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In this paper, we address the issue of black hole solutions in (1þ 1)-dimensional nonprojectable
Horava-Lifshitz gravity. We consider several models by considering different potentials in the scalar matter
sector. We also consider the gravitational collapse of a distribution of pressureless dust filling a region in
one-dimensional space. The time of the collapse can be faster or slower depending on the parameter λ of
the theory.

DOI: 10.1103/PhysRevD.91.044026 PACS numbers: 04.60.Kz, 04.50.Kd, 04.70.Bw

I. INTRODUCTION

The (1þ 1)-dimensional theory of gravity has been
considered in some detail in several studies in the literature
[1–6]. Remarkably, it has similarity to four-dimensional
general relativity in many aspects. These include a
Newtonian limit, cosmological solutions, interior solutions,
gravitational waves, and the gravitational collapse of pres-
sureless dust into black holes with event horizon structures,
which is identical to the four-dimensional Schwarzschild
solution. Since from the classical point of view the
(1þ 1)-dimensional gravity structure is so close to
(3þ 1)-dimensional gravity, it is expected that its quantiza-
tion procedure should be quite similar to that in (3þ 1)-
dimensional quantum gravity. Furthermore, its semiclassical
properties also produces interesting effects such as Hawking
radiation and also black hole condensation. This is because
the nontrivial event horizon structure developed in (1þ 1)-
dimensional theory of gravity has similarities with their
(3þ 1)-dimensional general relativistic counterparts.
Recently, in Ref. [7], a new theory of gravity was put

forward. This is now well known as the Horava-Lifshitz
(HL) gravity. In the HL gravity, it is intended to obtain
a renormalizable four-dimensional theory of gravity via
power counting due to higher-order scaling on the
3-momentum at the UV scale. The price to pay is that
space and time now scales in a different way via a
dynamical critical exponent in the UV regime, and as a
consequence, the Lorentz invariance is lost at the high-
energy scale. Despite this, several studies have been
considered in the literature [8], including modifications
of the original theory in order to circumvent undesirable
extra modes [9]. However, to our knowledge, in low-
dimensional HL gravity, there have been few studies

considered in the literature. To quote a few, very recently
considerations appeared on black hole solutions in 2þ 1
dimensions [10–12] and quantization of the (1þ 1)-
dimensional projectable Horava-Lifshitz gravity [13].
In the present study, we investigate black hole solutions

and gravitational collapse of a pressureless dust distribution
in 1þ 1 dimensions. We shall consider the nonprojectable
version of HL gravity [9].
The paper is organized as follows. In Sec. II, we briefly

introduce our setup. In Sec. III, we are able to find several
black hole solutions by considering distinct models through
several specific potentials in the scalar matter sector.
In Sec. IV, we shall assume only dust in the matter sector
to address the issue of gravitational collapse. In Sec. V, we
present our final considerations.

II. LOWEST-DIMENSIONAL HL THEORY

In this section, we shall briefly review the nonprojectable
HL gravity. In Horava-Lifshitz gravity, the spacetime
decomposes as follows:

ds2 ¼ −N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ: ð1Þ
For this theory, one finds

Kij ¼
1

2N
ð_gij −∇iNj −∇jNiÞ; ð2Þ

and the ðDþ 1Þ-dimensional action is written as

S ¼ M2
Pl

2

Z
dDxdt

ffiffiffi
g

p ðKijKij þ λK2 þ VÞ; ð3Þ

where λ > 1 and the potential V is associated with the
nonprojectable HL gravity defined as

V ¼ ξRþ ηaiai þ
1

M2�
L4 þ

1

M2�
L6; ð4Þ*Corresponding author.
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with ai being a vector that describes the proper acceleration
of the vector field of unit normals to the foliation surfaces
[9] given by

ai ¼ ∂i lnN; ð5Þ
where i ¼ 1, 2, 3 in 3þ 1 dimensions, though we shall
concentrate ourselves in 1þ 1 dimensions. In 1þ 1
dimensions, the theory turns out to be much simpler,
such that

K ¼ 1

2N
ð_g11 − 2∇1N1Þ; ð6Þ

with z ¼ D ¼ 1, gij ¼ g11, and ai ¼ a1. In this form, the
HL action coupled to matter fields

S ¼ SHL þ Sϕ ð7Þ

becomes written in terms of

SHL ¼ M2
Pl

2

Z
dxdt

ffiffiffi
g

p ½ð1 − λÞK2 þ ηg11a1a1� ð8Þ

and

Sϕ ¼
Z

dxdtN
ffiffiffi
g

p �
1

2N
ð∂tϕ − N1∇1Þ2 − αð∇1ϕÞ2

− VðϕÞ − βϕ∇1a1 − γϕa1∇1ϕ

�
; ð9Þ

with α; β, and γ being dimensionless coupling constants.
In the relativistic limit, we have α ¼ 1 and β ¼ γ ¼ 0 [13].

III. LOWEST-DIMENSIONAL BLACK
HOLES IN HL THEORY

Notice that from Eq. (8) the λ parameter will be irrelevant
for the static black hole solutions of the present section
because, in this case, K ¼ 0, whereas the η parameter will
be present in most of the solutions. One should mention
that in next section, where we shall address the problem of
gravitational collapse, the opposite will occur because, in
that case, a1 → 0 (projectability).
Now, rewriting the complete action using the fact that

K ¼ 0, by admitting N1ðxÞ ¼ 0 in our case, we have

S ¼ M2
Pl

2

Z
dxdt

ffiffiffiffiffiffi
−g

p �
ηg11a21 −

2

M2
Pl

αg11ϕ02 −
2

M2
Pl

VðϕÞ
�
;

ð10Þ
or simply

S ¼ M2
Pl

2

Z
dxdt

�
−ηN2a21 þ

2

M2
Pl

αN2ϕ02 −
2

M2
Pl

VðϕÞ
�
ð11Þ

since
ffiffiffiffiffiffi−gp ¼ 1 in the present study—see below. Now,

varying this action with respect to N, it is easy to get the
important condition

−ηa21 þ
2

M2
Pl

αϕ02 ¼ 0; ð12Þ

whereas by varying S with respect to the scalar field ϕ, we
find

d
dx

ðN2ϕ0Þ ¼ 1

2α

∂V
∂ϕ : ð13Þ

Notice from Eq. (12) that for α ¼ ηM2
Pl=2 we can find

a1 ¼ jϕ0j. This gives us an important relation between the
matter scalar field and a1. From the nonprojectable HL
theory, we can take advantage of Eq. (5), which in 1þ 1
dimensions simply becomes

a1 ≡ d lnN
dx

¼ jϕ0j → N ¼ e�ϕ; ð14Þ

where we have used the aforementioned condition between
a1 and ϕ0 and integrated out the equation for N.
The equation of motion, Eq. (13), can be now written in

the simpler form

d
dx

ðηe2ϕϕ0Þ ¼ Vϕ; Vϕ →
1

M2
Pl

∂V
∂ϕ ; ð15Þ

where we used the above definition of α and the solution for
N given in Eq. (14). The Planck mass appeared here
because we kept 2=κ2 ≡M2

Pl=2 in the Lagrangian (for later
convenience—see next section), although ½κ� ¼ z−D

2
¼ 0

since in our case z ¼ D ¼ 1. Thus, for the moment, we can
indeed consider M2

Pl ¼ 1 for simplicity and consistence.
Let us now focus on the following model with VðϕÞ ¼ 0.

By using the equation of motion (13), we find

N2ϕ0 ¼ M; ð16Þ
where M is an integration constant. Now, using Eq. (14),
we find

N
dN
dx

¼ �M; ð17Þ

that integrating for NðxÞ we find the general solution

NðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðMjxj þ CÞ

p
: ð18Þ

For an integration constant chosen as C ¼ −1=2, we find

NðxÞ2 ¼ 2Mjxj − 1: ð19Þ
Consequently, the scalar field can also be found via relation
N ¼ eϕ given in Eq. (14) such that

ϕðxÞ ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mjxj − 1

p
: ð20Þ
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This scalar solution can be thought of as a dilatonic
solution. Its diverging behavior near the horizon is in
accord with two other well-known places where the
same phenomenon develops. Whereas our present study of
black holes in low-dimensional (two-dimensional) Horava
gravity has some resemblance with low-dimensional non-
extremal black Dp branes (e.g., p < 3) in string theory
[14], the fact that Horava gravity is in general a higher-
derivative theory of gravity is somehow connected with
higher-derivative gravity in arbitrary dimensions—see, for
instance, the dilatonic Einstein–Gauss–Bonnet in Ref. [15].
In both these situations, the dilatonic solutions diverge on
the black hole horizon. In the following, we shall focus on
the black hole solutions.
Thus, we obtain the following simplest solution of black

hole in two-dimensional HL gravity:

ds2 ¼ −ð2Mjxj − 1Þdt2 þ 1

ð2Mjxj − 1Þ dx
2: ð21Þ

This solution has previously appeared in Ref. [1]. Of course,
since we have a scalar potential VðϕÞ that in general does not
vanish, it is very natural to look for other solutions. However,
as we shall see, it is not possible to find analytical solutions
in some interesting cases. Despite this, we shall consider the
following models.
First, let us consider the model with VðϕÞ ¼ Λϕ.

By using the equation of motion (15) and the fact that
N ¼ eϕ, we get the following equation:

ηðNN00 þ N02Þ − Vϕ ¼ 0: ð22Þ

This equation can be solved analytically, for which the
solution for NðxÞ and ϕðxÞ is given, respectively, by

NðxÞ2 ¼ ðΛ=ηÞx2 − 2C1xþ 2C2 ð23Þ

and

ϕðxÞ ¼ ln ½ðΛ=ηÞx2 − 2C1xþ 2C2�1=2: ð24Þ

Now, taking C1 ¼ −M and ϵ ¼ 2C2, we find

ϕðxÞ ¼ ln ½ðΛ=ηÞx2 þ 2Mx − ϵ�1=2 ð25Þ

and also

NðxÞ2 ¼ ðΛ=ηÞx2 þ 2Mx − ϵ: ð26Þ

Thus, in the present model, the new solution of the black
hole in two-dimensional HL gravity is

ds2 ¼ −ððΛ=ηÞx2 þ 2Mx − ϵÞdt2

þ 1

ððΛ=ηÞx2 þ 2Mx − ϵÞ dx
2: ð27Þ

See in Ref. [4] (the first reference) a similar solution.
Before presenting more examples, some comments are in
order. The cases studied previously are the simplest ones
in which we can choose a scalar potential and obtain
explicit solutions. For further generalized potentials, we
cannot in general obtain explicit solutions analytically. In
this sense, one can choose, instead, not a scalar potential
itself but its derivative as a function of an implicit scalar
field, which in turns depends on the spatial coordinate.
So, we shall now consider forms of VϕðϕðxÞÞ≡ VϕðxÞ as
follows:

VϕðxÞ ¼ Aþ B
x3

þ C
x4

: ð28Þ

Now, substituting Eq. (28) into the equation of motion
(15), we find the general solution for NðxÞ and ϕðxÞ given
explicitly by

NðxÞ2 ¼ 2C2 þ
A
η
x2 − 2C1xþ

B
ηx

þ C
3ηx2

ð29Þ

and

ϕðxÞ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C2 þ

A
η
x2 − 2C1xþ

B
ηx

þ C
3ηx2

s
: ð30Þ

The only problem with this procedure is finding the
potential back in terms of the scalar field ϕ because, in
most cases, one cannot invert the solutions in order to
obtain x ¼ fðϕÞ. Aside from this fact, we can find several
interesting solutions for NðxÞ and ϕðxÞ given explicitly, as
we can see below. By properly choosing the parameters,
the spacetime may represent a black hole, a white hole, a
naked singularity, or other more complicated structures.
As stated in Ref. [1], this spacetime can also be used to
easily extended it to multiple point sources.
Some special cases are in order:
(i) ForC1¼−M,C2¼−1=2, η¼ 1, and A¼B¼C¼ 0,

we simply have Vϕ ¼ 0 (V ¼ const), which is
equivalent to the case with V ¼ 0 for which the
solution is given by Eqs. (20)–(21).

(ii) Another similar example is C2 ¼ −ϵ=2, C1 ¼ −M,
A ¼ Λ, and B ¼ C ¼ 0 for which we have Vϕ ¼ A,
which is also equivalent to the case VðϕÞ ¼ Λϕ.
The solution for this case is given by Eqs. (26)–(27).
If one wants to leave the solution in the same form
presented in Ref. [1], one can still consider η ¼ 1
and A ¼ −Λ=2.

In the following, we shall consider two-dimensional
Schwarzschild and Reissner–Nordström-like solutions.
These types of solutions have previously appeared, e.g.,
in Refs. [5] and [6], respectively.
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A. Schwarzschild-like solution

In this case, one considers C2 ¼ 1=2, B ¼ −2M, η ¼ 1,
and A ¼ C ¼ C1 ¼ 0. This leaves

VϕðxÞ ¼ −
2M
x3

: ð31Þ

This gives the following explicit solution for NðxÞ
and ϕðxÞ:

NðxÞ2 ¼ 1 −
2M
x

ð32Þ

and

ϕðxÞ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
x

r
: ð33Þ

Interestingly, in this case, we can invert (31) and integrate
on ϕ to obtain the scalar potential

VðϕÞ ¼ B
8M3

ϕ −
3B

16M3
e2ϕ þ 3B

32M3
e4ϕ −

B
48M3

e6ϕ:

ð34Þ

This will be quite easy anytime the polynomial form of
VϕðxÞ is restricted to a unique term.

B. Reissner–Nordström-like solution

One can expect that the last term in VϕðxÞ given in
Eq. (28) is associated with the effect of an electrical charge
Q. This is more evident through the use of the general
solution (29)–(30) and making a suitable choice of the
parameters, that is, for C2 ¼ 1=2,B ¼ −2M, C ¼ 3Q2,
η ¼ 1, and A ¼ C1 ¼ 0,

VϕðxÞ ¼ −
2M
x3

þ 3Q2

x4
: ð35Þ

Again, as in the previous cases, this gives the following
explicit solution for NðxÞ and ϕðxÞ:

NðxÞ2 ¼ 1 −
2M
x

þQ2

x2
ð36Þ

and

ϕðxÞ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
x

þQ2

x2

s
: ð37Þ

Differently from the previous case, now one cannot easily
invert (31) and integrate on ϕ to obtain a scalar potential.

C. New black hole solution

The two cases presented above are well-known solutions
in four dimensions with several issues addressed such as
the number of horizons, Hawking temperature, entropy, and
so on. The other cases with B ¼ C ¼ 0 are also well known
in 1þ 1-dimensional gravity. Thus, we do not need to say
more about them. However, in the case that we will present
here, we shall consider the Hawking temperature.
Just for maintaining the usual notation, let us rename the

general solution (29) as follows fðxÞ≡ NðxÞ2, i.e.,

fðxÞ ¼ 2C2 þ
A
η
x2 − 2C1xþ

B
ηx

þ C
3ηx2

: ð38Þ

For C1 ≠ 0, C2 ≠ 0, B ≠ 0, and A ¼ C ¼ 0, we have

fðxÞ ¼ 2C2 − 2C1xþ
B
ηx

: ð39Þ

This solution develops the following horizons:

x�h ¼ C2

C1

�
ffiffiffiffi
Δ

p
; Δ ¼ C2

2

C2
1

þ 2B
ηC1

: ð40Þ

As Δ ¼ 0, they degenerate, i.e., xþh ¼ x−h .
The Hawking temperature is given in terms of the outer

(xþh ) horizon as follows:

TH ¼ f0ðxÞ
4π

����
x¼xþh

: ð41Þ

For the special case C2 ¼ 0, C1 ¼ −M and B ¼ −2M, the
horizons are independent of the mass M:

x�h ¼ � 2ffiffiffi
η

p ðη > 0Þ: ð42Þ

The temperature is then given by

TH ¼ 1

4π

�
−2C1 −

B
ð 2ffiffi

η
p Þ2

�
; ð43Þ

or simply

TH ¼ 1

8π
ð4þ ηÞM: ð44Þ

This is a typical relation between the Hawking temperature
and the mass of black holes in 1þ 1 dimensions [1].

IV. GRAVITATIONAL COLLAPSE

In this section, we address the issue of the gravitational
collapse of a certain mass of dust with negligible pressure
confined into a region of the unidimensional space ½−r; r�,
of which the metric is given in comoving coordinates by
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ds2 ¼ −NðτÞ2dτ2 þ aðτÞ2dρ2: ð45Þ

In this case, the action we shall consider is that given by
Eq. (7) with the matter sector not restricted only to scalar
fields. Now, we have the action

S ¼ M2
Pl

2

Z
d2xN

ffiffiffiffiffiffi
g11

p ½ð1 − λÞK2 þ ηg11ϕ02� þ Sm; ð46Þ

which is explicitly given in terms of the metric (45) in the
form

S ¼ M2
Pl

2

Z
d2x

�ð1 − λÞa3 _a2
N

�
þM2

Pl

2

Z
d2x

�
Nηϕ0

a

�

þ
Z

d2xN
ffiffiffiffiffiffi
g11

p
Lm: ð47Þ

The tensor energy momentum is given in terms of the
matter Lagrangian through its usual definition

Tμν ¼
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð48Þ

By varying the action with respect to N, i.e.,

δS
δN

¼ 0; ð49Þ

we obtain the equation that relates the dynamics of the
spacetime (45) with the energy density

ðλ − 1ÞM2
Pla

3 _a2

2N2
þM2

Plηϕ
0

2a
¼ −

1ffiffiffiffiffiffi
g11

p δSm
δN

¼ σ: ð50Þ

Now, making N ¼ 1, and recalling that N ¼ eϕ from our
previous investigations, then consequently the scalar field
ϕ ¼ 0 so that we have

ðλ − 1ÞM2
Pla

3 _a2 ¼ 2σ: ð51Þ

A. Interior solution for the gravitational collapse

Since we are working with a pressureless fluid, then
Tμν ¼ σUμUν, with U1 ¼ 0 and Ut ¼ 1. Thus, the equa-
tion for conservation of energy and momentum now reads

∇μTμν ¼ 0⟶
∂
∂t

�
σ

ffiffiffiffiffi
a2

p 	
¼ 0; ð52Þ

which means that σ
ffiffiffiffiffi
a2

p
is constant. Thus, in terms of the

constants a0 and ρ0 defined at the initial time of the
collapse, it simply gives

σ ¼ ρ0a0
a

: ð53Þ

Now, substituting this equation into Eq. (51), we find the
differential equation

a4 _a2 ¼ 2σ0a0
M2

Plðλ − 1Þ ð54Þ

that can still be recast in the form

a2 _a ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ0a0

M2
Plðλ − 1Þ

s
¼ �β; ð55Þ

of which the solutions are

a ¼ ð�3βτ þ CÞ1=3: ð56Þ
Now, choosing C ¼ 1, N ¼ 1 and taking the solution with
minus sign, we finally have the metric in the interior of the
gravitational collapse:

ds2 ¼ −dτ2 þ ð1 − 3βτÞ2=3dρ2: ð57Þ
See in Ref. [3] a similar solution. The density of the dust
given by σ goes to infinity (singularity) as the scale factor
approaches zero. This occurs in the finite time τc ¼ 1=ð3βÞ,
that is

τc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ − 1ÞM2

Pl

18σ0a0

s
: ð58Þ

The square-root dependence on λ − 1 would be a problem
in the projectable original HL gravity [7] where this
parameter is allowed to be only λ ≤ 1. Fortunately, this
is not the case in the healthy nonprojectable HL gravity
developed in Ref. [9] where λ > 1. Notice that, given an
initial density σ0, the collapse can occur slower or faster
depending on the parameter λ. As an example, for λ → 1,
the time τc → 0, which means a distribution of dust that
collapses very quickly can otherwise live longer with a time
τc ≠ 0 before collapsing for λ > 1.

B. Exterior solution for the gravitational collapse

Inspired in the Birkhoff theorem, which states that it is
always possible to find a coordinate system in which the
exterior solution of a spherical solution in 3þ 1 dimensions
is time independent [16,17], we shall proceed in a similar
way into 1þ 1 dimensions to connect our interior time-
dependent solution previously obtained to an exterior
time-independent solution [4]. Thus, we shall relate the
coordinate x that describes a black hole, the static exterior
solution, with a comoving coordinate ρ that describes the
motion of the dust in the gravitational collapse, the interior
solution, via

xðτ; ρÞ ¼ ρaðτÞ ¼ ρð1 − 3βτÞ2=3 ð59Þ
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in such a way that, from the interior metric

ds2 ¼ −dτ2 þ a2ðτ; ρÞdρ2; ð60Þ

we should find the static exterior solution

ds2 ¼ −AðxÞ2dt2 þ AðxÞ−2dx2: ð61Þ
There is a Killing vector that corresponds to energy
conservation satisfying

Kμ
dxμ

dτ
¼ Kt

dt
dτ

þ Kx
dx
dτ

¼ const; ð62Þ

where

Kμ ¼ ð−A2; 0Þ: ð63Þ

Then, we find the following solution:

dt
dτ

¼ −
E
A2

: ð64Þ

In addition, there is another constant of the motion along
the geodesic

ϵ ¼ −gμν
dxμ

dτ
dxν

dτ
; ð65Þ

that is

−ϵ ¼ −A2

�
dt
dτ

�
2

þ A−2
�
dx
dτ

�
2

; ð66Þ

or simply

−ϵA2 ¼ −A4

�
dt
dτ

�
2

þ
�
dx
dτ

�
2

; ð67Þ
�
dx
dτ

�
2

þ ϵA2 − E2 ¼ 0: ð68Þ

If the particle is at rest (dx=dτ ¼ 0) in the limit x → r,
we have ϵE2 ¼ C2 with C → AðrÞ. Recall that r is the
boundary of the dust in a one-dimensional region. In the
case of massive particles, we can make ϵ ¼ 1, and then�

dx
dτ

�
2

þ A2 − C2 ¼ 0: ð69Þ

Notice also that from Eq. (64) we can now write

dt
dτ

¼ −
C
A2

: ð70Þ

Imposing the conditions x ¼ xðρ; τÞ, t ¼ tðρ; τÞ, and
x ¼ ρa, we have

dx ¼ ∂x
∂τ dτ þ

∂x
∂ρ dρ ¼ ρ

∂a
∂τ dτ þ adρ ð71Þ

dt ¼ ∂t
∂τ dτ þ

∂t
∂ρ dρ ¼ −

C
A2

dτ þ ∂t
∂ρ dρ: ð72Þ

Substituting this into (61) and comparing with (60), we
have the following conditions:

∂t
∂ρ ¼ 1

C2

1

A2
ρa

∂a
∂τ ¼ 1

C
1

A2
ρ
β

a
ð73Þ

A2 ¼ C2 − ρ2
�∂a
∂τ

�
2

¼ C2 −
β2

a4
ρ2 ð74Þ

�∂t
∂ρ

�
2

¼ a2

A4
−
a2

A2
; ð75Þ

from which we conclude that

A2 ¼ 1 −
β2

a4
ρ2: ð76Þ

Making ρ ¼ r and x ¼ ra, we have

A2 ¼ 1 −
β2r6

x4
ð77Þ

ds2 ¼ −
�
1 −

β2r6

x4

�
dt2 þ

�
1 −

β2r6

x4

�−1
dx2: ð78Þ

This is precisely one of the solutions found in Ref. [3].
The scalar curvature is given by

R ¼ 20β2r6

x6
: ð79Þ

Thus, x ¼ 0 is truly a singularity, that is, a curvature singu-
larity. Furthermore, the two-dimensional Schwarzschild
radius is given by

xH ¼ r3=2β1=2 ¼ r3=2
�

2σ0a0
M2

Plðλ − 1Þ
�
1=4

: ð80Þ

The previous analysis has many similarities with that consid-
ered long ago [3]. However, there are some peculiar points
here. It seems the most striking difference is the one related
to the Schwarzschild radius. In the (1þ 1)-dimensional
Einstein gravity explored in Ref. [3], the Schwarzschild
radius is not defined at r ¼ 1=

ffiffiffiffiffiffi
4b

p
, where b ¼ 2πGρ0 and

r is the boundary of the dust. On the other hand, the
Schwarzschild radius in the present case is well defined for
λ > 1, which is also naturally consistent for a collapse at
finite time discussed above.
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V. CONCLUSIONS

We have investigate black hole solutions in the
two-dimensional HL gravity. The solutions are in principle
the same obtained in 1þ 1 general relativity but are
controlled by the parameter η that controls the coupling
of the vector associated with the nonprojectability of the
theory. However, they do not depend on the coupling λ > 1.
The opposite happens to the gravitational collapse of the
pressureless dust. In this case, there is no dependence on η,
but it depends on λ. This is due to the specific dependence

of the solutions on the coordinates in each case. Whereas
the black hole solutions are only spatial dependent, the
obtained interior solution for the gravitational collapse of
dust has only time dependence. The exterior solution is just
obtained from the interior solution.
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