, the charge term is positive every-

where, and since the dominant term is the charge term as r
goes to zero, the singularity is timelike as in the case of
Reissner-Nordstrom black holes. Thus, one cannot have a
Schwarzschild-type black hole solution with one event
horizon. In order to consider the type of singularity whether
it is naked or not, we calculate the Hawking temperature of
the topological black holes. The Hawking temperature can
be written as

Tþ ¼ f0ðrþÞ
4π

¼ ð1þ α2Þ
4π

�
kðn − 2Þ

b2γð1 − α2Þr1−2γþ

−
Λb2γr1−2γþ
n − 1

−
2ppð2p − 1Þb−2ðn−2Þγp

ð2p−1Þ q2p

Πr
2pðn−2Þð1−γÞþ1

2p−1
þ

�
:

Extreme black holes occur when rþ or q are chosen such
that Tþ ¼ 0. Using (25), one can find that

q2pext ¼
b

2pðn−2Þγ
ð2p−1Þ Π

pð2p − 1Þ2p r
2pðnð1−γÞ−1Þþ2γ

2p−1
ext

×

�
nb2γ

l2
þ kðn − 2Þ
ð1 − α2Þb2γ r

4γ−2
ext

�
; ð25Þ

which, for the case of α ¼ 0, reduces to

ðq2pextÞα¼0 ¼
pðn − 1Þr

2ðn−1Þp
2p−1
ext

2ppð2p − 1Þ
�
n
l2
þ kðn − 2Þ

r2ext

�
:
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Thus, our solutions present black holes with inner and outer
horizons located at r− and rþ provided q < qext, an extreme
black hole if q ¼ qext, and a naked singularity provided
q > qext (see Figs. 1–3).

III. THERMODYNAMICS OF TOPOLOGICAL
BLACK HOLES

Since discussions on the black hole thermodynamics
depend on the mass of the solutions, we first calculate the
mass of the dilaton black holes using the modified sub-
traction method of Brown and York (BY) [41]. In order to
use the modified BY method [42], the metric should be
written in the form

ds2 ¼ −XðRÞdt2 þ dR2

YðRÞ þR2dΩ2: ð26Þ

To do this, we perform the following transformation [43]:

R ¼ rRðrÞ:

It is a matter of calculations to show that the metric (5) may
be written as (26) with the following X and Y:

XðRÞ ¼ fðrðRÞÞ;

YðRÞ ¼ fðrðRÞÞ
�
dR
dr

�
2

¼
�
b
r

�
2γ

ð1 − γÞ2fðrðRÞÞ:

The background metric is chosen to be the metric (26) with

X0ðRÞ ¼ f0ðrðRÞÞ

¼ kðn − 2Þr2γ
ð1 − 2γÞð1 − γÞðα2 þ n − 2Þb2γ

þ 2Λb2γr2ð1−γÞ

ðn − 1Þð1 − γÞ2ðα2 − nÞ ; ð27Þ

Y0ðRÞ ¼ kð1 − γÞðn − 2Þ
ð1 − 2γÞðα2 þ n − 2Þ þ

2Λb4γr2ð1−2γÞ

ðn − 1Þðα2 − nÞ : ð28Þ

To compute the conserved mass of the spacetime, we
choose a timelike Killing vector field ξ on the boundary
surface B of the spacetime (26). Then, the quasilocal
conserved mass can be written as

M ¼ 1

8π

Z
B
d2φ

ffiffiffi
σ

p fðKab − KhabÞ

− ðK0
ab − K0h0abÞgnaξb; ð29Þ

where σ is the determinant of the metric of the boundary B,
K0

ab is the extrinsic curvature of the background metric, and
na is the timelike unit normal vector to the boundary B.
Thus, using the above modified BY formalism and denot-
ing the volume of constant curvature hypersurface
hijdxidxj by ωn−1, one can calculate the mass of the black
hole per unit volume ωn−1 as

M ¼ bðn−1Þγðn − 1Þ
16πðα2 þ 1Þ m: ð30Þ

r

f(
r)

0.8 1 1.2 1.4

-0.2

0

0.2

0.4

0.6

0.8

1

q=qext=0.99
q=qext-1/1000
q=qext+1/1000

FIG. 1 (color online). The function fðrÞ versus r for n ¼ 4,
α ¼ 0.5, p ¼ 2, l ¼ b ¼ 1, k ¼ 0 and rext ¼ 1.

r

f(
r)

0.8 1 1.2 1.4

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 q=qext=1.12
q=qext-1/1000
q=qext+1/1000

FIG. 2 (color online). The function fðrÞ versus r for n ¼ 4,
α ¼ 0.5, p ¼ 2, l ¼ b ¼ 1, k ¼ 1 and rext ¼ 1.

r

f(
r)

0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8 q=qext=0.75
q=qext-1/1000
q=qext+1/1000

FIG. 3 (color online). The function fðrÞ versus r for n ¼ 4,
α ¼ 0.5, p ¼ 2, l ¼ b ¼ 1, k ¼ −1 and rext ¼ 1.
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In the following, we are going to explore thermodynamics
of the topological dilaton black hole we have just found.
The entropy of the topological black hole typically satisfies
the so-called area law of the entropy which states that the
entropy of the black hole is a quarter of the event horizon
area [44]. This near universal law applies to almost all kinds
of black holes, including dilaton black holes, in Einstein
gravity [45]. It is a matter of calculation to show that the
entropy of the topological black hole per unit volume
ωn−1 is

S ¼ bðn−1Þγrðn−1Þð1−γÞþ
4

: ð31Þ

Using (4), the electric charge can be calculated through the
Gauss law

Q ¼ 1

4π

Z
e−

4αpΦðrÞ
n−1 ðrRÞn−1ð−FÞp−1FμνnμuνdΩ; ð32Þ

where nμ and uν are the unit spacelike and timelike normals
to a sphere of radius r given as

nμ ¼ 1ffiffiffiffiffiffiffiffi−gtt
p dt ¼ 1ffiffiffiffiffiffiffiffiffi

fðrÞp dt;

uν ¼ 1ffiffiffiffiffiffi
grr

p dr ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
dr:

Using (32), we obtain

Q ¼ ~q
4π

; ð33Þ

as the charge per unit volume ωn−1, where

~q ¼ 2p−1q2p−1:

One may note that ~q ¼ q for p ¼ 1. The electric potential
U, measured at infinity with respect to the horizon, is
defined by

U ¼ Aμχ
μjr→∞ − Aμχ

μjr¼rþ
; ð34Þ

where χ ¼ C∂t is the null generator of the horizon.
Therefore, using (19) the electric potential may be
obtained as

U ¼ Cqb
ð2p−nþ1Þγ
ð2p−1Þ

ϒrϒþ
: ð35Þ

Now, we are in the position to explore the first law of
thermodynamics for the topological dilaton black holes. In
order to do this, we obtain the mass M as a function of
extensive quantities S and Q. Using the expression for the
charge, the mass and the entropy given in Eqs. (30), (31),

(33), and the fact that fðrþÞ ¼ 0, one can obtain a Smarr-
type formula as

MðS;QÞ ¼ ð1þ α2Þ
�
−
bα

2

Λð4SÞn−α2n−1

8πðn − α2Þ

þ kðn − 1Þðn − 2Þð4SÞα2þn−2
n−1

16πbα
2ðα2 þ n − 2Þð1 − α2Þ

þ ð2p − 1Þ2pðn − 1Þ
2Πðα2 − 2pþ nÞ

�
πbα

2

2p−3

� 1
2p−1

×Q
2p

2p−1ð4SÞ− α2−2pþn
ð2p−1Þðn−1Þ

�
: ð36Þ

One may then regard the parameters S and Q as a complete
set of extensive parameters for the mass MðS;QÞ
and define the intensive parameters conjugate to S and
Q. These quantities are the temperature and the electric
potential

T ¼
�∂M
∂S

�
Q
; U ¼

�∂M
∂Q

�
S
; ð37Þ

provided C is chosen as C ¼ ðn − 1Þp2=Π. It is notable
to mention that C ¼ 1 in the case of the linear Maxwell
field [10]. Calculations show that the intensive quantities
calculated by Eq. (37) coincide with Eqs. (25) and (35)
as the temperature and electric potential. Thus, these
thermodynamics quantities satisfy the first law of thermo-
dynamics

dM ¼ TdSþ UdQ: ð38Þ

IV. STABILITY IN THE CANONICAL AND
GRAND-CANONICAL ENSEMBLE

Finally, we study thermal stability of the topological
dilaton black holes. The stability of a thermodynamic
system with respect to small variations of the thermody-
namic coordinates is usually performed by analyzing the
behavior of the entropy SðM;QÞ or its Legendre trans-
formation MðS;QÞ around the equilibrium. The local
stability in any ensemble requires that the energy
MðS;QÞ be a convex function of its extensive variable
[46,47]. The number of thermodynamic variables depends
on the ensemble that is used. In the canonical ensemble, the
charge is a fixed parameter, and therefore, the positivity of
the heat capacity Cv ¼ T=ð∂2M=∂S2ÞQ is sufficient to
ensure the local stability. Hence, in the ranges where T
is positive, the positivity of ð∂2M=∂S2ÞQ guarantees the
local stability of the solutions. For the spacetime under
consideration, we find
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�∂2M
∂S2

�
Q
¼ 1þ α2

πðn − 1Þ

×

�
−
kðn − 2Þ
bðnþ1Þγ

1

rδþ
þ nð1 − α2Þ

l2bðn−3Þγ
1

rϑþ

þ 2ppð2pðn − 2Þ þ 1þ α2Þq2p
b

γ½2ð2n−3Þp−nþ1�
2p−1 Π

1

rηþ

�
; ð39Þ

where δ¼ðn−α2Þ=ð1þα2Þ, η¼½α2þ2pð2n−3Þ−nþ2�=
½ð2p−1Þð1þα2Þ� and ϑ ¼ ðα2 þ n − 2Þ=ð1þ α2Þ. In
grand canonical ensemble Q is no longer fixed. In
our case, the mass is a function of entropy and charge,
and therefore, the system is locally stable provided
HM

SQ ¼ ½∂2M=∂S∂Q� > 0, where the determinant of the
Hessian matrix can be calculated as

HM
S;Q ¼ 2

−2p2þ13p−9
2p−1 ðα2 þ 1Þ2p2b

α2

2p−1

ðα2 − 2pþ nÞΠq2p−2

×

�
16ð2p − 1Þpð2p − 1 − α2Þq2p

Π

× ð22p2−3p−4bα
2Þ 1

2p−1ðbγrð1−γÞþ Þ−2ðα2þ2pðn−2Þþ1Þ
ð2p−1Þ

−
kðn − 2Þ

bα
2 ðbγrð1−γÞþ Þ−α2−2pþnþð2p−1Þðn−α2Þ

ð2p−1Þ

þ nbα
2

l2
ð1 − α2Þðbγrð1−γÞþ Þ−2ðpðα2þn−3Þþ1Þ

ð2p−1Þ

�
: ð40Þ

Here, we discuss the stability of the black hole solutions for
different values of k separately.

(i) k ¼ 0: In this case, one can see that (39) is always
positive for α ≤ 1, and therefore, the black holes
with k ¼ 0 and α ≤ 1 are thermally stable in the
canonical ensemble. However, there may exist un-
stable black holes in the grand canonical ensemble
for the range 2p − 1 < α2 ≤ 1. Of course, one
should note that the black holes in both the canonical
and grand canonical ensembles only exist provided
q < qext. For α > 1, only small black holes with
event horizon radius less than rmaxþ are stable, where
the value of rmaxþ is smaller in the grand canonical
ensemble, as one can see in Fig. 4. Figure 5 shows
the effects of α on the stability of the solutions in
both canonical and grand canonical ensembles. As
one increases the coupling constant α, there is an
αmax, and for α < αmax, black holes are stable. The
value of αmax depends on the ensemble, and it is
larger in the canonical one. Figure 6 shows the
effects of 1=2 < p < n=2 on the stability of the
solutions. This figure shows that there is a pmin, and
for p > pmin, black holes are stable. Again, pmin is
ensemble dependent, and it is larger in the grand
canonical ensemble. For n=2 < p < n − 1 where α
has a p-dependent lower limit, numerical analysis

p
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1

FIG. 6 (color online). The behavior of T (solid curve),
ð∂2M=∂S2ÞQ (dashed curve) and 10−1HM

S;Q (dash-dot curve)
versus p for k ¼ 0 with l ¼ b ¼ 1, q ¼ 0.8, rþ ¼ 1.1, α ¼
1.25 and n ¼ 4.

α
1.01 1.02 1.03 1.04

-0.01

-0.005

0

0.005

0.01

FIG. 5 (color online). The behavior of 10−2T (solid curve),
ð∂2M=∂S2ÞQ (dashed curve) and 10−1HM

S;Q (dash-dot curve)
versus α for k ¼ 0 with l ¼ b ¼ 1, q ¼ 0.45, rþ ¼ 2, n ¼ 4
and p ¼ 2.
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0
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FIG. 4 (color online). The behavior of T (solid curve),
ð∂2M=∂S2ÞQ (dashed curve) and 10−2HM

S;Q (dash-dot curve)
versus rþ for k ¼ 0 with l ¼ b ¼ 1, q ¼ 0.4, α ¼ 1.28, n ¼ 4
and p ¼ 2.
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shows that there exists a minimum value pmin for
which black holes are stable, provided p > pmin.

(ii) k ¼ 1: In this case, from Fig. 7 we see that
the Hawking-Page phase transition occurs between
small and large black holes. Choosing q < ðqextÞα¼0,
one ensures that T > 0 for the allowed region α < 1.
Again, there is a maximum value for α such
that black holes are stable for α < αmax (see Fig. 8).
The effects of p in the range 1=2 < p < n=2 on the
stability in both canonical and grand canonical
ensembles are shown in Fig. 9. One can see that
for p > pmin, these solutions represent stable
black holes. Numerical calculations show that
for n=2 < p < n − 1, where α has a p-dependent
lower limit, there is also a minimum value pmin that,
for values greater than pmin, the black holes are
stable.

(iii) k ¼ −1: As in the case of k ¼ 0, the stability of
black holes in both canonical and grand canonical

ensembles should be investigated separately for the
α < 1 and α > 1 cases. As one can see from
Eq. (39), ð∂2M=∂S2ÞQ is positive for α < 1. There-
fore, for q < qext, where black holes exist, they are
stable. However, in the grand canonical ensemble,
black holes may be unstable in the range
2p − 1 < α2 ≤ 1. For α > 1, as one can see in
Fig. 10, the black hole solutions are stable, provided
α < αmax. Of course, the value of αmax depends on
the ensemble. Figure 11 shows a Hawking-Page
phase transition between small and large black
holes. In order to investigate the effect of p on
the stability of the solutions, we plot both
ð∂2M=∂S2ÞQ and the determinant of the Hessian
matrix versus p in the range 1=2 < p < n=2. This is
plotted in Fig. 12, which shows that the black hole
solutions are stable, provided p > pmin. Numerical
calculations also show that for n=2 < p < n − 1,

r+
1 2 3

-0.05

0

0.05

0.1

0.15

FIG. 7 (color online). The behavior of 10−1T (solid curve),
ð∂2M=∂S2ÞQ (dashed curve) and 10−2HM

S;Q (dash-dot curve)
versus rþ for k ¼ 1 with l ¼ b ¼ 1, q ¼ 0.4, α ¼ 0.8, n ¼ 4
and p ¼ 2.

α
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-0.1
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0.3

0.4

0.5

FIG. 8 (color online). The behavior of 10−1T (solid curve),
ð∂2M=∂S2ÞQ (dashed curve) and 10−1HM

S;Q (dash-dot curve)
versus α for k ¼ 1 with l ¼ b ¼ 1, q ¼ 0.45, rþ ¼ 2, n ¼ 4
and p ¼ 2.

p
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FIG. 9 (color online). The behavior of 10−1T (solid curve),
ð∂2M=∂S2ÞQ (dashed curve) and 10−1HM

S;Q (dash-dot curve)
versus p for k ¼ 1 with l ¼ b ¼ 1, q ¼ 0.8, rþ ¼ 1.1, α ¼
0.9 and n ¼ 4.
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FIG. 10 (color online). The behavior of 10−1T (solid curve),
ð∂2M=∂S2ÞQ (dashed curve) and 10−1HM

S;Q (dash-dot curve)
versus α for k ¼ −1 with l ¼ b ¼ 1, q ¼ 0.45, rþ ¼ 2, n ¼ 4
and p ¼ 2.
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where α has a p-dependent lower limit, black holes
are stable.

V. DYNAMICAL STABILITY OF
FOUR-DIMENSIONAL BLACK

HOLE SOLUTIONS

Besides thermal stability, it is worthwhile to study the
dynamical stability of solutions under perturbations. Since
the study of dynamical stability for higher-dimensional
topological solutions is difficult in general, we study the
case of four-dimensional black holes. Regge and Wheeler
showed that in four-dimensional static and spherically
symmetric background, perturbations can be decomposed
into odd- and even-parity sectors according to their trans-
formation properties under a two-dimensional rotation [48].
Perturbations can also be decomposed into a sum of
spherical harmonics Yl

m. In the Regge-Wheeler formalism,

stability is investigated by studying the behavior of
perturbation modes.
Using the formalism mentioned, we show that in the

framework of scalar-tensor gravity models with a general
form of the action [49],

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½GðΦ; ZÞRþ KðΦ; ZÞ

þ GZ½ð□ΦÞ2 − ð∇μ∇νΦÞ2��; ð41Þ

where G and K are arbitrary functions of Φ and
Z ¼ −ð∇ΦÞ2=2 and GZ ¼ ∂G=∂Z, there are dynamically
stable solutions under odd-type perturbations, provided

F ≔ 2G > 0; G≔ 2G − 4ZGZ > 0; ð42Þ

when the single-mode propagates radially with the squared
speed of c2r ¼ G=F . In the case of uncharged solutions,
Eq. (41) matches our action (1), provided G ¼ 1 and
K ¼ Z − VðΦÞ. It is obvious from (42) that in this case
our solutions are dynamically stable. Under even-type
perturbations, there is again a single mode in our case
that propagates with the same radial speed as odd-type
perturbations [50]. In this case we have stable solutions,
provided l ≥ 2.
Dynamical stability of nonlinear electrodynamics (NED)

sources in general relativity is studied in [51]. In the case of
a NED LagrangianLðF̂Þwhere F̂ ¼ 1=4F, the correspond-
ing Hamiltonian can be defined as H≡ 2LF̂F̂ − L. It is
also convenient to study the stability using the so-called P
frame, where P ¼ L2

F̂
F̂. For odd-type perturbations, there

are stable solutions, providedHP does not vanish anywhere
outside the horizon, while for even-type ones, we encounter

instability, provided Hxx > 0 where x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Q2P

p
. In our

case with α ¼ 0, one can calculate

HP ¼ 1

p

�
−4P
p2

� 1−p
2p−1

; ð43Þ

where P ¼ −p2ð2F2
trÞ2p−1=4. Obviously, HP does not

vanish anywhere outside the horizon, and therefore, under
odd-type perturbations we have stable solutions. Since

Hxx ¼
xHP

Q4

�
1þ

ffiffiffiffiffiffiffiffiffi
2Q2

p
ðp − 1Þ

2p − 1
ð−PÞ3=2

�
; ð44Þ

one encounters dynamically unstable solutions for p ≥ 1.

VI. SUMMARY AND CONCLUSIONS

To sum up, we generalized the investigations on the
power-law Maxwell field to dilaton gravity. We first
proposed the suitable Lagrangian in Einstein-dilaton grav-
ity in the presence of a power-law Maxwell Lagrangian
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FIG. 11 (color online). The behavior of 10−1T (solid curve),
ð∂2M=∂S2ÞQ (dashed curve) and 10−2HM

S;Q (dash-dot curve)
versus rþ for k ¼ −1 with l ¼ b ¼ 1, q ¼ 0.4, α ¼ 1.28,
n ¼ 4 and p ¼ 2.
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FIG. 12 (color online). The behavior of 10−1T (solid curve),
ð∂2M=∂S2ÞQ (dashed curve) and 10−1HM

S;Q (dash-dot curve)
versus p for k ¼ −1 with l ¼ b ¼ 1, q ¼ 0.8, rþ ¼ 1.1,
α ¼ 1.25, n ¼ 4.
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which is coupled to the dilaton field as ½− expð−4αΦ=
ðn − 1ÞÞFμνFμν�p. Then, we constructed a new class of
ðnþ 1Þ-dimensional ðn ≥ 3Þ topological black hole sol-
utions of this theory in the presence of Liouville-type
potentials for the dilaton field. In contrast to the topological
black holes of EMd gravity [10] which exists for the
Liouville-type potentials with two terms, here we found
that the solutions exist provided we assume three Liouville-
type potentials for the dilaton field. In the limiting case
where p ¼ 1, one of the Liouville potentials vanishes.
Because of the presence of the dilaton field, the obtained
solutions are neither asymptotically flat nor (A)dS. Besides,
for the cases of k ¼ �1 the solutions do not exist for the
string case where α ¼ 1. When p ¼ 1, all results of the
topological black holes of EMd gravity are recovered [10].
These facts that (i) the gauge potential of electromagnetic

field At is finite, (ii) the terms contain mass in the metric
function (15) should be disappeared in the spacial infinity,
imply that the parameters p and α should be restricted
as follows. For 1=2 < p < n=2, we should have α2 <
n − 2, while for n=2 < p < n − 1, we should have
2p − n < α2 < n − 2. For these allowed ranges, the dilaton
potential VðΦÞ has always a finite lower limit. Requiring
the fact that our solutions should be positive in spacial
infinity leads to another restriction on α in the case of
k ¼ 1, namely, α < 1. Our solutions are well defined in the
permitted ranges of p and α, while in the case of a linear
Maxwell field, the solutions are ill defined for α ¼ ffiffiffi

n
p

. We
showed that our solution cannot represent black holes with
a single event horizon. However, they can represent black
holes with two horizons, extreme black holes and naked
singularity depending on the model parameters. We also
calculated the charge, mass, temperature, entropy and
electric potential of the topological dilaton black holes
and found that the first law of thermodynamics is satisfied

on the black hole horizon. By calculating the Smarr-type
formula, MðS;QÞ, we analyzed thermal stability of the
solutions in both canonical and grand canonical ensembles.
We showed that for α < 1, there are stable black holes in
the cases of k ¼ 0;−1 provided q < qext in the canonical
ensemble, whereas in the grand canonical ensemble, black
holes may be unstable in the range of 2p − 1 < α2 ≤ 1. In
the cases of (i) k ¼ 0;−1, and α > 1 and (ii) k ¼ 1 and
α < 1, there is a maximum value for the dilaton coupling
constant αmax for which the obtained solutions are ther-
mally unstable, provided α > αmax. For k ¼ −1, α > 1 and
k ¼ 1, α < 1, there is a Hawking-Page phase transition
between small and large black holes, while for k ¼ 0,
α > 1, large black holes are unstable. This fact can be
understood from Figs. 4, 7 and 11. We also found that there
is a pmin for which we have stable black holes, provided
p > pmin. Finally, we discussed the dynamical stability of
the obtained solutions in the absence and presence of the
nonlinear electromagnetic source, separately.
Note that the ðnþ 1Þ-dimensional charged topological

dilaton black holes obtained here are static. Thus, it would
be interesting if one could construct charged rotating black
holes or branes in ðnþ 1Þ dimensions in the presence of
the dilaton and the power-law Maxwell field. These issues
are now under investigation, and the results will appear
elsewhere.
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