
Stress-energy tensor of the quantized massive fields in
Schwarzschild-Tangherlini spacetimes: The backreaction

Jerzy Matyjasek* and Paweł Sadurski
Institute of Physics, Maria Curie-Skłodowska University pl. Marii Curie-Skłodowskiej 1,

20-031 Lublin, Poland
(Received 5 December 2014; published 13 February 2015)

We construct and study the approximate stress-energy tensor of the quantized massive scalar field in
higher dimensional Schwarzschild-Tangherlini spacetimes. The stress-energy tensor is calculated within
the framework of the Schwinger-DeWitt approach. It is shown that in N-dimensional spacetime the main
approximation can be obtained from the effective action constructed form the coincidence limit of the
Hadamard-DeWitt coefficient ak, where k − 1 is the integer part of N=2. The backreaction of the quantized
field upon the black hole spacetime is analyzed and the quantum-corrected Komar mass and the Hawking
temperature is calculated. It is shown that for the minimal and conformal coupling the increase of the
Komar mass of the quantum corrected black hole leads to the decrease of its Hawking temperature. This is
not generally true for more exotic values of the coupling parameter. The general formula describing the
vacuum polarization, hϕ2i, is constructed and briefly examined.
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I. INTRODUCTION

The aim of this paper is to construct and discuss
the regularized stress-energy tensor of the quantized
massive scalar field in a large mass limit in the spacetime
of N-dimensional static and spherically-symmetric
Schwarzschild-Tangherlini black hole described by the
line element [1]

ds2 ¼ −fð0ÞðrÞdt2 þ 1

fð0ÞðrÞ dr
2 þ r2dΩ2

N−2 ð1Þ

with

fð0ÞðrÞ ¼ 1 −
�
rþ
r

�
N−3

; ð2Þ

where dΩ2
N−2 is a metric on a unit ðN − 2Þ-dimensional

sphere, and, subsequently, analyze its influence on the
background geometry via the semiclassical Einstein field
equations. One can associate the mass with the solution
simply by comparing its asymptotic behavior with the
solutions of N-dimensional linearized gravity. The mass,
M, of the classical Schwarzschild-Tangherlini black hole is
given by

M ¼ πðN−3Þ=2ðN − 2Þ
8ΓðN−1

2
Þ rN−3þ ; ð3Þ

where rþ is the radial coordinate of the event horizon. The
Hawking temperature calculated in the standard way is
always inversely proportional to the radius of the event
horizon

TH ¼ N − 3

4πrþ
: ð4Þ

The quantum-corrected solution is, of course, characterized
by a different radius of the event horizon and Eqs. (3)
and (4) do not hold.
The Schwarzschild-Tangherlini black holes are classi-

cally stable with respect to the linear perturbations.
Moreover, it can be demonstrated that there are no static
scalar perturbations that is regular everywhere outside the
event horizon [2]. The latter means that if such perturba-
tions exist it would be possible to construct an asymptoti-
cally flat vacuum black hole solutions with nonspherical
event horizons of topology SN−2. The nonexistence of such
solutions confirms the uniqueness of the N-dimensional
spherically-symmetric static vacuum black holes.
The stress-energy tensor of the quantized field employed

in this paper is constructed within a generalized Schwinger-
DeWitt framework [3–8]. In this approach one assumes that
for sufficiently massive quantized fields the vacuum polari-
zation effects can be separated from the particle creation.
Since the vacuum polarization is local and for a given type
of field it depends solely on the spacetime geometry, it is
possible to construct the general expression describing the
one-loop effective action. The stress-energy tensor can be
obtained by differentiating the effective action with respect
to the metric and the result is a linear combination of the
purely geometric terms constructed form curvature. More-
over, as the particle creation is negligible in this regime, the
geometric approximation based on the Schwinger-DeWitt
method is expected to be quite good. Indeed, extensive
numerical analyses carried out in Ref. [9] indicate that for
N ¼ 4 black holes, the relative error of the approximation is*jurek@kft.umcs.lublin.pl
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below 2%, provided Mm > 2. It is a very important result
as it explicitly demonstrates the usefulness of the method.
The general criterion for applicability of the approximation
is that the length scale associated with the quantized field
should be much smaller than the characteristic scale of the
curvature of the spacetime.
The paper is organized as follows. In Sec. II we construct

the general expression describing the stress-energy tensor
of the quantized massive scalar fields in a large mass
limit in N-dimensional spacetime. Subsequently, the gen-
eral formulas are used in N ¼ 4; 5; 6 and 7-dimensional
Schwarzschild-Tangherlini spacetimes. The semiclassical
Einstein field equations are investigated in Sec. III, where
the backreaction of the quantized fields upon the spacetime
metric is examined. Section IV concludes the paper with
some final remarks, putting our results in a somewhat
broader perspective. Also in that section the field fluc-
tuation, hϕ2i, is constructed and briefly examined.
Throughout the paper the natural system of unit is

used. The signature of the metric is “mainly positive”
ð−;þ;…;þÞ and our conventions for curvature are
Ra

bcd ¼ ∂cΓa
bd… and Ra

bac ¼ Rbc.

II. THE STRESS-ENERGY TENSOR

Let us start with the massive scalar field, ϕ, propagating
on N-dimensional spacetime, satisfying the covariant
Klein-Gordon equation. The associated Green function is
the solution of the equation

ð□−m2 − ξRÞGðx; x0Þ ¼ −δðx; x0Þ≡−
δðx− x0Þ
jgj1=2 ; ð5Þ

where m is the mass of the field, ξ is the parameter of the
curvature coupling and R is the curvature scalar.
Now, making use of the (formal) definition of the one-

loop effective action Wð1Þ in the standard form

Wð1Þ ¼ −
i
2
ln TrG ð6Þ

and the Schwinger-DeWitt representation of the Green
function

GFðx; x0Þ ¼ iΔ1=2

ð4πÞn=2
Z

∞

0

ids
1

ðisÞn=2

× exp

�
−im2sþ iσðx; x0Þ

2s

�
Aðx; x0; isÞ; ð7Þ

expressed in terms of the Hadamard-DeWitt coefficients,
akðx; x0Þ, where Δ is the vanVleck-Morette determinant
constructed form the word function σ (a biscalar equal to
one half the square of the geodesic distance between x and
x0) and

Aðx; x0; isÞ ¼
X∞
k¼0

ðisÞkakðx; x0Þ; ð8Þ

one obtains

Wð1Þ ¼ lim
x0→x

Z
dNxð−gÞ1=2 Δ1=2

2ð4πÞN=2

×
Z

∞

0

ids

ðisÞN=2þ1
exp

�
−im2sþ iσ

2s

�
Aðx; x0; isÞ:

ð9Þ

Consequently, the effective Lagrangian density is given by

L ¼ 1

2ð4πÞN=2

Z
ids

ðisÞN=2þ1
e−im

2s
X∞
k¼0

akðisÞk; ð10Þ

where ak is the coincidence limit of akðx; x0Þ, i.e.,
ak ¼ limx0→xakðx; x0Þ.
Let ⌊x⌋ denote the floor function, i.e., it gives the largest

integer less than or equal to x. Since the first ⌊ N
2
⌋þ 1 terms

of the series (counting from the zeroth-term) lead to the
divergent integrals, let us substitute A in (7) by its
“regularized” counterpart

Aregðx; x0; isÞ ¼
Xn0

k¼⌊N
2
⌋þ1

akðx; x0; isÞðisÞk: ð11Þ

The upper limit n0 reflects the fact that only a first few
Hadamard-DeWitt coefficients are known.
Assuming that m2 has a small imaginary part (iε, ε < 0)

and integrating over s gives

Lreg ¼
1

2ð4πÞN=2

Xn0
k¼⌊N

2
⌋þ1

ak
ðm2Þk−N=2 Γ

�
k −

N
2

�
: ð12Þ

The (regularized) stress-energy tensor can be calculated
from the standard definition

Tab ¼ 2

ð−gÞ1=2
δ

δgab
Wð1Þ

reg; ð13Þ

where Wð1Þ
reg is given by

Wð1Þ
reg ¼

Z
dNxð−gÞ1=2Lreg: ð14Þ

This result may be thought of as a generalization of the
Frolov-Zel’nikov formula to the N-dimensional case.
In what follows we restrict ourselves to the first-order

approximation, i.e., for a given N we retain only the lowest
regular term of the expansion (12) and denote resulting
Lagrangian density by LN. Inspection of (12)–(14) shows
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that to calculate the approximate stress-energy tensor in the
spacetimes of dimension 4 and 5 the coincidence limit of
the fourth coefficient, a3, is needed. Similarly, the coef-
ficient a4 allows calculations in N ¼ 6 and 7, and so on.
Unfortunately, the Hadamard-DeWitt coefficients, except
for simple geometries with a high degree of symmetry, are
very hard to calculate as they are constructed from the
differential and algebraic curvature invariants. The differ-
ential invariants involve the covariant derivatives of the
curvature tensor (and their contractions) up to ðn − 2Þ-order
[8,10–13]. The problem at hand is even more complicated,
since what we need is the result of the functional differ-
entiation of the (integrated) coefficient ak with respect to
the metric tensor rather than the coefficient itself. To make
things worse, we have to apply the thus obtained formulas
in a concrete spacetime, what is usually associated with
large-scale calculations.
Before going any further, let us summarize what has been

done so far. Here we limit ourselves almost exclusively to
literature on the regularized stress-energy tensor calculated
within the framework of the Schwinger-DeWitt approxi-
mation. Assuming that the Compton length associated with
the mass of the field is much less than the gravitational
radius of the black hole, Frolov and Zel’nikov [14]
constructed the stress-energy tensor of the massive scalar
field in the Hartle-Hawking state in the Schwarzschild
spacetime. The large mass limit allows separation of the
vacuum polarization effects and the final result can be
calculated from the (coincidence limit) of the Ricci-flat
version of the coefficient a3. The scalar results have been
extended to spin 1=2 and spin 1 fields in the Kerr spacetime
[7,15]. The Forolv-Zel’nikov results (for all mentioned
spins) have been generalized to arbitrary spacetime in
Refs. [16,17]. This has been achieved by constructing the
functional derivatives of 10 curvature (algebraic and differ-
ential) invariants of the background dimensionality 6 (i.e.
having the dimension of length−6) with respect to the metric
tensor. In the N ¼ 4 case, the resulting stress-energy tensor
consists of almost 100 geometric terms constructed from
the curvature and metric. The interested reader is referred
to Refs. [16,17]. Identical results for the static spherically-
symmetric asymptotically-flat geometries have been
obtained using different methods in Ref. [18]. The analysis
of the functional derivatives of the curvature invariants
have been also carried out by Decanini and Folacci in
Refs. [19,20]. A natural question that appears in this
context is the problem of the quality of the approximation.
A detailed numerical study carried out in Ref. [9] indicates
that the Schwinger-DeWitt approximation, when employed
in its domain of applicability, is reliable.
The stress-energy tensor have been calculated in numer-

ous, physically interesting geometries, such as exterior and
interior regions of black holes [21,22], wormholes [23] and
cosmology [24,25]. Interesting results have been obtained
in the geometries with maximally symmetric subspaces,

such as the Bertotti-Robinson solution [26–28]. Recently,
there is a growing interest in the higher dimensional
calculations, (see e.g., [29,30] and the references cited
therein), that reflects the view that the physical world has
more than the familiar four dimensions.
Now, let us return to our main problem. To construct the

first-order approximation to the stress-energy tensor one
has to calculate the variational derivatives of the effective
action expressed in terms of the coincidence limit of the
heat kernel coefficients for arbitrary dimensions. Here we
shall limit ourselves to coefficients a3 and a4. Using
FORM, which is particularly suited for large scale calcu-
lations [31–33], we have constructed the coincidence limit
of the coefficients a3 and a4 and subsequently the func-
tional derivatives of the effective action with respect to the
metric tensor. After some simplifications we have obtained
the general expressions (stored in FORM format) describ-
ing the stress-energy tensor of the quantized massive scalar
field in N ¼ 4; 5; 6 and 7-dimensional geometries, respec-
tively. Unfortunately, the general results are very compli-
cated, and, except for the geometries with a high degree of
symmetry, hard to use.
In light of the foregoing discussion, to shorten the

presentation and minimize efforts, here we will follow a
less general approach.1 The static spherically symmetric
solution of the Einstein field equations, written in the
standard curvature coordinates, has the form

ds2 ¼ g00ðrÞdt2 þ g11ðrÞdr2 þ r2dΩ2
N−2; ð15Þ

where dΩ2
N−2 is the line element on a unit sphere SN−2. To

simplify notation, let us introduce two functions fðrÞ and
hðrÞ defined as fðrÞ ¼ g00ðrÞ, and hðrÞ ¼ g11ðrÞ, respec-
tively. Calculating the Hadamard-DeWitt coefficient for the
line element one obtains the Lagrangian density, LN , which
can be schematically written in the form

LN ¼ LNðfðrÞ;…; fðiNÞðrÞ; hðrÞ;…; hðjNÞðrÞ; rÞ ffiffiffiffiffiffiffiffiffiffi
gSN−2

p
;

ð16Þ

where and gSN−2
is the determinant of the metric tensor on a

unit SN−2 sphere, fðkÞ and hðkÞ denote a kth derivative of
fðrÞ and hðrÞ, respectively. Note that the numerical
coefficient, the mass and the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞhðrÞp

have been
absorbed into the definition of LN . Now the stress-energy
tensor can be obtained from the Euler-Lagrange equations

1It should be noted however, that all calculations of the stress-
energy tensor presented in this paper have been checked using
this more general approach.
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TðNÞt
t ¼ 2

�
f
h

�
1=2

� ∂
∂fL

N þ
XpðNÞ

k¼1

ð−1Þk dk

drk

� ∂
∂fðkÞ L

N

��

ð17Þ

and

TðNÞr
r ¼ 2

�
h
f

�
1=2

� ∂
∂hL

N þ
XsðNÞ

k¼1

ð−1Þk dk

drk

� ∂
∂hðkÞ L

N

��
;

ð18Þ

where pðNÞ and sðNÞ can easily be inferred form the
Lagrangian density. The angular components can be
obtained from the covariant conservation equation
∇aTab ¼ 0, which, for the line element (15), reduces to

TðNÞα1
α1 ¼ … ¼ TðNÞαN−2

αN−2

¼ −
r

2fðN − 2Þ
�
TðNÞt
t − TðNÞr

r

� d
dr

f

þ r
N − 2

d
dr

TðNÞr
r þ TðNÞr

r ; ð19Þ

where TðNÞαi
αi is any angular component of the stress-energy

tensor. The coordinates fα1;…; αN−2g cover the N − 2-
dimensional sphere. Note that once the time and radial
components of the stress-energy tensor are known the
angular components can be obtained at practically no
expense.
Making use of the coincidence limit of the Hadamard-

DeWitt coefficient a3ðx; x0Þ in the N ¼ 4 case, one has

Tð4Þt
t ¼ 1

m2π2r6

�
1237x3

40320
−
25x2

896
þ
�
x2

8
−
11x3

80

�
ξ

�
ð20Þ

and

Tð4Þr
r ¼ 1

m2π2r6

�
−
47x3

5760
þ 7x2

640
þ
�
3x3

80
−
x2

20

�
ξ

�
; ð21Þ

where x ¼ rþ=r. Similarly, for N ¼ 5 one obtains

Tð5Þt
t ¼ 1

mπ2r6

�
841x6

5040
−
81x4

560
þ
�
3x4

5
−
7x6

10

�
ξ

�
ð22Þ

and

Tð5Þr
r ¼ 1

mπ2r6

�
−
37x6

1008
þ33x4

560
þ
�
x6

5
−
3x4

10

�
ξ

�
: ð23Þ

The calculations of the stress-energy tensor in the space-
time of the higher-dimensional black holes require the
knowledge of the higher-order Hadamard-DeWitt coeffi-
cients. Indeed, making use of the coincidence limit of the

coefficient a4ðx; x0Þ in 6-dimensional Schwarzschild-
Tangherlini spacetime gives

Tð6Þt
t ¼ 1

m2π3r8

�
−
73973x12

5040
þ 40457x9

2016
−
387x6

64

þ ξ

�
59985x12

896
−
19945x9

224
þ 405x6

16

��
ð24Þ

and

Tð6Þr
r ¼ 1

m2π3r8

�
26969x12

10080
−
103x9

18
þ 153x6

64

þ ξ

�
−
33325x12

2688
þ 18055x9

672
−
45x6

4

��
; ð25Þ

whereas for N ¼ 7 one obtains

Tð7Þt
t ¼ 1

mπ3r8

�
−
4713x16

128
þ 387x12

8
−
217x8

16

þ ξ

�
1188x16

7
− 216x12 þ 225x8

4

��
ð26Þ

and

Tð7Þr
r ¼ 1

mπ3r8

�
30549x16

4480
−
8261x12

560
þ 237x8

40

þ ξ

�
−
891x16

28
þ 3915x12

56
−
225x8

8

��
: ð27Þ

The components of the stress-energy tensor in 4-dimensional
Schwarzschild spacetime have been calculated earlier in
Refs. [14,15]. As the angular components of the stress-
energy tensor can easily be calculated from the covariant
conservation equation (19) we shall not display them here.
The intermediate calculations of TðNÞa

b are rather com-
plicated but the final result is surprisingly simple, with only
a weak increase of its complexity with dimension. It should
be noted that in general, the coincidence limit of ak is a kth
degree polynomial in ξ, with the (geometric) coefficients of
ξi, for i > 1, involving products of the Ricci tensor, its
contractions and covariant derivatives. Additionally, there
is a term □k−1R, which, being a total divergence, does not
contribute to the final result. That explains why the stress-
energy tensor in the Schwarzschild-Tangherlini spacetime
is always linear in ξ. The same is true for the more general
Ricci-flat metrics. This behavior can be easily traced back
to the recurrence equation for the general Hadamard-
DeWitt coefficient akðx; x0Þ.
The stress-energy tensor is regular in a physical sense

if it is regular in a freely-falling frame of reference. To
demonstrate that the components of the stress-energy tensor
(20)–(27) do satisfy this requirement let us introduce the
vectors of the frame defined as follows. For radial motion
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the frame consists of the N-velocity vector eað0Þ ¼ ua and a

unit length spacelike vector eað1Þ ¼ na. (The remaining

vectors of the frame are unimportant for our purposes).
Now, using the geodesic equations, one has

eað0Þ ¼ ua ¼
�
E0

f
;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E2
0

f
− 1

�
1

h

s
; 0;…; 0

�
ð28Þ

and

eað1Þ ¼ na ¼
�
−
1

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − f

q
;
E0ffiffiffiffiffiffi
fh

p ; 0;…; 0

�
; ð29Þ

where E0 is the constant of motion. The components of the
stress-energy tensor in the frame can be written in the form:

Tð0Þð0Þ ¼ −
E2
0ðT0

0 − T1
1Þ

f
− T1

1 ð30Þ

Tð1Þð1Þ ¼ −
E2
0ðT0

0 − T1
1Þ

f
þ T1

1 ð31Þ

Tð0Þð1Þ ¼
E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − f

p
ðT0

0 − T1
1Þ

f
; ð32Þ

and, consequently, the stress-energy tensor in a freely-
falling frame is regular as r → rþ if

jTb
aj < ∞ and jðT0

0 − T1
1Þ=fj < ∞: ð33Þ

Inspection of (20)–(27) shows that

TðNÞr
r − TðNÞt

t ¼ FðrÞ
�
1 −

�
rþ
r

�
N−3

�
; ð34Þ

where FðrÞ is a simple polynomial in rþ=r, and, con-
sequently, the components Tð0Þð0Þ Tð1Þð1Þ and Tð0Þð1Þ are
regular. Moreover, by the same argument, the components

TðNÞαi
αi given by Eq. (19) are regular also. We would like to

emphasize that as the tensors have been calculated using
various computational strategies, the regularity of the
angular components has been established independently.
Although interesting in its own right, the main role

played by the stress-energy tensor is to provide the source
term to the semiclassical Einstein field equation. The
backreaction of the quantized fields upon the classical
background is the main theme of the next section.

III. THE BACKREACTION

In their simplest form the semiclassical Einstein field
equations can be written as

Ga
b ¼ 8πTðNÞa

b ; ð35Þ

where, in general, the total stress energy tensor describes
both classical and quantum matter. Ideally, the stress-
energy tensor of the quantized field should functionally
depend on a general metric or at least on the wide class of
metrics. This allows, in principle, to construct the solution
of the semiclassical Einstein field equations in a self-
consistent way. On the other hand, one can follow a simpler
approach, in which the stress-energy tensor is calculated in
a concrete spacetime and the backreaction on the metric is
treated perturbatively. In the black hole context the semi-
classical Einstein field equations have been studied for the
first time by York [34] more than thirty years ago (see also
Ref. [35]). Since then various aspects of the backreaction
problem have been studied in a number of papers, see e.g.,
[36–42] and the references cited therein.
In order to construct the semiclassical Einstein field

equations, let us start with the line element

ds2 ¼ −fðrÞdt2 þ hðrÞdr2 þ r2dΩ2
N−2; ð36Þ

where

fðrÞ ¼ e2ψðrÞ
�
1 −

2MðrÞ
rN−3

�

and hðrÞ ¼
�
1 −

2MðrÞ
rN−3

�
−1
: ð37Þ

The main reason for introducing the new functions MðrÞ
and ψðrÞ is to simplify the resulting equations. With such a
substitution, the semiclassical Einstein field equations read

dM
dr

¼ −ε
8πrN−2

N − 2
TðNÞt
t ð38Þ

and

dψ
dr

¼ ε
8πr
N − 2

TðNÞr
r − TðNÞt

t

1 − 2M
rN−3

; ð39Þ

where to simplify the calculations and to keep control of the
order of terms in the complicated series expansions we have
introduced the dimensionless parameter, ε, substituting

TðNÞa
b → εTðNÞa

b . We have to put ε ¼ 1 at the final stage of
calculations.
The quantum corrections to the Schwarzschild-

Tangherlini metric can be calculated making use of the
expansion

MðrÞ ¼ rN−3þ
2

½1þ εðN − 3ÞμðrÞ� ð40Þ

in (38) and (39), and integrating the linearized equation
with the initial condition μðrþÞ ¼ C1. This condition
means that the function μðrÞ can be written as μðrÞ ¼
μ0ðrÞ þ C1 with μ0ðrþÞ ¼ 0. The second equation can
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easily be integrated with the natural condition ψð∞Þ ¼ 0.
Note that with such a choice ψðrÞ ∼OðεÞ. Putting this all
together one has

fðrÞ ¼ 1 −
�
rþ
r

�
N−3

ð1þ εðN − 3ÞC1Þ

− εðN − 3Þ
�
rþ
r

�
N−3

μ0ðrÞ; ð41Þ

where

μ0ðrÞ ¼ −
16π

rN−3þ ðN − 3ÞðN − 2Þ
Z

r

rþ
rN−2TðNÞt

t dr: ð42Þ

The integration constant C1 can be absorbed into the
definition of the radius of the event horizon rH as follows

rH ¼ rþð1þ εC1Þ ð43Þ
in the process of the finite renormalization. The physical
radius of the event horizon, rH, is measurable as opposed to
the unphysical (bare) rþ. Since μ0 depends on r and rþ
and the third term on the right-hand side of Eq. (41) isOðεÞ,
in the linearized calculations, one can use rH instead of rþ
both in μðrÞ and ψðrÞ. With such a substitution one
introducesOðε2Þ error. Let us return to the second equation
of the system. Since Eq. (34) holds, the problem reduces to
the two simple quadratures.
The same result can be obtained solving the semiclassical

Einstein field equations with the stress-energy tensor
depending on a general metric and with the quantum-
corrected “exact” event horizon, rH, as the initial condition
from the very beginning.2 Let us employ the second method
and construct the semiclassical Einstein field equations
for MðrÞ and ψðrÞ with the initial conditions

MðrHÞ ¼
1

2
rN−3
H and ψð∞Þ ¼ 0: ð44Þ

Assuming

MðrÞ ¼ M0ðrÞ þ εM1ðrÞ þOðε2Þ
and ψðrÞ ¼ εψ1ðrÞ þOðε2Þ ð45Þ

one obtains differential equations which can be solved with
the conditions

M0ðrHÞ ¼
1

2
rN−3
H ; M1ðrHÞ ¼ 0 and ψ1ð∞Þ ¼ 0:

ð46Þ
The zeroth-order equation for a general N gives

M0ðrÞ ¼
1

2
rN−3
H ; ð47Þ

whereas the functions M1ðrÞ and ψ1ðrÞ assume more
complicated, dimension-dependent form. After some alge-
bra, one has

M1ðrÞ ¼
1

πm2

�
1237r3H
60480r6

−
5r2H
224r5

þ 113

60480r3H

þ ξ

�
−
11r3H
120r6

þ r2H
10r5

−
1

120r3H

��
; ð48Þ

ψ1ðrÞ ¼
1

πm2

�
7r2Hξ
60r6

−
29r2H
1120r6

�
ð49Þ

and

M1ðrÞ ¼
1

πm

�
841r6H
15120r8

−
9r4H
140r6

þ 131

15120r2H

þ ξ

�
−
7r6H
30r8

þ 4r4H
15r6

−
1

30r2H

��
; ð50Þ

ψ1ðrÞ ¼ −
1

πm

�
19r4H
280r8

−
3r4H
10r8

ξ

�
; ð51Þ

respectively, for N ¼ 4 and N ¼ 5. The analogous calcu-
lations in higher dimensional spacetimes are slightly more
involved and for N ¼ 6 give

M1ðrÞ¼
1

π2m2

�
−
73973r12H
37800r15

þ 40457r9H
12096r12

−
43r6H
32r9

−
13291

302400r3H

þξ

�
3999r12H
448r15

−
19945r9H
1344r12

þ45r6H
8r9

þ 97

336r3H

��
ð52Þ

and

ψ1ðrÞ ¼
1

π2m2

�
3887r9H
1680r15

−
45r6H
32r12

þ ξ

�
195r6H
32r12

−
1333r9H
126r15

��
:

ð53Þ

Similarly, for N ¼ 7 one has

M1ðrÞ ¼
1

π2m

�
−
1571r16H
480r18

þ 387r12H
70r14

−
217r8H
100r10

−
1439

16800r2H

þ ξ

�
528r16H
35r18

−
864r12H
35r14

þ 9r8H
r10

þ 3

5r2H

��
ð54Þ

and
2To cross-check the calculations we have employed both

methods.
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ψ1ðrÞ ¼
1

π2m

�
4073r12H
1050r18

−
1559r8H
700r14

þ ξ

�
135r8H
14r14

−
627r12H
35r18

��
:

ð55Þ

Having established the form of the quantum corrected
metric the correction to the temperature of the
Schwarzschild-Tangherlini black hole can be calculated.
First, observe that for the static and spherically symmetric
black hole the Euclidean version of the line element has no
conical singularity, provided the complexified time coor-
dinate is periodic with a period β given by

β ¼ lim
r→rH

4πðg00g11Þ1=2
�
d
dr

g00

�
−1
: ð56Þ

Thus, as in the classical Schwarzschild-Tangherlini space-
time, a quantum-corrected black hole has a natural temper-
ature associated with it. The Hawking temperature is given
by TH ¼ β−1 and to OðεÞ, one has

TðNÞ
H ¼ N − 3

4πrH
þ εΔTðNÞ

H ; ð57Þ

where

ΔTð4Þ
H ¼ 1

π2m2r5H

�
ξ

240
−

37

40320

�
; ð58Þ

ΔTð5Þ
H ¼ 1

π2mr5H

�
ξ

60
−

13

3024

�
; ð59Þ

ΔTð6Þ
H ¼ 1

π3m2r7H

�
47

1920
−
97ξ

672

�
; ð60Þ

ΔTð7Þ
H ¼ 1

π3mr7H

�
767

16800
−

3

10
ξ

�
: ð61Þ

The corrections ΔTðNÞ
H are linear functions of ξ and

one expects that this behavior persists also in the back-
reaction on a more general (classical) Ricci-flat black hole
geometries.
Now, let us analyze the mass of the black hole as seen by

a distant observer. It is evident that the mass as given by
Eq. (3) is not the mass that would be measured at great
distances from the corrected black hole. The coordinate
independent Komar mass, M∞, defined by [43]I

∞
∇aKb

ðtÞdσab ¼ −16π
N − 3

N − 2
M∞; ð62Þ

where KðtÞ is the timelike Killing vector and the integrals
are to be calculated over ðN − 2Þ-sphere at spatial infinity,
is very useful in this regard. Here, the Komar mass is the
total mass energy of the black hole and the vacuum

polarization of the quantized massive field. Making use
of this definition, one has

M∞ ¼ πðN−3Þ=2ðN − 2Þ
8ΓðN−1

2
Þ rN−3

H þ ΔMðNÞ; ð63Þ

where

ΔMð4Þ ¼ 1

πm2r3H

�
113

60480
−

ξ

120

�
; ð64Þ

ΔMð5Þ ¼ 1

mr2H

�
131

20160
−

ξ

40

�
; ð65Þ

ΔMð6Þ ¼ 1

πm2r3H

�
97ξ

252
−

13291

226800

�
; ð66Þ

and

ΔMð7Þ ¼ 1

mr2H

�
3ξ

8
−

1439

26880

�
: ð67Þ

Precisely the same result can be easily calculated form

M∞ ¼ πðN−3Þ=2ðN − 2Þ
4ΓðN−1

2
Þ lim

r→∞
MðrÞ; ð68Þ

where MðrÞ is given by (45).
It should be noted, however, that for N ¼ 4, Eq. (64)

does not coincide with the result obtained by Frolov and
Zel’nikov in Ref. [15], although the Komar mass M∞ is
identical. It is simply because they used the equivalent
representation for the Komar mass

−16π
N − 3

N − 2
M∞ ¼ 2

Z
S
Ra
bK

b
ðtÞdSa þ

I
H
∇aKb

ðtÞdσab;

ð69Þ
where H is a spatial ðN − 2Þ-sphere on the event horizon
and S is the region between H and space-like infinity, and
interpreted (in 4-dimensional spacetime) the first term on

the right-hand side of the above equation as −8πΔMð4Þ
BH.

Indeed, simple calculations reproduce the Frolov-Zel’nikov
result

ΔMð4Þ
BH ¼ 1

540πm3r3H
ð2 − 9ξÞ: ð70Þ

On the other hand, the last term

MH ¼ −
N − 2

16πðN − 3Þ
I
H
∇aKb

ðtÞdσab ð71Þ

interpreted as a horizon-defined black hole mass, when
restricted to N ¼ 4, gives
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MH ¼ rH
2
þ 1

πm2r3H

�
ξ

120
−

36

21160

�
: ð72Þ

It can easily be shown that the sum ΔMð4Þ
BH þMH is

precisely the Komar mass, M∞, of the 4-dimensional
quantum-corrected Schwarzschild black hole. Both defini-
tions of the mass correction terms have their merits and the
calculation of ΔMBH presents no problem, but, in our
opinion, Eqs. (64)–(67) are better suited for further analysis.
Now, we shall analyze the influence of the quantized field

on the black hole. To this end let us compare the classical and
the quantum corrected black holes, both characterized by the
same radius of the event horizon, rH. Two particular values
of ξ are of special interest: ξ ¼ 0, which characterizes the
minimal coupling and ξ ¼ ðN − 2Þð4N − 4Þ which charac-
terizes the conformal coupling. Other values of the coupling
parameter are of somewhat lesser interest. The corrections of
the Hawking temperature caused by the quantum field
depend on the dimension and the coupling parameter and
are tabulated in Table I.
Within the adopted approximation, the conformally

coupled massive fields tend to lower the black hole
temperature. On the other hand, under the influence of
the minimally coupled fields the Hawking temperature
increases for N ¼ 4 and N ¼ 5 and decreases for N ¼ 6
and N ¼ 7. Similarly, inspection of Table II shows that the
correction to the black hole mass is always positive for the
conformally coupled fields, whereas it is negative for
the minimally coupled field in N ¼ 6 and N ¼ 7 dimen-
sional quantum-corrected Schwarzschild-Tangherlini space-
time. Qualitatively, one has the following behavior for both
values of the curvature coupling: Increase of the mass of the
black hole due to quantum effects decreases the Hawking
temperature. It should be noted however, that for more
exotic values of the parameter ξ this observation may not
necessarily be true. Finally, observe that the modifications
of the characteristics of the black hole is bigger for
minimally coupled fields, as can be easily seen in

Table III. Once again, we observe that for other values of
the coupling parameter corrections to the mass and the
temperature can be quite significant.
For s fields with masses mi the main approximation

to the one-loop effective action is still of the form (14)
with n0 ¼ ⌊N=2⌋þ 1, provided the following substitution
is made

1

ðm2Þ⌊N=2⌋−N=2þ1
→

Xs

i

1

ðm2
i Þ⌊N=2⌋−N=2þ1

: ð73Þ

Thus the quantum effects can be made arbitrary large by
taking a large number of massive fields.

IV. FINAL REMARKS

We have constructed the approximate stress-energy tensor
of the quantized massive scalar fields in the spacetimes of the
Schwarzschild-Tangherlini black holes. The general expres-
sions describing the stress-energy tensor constructed form
the coefficient a3 (N ¼ 4 and N ¼ 5) and from a4 (N ¼ 6
and N ¼ 7) have been calculated using FORM. The
coefficients ak have been calculated within the framework
of the manifestly covariant method. Unfortunately, the final
results (which are valid in any spacetime provided the
applicability conditions are satisfied) are rather complicated
and their practical use may be limited to simple geometries
of high symmetry. Although the Schwarzschild-Tangherlini
black holes belong to the class of geometries for which such
calculations can be performed in a reasonable time, here, for
brevity, we followed a simplified approach and calculated
the functional derivatives of the one-loop effective action
with respect to the metric potentials of the general static and
spherically symmetric metric.
Our general formulas have already been successfully

tested. Indeed, recently we have calculated the stress-energy
tensor of the quantized massive field in N-dimensional
spatially-flat Friedman-Robertson-Walker spacetimes within
the framework of the adiabatic approximation and it has been
explicitly demonstrated that it coincides with the tensors
obtained form the Schwinger-DeWitt method.
Finally observe, that as a by-product of the present

calculations one can easily construct the field fluctuation.
Indeed, from the formal definition

hϕ2ireg ¼ −i lim
x0→x

GðNÞ
reg ; ð74Þ

where GðNÞ
reg is given by (7) with Aðx; x0; isÞ substituted by

TABLE I. The sign of ΔTðNÞ for two physical choices
of the coupling parameter ξ ¼ 0 (minimal coupling) and
ξc ¼ ðN − 2Þ=ð4N − 4Þ (conformal coupling).

N ¼ 4 N ¼ 5 N ¼ 6 N ¼ 7

ξ ¼ 0 − − þ þ
ξ ¼ ξc − − − −

TABLE II. The sign of ΔMðNÞ for two physical choices
of the coupling parameter ξ ¼ 0 (minimal coupling) and
ξc ¼ ðN − 2Þ=ð4N − 4Þ (conformal coupling).

N ¼ 4 N ¼ 5 N ¼ 6 N ¼ 7

ξ ¼ 0 þ þ − −
ξ ¼ ξc þ þ þ þ

TABLE III. The (absolute) value of the ratio of ΔT0 toΔTc (the
first row) and ΔM0 to ΔMc (the second row) for the quantum
corrected Schwarzschild-Tangherlini black hole. The minimally
coupled field leads to more prominent corrections.

N ¼ 4 N ¼ 5 N ¼ 6 N ¼ 7

jΔT0=ΔTcj 4.11 3.66 5.58 2.7
jΔM0=ΔMcj 3.9 3.59 3.19 2.18
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AðNÞ
reg ðx;x0; isÞ¼Aðx;x0; isÞ−

X⌊N2⌋−1
k¼0

akðx;x0ÞðisÞk; ð75Þ

one has

hϕ2ireg ¼
1

ð4πÞN=2

Xn0
k¼⌊N=2⌋

ak
ðm2Þkþ1−N=2 Γ

�
kþ 1 −

N
2

�
:

ð76Þ

This expression coincides with the result obtained in
Ref. [29]. It should be noted, however, that the derivation
presented here is simpler. The vacuum polarization can be
calculated once the coincidence limits of the Hadamard-
DeWitt coefficients in the concrete geometry are known.
For example, the knowledge of the coefficients a2, a3 and
a4 in the Schwarzschild-Tangherlini spacetimes gives the
field fluctuation for 4 ≤ N ≤ 9.
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