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Motivated by conformal field theory studies, we investigate quantum Einstein gravity with a new field
parametrization where the dynamical metric is basically given by the exponential of a matrix-valued
fluctuating field, gμν ¼ ḡμρðehÞρν. In this way, we aim to reproduce the critical value of the central charge
when considering 2þ ϵ-dimensional spacetimes. With regard to the asymptotic safety program, we take
special care of possible fixed points and new structures of the corresponding RG flow in d ¼ 4 for both
single- and bimetric truncations. Finally, we discuss the issue of restoring background independence in the
bimetric setting.
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I. INTRODUCTION

Conventional quantum field theories in flat space require
the Minkowski metric ημν as an indispensable background
structure in order to introduce a notion of time and causality
and to construct actions with interesting “nontopological”
and covariant terms. Many concepts known for the flat case
can be generalized and transferred to curved spacetimes,
where the metric gμν assumes the role of the crucial
background arena all invariants of the theory can be
constructed in. In quantum gravity, however, there is a
fundamental conceptual difficulty since the metric itself is a
dynamical field now, having the consequence that, a priori,
the arena does not exist.
An elegant way out of this problem is provided by the

introduction of a nondynamical background metric ḡμν that
is kept arbitrary and that serves as the basis of non-
topological covariant constructions. The dynamical metric
gμν is then parametrized by a combination of this back-
ground and some dynamical field(s). The crucial idea is that
—due to the arbitrariness of the background—in the end all
physical quantities like scattering amplitudes must not
depend on ḡμν any more. This bootstrap argument is one
implementation of background independence, a property
that must be satisfied by any meaningful theory of quantum
gravity. Its application has led to great successes in many
different physical situations.
As a consequence of background arbitrariness, the way

in which the dynamical metric is parametrized is not
determined either, without assuming or knowing the
fundamental degrees of freedom and without having
defined a fluctuating field. The most famous choice of
parametrization is the standard background field method,
where the dynamical field undergoes a linear split into
background plus fluctuation [1]. This has turned out to be
a powerful technique in many quantum field theory

calculations, in particular in non-Abelian gauge theories.
In the context of gravity it reads

gμν ¼ ḡμν þ hμν; ð1Þ

where the fluctuating field hμν is a symmetric tensor.
In the following we refer to this split as standard
parametrization.
As an example for a different choice of parametrization,

we can consider the nonlinear relation [2]

gμν ¼ eaμebνḡab; ð2Þ
with invertible matrix-valued fields eaμ. In the vielbein
formalism, for instance [3,4], the dynamical metric gμν is
parametrized by gμν ¼ eaμebνηab, together with eaμ ¼
ēaμ þ εaμ, so the fluctuations εaμ around the background
field ēaμ contribute nonlinearly to gμν.
Recently, yet another parametrization has attracted

increasing interest [5]. Although it is a nonlinear relation,
too, it does not introduce more independent components
than contained in gμν. Here, the metric is determined by the
exponential of a fluctuating field,

gμν ¼ ḡμρðehÞρν: ð3Þ

Again, ḡμρ denotes the background metric, and h is a
symmetric matrix-valued field, hμν ¼ hνμ (or hμν ¼ hνμ

with the shifted index position). As usual, indices are raised
and lowered by means of the background metric. In this
work we refer to the exponential relation (3) as the new
parametrization.
A priori, there seems to be no reason to prefer one

parametrization over another one. It is well known that field
redefinitions in the path integral for the partition function
do not change S-matrix elements [6]. While this equiv-
alence theorem is based on the use of the equations of
motion, the (off shell) effective action Γ in the usual*nink@thep.physik.uni‑mainz.de
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formulation does still depend on the choice of the
parametrization.
In a geometric setting, by regarding the configuration

space as a manifold, Vilkovisky and DeWitt constructed
an effective action in a covariant way such that it is
independent of parametrizations and gauge conditions
for the quantized fields both off and on shell [7]. In this
approach, however, Γ can have a remaining dependence
on the chosen configuration space metric [8]. Further-
more, unlike the conventional effective action, the
Vilkovisky-DeWitt effective action does not generate
the 1PI correlation functions; instead, it is governed by
modified Ward identities [9] which, in the present context,
would relate δΓ=δgμν to δΓ=δḡμν. This is a first hint that
specific parametrizations can be of interest as they have an
effect on off shell quantities, and appropriate choices may
simplify calculations. An example is the frame depend-
ence in cosmology which has been investigated in
Ref. [10] at one-loop level.
Studies (without the Vilkovisky-DeWitt approach) of the

renormalization group (RG) show that β functions and
fixed points can vary when the parametrization is changed
[11,12]. In addition, parametrization invariance is violated
even on shell when truncations, e.g. derivative expansions,
are considered [12]. Combining RG techniques with the
ideas of Vilkovisky and DeWitt leads to the geometrical
effective average action, which is constrained by general-
ized modified Ward identities [13]. Therefore, again,
parametrization and gauge invariance can be obtained only
at the expense of nontrivial dependencies on the back-
ground. In summary, off shell quantities in both conven-
tional and Vilkovisky-DeWitt approach can depend on the
underlying parametrization and/or the background.
Thus, it is usually safer to consider physical observables

as they should not exhibit any parametrization or gauge
dependence. In quantum gravity, however, it is not even
clear what physically meaningful observable quantities are,
and so far there is no experiment for a direct measurement
of quantum gravity effects [14]. Based on effective field
theory arguments it is possible to compute the leading
quantum corrections to the Newtonian potential [15], but
the effect is unobservably small and the description is valid
only in the low energy regime, so it cannot be considered a
fundamental theory of the gravitational field. Due to the
problem of finding observable quantities, the best one can
do with a candidate theory of quantum gravity is to test it
for self-consistency, check the classical limit, and compare
it with other approaches. In this regard it is of substantial
interest to study off shell quantities like β functions. Their
parametrization dependence might then be exploited to
simplify the comparison between different theories. For
instance, if correlation functions of vertex operators of the
type eikX in string theory [16] are supposed to be compared
with another approach, it may be natural to use the
exponentials of some fields there as well.

In the present work we use a fully nonperturbative
framework to show within the Einstein-Hilbert truncation
that β functions do indeed depend on the parametrization,
and the exponential relation (3) turns out to be more
appropriate for a comparison with conformal field theories.
Particular attention is paid to RG fixed points in the context
of asymptotic safety. It is assumed that the reader is familiar
with the concept; for introductions and reviews of asymp-
totic safety, see [17]. At this point we want to make an
important remark. Apart from the fact that a reparametri-
zation can change objects whose direct physical meaning is
obscured, it could also give rise to a fundamental change: In
principle, there is the possibility that in parametrization A
the defining path integral has a suitable continuum limit
according to the asymptotic safety scenario; i.e., coupling
constants approach a fixed point in the UV, while there may
not be such a well-defined limit for parametrization B.
However, when resorting to truncations, it would be
hard to decide whether such a change due to reparamet-
rization is actually fundamental or just a truncation
artifact. One could find that a suitable fixed point is absent
in one parametrization, while it exists in another one, but
after enlarging the truncated theory space the resulting
differences between the two parametrizations might dimin-
ish eventually. Clearly, in that case higher order truncations
would have to be considered to obtain more reliable results.
In the following, we focus more concretely on the

properties of the “new” exponential parametrization (3).
There are several independent reasons that strongly moti-
vate its use.

(i) The first argument is a geometric one. We answer the
question if the right-hand side of relation (3) repre-
sents a metric. As we prove in Appendix A, there is a
one-to-one correspondence between dynamical met-
rics gμν and symmetric matrices h. (Note that we
consider Euclidean signature spacetimes throughout
this paper, so metrics are positive definite.) That
means that, given a dynamical and a background
metric, gμν and ḡμν, respectively, there exists a unique
symmetric matrix h satisfying Eq. (3). If, on the other
hand, ḡμν and a symmetric hμν are given, then gμν
defined by gμν ¼ ḡμρðehÞρν is symmetric and positive
definite, so it is again an admissible metric. As a
consequence, a path integral over hμν captures all
possible gμν, and no gμν is counted twice or even more
times. The matrices h can be seen as tangent vectors
corresponding to the space of metrics and Eq. (3) as
the exponential map (even though not using the
Vilkovisky-DeWitt connection). Due to the positive
definiteness of gμν guaranteed by construction, the
new parametrization seems to be preferable to the
standard one given by Eq. (1).

(ii) Our main motivation comes from an apparent con-
nection to conformal field theories (CFT). To see this,
we examine a path integral for two-dimensional

ANDREAS NINK PHYSICAL REVIEW D 91, 044030 (2015)

044030-2



gravity coupled to conformal matter (i.e., to a matter
theory that is conformally invariant when the metric is
flat) with central charge c. Here it is sufficient to
consider matter actions constructed from scalar
fields. Then c is just the number of these scalar
fields. As shown by Polyakov [18], the path integral
decomposes into a path integral over the conformal
mode ϕ with a Liouville-type action times a
ϕ-independent part. Owing to the integral over
Faddeev-Popov ghosts, the kinetic term for ϕ comes
with a factor of ðc − 26Þ, reflecting the famous
critical dimension of string theory. If, finally, the
implicit ϕ-dependence of the path integral measure is
shifted into the action, the kinetic term for ϕ gets
proportional to ðc − 25Þ [19]. For this reason we call

ccrit ¼ 25 ð4Þ

the critical central charge at which ϕ decouples.
How is that related to asymptotic safety? Let us

consider the RG running of the dimensionless version
of Newton’s constant, g, now slightly away from two
dimensions, d ¼ 2þ ϵ. Already a perturbative treat-
ment shows that the β function has the general form

βg ¼ ϵg − bg2; ð5Þ

up to order Oðg3Þ [20], leading to the non-Gaussian
fixed point

g� ¼ ϵ=b: ð6Þ

It turns out that the coefficient b depends on the
underlying parametrization of the metric. Perturbative
calculations based on the standard parametrization (1)
yield b ¼ 2

3
ð19 − cÞ, where c denotes again the

number of scalar fields [20,21]. This gives rise to
the critical central charge

ccrit ¼ 19 ð7Þ

in the standard parametrization. If, on the other hand,
the new parametrization (3) underlies the computa-
tion, the critical central charge amounts to [5]

ccrit ¼ 25: ð8Þ

Since many independent derivations yield ccrit ¼ 25,
too, it appears “correct” in a certain sense. This result
seems to be another advantage of the exponential
parametrization. In the present work we investigate if
it can be reproduced in a nonperturbative setup.

(iii) Let us come back to an arbitrary dimension d.
Parametrizing the metric with an exponential allows
for an easy treatment of the conformal mode which
can be separated as the trace part of h in Eq. (3): We

split hμν into trace and traceless part, hμν ¼ ĥμνþ
1
d ḡμνϕ, where ϕ ¼ ḡμνhμν and ḡμνĥμν ¼ 0. In this
case, Eq. (3) becomes

gμν ¼ ḡμρðeĥÞρνe1
dϕ; ð9Þ

so the tracepart ofhgives a conformal factor.Using the
matrix relation detðexpMÞ ¼ expðTrMÞ we obtain

ffiffiffi
g

p ¼ ffiffiffī
g

p
e
1
2
ϕ; ð10Þ

where g (ḡ) denotes the determinant of gμν (ḡμν). The
traceless part of h has completely dropped out of
Eq. (10). Hence, unlike for the standard parametriza-
tion, thecosmological constantappearsasacoupling in
the conformal mode sector only. This will become
explicit in our calculations.

(iv) The new parametrization might simplify computa-
tions and cure singularities that are possibly encoun-
tered with the standard parametrization. Here we
briefly mention three examples. (a) The RG flow of
nonlocal form factors appearing in a curvature
expansion of the effective average action in 2þ ϵ
dimensions is divergent in the limit ϵ → 0 for small k
when based on (1) but has a meaningful limit with
Eq. (3) [22]. (b) Similarly, when trying to solve the
flow equations in scalar-tensor theories [23] in d ¼
3 and d ¼ 4, singularities occurring in a standard
calculation can be avoided by using the new para-
metrization.1 (c) Related to argument iii) the ex-
ponential parametrization provides an easy access to
unimodular gravity [24].

In thisworkwepresent anonperturbativederivationof theβ
functions of Newton’s constant and the cosmological con-
stant. For that purpose, we study the effective average action
within the Einstein-Hilbert truncation (without using the
Vilkovisky-DeWitt method), where the metric is replaced
according to Eq. (3). We will show that the results for the
exponential parametrization are significantly different from
the ones obtained with the standard split (1). Although we
encounter a stronger scheme dependence that has to be
handled with care, the favorable properties of the new para-
metrization seem to prevail, as discussed in the final section.

II. FRAMEWORK

We employ functional RG techniques to evaluate β
functions in a nonperturbative way. The method is based
upon the effective average action Γk, a scale-dependent
version of the usual effective action Γ. By definition, its
underlying path integral contains a masslike regulator
function Rkðp2Þ such that quantum fluctuations with

1The author would like to thank R. Percacci for pointing this
out.
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momenta below the infrared cutoff scale k are suppressed
while only the modes with p2 > k2 are integrated out.
Thus, Γk interpolates between the microscopic action at
k → ∞ and Γ at k ¼ 0. Its scale dependence is governed by
an exact functional RG equation (FRGE) [25–27],

k∂kΓk ¼
1

2
Tr½ðΓð2Þ

k þRkÞ−1k∂kRk�; ð11Þ

where Γð2Þ
k denotes the second functional derivative with

respect to the fluctuating field (hμν in our case). In the
terminology of Ref. [28] we choose a type Ia cutoff; i.e.,Rk
is a function of the covariant Laplacian.
As outlined above, any field theoretic description of

quantum gravity requires the introduction of a background
metric. Consequently, Γk is a functional of both gμν and ḡμν
in general; i.e., Γk ≡ Γk½g; ḡ�. In terms of h the two
parametrizations give rise to the functionals

Γstandard
k ½h; ḡ�≡ Γk½ḡþ h; ḡ�; ð12Þ

as opposed to

Γnew
k ½h; ḡ�≡ Γk½ḡeh; ḡ�: ð13Þ

(We adopt the comma notation for Γk½g; ḡ� and the
semicolon notation for Γk½h; ḡ�.) The difference between

(12) and (13) is crucial: Since the second derivative Γð2Þ
k in

(11) is with respect to h, the two parametrizations give rise
to different terms according to the chain rule,

Γð2Þ
k ðx; yÞ≡ 1ffiffiffiffiffiffiffiffiffi

ḡðxÞp ffiffiffiffiffiffiffiffiffi
ḡðyÞp δ2Γk

δhðxÞδhðyÞ

¼ 1ffiffiffiffiffiffiffiffiffi
ḡðxÞp ffiffiffiffiffiffiffiffiffi

ḡðyÞp
Z
u

Z
v

δ2Γk

δgðuÞδgðvÞ
δgðvÞ
δhðxÞ

δgðuÞ
δhðyÞ

þ 1ffiffiffiffiffiffiffiffiffi
ḡðxÞp ffiffiffiffiffiffiffiffiffi

ḡðyÞp
Z
u

δΓk

δgðuÞ
δ2gðuÞ

δhðxÞδhðyÞ ; ð14Þ

where we suppressed all spacetime indices and used the
shorthand

R
u ≡

R
ddu. The first term on the right-hand side

of Eq. (14) is the same for both parametrizations, at least at
lowest order, because δgμνðxÞ=δhρσðyÞ ¼ δρμδσνδðx − yÞ in
the standard case, and δgμνðxÞ=δhρσðyÞ ¼ δρμδσνδðx − yÞ þ
OðhÞ with the new parametrization. The last term in (14),
however, vanishes identically for parametrization (1) since
δ2g=δh2 ¼ 0, whereas the exponential relation (3) entails

δ2gμνðuÞ
δhρσðxÞδhλγðyÞ

¼ 1

2
ðḡσλδρμδγν þ ḡργδλμδσνÞδðu − xÞδðu − yÞ þOðhÞ; ð15Þ

leading to additional contributions to the FRGE (11). Note
that these new contributions are proportional to the first

variation of Γk in (14), so the exponential parametrization
gives the same result as the standard one when going on
shell. But, due to the inherent off shell character of the
FRGE, we expect differences in β functions and the
corresponding RG flow.
Finally, let us comment on gauge invariance and fixing.

Starting from relation (3), we observe that ðehÞρν must
transform as a tensor under general coordinate transforma-
tions, if gμν and ḡμρ transform as tensors. It is possible to
show then that hμν transforms in the same way, i.e.,

δhμν ¼ Lξhμν ð16Þ

under diffeomorphisms generated by the vector field ξ via
the Lie derivative Lξ. In order to be as close to the standard
calculations based on (1) as possible [26], we shall employ
an analogous gauge-fixing procedure. This can most easily
be done by observing that hμν in the standard gauge-fixing
conditionF μν

α ½ḡ�hμν ¼ 0 can be replaced by gμν: We use the
most convenient class of F ’s where F μν

α ½ḡ� is proportional
to the covariant derivative D̄μ corresponding to the back-
ground metric, and therefore, F μν

α ½ḡ�gμν ¼ F μν
α ½ḡ�ðḡμν þ

hμνÞ ¼ F μν
α ½ḡ�hμν ¼ 0 for the standard parametrization.

Passing on to the new parametrization, we can choose the
gμν-version of the gauge condition, too, F μν

α ½ḡ�gμν ¼ 0.
This version is preferred to the one acting on hμν because,
(a) it is hard to solve the true or “quantum” gauge
transformation law for δhμν (by solving δgμν ¼ Lξgμν while
δḡμν ¼ 0), and (b) the gμν choice leads to the same Faddeev-
Popov operator as in the standard case [26]. As a conse-
quence, all contributions to the FRGE coming from gauge
fixing and ghost terms are the same for both parametriza-
tions. By virtue of the one-to-one correspondence between
gμν and hμν (see Appendix A), this gauge-fixing method is
perfectly admissible.
We present a single-metric computation in Sec. III and

a bimetric [29,30] analysis in Sec. IV. In the single-
metric case, we employ the harmonic gauge condition,
F μν

α ½ḡ�gμν ¼ 0 with F μν
α ½ḡ� ¼ δναḡμρD̄ρ − 1

2
ḡμνD̄α (corre-

sponding to ρ ¼ d
2
− 1 in [28]), together with a

Feynman-type gauge parameter, α ¼ 1. The bimetric
results are obtained by using the Ω deformed α ¼ 1 gauge
[30]. To summarize, we repeat the calculations of [26] and
[30] with the new parametrization, where the modifications
originate from the gravitational part of Γk, while gauge
fixing, ghost and cutoff contributions remain the same.

III. RESULTS: SINGLE-METRIC

As usual, we resort to evaluations of the RG flow within
subspaces of reduced dimensionality; i.e., we truncate the
full theory space. Our single-metric results are based on the
Einstein-Hilbert truncation [26],
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Γk½g; ḡ; ξ; ξ̄� ¼
1

16πGk

Z
ddx

ffiffiffi
g

p ð−Rþ 2ΛkÞ

þ Γgf
k ½g; ḡ� þ Γgh

k ½g; ḡ; ξ; ξ̄�: ð17Þ

Here Gk and Λk are the dimensionful Newton constant
and cosmological constant, respectively, Γgf

k ¼ 1
2α

1
16πGk

×R
ddx

ffiffiffī
g

p
ḡαβðF μν

α gμνÞðF ρσ
β gρσÞ is the gauge-fixing action

with F μν
α and α as given in the previous section, and Γgh

k
denotes the corresponding ghost action with ghost fields ξ
and ξ̄. After having inserted the respective metric para-
metrization into the ansatz (17), the FRGE (11) can be used
to extract β functions.

A. Known results for the standard parametrization

For comparison, we begin by quoting known results for
the standard parametrization.
In four dimensions the resulting β functions for the

dimensionless couplings gk ¼ kd−2Gk and λk ¼ k−2Λk [26]
give rise to the flow diagram shown in Fig. 1. In addition
to the Gaussian fixed point at the origin there exists a
non-Gaussian fixed point (NGFP) with positive Newton
constant, suitable for the asymptotic safety scenario [20].
It is also crucial that there are trajectories emanating
from the NGFP and passing the classical regime close to
the Gaussian fixed point [31]. (In Fig. 1 one can see the
separatrix, a trajectory connecting the non-Gaussian to the
Gaussian fixed point.) It has turned out that the qualitative
picture (existence of NGFP, number of relevant directions,
connection to classical regime) is extremely stable under
many kinds of modifications of the setup (truncation
ansatz, gauge, cutoff, inclusion of matter, etc.); for reviews
see [17]. In particular, changes in the cutoff shape function

do not alter the picture, except for insignificantly shifting
numerical values like fixed point coordinates.
In d ¼ 2þ ϵ dimensions the β function of gk has the

same structure as in the perturbative analysis [see Eq. (5)],
βg ¼ ϵg − bg2. It is possible to show that the coefficient
b is a universal number; i.e., it is independent of the
shape function, and its value is given by b ¼ 38

3
[26]. If,

additionally, scalar fields are included, then it reads
b ¼ 2

3
ð19 − cÞ, where c denotes the number of scalar

fields. Thus, the standard parametrization gives rise to
the universal number for the critical central charge

ccrit ¼ 19; ð18Þ
in agreement with the perturbative result (7).

B. Results for the new parametrization

We refrain from presenting details of the calculation and
specify some intermediate results and β functions in
Appendix B instead.

1. RESULTS IN 2þ ϵ DIMENSIONS

Considering Eqs. (B6) and (B7) for d ¼ 2þ ϵ and
expanding in orders of ϵ yields the β functions

βg ¼ ϵg − bg2; ð19Þ

with b ¼ 2
3
½2Φ1

0ð0Þ þ 24Φ2
1ð0Þ − Φ1

0ð− 4
ϵ λÞ�, and

βλ ¼ −2λþ 2g

�
−2Φ1

1ð0Þ þ Φ1
1

�
−
4

ϵ
λ

��
; ð20Þ

wherewe have dropped higher orders in λ, g and ϵ, since it is
possible to prove that the fixed point values of both g and λ
must be of order OðϵÞ. Some of the threshold functions Φ
(cf. [26]) appearing in (19) and (20) are independent of the
underlying cutoff shape function Rð0ÞðzÞ. Here we have
Φ1

0ð0Þ ¼ 1 andΦ2
1ð0Þ ¼ 1 for anycutoff. Furthermore, for all

standard shape functions satisfyingRð0Þðz ¼ 0Þ ¼ 1we find
Φ1

0ð− 4
ϵ λÞ ¼ ð1 − 4

ϵ λÞ−1. Due to the occurrence of ϵ−1 in the
argument ofΦ1

0, the λ-dependence does not drop out of βg at
lowest order, but rather the combination λ=ϵ results in a finite
correction. As an exception, the sharp cutoff [32] implicates
Rð0Þðz ¼ 0Þ → ∞, leading to Φ1

0ð− 4
ϵ λÞ ¼ 1.2 Thus, we find

b ¼ 2

3

�
26 −

�
1 −

4

ϵ
λ

�
−1
�

ð21Þ

FIG. 1 (color online). Flow diagram for the Einstein-Hilbert
truncation in d ¼ 4 based on the standard parametrization. (First
obtained in [32] for a sharp cutoff, and here for the optimized
cutoff [33].).

2For the sharp cutoff, Φ1
nðwÞ ¼ − 1

ΓðnÞ lnð1þ wÞ þ C is deter-
mined up to a constant, which, for consistency, is chosen such
that Φ1

nðw ¼ 0Þ agrees with Φ1
nð0Þ for some other cutoff [32]. In

the limit n → 0, however, the w dependence drops out com-
pletely, and Φ1

0ðwÞsharp ¼ Φ1
0ð0Þother. Since Φ1

0ð0Þ ¼ 1 for any
cutoff, we find Φ1

0ðwÞsharp ¼ 1∀w.
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for all standard cutoffs, and b ¼ 2
3
· 25 for the sharp cutoff.

The threshold function Φ1
1ðwÞ is cutoff dependent, also at

w ¼ 0, so βλ is nonuniversal, too. Hence, both λ� and g�
depend on the cutoff.
In order to calculate the critical central charge ccrit, we

include minimally coupled scalar fields φi (i ¼ 1;…; c) in
our analysis, for instance by adding to Γk in Eq. (17) the
action 1

2

P
c
i¼1

R
ddx

ffiffiffī
g

p
φið−D̄2Þφi. In this case, the coef-

ficient b is changed into b ¼ 2
3
½26 − ð1 − 4

ϵ λÞ−1 − c� for
standard shape functions, and b ¼ 2

3
ð25 − cÞ for the sharp

cutoff. The critical value for c, determined by the zero of b
at the NGFP, is computed for different shape functions: the
optimized cutoff [33], the “s-class exponential cutoff” [34]
and the sharp cutoff [32]. In addition, we might set λ ¼ 0
by hand in (21) such that the result can be compared to the
perturbative studies [5] where the cosmological constant is
not taken into account. If we do so, we find indeed
ccrit ¼ 25, reproducing the perturbative value given in
Eq. (8). For nonvanishing λ, however, the critical central
charge is cutoff dependent, as can be seen in Table I. In
conclusion, the nice (and expected) result of a universal
value ccrit found for the standard parametrization cannot be
transferred to the new parametrization. Nevertheless, we
obtain a number close to 25 for all cutoffs considered,
making contact to the CFT result.

2. Results in four dimensions

Our analysis in 2þ ϵ dimensions suggests that results in
the new parametrization might depend to a larger extent on
the cutoff shape. In the following we confirm this con-
jecture by considering global properties of the RG flow for
different shape functions.

(i) Optimized cutoff. An evaluation of the β functions in
d ¼ 4 gives rise to the flow diagram shown in Fig. 2.
The result is fundamentally different from what is

known for the standard parametrization (cf. Fig. 1).
Although we find again a Gaussian and a non-
Gaussian fixed point, we encounter new properties
of the latter. The NGFP is UV-repulsive in both
directions now. Furthermore, it is surrounded by a
closed UV-attractive limit cycle. The singularity line
(dashed) (where the β functions diverge and beyond
which the truncation ansatz is no longer reliable)
prevents the existence of globally defined trajecto-
ries emanating from the limit cycle and passing the

classical regime; i.e., there is no connection between
the limit cycle and the Gaussian fixed point. Tra-
jectories inside the limit cycle are asymptotically
safe in a generalized sense since they approach the
cycle in the UV, and they hit the NGFP in the
infrared, but they can never reach a classical region.
Note that the limit cycle is similar to those found in
Refs. [3,4] which are based on nonlinear metric
parametrizations, too.

(ii) Sharp cutoff. The flow diagram based on the sharp
cutoff—see Fig. 3—is similar to the ones found with
the standard parametrization. There is a Gaussian

TABLE I. Cutoff dependence of the critical central charge.

Cutoff ccrit

Any cutoff, but setting λ ¼ 0 25
Optimized cutoff 25.226
Exponential cutoff (s ¼ 1) 25.322
Exponential cutoff (s ¼ 5) 25.190
Sharp cutoff 25

FIG. 2 (color online). Flow diagram in d ¼ 4 based on the new
parametrization and the optimized cutoff.

FIG. 3 (color online). Flow diagram in d ¼ 4 based on the new
parametrization and the sharp cutoff.
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and a non-Gaussian fixed point. The NGFP is UV-
attractive in both g- and λ-direction. There is no limit
cycle. Due to the singularity line, there is no
asymptotically safe trajectory that has a sufficiently
extended classical regime close to the Gaussian
fixed.

(iii) Exponential cutoff. The exponential cutoff with
generic values for the parameter s gives rise to a
flow diagram (not depicted here) that is somewhere
in between Fig. 2 and Fig. 3. The NGFP is UV-
repulsive as it is for the optimized cutoff. However,
there is no closed limit cycle. Although a relict of the
cycle is still present, it does not form a closed line,
but rather runs into the singularity line. Again, there
is no separatrix connecting the fixed points. Varying
s shifts the coordinates of the NGFP. For s ≤ 0.93
the fixed point even vanishes, or, more precisely, it is
shifted beyond the singularity, leaving it inacces-
sible. Thus, the NGFP that seemed to be indestruct-
ible for the standard parametrization can be made
disappear with the new parametrization.

In summary, fundamental qualitative features of the RG
flow like the signs of critical exponents, the existence of
limit cycles, or the existence of suitable non-Gaussian fixed
points are strongly cutoff dependent.

IV. RESULTS: BIMETRIC

For the bimetric analysis [29,30] we consider the
truncation ansatz

Γk½g; ḡ; ξ; ξ̄� ¼
1

16πGDyn
k

Z
ddx

ffiffiffi
g

p ð−Rþ 2ΛDyn
k Þ

þ 1

16πGB
k

Z
ddx

ffiffiffī
g

p ð−R̄þ 2ΛB
k Þ

þ Γgf
k ½g; ḡ� þ Γgh

k ½g; ḡ; ξ; ξ̄�: ð22Þ

It consists of two separate Einstein-Hilbert terms belonging
to the dynamical (Dyn) and the background (B) metric with
their corresponding couplings. To evaluate β functions we
employ the conformal projection technique together with
the Ω deformed α ¼ 1 gauge [30].

A. Known results for the standard parametrization

We quote the most important results obtained for the
standard parametrization [30]. Since the background cou-
plings GB

k and ΛB
k in the truncation ansatz (22) occur in

terms containing the background metric only, they drop out
when calculating the second derivative of Γk with respect to
hμν, and hence, they cannot enter the rhs of the FRGE (11).
As a consequence, the RG flow of the dynamical coupling
sector is decoupled: βDynλ ≡ βDynλ ðλDyn; gDynÞ and βDyng ≡
βDyng ðλDyn; gDynÞ form are closed system, so one can solve

the RG equations of the Dyn couplings independently
at first.
On the other hand, the background β functions depend

on both dynamical and background couplings. Therefore,
the RG running of gBk and λBk can be determined only if a
solution of the Dyn sector is picked. With regard to the
asymptotic safety program we choose a Dyn trajectory
which emanates from the NGFP and passes the classical
regime near the Gaussian fixed point. This trajectory is
inserted into the β functions of the background sector,
making them explicitly k dependent. The vector field these
β functions give rise to depends on k, too, and possible
“fixed points”; i.e., simultaneous zeros of βBλ and βBg
become moving points. The UV-attractive “moving
NGFP” is called a running attractor in [30]. In Fig. 4 we
show the vector field of the background sector at k → ∞
and the RG trajectory (thick) that starts at the k ¼ 0
position of the running attractor and ends at its k → ∞
position (with respect to the inverse RG flow). As argued in
[30], this specific trajectory is the only acceptable pos-
sibility once a Dyn trajectory is chosen: It combines the
requirements of asymptotic safety (it approaches an NGFP
in the UV) and split symmetry restoration in the infrared.
Recovering split symmetry at k ¼ 0 is of great impor-

tance. We mentioned already in the introduction that the
background metric is an auxiliary construction, and physi-
cal observables must not depend on it. Thus, physical
quantities derived from the full quantum action Γ ¼ Γk¼0

are required not to have an extra ḡ dependence, but to
depend only on g. In the standard parametrization, where

FIG. 4 (color online). Vector field for the background couplings
at k → ∞ and RG trajectory that is asymptotically safe in the UV
and restores split symmetry in the IR (left figure), and underlying
trajectory in the Dyn sector (right figure), based on the standard
parametrization and the optimized cutoff in d ¼ 4.
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g ¼ ḡþ h, this means that ḡ and h can make their
appearance only via their sum (which is split symmetric).
Hence, the claim of split symmetry originates from requir-
ing background independence. Within the approximations
of [30], this requires at the level of the effective average
action: 1=GB

k → 0 and ΛB
k =G

B
k → 0. For any appropriate

choice of initial conditions in the Dyn sector, there exists a
unique trajectory in the B sector complying with this
requirement in the infrared. This general result is indepen-
dent of the chosen cutoff shape function.

B. Results for the new parametrization

We aim at finding an asymptotically safe trajectory that
restores background independence at k ¼ 0. (In the context
of the new parametrization, we no longer call it “split
symmetry” in order to keep the nonlinearity in mind.) We
present some intermediate results of the calculation in
Appendix B 2, where we mention the differences to the
standard parametrization on the technical level. In the
following, we discuss the differences of the resulting RG
flow and its dependence on the cutoff shape.

(i) Optimized cutoff. An evaluation of the β functions in
the Dyn sector gives rise to the flow diagram
displayed in Fig. 5. We discover a non-Gaussian
fixed point, but it is rather close to the singularity
line. As a consequence, all trajectories emanating
from this fixed point will hit the singularity after a
short RG time. It is impossible to find suitably
extended trajectories: they do not pass the classical
regime, and they never come close to an acceptable
infrared limit. For this reason it is pointless to
investigate the possibility of restoration of back-
ground independence. The background sector ex-
hibits a UV-attractive NGFP, too, but due to the lack

of an appropriate infrared regime we do not show a
vector field for the background couplings here.

(ii) Exponential cutoff. We find the same qualitative
picture as in Fig. 5 which was based on the
optimized cutoff. The exponential cutoff brings
about a UV-attractive non-Gaussian fixed point,
but there are no trajectories that extend to a suitable
infrared region. Thus, there is no restoration of
background independence.

(iii) Sharp cutoff. The β functions of the Dyn couplings
lead to a Gaussian and a non-Gaussian fixed point.
We observe that βDynλ is proportional to λDyn, so
trajectories cannot cross the line at λDyn ¼ 0. How-
ever, there are trajectories that connect the NGFP to
the classical regime, comparable with the ones found
for the standard parametrization. Once such a
trajectory is chosen, it serves as a basis for further
analyses since it can be inserted into the β functions
of the background sector to study the corresponding
RG flow. In this way, we find the same running
attractor mechanism as in Sec. IVA for the standard
parametrization. As can be seen in Fig. 6, there is an
NGFP present at k → ∞, suitable for the asymptotic
safety scenario. The thick trajectory is again the
unique one that starts at the k ¼ 0 position of the
running attractor and ends at its k → ∞ position.
Even if the curve has a different form compared with
Fig. 4, it has the same essential properties. In
particular, it restores background independence in
the infrared. Since, in addition, it is asymptotically

FIG. 5 (color online). Flow diagram of the Dyn couplings in
d ¼ 4 based on the new parametrization and the optimized
cutoff.

FIG. 6 (color online). Vector field for the background couplings
at k → ∞ and RG trajectory that is asymptotically safe in the UV
and restores background independence in the IR (left figure), and
underlying trajectory in the Dyn sector (right figure), based on the
new parametrization and the sharp cutoff in d ¼ 4.
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safe, it is an eligible candidate for defining a
fundamental theory.

To summarize, the possibility of finding a suitable RG
trajectory combining the requirements of asymptotic safety
and restoration of background independence at k ¼ 0
depends in a crucial way on the cutoff shape for the
new parametrization.

V. CONCLUSION

We have investigated the properties of the “new”
exponential metric parametrization gμν ¼ ḡμρðehÞρν, which
has been contrasted with the standard background field
split, gμν ¼ ḡμν þ hμν. When inserting the exponential
relation into the classical Einstein-Hilbert action and
expanding in orders of hμν, we obtain

SEH½g� ¼ SEH½ḡeh� ¼ SEH½ḡþ hþOðh2Þ�

¼ SEH½ḡ� þ
Z

ddx
δSEH

δgμνðxÞ
hμνðxÞ þOðh2Þ: ð23Þ

Thus, the equations of motion are given by the standard
ones, δSEH

δhμν
jg¼ḡ ¼ δSEH

δgμν
jg¼ḡ ¼ 1

16πG ðḠμν þ ḡμνΛÞ ¼ 0; i.e.,

the two parametrizations give rise to equivalent theories
at the classical level. Since the quantum character of gravity
is not known, there is no reason, a priori, to prefer one
parametrization to another. So far, almost all studies related
to asymptotic safety considered the standard parametriza-
tion. In this work we focused on the new one instead.
We have shown that there is a one-to-one correspon-

dence between dynamical metrics gμν ¼ ḡμρðehÞρν and
symmetric fields hμν in the exponent, which is particularly
important from a path integral perspective. It remains an
open question, however, if this correspondence can be
transferred to Lorentzian spacetimes in the sense that gμν
and ḡμν have the same signature when related by the new
parametrization.
Do we expect different results for the two parametriza-

tions at all? According to the equivalence theorem, a field
redefinition in the path integral does not change S-matrix
elements, but this is an on shell argument, where internal
quantum fluctuations are integrated out completely. In
contrast, in the effective average action Γk fluctuations
with momenta below k are suppressed, and nowhere in the
FRGE do we go on shell. Therefore, we expect differences
in β functions and structures of the corresponding RG flow,
indeed. Due to the lack of directly measurable physical
observables exhibiting quantum gravity effects, these off
shell quantities are of considerable interest.
Clearly, even the role of Newton’s constant is changed

for the new parametrization. This can be understood as
follows. In order to identify Newton’s constant with the
strength of the gravitational interaction in the standard
parametrization, one usually rescales the fluctuations hμν
such that

gμν ¼ ḡμν þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGk

p
hμν: ð24Þ

In this way, each gravitational vertex with n legs is
associated with a factor ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

32πGk
p Þn−2. For the new para-

metrization we can consider a similar rescaling of hμν,
leading to the same factor appearing in the n-point
functions. The difference resides in the fact that there

are new terms and structures in ΓðnÞ
k when using the new

parametrization. As already indicated in Eq. (14), these
additional contributions to each vertex are due to the chain
rule. Hence, Newton’s constant is accompanied by different
terms in the n-point functions.
In fact, these general considerations are reflected in our

findings. To summarize them: (i) We find quite different β
functions and new structures in the RG flow. (ii) The
calculations based on a type I cutoff result in a strong
dependence on the cutoff shape function.
This can be seen most clearly in d ¼ 4 dimensions. In

the single-metric computation we encountered a limit cycle
and a UV-repulsive NGFP for the optimized cutoff,
whereas the sharp cutoff gives rise to a UV-attractive
NGFP without limit cycle. Furthermore, in the bimetric
setting with a sharp cutoff there exists an asymptotically
safe trajectory that restores background independence in
the infrared, while it is not possible to find such trajectories
when using the optimized cutoff. It is remarkable and
somewhat unexpected that the sharp cutoff leads to the
most convincing results.
Our observations seem to suggest that results based on

the new parametrization are less reliable or even unphys-
ical. On the other hand, the strong cutoff dependence
compared to the linear parametrization could be seen from a
different perspective as well: If quantum Einstein gravity
with gμν ¼ ḡμρðehÞρν is asymptotically safe, probably more
invariants in the truncation ansatz are needed to get a clear
picture. The nonlinear relation for the metric might give
more importance to the truncated higher order terms.
Moreover, it can be speculated that the strong depend-

ence on the cutoff shape might be a peculiarity of the type I
cutoff. As has been argued in [4], in some situations the
type II cutoff leads to correct physical results, whereas the
type I cutoff does not. Future calculations may show if a
similar reasoning applies here as well, i.e., if the essential
properties of the RG flow obtained with a type II cutoff do
not depend on the shape function to such a great extent. We
conjecture that the limit cycle is a consequence of a
nonlinear parametrization in combination with a type I
cutoff. Instead, a type II cutoff might lead to physical and
stable results so that the advantages of the new para-
metrization become more apparent.
In d ¼ 2þ ϵ dimensions we can reproduce the critical

value of the central charge obtained with a perturbative
calculation, ccrit ¼ 25, when the cosmological constant λ is
set to zero. For nonvanishing λ we find a slight cutoff
dependence of ccrit, but it still remains close to 25. Since it
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is this number that makes contact to vertex operator
calculations and other established CFT arguments, the
new parametrization seems to be appropriate for compar-
isons and further applications after all.
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APPENDIX A: ONE-TO-ONE CORRESPONDENCE
BETWEEN g AND h

In this Appendix we show that there is a one-to-one
correspondence between (Riemannian) dynamical metrics
gμν and symmetric matrix-valued fields hμν whose relation
is given by gμν ¼ ḡμρðehÞρν. In order to transform this from
component notation to matrix notation, we note that the h
appearing in the exponent has implicit index positions hρν,
signaling the fact that it is actually a product of h and the
inverse background metric, hρν ¼ ḡρσhσν, so we have
hρν ¼ ðḡ−1hÞρν. Thus, the full relation in matrix form reads

g ¼ ḡeḡ
−1h: ðA1Þ

Note that statements about symmetry and positive definite-
ness are not trivial since the product of symmetric positive
definite matrices is in general neither positive definite nor
symmetric. A priori, there is also not much known about
real logarithms of products of matrices. Here we need the
following theorem concerning existence and uniqueness of
real symmetric matrix logarithms.
Theorem 1. Let C be a real symmetric positive definite

matrix. Then there exists a unique real symmetric solution
H to the equation C ¼ eH.
Proof Existence: Since C ∈ Symn×n, there exist an S ∈

OðnÞ and a diagonal matrix Λ ¼ diagðλ1;…; λnÞ, with fλig
the eigenvalues of C, such that C ¼ STΛS. Positive
definiteness of C implies that all λi be positive. Now, set
H ¼ STdiagðln λ1;…; ln λnÞS. Then H is real and symmet-
ric. Exponentiating H yields

eH ¼ STediagðln λ1;:::;ln λnÞS ¼ STdiagðλ1;…; λnÞS ¼ C;

proving the existence of a real symmetric solution.
Uniqueness: Assume H is a real symmetric matrix

satisfying C ¼ eH. Assume H0 is another real symmetric
matrix with the same exponential, C ¼ eH

0
. Due to the

symmetry, there are matrices O ∈ OðnÞ and O0 ∈ OðnÞ
together with the diagonal matrices D ¼ diagðd1;…; dnÞ
and D0 ¼ diagðd10;…; dn0Þ, where di (di0) are the eigenval-
ues of H (H0), such that H ¼ OTDO and H0 ¼ O0TD0O0.
Then we have C ¼ eH ¼ eO

TDO ¼ OTeDO, and, similarly,

C ¼ O0TeD0
O0. Equating these expression leads to

eDðOO0TÞ ¼ ðOO0TÞeD0
, or, rewritten,

eDU ¼ UeD
0
; ðA2Þ

with U ¼ OO0T ∈ OðnÞ. The matrix entries in (A2) are

ðeDUÞij ¼
Xn
k¼1

ediδikukj ¼ ediuij; ðA3Þ

and, analogously, ðUeD
0 Þij ¼ ed

0
juij. For any pair ði; jÞ this

gives the relation ðedi − ed
0
jÞuij ¼ 0. Since all di are real, we

conclude that ðdi − d0jÞuij ¼ 0. Again in matrix form this
readsDU −UD0 ¼ 0. ReinstatingU ¼ OO0T and rearrang-
ing finally results in

H ¼ OTDO ¼ O0TD0O0 ¼ H0; ðA4Þ

which proves the uniqueness of H.
Now let us come back to Eq. (A1). First we consider the

case where (apart from ḡ) h is given.
Theorem 2. If h is real and symmetric, then g defined

by g ¼ ḡeḡ
−1h is symmetric and positive definite.

Proof Symmetry:

gT ¼ ðeḡ−1hÞTḡT ¼ eh
T ðḡ−1ÞT ḡ ¼ eḡḡ

−1hḡ−1 ḡ

¼ ḡeḡ
−1hḡ−1ḡ ¼ ḡeḡ

−1h ¼ g: ðA5Þ

Positive definiteness: Since ḡ is symmetric and positive
definite, we can define ḡ1=2 to be the (unique) principal
square root, which is again symmetric. Let z be a nonzero
vector with n real components. Then

zTgz ¼ zTḡeḡ
−1hz ¼ zTḡeḡ

−1=2ḡ−1=2hḡ−1=2ḡ1=2z

¼ zTḡḡ−1=2eḡ
−1=2hḡ−1=2 ḡ1=2z

¼ ðḡ1=2zÞTeḡ−1=2hḡ−1=2ðḡ1=2zÞ ¼ yTeKy; ðA6Þ

with y ¼ ḡ1=2z and K ¼ ḡ−1=2hḡ−1=2. We observe that K is
symmetric. Thus, we can write eK ¼ ðe1

2
KÞTe1

2
K. Inserting

this into the previous equation yields

zTgz ¼ yTeKy ¼ ðe1
2
KyÞTðe1

2
KyÞ ¼ xTx > 0; ðA7Þ

with x ¼ e
1
2
Ky, proving positive definiteness.

Finally, we consider the case where g and ḡ are given.
Theorem 3. Let ḡ be the background metric and g

be any dynamical metric at a given spacetime point x.
Then there exists a unique real symmetric matrix h
satisfying g ¼ ḡeḡ

−1h.
Proof Existence: Let again ḡ1=2 be the (real and sym-

metric) principal square root of ḡ. The key idea is to rewrite
the defining equation as follows:
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g ¼ ḡeḡ
−1h ¼ ḡeḡ

−1=2ḡ−1=2hḡ−1=2ḡ1=2

¼ ḡ1=2eḡ
−1=2hḡ−1=2 ḡ1=2; ðA8Þ

leading to

ḡ−1=2gḡ−1=2 ¼ eḡ
−1=2hḡ−1=2 : ðA9Þ

We observe that the left-hand side of Eq. (A9) is sym-
metric and positive definite (zTḡ−1=2gḡ−1=2z ¼ ðḡ−1=2zÞT×
gðḡ−1=2zÞ ¼ yTgy > 0). According to Theorem 1, there
exists a unique real symmetric matrix H satisfying
ḡ−1=2gḡ−1=2 ¼ eH. Setting h ¼ ḡ1=2Hḡ1=2 and noting that
h is real and symmetric proves the existence.
Uniqueness: Since there is more than one square root of ḡ

in general, it remains to show that the h constructed above
does not depend on the choice of the root. Assume there
exists another symmetric solution h0 corresponding to
another square root ðḡ1=2Þ0, i.e., g ¼ ḡeḡ

−1h0 . In the manner
of Eq. (A9) we rewrite again

ḡ−1=2gḡ−1=2 ¼ eḡ
−1=2h0ḡ−1=2¼! eḡ−1=2hḡ−1=2 ; ðA10Þ

where we use the principal root ḡ1=2 on all sides. We already
know that the symmetric logarithm of the lhs is unique.
Therefore, the exponents on the rhs have to agree,
ḡ−1=2h0ḡ−1=2 ¼ ḡ−1=2hḡ−1=2, and finally h0 ¼ h, completing
the proof of uniqueness.

APPENDIX B: HESSIANS AND β-FUNCTIONS

1. Single-metric

We adopt the notation of Ref. [26]. When inserting the
new parametrization (3) into Γk given by Eq. (17) and
expanding Γk in orders of hμν, the quadratic term reads

Γquad
k ¼ 1

32πGk

Z
ddx

ffiffiffī
g

p
hμνð−Kμν

ρσD̄2 þUμν
ρσÞhρσ;

ðB1Þ

with Kμν
ρσ ¼ 1

4
ðδμρδνσ þ δμσδνρ − ḡμνḡρσÞ and

Uμν
ρσ ¼ −

1

4
ḡμνḡρσR̄þ 1

2
ðḡμνR̄ρσ þ ḡρσR̄μνÞ

−
1

2
ðR̄ν

ρ
μ
σ þ R̄ν

σ
μ
ρÞ þ

1

2
ḡμνḡρσΛk; ðB2Þ

so the additional terms resulting from the new parametri-
zation cancel some of those which are already present in the
standard calculation. After splitting the field hμν into trace
and traceless part, hμν ¼ ĥμν þ 1

d ḡμνϕ, where ϕ ¼ ḡμνhμν
and ḡμνĥμν ¼ 0, and inserting a maximally symmetric
background for ḡμν, we obtain

Γquad
k ¼ 1

64πGk

Z
ddx

ffiffiffī
g

p �
ĥμνð−D̄2 þ CTR̄Þĥμν

−
�
d − 2

2d

�
ϕð−D̄2 þ CSR̄ − μΛkÞϕ

�
; ðB3Þ

with the constants CT ¼ 2
dðd−1Þ, CS ¼ d−2

d and μ ¼ 2d
d−2. As

argued on general grounds in the introduction, the cosmo-
logical constant does indeed drop out of the traceless sector.
The resulting anomalous dimension of Newton’s con-

stant is given by ηN ¼ gB1

1−gB2
, where

B1 ¼
1

3
ð4πÞ−d

2
þ1

�
ðd2 − 3d − 2ÞΦ1

d=2−1ð0Þ

− 12
3dþ 2

d
Φ2

d=2ð0Þ þ 2Φ1
d=2−1ð−μλÞ

− 12
d − 2

d
Φ2

d=2ð−μλÞ
�
; ðB4Þ

B2 ¼ −
1

6
ð4πÞ−d

2
þ1

�
ðd − 1Þðdþ 2Þ ~Φ1

d=2−1ð0Þ

− 12
dþ 2

d
~Φ2
d=2ð0Þ þ 2 ~Φ1

d=2−1ð−μλÞ

− 12
d − 2

d
~Φ2
d=2ð−μλÞ

�
: ðB5Þ

The threshold functions Φ and ~Φ are defined in Ref. [26].
Finally, we have the β functions of gk ¼ kd−2Gk and
λk ¼ k−2Λk,

βg ¼ðd − 2þ ηNÞg; ðB6Þ

βλ ¼ − ð2 − ηNÞλþ
1

2
ð4πÞ−d

2
þ1gf2ðd2 − 3d − 2ÞΦ1

d=2ð0Þ
− ðd − 1Þðdþ 2ÞηN ~Φ1

d=2ð0Þ
þ 4Φ1

d=2ð−μλÞ − 2ηN ~Φ1
d=2ð−μλÞg: ðB7Þ

2. Bimetric

The conformal projection technique consists in setting
the dynamical metric to gμν ¼ e2Ωḡμν. In the following, we
denote this projection by ð� � �Þjpr. For the new parametriza-
tion, gμν ¼ ḡμρðehÞρν, it is equivalent to setting hρν ¼ 2Ωδρν.
This affects the derivatives of gμν with respect to hρσ
appearing in Eq. (14) as follows,

δgμνðxÞ
δhρσðyÞ

				
pr
¼ e2Ωδρμδσνδðx − yÞ; ðB8Þ

δ2gμνðuÞ
δhρσðxÞδhλγðyÞ

				
pr

¼ 1

2
e2Ωðḡσλδρμδγν þ ḡργδλμδσνÞδðu − xÞδðu − yÞ: ðB9Þ

FIELD PARAMETRIZATION DEPENDENCE IN … PHYSICAL REVIEW D 91, 044030 (2015)

044030-11



After applying the conformal projection and choosing the
Ω deformed α ¼ 1 gauge for the same gauge-fixing action
as in Ref. [30] (or, more precisely, its “gμν version,”
cf. Sec. II), we obtain the Hessian

ðΓð2Þ
k Þμνρσjpr ¼

eðd−2ÞΩ

32πGDyn
k

��
−ḡμρḡνσ þ 1

2
ḡμνḡρσ

�
D̄2

−
1

2
ðR̄ − 2e2ΩΛDyn

k Þḡμνḡρσ

þ 2R̄ρμνσ þ ḡρσR̄μν þ ḡμνR̄ρσ

�
ðB10Þ

in the graviton sector, and

ððΓgh
k Þð2Þ

ξξ̄
Þμν ¼

ffiffiffi
2

p
e2ΩðR̄μ

ν þ δμνD̄2Þ ðB11Þ

and ðΓgh
k Þð2Þ

ξ̄ξ
¼ −ðΓgh

k Þð2Þ
ξξ̄

in the ghost sector. Compared to

[30], theHessians for theghosts have not changed, but the one
for the graviton is different: (a) The terms in the curly brackets
in (B10) have changed, in particular, the cosmological
constant term is proportional to ḡμνḡρσ now, so it drops out
of the traceless sector as it did in the single-metriccomputation
of Sec. B 1. (b) The numerator of the prefactor has changed
from eðd−6ÞΩ into eðd−2ÞΩ, signaling the special role of two
dimensions. We include this factor also in the cutoff Rk.
The β functions are determined as in [30] by inserting

the Hessians into the FRGE and projecting the trace onto
the corresponding invariants. Since they contain a large
number of terms, it would take several pages to write them
down, and we refrain from presenting them here. Instead,
we show the resulting flow diagrams and analyze their
properties in Sec. IV.
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