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We study the f-mode frequencies and damping times of nonrotating neutron stars (NS) in general
relativity by solving the linearized perturbation equations, with the aim to establish “universal” relations
that depend only weakly on the equations of state (EOS). Using a more comprehensive set of EOSs, we
reexamine some proposed empirical relations that describe the f-mode parameters in terms of mass and
radius of the NS, and we test a more recent proposal for expressing the f-mode parameters as quadratic
functions of the effective compactness. Our extensive results for each equation of state considered allow us
to study the accuracy of each proposal. In particular, the empirical relation proposed in the literature for the
damping time in terms of the mass and radius deviates considerably from our results. We introduce a new
universal relation for the product of the f-mode frequency and damping time as a function of the (ordinary)
compactness, which proved to be more accurate. The more recently proposed relations using the effective
compactness, on the other hand, also fit our data accurately. Our results show that the maximum oscillation
frequency depends strongly on the EOS, such that the measurement of a high oscillation frequency would
rule out several EOSs. Lastly, we compare the exact mode frequencies to those obtained in the Cowling
approximation, and also to results obtained with a nonlinear evolution code, validating the implementations
of the different approaches.
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I. INTRODUCTION

Neutron stars are among the most interesting celestial
objects since their description requires both general rela-
tivity and nuclear physics. The state of matter in the core of
neutron stars (NSs) is not accessible to any terrestrial
experiments, and thus provides a unique laboratory to test
theoretical predictions for matter at high densities and
relatively low temperatures (compared to particle collisions
producing comparable energy densities). In particular, there
exist many different models predicting the equation of state
(EOS) of NS matter, see [1–11], among others. A pos-
sibility to constrain those models from NS observations
is given by the fact that general relativity predicts a
maximum mass for nonrotating and uniformly rotating
NSs, which depends on the EOS. Recently, [12] and [13]
discovered NSs with masses as high as 1.97M⊙ and
2.01M⊙, respectively. This already ruled out several
EOSs, as shown in Fig. 1. A simultaneous observation
of mass and radius of a slowly rotating NS would serve the
same purpose.
Given a set of observed quantities, constraining the

EOS obviously requires relations which do depend
strongly on the EOS. On the other hand, relations which
do not depend on the EOS (or only weakly), are highly
useful as well, since they would allow us to constrain

further unknown parameters without knowledge of the
EOS. Such universal relations have already been estab-
lished in the context of binary NS evolution between
moment of inertia, the tidal deformability (Love number)
and the quadrupole moment, both for regular NSs and
quark stars, see [14–16]. Weakly EOS dependent relations
between compactness and normalized moment of inertia
have been found by [17,18].
Other studies [19–22] have investigated various empiri-

cal universal expressions for oscillation frequencies and

FIG. 1 (color online). Gravitational mass M versus circum-
ferential radius R for the set of EOS used in this work. The shaded
area shows the mass range measured by [13] for the pulsar PSR
J0348þ 0432. The symbols mark the maximum mass models.*cecilia.chirenti@ufabc.edu.br
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damping time scales. Among the various types of oscil-
lation modes, the main focus has been on modes for which
pressure is the restoring force, in particular the fundamental
modes (f modes). Knowledge of the f modes of non-
rotating stars also provides estimates for the f-mode
properties of slowly rotating stars, for the case of uniform
rotation [23] and also for differential rotation [24].
Some years ago, Andersson and Kokkotas [19] proposed

an empirical relation for the f-mode oscillation frequency
ω, based on Newtonian theory of stellar perturbations. They
observed that in full GR, ω depends almost linearly on the
square root of the average density. Another relation, based
on estimates using the quadrupole formula, was established
for the damping time due to gravitational wave emission, τ.
Later, Benhar et al. [20] presented further results that
included more and newer equations of state, updating the
fits from [19]. The average frequencies ω were systemati-
cally lower than the one for the old EOS sample, which they
attributed to the fact that the new sample included
stiffer EOSs.
This highlights an important point: all the universal

relations are not truly EOS-independent, but restrain
parameters in a relatively narrow band which depends
on the EOSs taken into account. Using this band to interpret
observational data implicitly assumes that the true EOS is
similar to one of the EOSs considered. It is therefore
important to include a large range of EOSs in the sample, to
prevent underestimating the residual uncertainties due to
the EOS. For this reason, we do not exclude EOSs already
ruled out by the observation [13].
More recently, Lau et al. [21] improved on the results

from [22] by using quadratic fits for both ω and τ. Further,
they use the “effective compactness” η≡ ffiffiffiffiffiffiffiffiffiffiffi

M3=I
p

as
independent variable, where I is the moment of inertia.
In contrast to measures involving the surface radius, η is
determined by the bulk properties of the NS. Note the
moment of inertia could be constrained for isolated stars by
observations of spindown and energy output due to
magnetic braking, see [17]. It might also be measured
from high precision observations of spin-orbit couplings in
a binary pulsar system, see [18].
Observing oscillations of isolated NSs might in principle

be possible through conventional astronomy if they are
equipped with a magnetic field. The direct production of
electromagnetic emissions due to NS (and BH) perturba-
tions was investigated in [25,26]. Stellar oscillations might
also modulate EM emissions produced by other processes.
For example, possible signatures of NS oscillations have
already been observed in the luminosity curves of magnetar
giant flares [27]. However, the low frequencies rule out
fundamental modes as the cause. Instead, the modulation
was attributed to oscillations of the magnetar crust and
magnetic field, see [28] and the references therein.
Another observational channel is given by the gravita-

tional waves emitted by oscillating NSs, which have been

the subject of many studies over the years (see [29–31]
and references therein). The detection range is however
limited by the fact that oscillations above a certain
amplitude are strongly damped by nonlinear effects
[32]. Moreover, possible excitation mechanisms most
likely already saturate at much lower amplitudes. The
most famous mechanism is the Chandrasekhar-Friedman-
Schutz instability [33], which is restricted to rapidly
rotating NSs (for the case of f modes), and probably
suppressed by superfluid or viscous effects outside the
instability window described in [34]. More speculative
excitation mechanisms are phase transitions of the EOS
[35], or resonant excitation in eccentric binaries, proposed
by [36] (although it seems questionable whether the
binary stays in the resonant window sufficiently long).
The most promising source of detectable gravitational

waves (GW) from NSs is given by the hyper- or supra-
massive neutron stars which can be formed in binary NS
mergers [37]. However, those are rapidly and differentially
rotating. Further, they are hot and not in β-equilibrium, and
thus do not follow a simple barotropic EOS. Due to these
additional degrees of freedom, universal relations found for
slowly rotating cold stars are not directly applicable. Still, a
better understanding of the simple nonrotating case is
certainly beneficial for the development of more sophisti-
cated models needed to describe hypermassive NSs.
Our first aim in this paper is to provide accurate results

for the f modes in a wide range of masses and the EOSs
given in Table I, which we hope will be useful for the
community. In spite of being widely used in this field,
properties of the f modes are not available in the literature
for some of the EOSs.
Our second aim is to update the empirical relations

studied in [19] and [20], and test the proposed universal
relations from [21] for the newer EOS we consider here.
This analysis is presented in Sec. II.
In Sec. III, we compare our linear results to nonlinear,

fully relativistic 3D simulations of selected models. We
also study the (in)accuracy of the relativistic Cowling
approximation for selected EOSs. Finally, we present
our concluding remarks in Sec. IV. Numerical results for
all equations of state considered here are provided in the
Appendix.

TABLE I. The equations of state used in this paper. All of the
EOS, except for the last two, are distributed with the publicly
available Lorene code [38]. The LS220 and SHT EOSs include
temperature and composition dependency; we use the barotropic
EOSs obtained by imposing zero-temperature and β-equilibrium.

EOS Ref. EOS Ref. EOS Ref.

AkmalPR [2] BPAL12 [5] SLy4 [8,9]
BalbN1H1 [3] FPS [6] LS220 [10]
BBB2 [4] GlendNH3 [7] SHT [11]
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II. NUMERICAL RESULTS FOR THE f -MODE
FREQUENCIES AND DAMPING TIMES

Our numerical scheme for obtaining the f-mode
frequencies and damping times solves the set of perturba-
tion equations derived in the original papers by Lindblom
and Detweiler [39,40], based on the pioneering work by
Thorne and collaborators [41–46]. Our algorithm follows
closely the outline given in [39,40], and some preliminary
results obtained for a polytropic EOS were presented in
[47]. We solve the eigenvalue problem using the Newtonian
f-mode frequency as an initial guess. The radial perturba-
tion equations inside the star, written as a system of 4
coupled ODEs, are solved with a standard 4th order Runge-
Kutta method. The solution obtained is then matched to the
numerical solution of the Zerilli equation at the surface and
to the asymptotic solution of the Zerilli equation at a large
enough radius. Finally, we use a shooting method to refine
the initial guess and determine the complex eigenfrequency,
by imposing the purely outgoing wave condition at infinity.
Our code assumes that the EOS of the background model

is also valid to describe dynamic perturbations. This is an
approximation since the system can deviate from β-equi-
librium. To estimate the importance of this error, we
compare the speed of sound for two corner cases: cβs is
the sound speed assuming that β-equilibrium is always
satisfied, and cYs is the sound speed assuming that the
electron fraction is fixed along fluid world lines. We define
an average relative error of the sound speed by

δ̄cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR δc2sρdρÞ=ð

R
ρdρÞ

q
, with δcs ¼ 1 − cβs=cYs . Of

our EOS sample only the LS220 and SHT EOSs provide
values out of β-equilibrium. For both, we find δ̄cs ≈ 1%.
Since stellar oscillations are strongly related to the sound
crossing time, and assuming the frequencies are mainly
determined by the bulk of the star, we use δ̄cs also as a
rough estimate for the corresponding differences of the
oscillation frequencies. As an independent measure, we
note radial oscillation frequencies of NS have been com-
pared in [48] for the two corner cases above, using the same
EOSs. The resulting frequencies differ by ≈1%, in agree-
ment with the estimate above. Since the GW luminosity
depends on the frequency, we can expect similar
differences for the damping time. For the rest of this
article, we will ignore the influence of the β-equilibrium
assumption. The purely numerical error in the determina-
tion of the f-mode parameters is approximately 0.1% for ω
and 2% for τ. This was estimated by running convergence
tests with 5000, 10000, and 20000 points for different
models spanning the whole mass range.
In the following, we present our numerical results and

compare them with the empirical relations presented by
Andersson and Kokkotas [19], Benhar et al. [20] and Lau
et al. [21]. Our selection of EOSs given in Table I differs
from the ones used in those works in that we have more
EOSs than [20] and newer EOSs that were not considered

in [19] and [21] (we do not consider here some of their
older EOSs nor quark matter). We also include the LS220
and SHT EOSs which are frequently used in merger
simulations. For each EOS, we set up models in a large
mass range, starting from 1M⨀ up to the maximum mass.
We sample the corresponding central energy density range
linearly, using 101 data points for each EOS. Note for the
AkmalPR EOS, the central sound speed becomes super-
luminal at a density below the one of the maximum mass
model. We excluded all the causality-violating models.
Following [19] and [20], we used the data from all the EOS
to fit the empirical relations below, which relate the f-mode
frequencyω to the square root of the average densityM=R3,
and the damping time τ to the compactness M=R of the
neutron star:

ω ¼ a1 þ b1

ffiffiffiffiffiffi
M
R3

r
; ð1Þ

R4

M3τ
¼ a2 þ b2

M
R
: ð2Þ

These relations are shown in Fig. 2. As one can see, each
EOS individually satisfies a linear relation given by Eq. (1)
to good accuracy. There is however a considerable spread
between the different EOSs. We fitted Eq. (1) to all models
combined to get an average relation. Since the spread is of
systematic nature, the formal statistical errors of the fit are
meaningless. We stress that the fit result itself is also
ambiguous, since it depends on the selection of models and
there is no “true” value. Our aim is to establish a band
around the fitted relation which contains all our results, and
which can be used to constrain observational data without
detailed knowledge of the EOS, only assuming that it is
similar to one of the EOSs from our sample. To define this
“confidence band,”we simply use the largest residual of the
fit as systematic error of the constant offset a1. Our fit
results for Eq. (1) are given in Table II. The table also
contains the results of the same fit applied to each EOS
individually, which can be used to estimate oscillation
frequencies for a given EOS to good accuracy. The fits from
[19] and [20], also shown in Fig. 2, are also contained
within the confidence band that envelopes our results. The
differences between [19] and [20], attributed to the different
sets of EOSs used in the two studies, are smaller than the
spread between the individual EOSs we considered.
For the damping times, also shown in Fig. 2, we fitted

Eq. (2) to our data, obtaining values a2 ¼ 0.084� 0.012,
b2 ¼ −0.260, where the error given for a2 is the largest
residual. The differences between our result and the fits
from [19] and [20] are smaller than the spread between the
different EOSs, and thus compatible. However, as visible in
Fig. 2, a linear relation does not describe the data well in the
larger compactness range we consider. Although this could
be compensated by fitting a more appropriate curve, there is
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also a large spread between the different EOS. The spread
and the deviation from linearity strongly limits the useful-
ness of Eq. (2) for constraining observational data.
Next, we tested the universal relations proposed in [21],

which express the f-mode properties in terms of the
effective compactness η. In particular, we fit the expression

Mω ¼ a3 þ b3ηþ c3η2 ð3Þ

for the frequency to our results for all EOSs. We find values
a3 ¼ −0.00383� 0.0022, b3 ¼ 0.1276, and c3 ¼ 0.5718.
The error provided for a3 defines a confidence band which
contains the results for all our models as well as the fit
provided1 in [21]. This takes into account that some of the
EOSs used in [21] are not part of our EOSs sample. The fit
results are shown in Fig. 3. As one can see, the universal
relation proposed in [21] describes the results for our set of
EOSs and models still very well.
In order to parametrize the damping time, we fit the

expression

I2

M5τ
¼ a4 þ b4η2; ð4Þ

proposed in [21], to our models. We obtain values a4 ¼
0.00680� 0.00013 and b4 ¼ −0.0250. The error given for
a4 again defines a band containing all our models as well as

the fit provided in [21]. The results are plotted in Fig. 3,
showing that the universal relation for the damping time
holds to good accuracy for our models.
We note that the relation between compactness and

effective compactness is also weakly EOS dependent, as
pointed out in [17,18], where the normalized moment of
inertia ~I ¼ I=ðMR2Þ is given as a function of compactness
M=R. This can easily be rearranged in terms of effective
compactness η and compactness M=R. For the EOSs
considered here, the resulting relation is shown in
Fig. 4. Compared to the empirical fit proposed by [18],
our models have a slightly larger effective compactness on
average.

FIG. 2 (color online). Properties of the f mode in terms of mass and radius, and EOS-independent approximations. The left panels
show the relation Eq. (1) for the frequency, the right panels the relation Eq. (2) for the damping time. The lower panels show the exact
results for each EOS as well as the fits proposed in [20] (BFG) and [19] (AK). The shaded regions show the confidence bands (see main
text) around our fits. The upper panels show the remaining EOS dependency in terms of the residuals of our fit, as well as the differences
to the AK and BFG fits.

TABLE II. Parameters a1, b1 of the linear fit given by Eq. (1)
applied to each EOS individually, and to all models combined.
Δω denotes the largest residual. For comparison, we also include
the fits from [19] (AK Fit) and [20] (BFG Fit).

Model a1 [kHz] b1 [kHz km] Δω [kHz]

AkmalPR 0.912 29.05 0.011
BalbN1H1 0.116 52.08 0.043
BBB2 0.705 35.33 0.013
BPAL12 0.355 48.65 0.001
FPS 0.634 37.78 0.005
GlendNH3 0.295 45.79 0.022
SHT 0.542 32.98 0.018
LS220 0.419 40.65 0.008
SLy4 0.713 34.13 0.008
Combined 0.332 44.04 0.275
BFG Fit 0.790 33.00 � � �
AK Fit 0.780 35.96 � � �

1Note there is a typo in Eq. (6) from [21], where the last
coefficient should read 0.575 instead of 0.0575 in order to be
consistent with their Fig. 1.

CHIRENTI, DE SOUZA, AND KASTAUN PHYSICAL REVIEW D 91, 044034 (2015)

044034-4



In [21], it was proposed to use the relations given by
Eqs. (3) and (4) to estimate mass and effective compactness
from measurements of ω and τ, and further to compute the
radius using the aforementioned universal relation between
η and compactness. The resulting mass and radius could in
principle be used to constrain the EOS, although the
remaining EOS dependency of the “universal” relations
used for the estimate could be prohibitive. To decide
whether a simultaneous observation of frequency and
damping time can really restrict the EOS, it is easier to
simply plot the damping time as a function of frequency for
all EOSs, as shown in Fig. 5. As one can see, there is a
considerable overlap between the curves for different
EOSs. Nevertheless, the maximum oscillation frequency,
which is in general reached for the maximum mass model,
depends strongly on the EOS. A measurement of a high

frequency could thus rule out many EOSs, even without
knowledge of the damping time. The frequencies of the
maximum mass models can be found in the Appendix.
We also observe that the minimum damping time

depends on the EOS. The measurement of a short damping
time scale would in principle constrain the EOS, even
without knowledge of the frequency. In practice however,
the damping is probably not caused by GWemission alone,
in particular at high amplitudes. Thus the observed damp-
ing time would only be a lower limit for the radiation
reaction time, and hence not constrain the EOS.
Searching for a better relation for the damping time in

terms of compactness, we turned to the dimensionless
quantity ωτ. Multiplying by the frequency is not a serious
drawback since for any observation long enough to

FIG. 3 (color online). Universal relations of the f mode in terms of the effective compactness and mass. The left panels show the
relation Eq. (3) for the frequency, the right panels the relation Eq. (4) for the damping time. The lower panels show the exact results,
where the shaded area depicts the confidence bands containing all models (see main text). The upper panels show the deviations from
our fit. For comparison, we also plot the fits provided in Lau et al. [21].

FIG. 4 (color online). Effective compactness η versus compact-
ness for all EOSs. In addition, we show the fit given in [18].

FIG. 5 (color online). Damping time due to GW emission
versus oscillation frequency for all EOSs. The symbols mark the
maximum mass models, which also exhibit the largest frequency.
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determine the damping time, the frequency will also be
known to good accuracy. The choice is motivated by the
fact that for a subset of EOS given by polytropic EOSs with
fixed polytropic index, but arbitrary polytropic constant, all
relations expressed in terms of quantities which are
dimensionless in geometric units are automatically univer-
sal. Note the fits given by Eqs. (3) and (4) are already in
terms of dimensionless quantities. Although realistic EOS
do not exhibit the underlying scaling invariance of poly-
tropes, we found that our data is well represented by the
relation

ωτ
M
R

¼ a5 þ b5
M
R
þ c5

�
M
R

�
2

ð5Þ

with a5 ¼ ð3.69� 0.129Þ × 104, b5 ¼ −2.50 × 105,
c5 ¼ 6.59 × 105. The error given for a5 denotes the largest
residual. The fit is shown in Fig. 6. Although ωτ is well
constrained by the compactness, the relation can only be
inverted for low compactness. It is therefore of limited use
for constraining the compactness from a measurement
of ωτ.

III. COMPARISON WITH DIFFERENT METHODS

In this section we study the accuracy of the Cowling
approximation with respect to f modes and compare our
results to three-dimensional nonlinear numerical
simulations.

A. Cowling approximation

We now compare the frequencies obtained in full GR,
presented in Sec. II, to those obtained using the Cowling

approximation, which neglects the metric perturbations.
Keeping the gravitational field fixed leads to significant
changes in the mode frequencies, see [23,49]. Further, there
is no emission of gravitational waves and one obtains
normal modes of oscillation, instead of decaying quasi-
normal modes.
In order to obtain the frequencies in the Cowling

approximation, we use a semianalytic code case based
on the linearized equations given in [50], assuming
harmonic time dependence and specializing to spherical
symmetry. The resulting singular boundary value problem
for the eigenfunctions is solved using the method of
Frobenius to compute the solution at the boundaries (origin
and surface) in conjunction with a shooting method to
determine the mode frequency.
The relative difference for all the EOS considered here is

displayed in Fig. 7. Our comparison matches the conclu-
sions presented in [23]: the difference ranges from
≈10–30% and decreases with increasing stellar compact-
ness. A possible explanation for this trend was proposed by
[51], noting that increasing compactness can make the role
of metric perturbations less relevant for the f-mode
eigenfunction, given that the eigenfunction is peaked near
the surface.

B. Numerical relativity simulations

As an additional cross check, we compare our linear
results (both GR and Cowling) to those obtained with a
nonlinear, three-dimensional numerical evolution code.
The nonlinear results are more expensive and, due to
limited resolution, less accurate, but they are completely
independent both regarding the analytic formalism and the
numerical implementation. Note that the numerical damp-
ing typical for such codes prevents the computation of the
physical damping time scale associated with GW radiation,
which is why we only compare the frequencies.
The nonlinear hydrodynamic evolution code is described

in [48]. It is based on a conservative formulation of the
hydrodynamic evolution equations, which are solved using

FIG. 6 (color online). Universal relation for the dimensionless
quantity ωτ in terms of compactness. The lower panel shows the
exact values for all EOSs together with the confidence band
around the fitted value (see main text). The upper panel shows the
deviation from the fitted relation.

FIG. 7 (color online). The relative difference between f-mode
frequencies obtained in full GR and the Cowling approximation.
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finite volume, high-resolution-shock-capturing methods. In
particular, it employs piecewise parabolic reconstruction in
conjunction with the HLLE approximate Riemann solver to
compute fluxes. The spacetime is evolved by means of the
publicly available McLachlan code [52], using the CCZ4
formulation of the metric evolution equations [53,54]. Note
that we do not consider composition effects here, i.e., we
ignore the electron fraction altogether and assume that the
barotropic EOS which describes the background model is
also valid during the evolution. The same assumption is
implicitly made for the linear perturbation code.
The simulations made use of nested-box fixed mesh

refinement with 6 refinement levels centered around the
star. In this setup, the finest level fully contains the star, and
the grid spacing is 222 m. We employ radiative boundary
conditions for the metric at the outer boundary, which is
located at 708 km.
Using this setup, we compared frequencies for three

models with different central densities, all obeying the SLy
EOS (chosen as a representative case). The results are
shown in Fig. 8. We estimate the numerical errors (due to
the numerical evolution and the resolution of the Fourier
analysis used to extract the frequency) to be around 2%.
The maximum difference between the frequencies obtained
with the two codes is 1.1%. The results thus agree within
the expected accuracy. We also computed the frequency for
one model in the Cowling approximation. As shown in
Fig. 8, the result matches the one using the linear code
within 0.6%.

IV. CONCLUSIONS AND FINAL REMARKS

In this work, we provided accurate results for the f
modes of neutron stars described by the 9 EOSs listed in

Table I. Our results were obtained by solving the linear
perturbation equations that describe the nonradial oscilla-
tions of relativistic neutron stars [39,40].
With these results, we were able to update the empirical

fits proposed in the literature that describe the general
behavior of the f-mode frequency ω and damping time τ as
functions of the star’s average density and compactness
[19,20], based on the behavior of Newtonian stars and on
the quadrupole formula, respectively.
Our results cover a comprehensive range of masses and

contain more modern EOSs, allowing us to test proposed
universal relations more stringently. In particular, we
clearly showed that τ does not follow the linear fit proposed
by [19]. We did however find a new universal relation for
the quantity ωτ as a function of the compactness, which
describes our results more accurately. It can be used to
restrict ωτ from the compactness, but can only be inverted
for low compactness. The more recent proposal in [21] for a
universal relations describing the f modes in terms of the
effective compactness still holds to very good accuracy for
our set of EOS.
In our comparison with the results of a linear Cowling

code, we confirmed previous results from [23] and
extended them to more EOSs. The difference between
the Cowling and the GR results ranges from ≈10–30% and
decreases with increasing compactness.
Finally we compared our results with a three-dimen-

sional nonlinear evolution code for a few stellar models
employing the SLy4 EOS. We showed that the results agree
well within the estimated error bars for the numerical
results, thus validating the implementation of the different
approaches presented here.
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APPENDIX: NUMERICAL RESULTS
FOR EACH EOS

In this appendix we present first numerical results for the
f-mode frequency ω and damping time τ for a few
representative stars generated with each one of the 9
EOS considered in this paper (see Table I). In addition,
we provide mass, radius, and effective compactness η.
These results are given in Tables III–XI.

FIG. 8 (color online). The f-mode frequency ω for the SLy4
EOS, calculated with the linear codes in full GR and within the
Cowling approximation, in comparison to results obtained with
the three-dimensional nonlinear evolution code.
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TABLE III. Properties of selected models for the AkmalPR
EOS. ρc is the central energy density,M is the gravitational mass,
R the circumferential radius, η the effective compactness (di-
mensionless), ω is the frequency of the m ¼ 0; l ¼ 2 f mode, τ
the corresponding damping time scale due to gravitational
radiation. The first line refers to the most massive model.

ρc [1015 g=cm3] M [M⊙] R [km] η ω [kHz] τ [s]

1.771 2.071 10.716 0.419 2.352 0.137
1.315 1.796 11.141 0.369 2.189 0.138
1.097 1.536 11.296 0.325 2.069 0.161
0.939 1.276 11.358 0.280 1.953 0.209
0.800 1.003 11.382 0.232 1.822 0.313

TABLE IV. Like Table III, but for the BalbN1H1 EOS.

ρc [1015 g=cm3] M [M⊙] R [km] η ω [kHz] τ [s]

3.791 1.631 9.323 0.418 2.917 0.113
1.311 1.474 12.448 0.297 1.850 0.204
0.731 1.326 12.943 0.260 1.662 0.278
0.634 1.151 13.017 0.231 1.576 0.365
0.570 1.009 13.058 0.207 1.507 0.473

TABLE V. Like table III, but for the BBB2 EOS.

ρc [1015 g=cm3] M [M⊙] R [km] η ω [kHz] τ [s]

3.189 1.921 9.500 0.439 2.733 0.133
1.619 1.696 10.686 0.369 2.313 0.130
1.245 1.457 11.066 0.319 2.114 0.161
1.011 1.231 11.260 0.275 1.958 0.216
0.847 1.028 11.350 0.236 1.830 0.303

TABLE VI. Like Table III, but for the BPAL12 EOS.

ρc [1015 g=cm3] M [M⊙] R [km] η ω [kHz] τ [s]

3.981 1.455 9.013 0.395 2.991 0.104
1.954 1.339 10.515 0.325 2.362 0.144
1.477 1.223 11.102 0.289 2.122 0.187
1.209 1.120 11.504 0.260 1.958 0.240
1.000 1.011 11.866 0.233 1.809 0.317

TABLE VII. Like Table III, but for the FPS EOS.

ρc [1015 g=cm3] M [M⊙] R [km] η ω [kHz] τ [s]

3.384 1.800 9.280 0.431 2.816 0.121
1.672 1.598 10.515 0.358 2.335 0.131
1.299 1.402 10.845 0.315 2.155 0.161
1.076 1.212 11.023 0.277 2.016 0.207
0.902 1.011 11.139 0.238 1.881 0.290

TABLE VIII. Like Table III, but for the GlendNH3 EOS.

ρc [1015 g=cm3] M [M⊙] R [km] η ω [kHz] τ [s]

2.375 1.966 11.378 0.406 2.329 0.134
1.046 1.729 13.357 0.321 1.790 0.190
0.743 1.492 13.993 0.272 1.587 0.271
0.553 1.232 14.310 0.228 1.443 0.409
0.477 1.051 14.457 0.199 1.354 0.571

TABLE X. Like Table III, but for the SHT EOS.

ρc [1015 g=cm3] M [M⊙] R [km] η ω [kHz] τ [s]

1.554 2.769 13.334 0.441 1.911 0.193
0.738 2.316 14.719 0.360 1.630 0.186
0.584 1.896 14.920 0.305 1.507 0.240
0.466 1.427 14.917 0.242 1.369 0.385
0.371 1.006 14.788 0.182 1.232 0.750

TABLE XI. Like Table III, but for the SLy4 EOS.

ρc [1015 g=cm3] M [M⊙] R [km] η ω [kHz] τ [s]

2.856 2.049 9.992 0.443 2.591 0.144
1.417 1.793 11.284 0.368 2.183 0.138
1.084 1.517 11.635 0.316 2.001 0.172
0.896 1.273 11.791 0.272 1.865 0.230
0.771 1.068 11.866 0.236 1.754 0.316

TABLE IX. Like Table III, but for the LS220 EOS.

ρc [1015 g=cm3] M [M⊙] R [km] η ω [kHz] τ [s]

2.574 2.053 10.646 0.429 2.452 0.137
1.191 1.788 12.223 0.346 1.969 0.160
0.891 1.525 12.636 0.295 1.777 0.214
0.710 1.273 12.824 0.251 1.628 0.306
0.570 1.014 12.891 0.206 1.486 0.489
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