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In this paper we start a systematic investigation of applying an adaptive finite element method to the
Einstein equations, especially binary compact object simulations. To our knowledge, this is the first study
on this topic. Puncture type initial data are solved with the adaptive finite element method. The numerical
scheme proposed in the current work can be straightforwardly extended to the general type of initial data of
the Einstein equations. The Parallel Hierarchical Grid library and the existing numerical relativity code
AMSS-NCKU are used to develop the adaptive finite element Einstein solver. In the unsmooth toy model
problem, the adaptive mesh refinement operation can catch the unsmooth region efficiently. The numerical
solution deviates the exact solution by an error less than 10−5. In the binary black hole problem, our
solution is consistent with the one gotten by the TwoPuncture code which uses a pseudospectral method. As
we expected, the solution gotten by the finite element method is less accurate than that gotten by the
spectral method. But the relative error distributes almost uniformly. The adaptive mesh refinement method
is quite efficient and it does not waste computational effort. Our finite element code is more flexible than
the TwoPuncture code. It can be used to treat other general initial data problems such as the three black
holes problem, besides the binary black hole problem. We test one typical three black holes problem also.
In all of the test cases, our adaptive finite element code works quite well.
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I. INTRODUCTION

Numerical methods to solve partial differential equations
include three categories. They are the finite difference
method, spectral method, and finite element method.
Among the existing numerical relativity codes relating to
the Einstein equations, most of them use the finite differ-
ence method [1–3] and a few of them use the spectral
method [4]. But unfortunately the finite element code for
numerical relativity is still missing (but see [5–7]).
Based on the behavior of the existing numerical relativity

codes, we can briefly summarize the advantages of the
finite difference method and spectral method, respectively,
as follows. The finite difference method is more robust and
easier to code. Especially, it can be used to treat the
coupling problem of dynamical spacetime and hydrody-
namics directly. The spectral method is more accurate and
more efficient than the finite difference method. But when
the field in the question is less smooth, the accuracy
advantage of the spectral method becomes weak. And
more, the spectral method is hard to implement when a
discontinuity appears. That is the reason why the spectral
method is difficult for treating coupled Einstein equation
and fluid equations.
The finite element method has many possible advan-

tages. The finite element discretization admits the local
property as a finite difference. In each element, meanwhile,

the high order polynomial function basis and/or spectral
function basis can be used, which is similar to the spectral
method (spectral element method). So it is possible to use
the finite element method to treat an unsmooth region with
a small element (h refinement) and to treat a smooth region
with a large element but high order basis or spectral basis (p
refinement). This may combine the advantages of both the
finite difference method and spectral method. Due to the
global data property of the spectral method, the paralleli-
zation for the spectral method is quite limited. Within the
finite difference method, the moving box style mesh
refinement technique is commonly used in numerical
relativity. And the data have to be transferred between
different mesh levels. So the strong parallelization scal-
ability for the finite difference method is limited by the size
of the individual mesh level. In contrast, all elements in the
finite element method are treated uniformly. This possibly
makes the finite element method admit higher strong
parallelization scalability than both the finite difference
method and spectral method.
Although the finite element method has the above

attractive properties, it does have a drawback. That is,
the finite element method is hard to code, especially for
large scale scientific computation such as simulations of
binary compact objects. In [5,6] the authors have used the
finite element method to treat scalar equations and Regge-
Wheeler equations on the fixed Schwarzschild background.
They took the advantage of the symmetry of the problems
and reduced the equations to 1-D and 2-D in space,*zjcao@amt.ac.cn
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respectively. The results of [5,6] have already shown
accuracy, efficiency, and flexibility advantages of the finite
element method. In this project we exploit one recently
developed adaptive finite element library—Parallel
Hierarchical Grid (PHG) [8,9]—to develop a numerical
relativity code and investigate the properties of the finite
element method in solving the Einstein equations. We will
treat the full Einstein equations in 3-D space. In the current
paper we investigate the behavior of the finite element
method in solving the constraint part equations. This will
be the basis for us to develop a finite element code to evolve
the Einstein equations. The puncture method will be
adopted in this project. Since puncture is a singular point,
we will pay special attention to the behavior of the finite
element method around this object.
The rest of the paper is arranged as follows. In the next

section we will introduce the numerical algorithm treating
the Einstein constrain equations with the finite element
method. Then in Sec. III we briefly describe the code we
developed in this work. After that we present the numerical
results in Sec. IV. Firstly we show the results for a toy
model problem which admits an exact solution. Following
that we present the results for the binary black hole problem
and three black holes problem. At last we close the paper
with a summary and a discussion in Sec. V.
The Einstein summation convention, i.e., the repeated

super- and subindex mean summations, is adopted through-
out the paper. And the geometrized units with G ¼ c ¼ 1
are used. We take the notation convention used in [10,11].
Latin indices are spatial indices and run from 1 to 3,
whereas greek indices are space-time indices and run from
0 to 3.

II. EINSTEIN CONSTRAINT EQUATIONS AND
NUMERICAL ALGORITHM

Through 3þ 1 decomposition, the Einstein equations
are split into the evolution part and the constraint part [2].
The constraint part reads as

H≡ R − KijKij þ K2 − 16πρ ¼ 0; ð1Þ

Mi ≡DjKj
i −DiK − 8πsi ¼ 0; ð2Þ

which are named the Hamiltonian and momentum con-
straints, respectively. In the above equations, the R and Kij

are the scalar curvature and extrinsic curvature with respect
to some given spatial slice. D is the covariant derivative
operator consistent with the spatial metric. ρ and si are the
mass density and momentum density of matter. We refer
our reader to [2] for a detailed description of the quantities
involved in the above constraint equations.
In order to get the initial data for the evolution part,

one has to solve these constraint equations. Based on
different physical scenario considerations, different solu-
tion schemes have been proposed [12] to solve the

constraint equations. The existing initial data solvers for
binary black holes include finite difference solvers and
pseudospectral solvers. The bifunctional adaptive mesh
code’s elliptic solver [13], OLLIPTIC code [14], and
AMRMG code [15] belong to the finite difference solver.
All of these solvers use a full approximation storage
multigrid method and a nonlinear Gauss-Seidel relaxation
scheme. OLLIPTIC code uses fixed refinement levels,
while AMRMG adaptively refines the mesh levels based
on error estimate. OLLIPTIC code uses the refinement
mesh levels together with some extra coarse levels to do
multigrid operation. In contrast, AMRMG solves the
equation on each mesh level through the multigrid method.
The pseudospectral solvers include LORENE [16,17], the
Spectral Einstein Code (SpEC) [18], and the TwoPuncture
code [19]. The TwoPuncture code is specifically designed
for puncture type initial data [13]. A series of meticulous
coordinate transformations is involved in the numerical
scheme of the TwoPuncture code. Regarding numerical
implementation, only one spectral domain is used in the
TwoPuncture code. SpEC was developed by Pfeiffer and
his co-workers. It is mainly used for black hole simulations.
Different from the TwoPuncture code, SpEC is a typical
multidomain spectral code. Although most published
works used SpEC for conformal thin-sandwich initial data
with excision, SpEC can be used in principle to solve any
type of initial data for the Einstein equations. At the end of
the 1990s, LORENE was developed by Gourgoulhon,
Grandclement, and other co-workers mainly for relativistic
compact stars. But it can also be used for binary black hole
initial data. Like SpEC, LORENE is also a multidomain
spectral code. In this paper we will construct an adaptive
finite element solver for the initial data of the Einstein
equations.
We consider the puncture scheme proposed in [13] with

conformally flat assumption. In this scheme, the momen-
tum constraints are solved analytically. After that the
3-metric and the extrinsic curvature are written as

γij ¼ ψ4fij; ð3Þ

Kij ¼ ψ−2K̂ij; ð4Þ

K̂ij ¼
3

2

X
I

1

r2I
½2PI

ðin
I
jÞ − ðfij − nIin

I
jÞPk

In
I
k

þ 4

rI
nIðiϵjÞklS

k
In

l
I �; ð5Þ

where fij is the flat metric; Pi
I and SiI are constant vectors,

standing for the linear momentum and the spin momentum
of the Ith black hole, respectively; niI is the radial normal
vector with respect to fij, which points from the position of
the Ith black hole to the space point. And the conformal
factor ψ is determined by the Hamiltonian constraint
equation
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−ð∂2
x þ ∂2

y þ ∂2
zÞψ ¼ 1

8
K̂ijK̂ijψ

−7 þ 2πρψ−3: ð6Þ

The points rI ¼ 0 are called puncture points and the
above equation is singular at these points. After variable
transformation

ψ ≡ 1þ
X
I

mI

2rI
þ u; ð7Þ

the Hamiltonian constraint equation becomes

−ð∂2
x þ ∂2

y þ ∂2
zÞu ¼ 1

8
K̂ijK̂ijψ

−7 þ 2πρψ−3 ð8Þ

with unknown function u. Approaching puncture points, rI
goes to zero and K̂ij behaves as r−1I . Noting that ψ behaves
as r−1I , we can see that the right-hand side of (8) approaches
zero, which means that the equation behaves well at
puncture points. Actually, the authors in [13] have proved
that the equation is regular in the whole domain R3. But
unfortunately the solution u is only C4 around the puncture
points.
When r goes to infinity, the geometry approaches a flat

space asymptotically. This results in the boundary con-
dition for (8):

u → 0 when r → ∞: ð9Þ

Numerically we will approximate the domainR3 with some
finite domain Ω. At the boundary of Ω if we consider the
zeroth order approximation of (9), we get the following
approximate Dirichlet boundary condition,

u ¼ dðxÞ at ∂Ω; ð10Þ

with d ¼ 0. If we consider the leading order approximation
of (9), u ≈ A

r with an unknown constant A, we get the
following approximate Robin boundary condition,

~n ·∇uþ αðxÞu ¼ bðxÞ at ∂Ω; ð11Þ

with b ¼ 0 and α ¼ 1
r
∂r
∂n. Here r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and ~n is

the out normal vector of ∂Ω.
Typically, the metric shows a multipole expansion

behavior asymptotically when r goes to infinity. The
leading order corresponds to the monopole order and it
shows a power-law decay in 1

r [20]. More elaborative
analysis about the approximate boundary condition based
on multipole expansion can be found in [21,22]. Although
the above approximate boundary condition (11) only
considers the leading order, previous works [20,22,23]
have shown that they can approximate the ultimately
desired boundary condition (9) well when the computa-
tional boundary is far away enough. The boundary

condition (10) is more rough. It contains only zeroth order
information of the asymptotical behavior of the metric. In
the latter part of this paper, our numerical test results will
show that this boundary condition can also work well. Of
course, this result has taken advantage of the high effi-
ciency of the finite element method which pushes the
computational boundary quite far away.
In the following we will use the finite element method to

solve Eq. (8). In this paper we only consider the vacuum
case ρ ¼ si ¼ 0.
Equation (8) takes the form

−∇2u ¼ fðuÞ in Ω; ð12Þ

which is a nonlinear Poisson equation. For the nonlinear
Poisson equation (12) and the Robin boundary condition
(11), we can use integration by part to get the following
weak form, Z

Ω
ð∇uÞ · ð∇vÞd3xþ

Z
∂Ω

αuvds

¼
Z
Ω
fðuÞvd3xþ

Z
∂Ω

bvds: ð13Þ

Denoting the basis function of the finite element ϕi, we can
expand the unknown function u as u ¼ uiϕi. The above
weak form equation can be discretized as

ui
�Z

Ω
ð∇ϕiÞ · ð∇ϕjÞd3xþ

Z
∂Ω

αϕiϕjds

�

¼
Z
Ω
fðuÞϕjd3xþ

Z
∂Ω

bϕjds: ð14Þ

This is a set of nonlinear algebra equations for ui. We use
the Newton iteration method to solve this set of nonlinear
equations. Given the numerical solution at the nth step uðnÞ,
we solve

½F0
ij −Mij − αij�Δuj ¼

Z
Ω
ð∇uðnÞÞ · ð∇ϕiÞd3x

þ
Z
∂Ω

αuðnÞϕids −
Z
Ω
fðuðnÞÞϕid3x −

Z
∂Ω

bϕjds ð15Þ

for Δui, where we have defined the mass matrix Mij, and
the matrices F0

ij and αij as

Mij ¼
Z
Ω
ð∇ϕiÞ · ð∇ϕjÞd3x; ð16Þ

F0
ij ¼

Z
Ω

df
du

ðuðnÞÞϕiϕjd3x; ð17Þ

αij ¼
Z
∂Ω

αϕiϕjds: ð18Þ
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Then we iterate uðnþ1Þ ¼ uðnÞ þ Δuiϕi. Noting that all the
involved matrices are symmetric, we use the precondi-
tioned conjugate gradient to solve the linear equations. The
diagonal elements of the matrix in question are used as the
preconditioner.
For the Dirichlet boundary condition (10), we firstly use

the function basis of the boundary elements to solve the
boundary condition and then use a source term to treat the
boundary condition. In this way we get the following weak
form,Z
Ω
ð∇uÞ · ð∇vÞd3x ¼

Z
Ω
fðuÞvd3x −

X
j

Z
∂Ω

dϕjds;

ð19Þ

where the ϕj’s are the function basis of boundary elements.
Using the Newtonian iteration method similar to the Robin
boundary case, we can solve the equation numerically.

III. CODE DESCRIPTION

The Parallel Hierarchical Grid library [8] is an adaptive
finite element software. It is developed by the finite element
research group in the State Key Laboratory of Scientific
and Engineering Computing. This software is constructed
through c language and the Message Passing Interface
library. The kernel of this software provides an infra-
structure for a distributed three-dimensional hierarchical
finite element grid. The PHG refines the grid and redis-
tributes the grid to keep the load balance automatically.
Along with the grid hierarchy, the PHG also provides kinds
of linear equation solvers and eigen equation solvers. In
addition, the PHG provides the input and output interface to
support Visualization Toolkit [24], OpenDX [25], and other
formats.
For the Einstein equations part, most functions involved

in this work are borrowed from the AMSS-NCKU numeri-
cal relativity code. The AMSS-NCKU code has been tested
and applied to many astrophysical research problems in
previous studies [26–29]. We refer our readers to [2,14,30]
for the code details. In addition, the AMSS-NCKU code
was also used to check the resulting initial data in this
paper.
In this series of works, we plan to combine AMSS-

NCKU and PHG to construct an Einstein Parallel
Hierarchical Grid code (iPHG) for numerical relativity.
This code will be used to study the finite element method
specifically for the Einstein equations. And it will also be
applied to the study of gravitational wave physics and
astrophysics related to general relativity.
In order to check and compare the resulting initial

data for the Einstein equations, we also reproduce the
TwoPuncture code by following exactly the recipes
described in [19]. We have reproduced the relevant results
shown in [19] to make sure our TwoPuncture code works

correctly. As an example, we show a result in Fig. 1.
Regarding the numerical resolution, we use the grid
numbers nA ¼ 40, nB ¼ 40, and nϕ ¼ 20. The numerical
error tolerance is set as 5 × 10−12. The meaning of these
parameters can be found in [19]. This setting is a typical
setting used in previous binary black hole studies
(e.g., [14]).

IV. NUMERICAL RESULTS

In this section we will present the behavior of the
adaptive finite element method in solving the Einstein
constraint equations. For code test and later comparison we
firstly test a toy model of a linear Poisson equation.

A. Toy model

In our toy model we consider a Poisson equation with a
discontinuous source:

−∇2u ¼ fðxÞ in R3; ð20Þ

 0.016

 0.0165

 0.017

 0.0175

 0.018

 2.7  2.85  3  3.15  3.3

u

X (y = z = 0)

 0.016

 0.0165

 0.017

 0.0175

 0.018

-0.3 -0.15  0  0.15  0.3

u

Y (x = 3, z = 0)

FIG. 1 (color online). Reproduction of Fig. 5 in [19] with
our TwoPuncture code. Here we use the grid numbers nA ¼ 40,
nB ¼ 40, and nϕ ¼ 20. The numerical error tolerance is set
as 5 × 10−12.
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f ¼
�
1 if r < 0.5

0 if r > 0.5
: ð21Þ

The exact solution to this toy model is

u ¼
(
− r2

6
þ 1

8
if r < 0.5

1
24r if r > 0.5

: ð22Þ

In this paper, we always take the computational domain
r > 0.5. Based on the above exact solution, we can deduce
the Dirichlet boundary condition as

u ¼ 1

24r
; ð23Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, and the Robin boundary con-

dition as

~n · ∇uþ u
r
∂r
∂n ¼ 0: ð24Þ

This Robin boundary condition is nothing but Eq. (11)
with b ¼ 0.
Firstly we set the computational domain as a cube with

−1 ≤ x; y; z ≤ 1. Regarding the grid, we start from the
simplest tetrahedral element decomposition with 8 vertices
and 5 elements. Then we uniformly refine the grid 6 times.
After that we refine the boundary elements 3 times.
Afterwards, we use the L2 norm of the residual of the
equation as the refinement indicator and let PHG do the
adaptive refinement along the solving process. Specifically,
the residual R and its L2 norm Ei are defined as

R≡∇2uh þ fðxÞ; ð25Þ

Ei ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
i-th element

R2dx3

s
; ð26Þ

where we have used uh to denote the numerical solution. In
the definition of Ei the integration is taken on the ith
element. So our indicator Ei is a function of elements.
In Fig. 2 we plot the numerical solution against the exact

solution. Both results with Dirichlet boundary condition
(23) and Robin boundary condition (24) are shown. From
this figure we can see our numerical solutions recover the
exact solution very well.
In Fig. 3 we investigate the numerical error and the

convergence behavior of the numerical solutions. In panel
(a) of this figure, we show the difference between the
numerical solutions and the exact solution (22). We
calculate the difference on the mesh grid first. Then we
interpolate the result to the x-axis as shown in the figure. In
panel (b), we show the infinity norm of Ei with respect to
the adaptive mesh refinement steps n. As we explained
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 0.1

 0.11
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FIG. 2 (color online). Comparison of numerical solution with
the Dirichlet boundary condition (23) and Robin boundary
condition (24) to the exact solution (22).
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FIG. 3 (color online). (a) Difference between the numerical
solution and the exact solution (22). The Dirichlet boundary
condition (23) and the Robin boundary condition (24) are used,
respectively. (b) Convergence behavior during the solving proc-
ess. The x-axis is the mesh refinement steps n. The effective
resolution is proportional to 1

2n
.
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above, Ei is a function of elements. We search through all
the elements to find the maximal jEij which corresponds to
the infinity norm. Since we have set the numerical error
tolerance 10−11, the refinement process stops at the 18th
step when the numerical error indicator, the infinity norm of
Ei, becomes smaller than the given tolerance. If we denote
the initial resolution as Δ, the effective resolution at the nth
refinement step is Δ=2n. We can estimate the convergence
order according to the relationship Ei ∝ ðΔ

2n
Þp, where we

have denoted the convergence order with p. Together with
the numerical results in Fig. 3(b), we also show the fitted
line which implies that the convergence order is about 1.6.
In the practical initial data problem for the Einstein

equations, we can neither calculate the whole R3 domain
with boundary condition (9), nor have enough information
to get a Dirichlet boundary condition like (23). Instead, the
Dirichlet boundary (10) with d ¼ 0 and the Robin boun-
dary condition (11) with b ¼ 0 are popularly used. The
Robin boundary condition has already been tested in (24).

Here we would like to test the Dirichlet boundary (10) with
d ¼ 0. For clarity, we call this boundary condition the
artificial Dirichlet boundary condition. In the following we
will solve Eq. (20) together with the artificial Dirichlet
boundary condition and check how well it approximates the
exact boundary condition.
The cube domain −rBD ≤ x; y; z ≤ rBD with different

rBD’s is used. The difference between the numerical sol-
utions and the exact solution (22) is shown in Fig. 4(a). In
panel (b) of this figure we present the convergence behavior
with respect to rBD. We find that the numerical error decays
as a power law in 1

rBD
. When rBD is larger than about 6 × 103,

the power law stops.This is because the numerical truncation
error dominates afterwards. Note that the number 10−5 is
consistent with the numerical truncation error shown in
Fig. 3(a).
In Fig. 5 we check the grid refinement configuration. In

the top subplot of Fig. 5 we show the grid structure before
the adaptive mesh refinement takes place. In the bottom
subplot we show the grid structure after the adaptive mesh
refinement is done and the numerical solution which
satisfies the given error tolerance has been gotten. Note
that we use different plotting scales for these two subplots.
In the top subplot the size of the elements is much larger
than the whole plotting scale shown in the bottom subplot.
In the bottom subplot, besides the fine grids which are
added by the refinement operation automatically, we can
see a clear circle structure of the grids around r ¼ 0.5.
Recalling that the position r ¼ 0.5 corresponds to the
location of the discontinuity of the source function in
the toy model (20), this figure indicates that our adaptive
mesh refinement can effectively catch the character of the
problem being solved.

B. Initial data for two punctured black holes

Now we turn to the Einstein constraint equations. We use
H to denote the residual of Eq. (8),

H ≡∇2uh þ
1

8
K̂ijK̂ijψ

−7 þ 2πρψ−3; ð27Þ

where we have again used uh to denote the numerical
solution. For vacuum spacetime, we have ρ ¼ 0. Compared
to the toy model problem in the above subsection, the
solution function for Eq. (8) is smoother. So we can use the
H1 norm, instead of L2 norm, of H in each element to
indicate the numerical error of the numerical solution.
Explicitly, the error indicator reads as

Ei ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
i-th element

ðH2 þ∇H ·∇HÞdx3
s

: ð28Þ

The integration is taken on the ith element, which is similar
to Eq. (26). For the Einstein constraint equations, we use Ei
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FIG. 4 (color online). Investigation of the artificial Dirichlet
boundary condition (10). (a) Difference between the numerical
solution and the exact solution (22). Different computational
domains −rBD < x; y; z < rBD are tested. (b) Convergence
behavior with respect to rBD. Here we have used the difference
between the numerical solution and the exact solution (22) at
point (0,0,0) to measure the numerical error.
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in (28) as an indicator for adaptive mesh refinement. We
have also tested to use the L2 norm of H as the indicator
and gotten roughly the same numerical result. In the
following we only report the result with indicator (28).
For easy comparison we consider the configuration of

two punctured black holes, which has been investigated
before in [14,19]. In this configuration the two black holes
are located on the x-axis at positions ð�3; 0; 0Þ. The linear
momenta for these two spinless black holes are
ð0;�0.2; 0Þ. With these parameters, the two black holes
inspiral around each other along a quasicircular orbit.
Firstly we check the effects of the boundary condition

and computational size on the numerical solution. We use
the cubic computational domain −rBD < x; y; z < rBD and
the Dirichlet boundary condition (10). Like in the toy
model problem, we set up the initial mesh grid with the

FIG. 5. Grid structure in the plane y ¼ 0 for solving the toy
model (20). Top: Before the adaptive mesh refinement. Bottom:
After the adaptive mesh refinement.
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FIG. 6 (color online). (a) Numerical solution comparison
among different computational sizes rBD for a binary punctured
black hole. The cubic domain and the Dirichlet boundary
condition (10) are used in this subplot. (b) DifferenceΔu between
the numerical solution and the reference solution. (c) The
relationship between Δuð0; 0; 0Þ and rBD. The cubic domain is
used for this subplot. Here we use the numerical solution of “cube
Robin rBD ¼ 104” as the reference solution. Variant computa-
tional domains and variant boundary conditions are tested.
“Cube” and “sphere” mean the cubic domain and spherical
domain, respectively. “Dirichlet” and “Robin” represent the
Dirichlet boundary condition (10) and the Robin boundary
condition (11), respectively.
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simplest tetrahedral element decomposition with 8 vertices
and 5 elements. Then we uniformly refine the grid 6 times.
After that we refine the boundary elements 3 times.
Afterwards, we use the Ei in (28) as the refinement
indicator and let PHG do the adaptive refinement along
the solving process. We compare the solution with different
rBD’s in Fig. 6(a). In this plot, we have interpolated the
numerical solutions onto the x-axis like in Fig. 2.
In the framework of the finite element method, it is easy

to treat any shape of boundary. Here we have compared the
numerical result with the spherical computational domain
to the one with the cubic computational domain. To
implement the spherical domain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
< rBD,

we use NetGen [31] to generate an initial grid for a given
sphere first. Then we transform the output grid file to Albert
format [32] and add a “curved boundaries” description to
the Albert file. The curved boundaries are an extension of
Albert format to support grid refinement near the boundary,
which lets the refined grids approach the wanted boundary
better. Starting from this mesh grid, we use the Ei in (28) as
the refinement indicator and let PHG do the adaptive
refinement along the solving process.
The previous work [14] has shown that the Robin

boundary condition (11) works very well in the current
problem. And since the exact solution is not available, we
use the numerical solution with the boundary condition
(11) and with a large computational domain −104 <
x; y; z < 104 as our reference solution. In Fig. 6(b) we
investigate the difference Δu between the numerical
solutions and the reference solution. The difference is
calculated in the following way. We firstly interpolate both
the reference solution and the numerical solution to some
given points on the x-axis. Then we calculate the difference
between them. The numerical solution of “sphere Robin
rBD ¼ 40” behaves differently around the two punctures.
This is due to the mesh grid structure. We will comment on
this point more in the following. In Fig. 6(c) we investigate
the relationship between Δu and rBD for the Dirichlet
boundary condition (10). Here the cubic computational
domain is used. Roughly when rBD < 2000, a clear power
law in 1

rBD
can be seen. The power-law exponent 1 is

consistent with the expectation. Since the Dirichlet boun-
dary condition (10) only considers the zeroth order asymp-
totic behavior of the metric, the next order which
corresponds to the power-law exponent 1 contributes to
the numerical error. So the power-law exponent 1 is
expected. This means the boundary effects of the monopole
dominate in this range. When rBD > 2000, the higher
multipole effects and the numerical truncation error come
in, so the power law stops. These higher multipole effects
and the numerical truncation error together contribute
about 1 × 10−5.
We compare the grid structure for cube Robin rBD ¼ 40

and sphere Robin rBD ¼ 40 in Fig. 7. Firstly we find that
the adaptive mesh refinement can find out the puncture

positions automatically. In addition, from this figure we can
see the grid structure for the spherical computational
domain is less efficient. Some fine grids appear at the
wrong places (lower part region). This phenomenon occurs
for two reasons. One is because the initial grid is not
efficient enough. This is due to less tuning usage of
NetGen. The other reason is that the curved-boundaries
object has not been adjusted to work well. PHG developers
are still working on this point. These two points are out of
the scope of the current work. In the following tests, we will
only be concerned with the cubic computational domain.
We check the convergence behavior of the numerical

solution in Fig. 8. We have tested three different order
polynomial basis functions. “P1” (“P1h”), “P3,” and “P6”
correspond to the first order, third order, and sixth order,
respectively. Except for the tests done here, we use the third
order polynomial by default. In panel (a), we plot the
infinity norm of Ei against the adaptive mesh refinement
step n. From the definition (28), we can see Ei is nothing
but a weak form of the Hamiltonian constraint violation. So
this plot shows the convergence of the Hamiltonian con-
straint with respect to the adaptive mesh refinement
process. As we explained after Eq. (28), Ei is a function
of elements. We search through all the elements to find the
maximal jEijwhich corresponds to the infinity norm. Given
some numerical error tolerance ϵ, when the infinity norm of
Ei becomes less than ϵ, we stop the adaptive mesh refine-
ment process and take the solution as the desired solution.
We have set ϵ ¼ 1 × 10−10 for P1, P3, and P6 runs and set
ϵ ¼ 4 × 10−13 for the P1h run. In panel (b), we plot the L2

norm of Δu with respect to the adaptive mesh refinement
steps. Δu is again the difference between the reference
solution and the numerical solution. The reference solution
corresponds to cube Robin rBD ¼ 104 as before. We
interpolate both the reference solution and the numerical
solution to the x-axis. Then we calculate the difference.
Here we only consider the −40 < x < 40 part and the L2

norm in this part is calculated. These two plots are similar
to Fig. 3(b). Both plots show a qualitatively similar
behavior of convergence. The lines in both plots are clearly
divided into two segments. Through checking the numeri-
cal solutions and the grid structure, we can find that the
grids have not resolved the puncture regions during the first
segment. During the second segment, the refinement
operations mainly treat the region around the puncture
points. In this sense, the first segment does not correspond
to the real convergence. We estimate the convergence order
based on the second segment and get the convergence order
p ≈ 2 for all of the four runs. In Fig. 8(c) we check the
convergence behavior of Ei. The plot shows the interpo-
lation result of Ei to the x-axis. We can see clear steps in
this plot. This is because Ei is a function of elements. So the
points locating in the same element admit the same value.
Here we only show the result for P3. The results for other
runs are similar.
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In Fig. 9 we investigate more about the behavior for
different order polynomial basis functions. In panel (a), we
plot the function Ei along the x-axis. From this plot we can
see that the steps are wider when the polynomial order is
higher. This is because higher order polynomial basis
functions make the solving process reach the given error
tolerance with coarser grids. This result implies the
efficiency of introducing a higher polynomial basis func-
tion in the smooth region, which is consistent with the
expectation we gave in the Introduction. In panel (b), we
present the difference between the reference solution and

the numerical solutions. We again use the numerical
solution of cube Robin rBD ¼ 104 as the reference solution.
We can see that the difference of P1 is larger than that of
P1h. This implies that the numerical solution along the
solving process does converge to the reference solution. We
also note that the difference of P1h is larger than that of P3
and P6, although P1h uses 2 orders smaller tolerance. This
cautions us that smaller Ei alone does not mean a more
accurate numerical solution.
Since our goal is to get the initial data which satisfy the

Hamiltonian constraint equation, we would like to check

FIG. 7. Grid structure comparison for the cubic computational domain (the top row) and spherical one (the bottom row). Here we show
the grid structure in the z ¼ 0 plane. The left column corresponds to the grid before adaptive mesh refinement takes place. The right
column corresponds to the grid when the desired solution is gotten.
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the effect of different polynomial orders on the Hamiltonian
constraint violation. In order to make the comparison fair,
we import the resulting different initial data into AMSS-
NCKU code. On the side of AMSS-NCKU code, the same
grid setting and the same calculation procedure are taken.
We set up a uniform mesh grid based on Cartesian
coordinates within AMSS-NCKU code. Then we copy
the numerical solution u into this mesh grid and construct
the Baumgarte-Shapiro-Shibata-Nakamura variables based
on the puncture initial data instruction. After that we use a
fourth order finite difference to calculate the partial
derivatives and follow Eqs. (12) of [2] to compute the
Hamiltonian constraint violation. This procedure is the
same as the one we used to check constraint violation
during evolution within AMSS-NCKU code [2]. Finally we
interpolate the resulting constraint violation onto the x-axis
and plot in Figs. 9(c)–(f). Subplots (c) to (f) correspond to
different uniform grids with different resolutions within
AMSS-NCKU code. Where (c) uses resolution 1

8
, (d) uses

1
16
, (e) uses 1

32
, and (f) uses 1

64
. The amplitude of the shown

Hamiltonian constraint violation depends on two factors.
One is the resolution used in AMSS-NCKU code. So we
can see when the resolution becomes higher, the
Hamiltonian constraint around the puncture points becomes
smaller. [Apparently the amplitude in (d) is higher than that
in (c). This is because the sampling point in (d) is nearer to
the puncture point.] The second factor comes from the
numerical error of the solution u. The effect comes from
this factor that distinguishes among different numerical
solutions. We can see that the higher order polynomial
gives smoother Hamiltonian constraint violation, and more-
over it results in a smaller constraint amplitude even though
the higher order uses a coarser mesh grid. At the same time
we can note that P1h results in a slightly smaller constraint
violation than P1. The higher order polynomial corre-
sponds to the p-refinement. The finer mesh grid corre-
sponds to the h-refinement. The results in Figs. 9(c)–(f)
imply that p-refinement is more efficient than h-refinement
in the current context.
The solution function u is expected to admit only a

smooth profile except at the puncture points, where it is C4.
Recalling this particular singular property of puncture
points, we borrow the idea from the TwoPuncture method
to put these puncture points at some element vertices. Then
in all elements the unknown function is smooth. We test
this idea with the cubic computational domain rBD ¼ 40
and Robin boundary condition (11). In order to put the two
punctures at some element vertex, we use 12 boxes, as
shown in Fig. 10, to decompose the computational domain.
Then we let NetGen generate the initial grid. After that we
use an adaptive mesh refinement procedure to solve the
constraint equation. We need many fewer elements to get
the same numerical error tolerance in this way than that
gotten without paying special attention to the puncture
point (for clarity we call this the “usual” method).
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FIG. 8 (color online). Convergence behavior for the punctured
binary black hole along the solving process. This figure corre-
sponds to the “cube Dirichlet rBD ¼ 10000.” For other cases the
convergence behavior is similar. Here the lines marked with P1,
P3, and P6 correspond to the first order, third order, and sixth
order polynomial basis function runs, respectively. We use
numerical error tolerance 1 × 10−10 for P1, P3, and P6. For
P1h, we use the first order polynomial as P1 but set much more
stringent tolerance 4 × 10−13. (a) The infinity norm of Ei with
respect to the mesh refinement step n. (b) The L2 norm of Δu on
the x-axis with respect to n. Since each refinement makes the
effective grid double the resolution, the x-axis can also be looked
at as the logarithm of the resolution of the mesh grid. (c) The
profile of Ei at the last mesh refinement steps for P3. “#n” means
the nth step of mesh refinement.
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We compare the results gotten by “puncture at vertex” to
the one gotten by the usual method in Fig. 11. In panel a we
show the difference of the numerical solution between these
two methods. We can see the difference is 1 order smaller
than the numerical error with respect to the reference

solution cube Robin rBD ¼ 104 (compare Fig. 6). In this
sense the puncture at vertex method does not improve the
solution’s accuracy. In panel (b), we compare the Ei
function along the x-axis. For the usual method, two peaks
at the puncture points are clear, while for the puncture at
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FIG. 9 (color online). Comparison of the numerical solutions with different order polynomial basis functions. The meaning of the
legend is the same as in Fig. 8. (a) Ei along the x-axis. (b) Difference between the reference solution and the numerical solutions. Again
the numerical solution of cube Robin rBD ¼ 104 is used as the reference solution. (c)–(f): Comparison of Hamiltonian constraint
violation. The constraint violation is calculated through AMSS-NCKU code based on a uniform mesh grid. (c) uses resolution 1

8
, (d) uses

1
16
, (e) uses 1

32
, and (f) uses 1
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.
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FIG. 10 (color online). Subdomain settings for putting the
punctures at vertex. The subdomains include 12 boxes. The two
punctures are marked with two red dots in the sketch.
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FIG. 11 (color online). Test for the method putting the puncture
points at some element vertex (marked with “puncture at vertex”).
The line marked with “usual” corresponds to the usual method
which does not consider the puncture points especially. In this
figure, the cubic domain with rBD ¼ 40 and the Robin boundary
condition are used. (a) Numerical solution difference between
these two methods. (b) Comparison of the Ei function along the
x-axis.
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FIG. 12 (color online). Numerical solution comparison between
the spectral method and finite element method for binary
punctured black holes. The line marked with “PHG” is the
solution gotten through the finite element method, which corre-
sponds to the one with the cube computational domain rBD ¼ 104

and the Robin boundary condition (11). The line marked with
“TwoPuncture” is the solution gotten by the spectral method,
which corresponds to the one shown in Fig. 1. (a) Comparison of
the numerical solution near the puncture points. (b) Comparison
of the numerical solution in a large scale. (c) Relative difference
between the two numerical solutions.
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vertex method, the puncture points do not show any special
performance. The much larger step profile for the puncture
at vertex method indicates that the desired numerical error
tolerance is gotten with much larger grid elements than the
one with the usual method. In this sense the puncture at
vertex method is more efficient.
In the following we compare the numerical solution

gotten by the finite element method to the one gotten by the
spectral method. The spectral method code is an imple-
mentation of the TwoPuncture scheme proposed in [19].
The result is shown in Fig. 12. The solution gotten by the
finite element method (marked with “PHG”) corresponds to
cube Robin rBD ¼ 104, which has been used as the
reference solution above. The solution gotten by the
spectral method (marked with “TwoPuncture”) corresponds
to the one shown in Fig. 1. In panel (a), we show the two
solutions near the puncture points. The value for
TwoPuncture at the puncture point is about 0.0175. For
the finite element method, the value is roughly 0.0185. This
difference is much larger than that introduced by a different
grid setting, different boundary condition, different numeri-
cal error tolerance setting, and many other factors of the
finite element method, as analyzed before. In panel (b), we
show the two solutions TwoPuncture and PHG in a much
larger spatial scale. Together with the plot we also show the
power-law relation 0.03=x for comparison. When x goes to
infinity, both solutions behave as power-law 1

x decay. This
supports our approximated Robin boundary condition (11)
at finite distance. Based on this analysis, we suspect that the
difference between TwoPuncture and PHG comes from the
numerical truncation error of finite element methods. In
panel (c), we show the relative difference between these
two solutions. Interestingly, the relative difference almost
uniformly distributes in a quite large scale. This result
implies that the adaptive finite element method is quite
effective. The fine grids are only added in needed regions
and roughly no computational effort is wasted.
In Fig. 13 we compare the Hamiltonian constraint

violation resulting from the solutions TwoPuncture and
PHG. We again use the AMSS-NCKU code to calculate
the constraint. The detailed procedure is the same as
described for Fig. 9. Here we have used 12 unigrids to
cover different regions and calculate the constraints indi-
vidually. After that we combine these results together and
show them in Fig. 13. The vertical lines shown in the plot
indicate the interface of these regions. Higher resolution is
used for the regin nearer to the puncture point. For
TwoPuncture, the line segments within x − 3 < 0.1 and
x − 3 > 10 show clear level-off behavior. For PHG the
x − 3 < 0.1 part shows level-off behavior. This is because
the constraint violation is dominated by the numerical error
of AMSS-NCKU code in these regions. And this level-off
behavior corresponds to the different unigrids with different
resolutions used in AMSS-NCKU implementation. In
general, PHG results in larger constraint violation than

TwoPuncture. This is consistent with our expectation that
the spectral method admits higher accuracy. In conclusion,
the adaptive finite element method results in less accurate
solutions than the spectral method. But the adaptive finite
element method is quite effective in the sense that the
resulting numerical error distributes almost uniformly. No
redundant computational cost is involved.

C. Initial data for three punctured black holes

The three-body problem is quite interesting even in
Newton gravity. For planar motion within Newton gravity,
it is difficult to investigate the dynamics [33,34]. Three
well-known configurations, including Lagrange’s triangle,
Henon’s crisscross, and Moore’s figure eight [35,36], have
been extensively studied. When the motion of three bodies
touches a general relativity region, one should consider
post-Newtonian (PN) correction to the dynamics.
Currently, the 2.5PN correction for three-body interaction
is available [37–40]. When the interaction among the three
bodies becomes stronger, the full Einstein equations must
be used. Now only numerical relativity is possible to treat
this kind of problem. The authors in [41,42] pioneered the
three-black-hole simulations. Due to the lack of a proper
initial data solver for three black hole problems, the authors
used approximate analytic initial data [43]. They inves-
tigated several configurations of three black hole problems.
All configurations were motivated by gravitational wave
detection, and special attention was paid to inspiral and
merger. The most interesting one (denoted as 3BH102)
results in two successive inspiral-merger events. The tracks
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of the three black holes look like three greek letters γ, σ, and
τ. Later the authors in [14] developed the finite difference
solver OLLIPTIC for three black hole problems. They
found that the simulation result is quite sensitive to the
initial data. The final fate of the three black holes that
started from numerical initial data is different from the one
started from approximate analytic initial data. Regarding
the tracks of the three black holes, the γ is not clear any
more. σ and τ are deformed. Regarding the two inspiral-
merger events, only one is clear. The other one almost
changes to head-on collision. So only one burst is presented
in the gravitational wave form.
Unlike the TwoPuncture code that is limited to two

black hole problems, the finite element method is much
more flexible. In this subsection, we apply it to the three
black hole problem. We reinvestigate the configuration
3BH102 discussed in [14,41,42]. The three spinless black
holes with puncture mass parameters 0.317578, 0.317578,
and 0.318585 sit at ð−3.52238; 2.58509; 0Þ, ð−3.52462;
−2.58509; 0Þ, and (7.04476,0,0), respectively. Their linear
momenta are ð0.0782693;−0.0433529; 0Þ, ð−0.0782693;
−0.0433529; 0Þ, and (0,0.0867057,0).
We have tested different computational domains and

different boundary conditions. All of them result in roughly
the same solution. In the following we only present the result
with cube Robin rBD ¼ 40. We show the numerical solution
in Fig. 14. The numerical solution shown in Fig. 14 is
consistent with the one shown in Fig. 8 of [14]. In Fig. 15 we
plot the resulting numerical error indicator function Ei and
the Hamiltonian constraint violation. Again the Hamiltonian
constraint violation is calculated through porting the initial
data to AMSS-NCKU code.
In Fig. 16 we present the convergence behavior. After

roughly 20 mesh refinement steps, the solving process goes
into a convergent region. The estimated convergence order
is about 1.9.
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FIG. 14 (color online). The numerical solution for the 3BH102
configuration. Here we use the cubic computational domain with
boundary located at rBD ¼ 40, and the Robin boundary condition
(11) is used.
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FIG. 15 (color online). (a) Ei function along the x-axis. (b) The
Hamiltonian constraint violation. Here the resolution used in
AMSS-NCKU code is 0.15625. This figure corresponds to the
numerical solution u in Fig. 14.
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FIG. 16 (color online). Convergence behavior for the 3BH102
configuration along the solving process. The plot convention is
the same as Fig. 8. The x-axis is the adaptive refinement step n.
This plot corresponds to the numerical solution u in Fig. 14.
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V. SUMMARY AND DISCUSSION

As one of the three categories’ methods to solve partial
differential equations, the finite element method is still
missing in numerical relativity. In an ongoing series of
works, we investigate the possible advantage of the
adaptive finite element method in the application to
numerical relativity. We are interested especially in the
binary compact object simulation. For this goal, we
combine the existing numerical relativity code AMSS-
NCKU and the library PHG to develop an adaptive finite
element code, Einstein PHG (iPHG), for the Einstein
equations. In this paper we have studied the constraint
part of the Einstein equations. Based on the character of
PHG software, we have designed a numerical scheme for
the Einstein constraint equations. Specifically we apply our
scheme and the developed code to the puncture type initial
data problem for multiple black holes. Starting from a
simple grid setting, our code can catch the punctured
regions and refine them automatically. Along with the
adaptive refinement process, the converged numerical
solution is efficiently achieved.
Before we treat the initial data problem for the Einstein

equations, we have also tested our code with a toy model
whose exact solution is known. Our code works very well
in the toy model problem to catch the discontinuous region
and get an accurate numerical solution. The numerical error
is less than 10−5. For the multiple black hole problems we
have compared the results to the ones gotten in previous
works. We find our numerical results are consistent with
previous results in general. For the two punctured black
hole problems, we have compared our solution to the one
gotten through the spectral method. As expected, the
solution gotten by the finite element method is less accurate
than that gotten by the spectral method. But the numerical
error resulting from the finite element method distributes
almost uniformly. This implies that the adaptive mesh

refinement operation in our implementation is quite effi-
cient. Only the region needs refinement is refined. Roughly
no computational cost is wasted.
It is possible to use a high order polynomial function

basis to mimic the spectral method within each element. We
have tested high order polynomials till the eighth. The
advantages of the application of these high order poly-
nomial functions are the efficiency and the accuracy, as
expected. But for current punctured black hole problems, a
high convergence order cannot be gotten by using a high
order polynomial. This is due to the nonsmoothness of the
source term of the constraint equations near puncture
points. In principle, some ingenious error estimator [44]
can be constructed and used as the refinement indicator;
then high order convergence along the refinement process
may be achieved. This is out of the scope of the current
work, so we are not concerned about this point here.
The results in this work have implied some possible

advantages of applying the finite element method to
numerical relativity. Regarding the difficulty of coding
the finite element method for large scale scientific compu-
tation, the PHG library may be a good tool. Very recently T.
Cui and J. Tao have ported the PHG library into Cactus
[45], which is the most popular tool in the numerical
relativity community. So the numerical schemes proposed
in the current work can be easily implemented through
Cactus in principle.
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