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In the framework of loop quantum gravity, we define a new Hilbert space of states which are solutions of
a large number of components of the diffeomorphism constraint. On this Hilbert space, using the methods
of Thiemann, we obtain a family of gravitational scalar constraints. They preserve the Hilbert space for
every choice of lapse function. Thus adjointness and commutator properties of the constraint can be
investigated in a straightforward manner. We show how the space of solutions of the symmetrized
constraint can be defined by spectral decomposition, and the Hilbert space of physical states by
subsequently fully implementing the diffeomorphism constraint. The relationship of the solutions to
those resulting from a proposal for a symmetric constraint operator by Thiemann remains to be elucidated.
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I. INTRODUCTION

In any known canonical formulation of general relativity,
the general covariance of the theory is encoded in a number of
constraints imposed on phase space. These constraints gen-
erate the hypersurface-deformation algebra under Poisson
brackets, which is universal for generally covariant theories.
For a canonical quantization of general relativity, it is thus

vital that the constrains are implemented in the quantum
theory. For the case of loop quantum gravity (LQG, see
Refs. [1,2] for a review), the diffeomorphism constraints
have been dealt with successfully, resulting in a Hilbert space
Hdiff off quantum states that are invariant under spatial
diffeomorphisms [3]. The scalar constraints are technically
much more demanding, as they have a more complicated
action on the canonical variables employed in LQG.
Thiemann [4–6], based in part on ideas by Rovelli

and Smolin [7] and other researchers [8], and using the
quantum volume operator [9], succeeded in defining a
quantum scalar constraint bCðNÞ. One essential ingredient
was the introduction of a regulated version bCRðNÞ of the
constraint on the kinematic Hilbert space Hkin, and
the observation, that the regulator can be removed when
the action of the regulated constraint is extended toHdiff by
duality. Due to the presence of the lapse function N, the
operator bCðNÞ is not invariant under spatial diffeomor-
phisms, and hence does not preserve Hdiff . In fact, no
Hilbert space which is invariant under bCðNÞ is known. This
has turned out to be a substantial obstacle, as it precludes
the straightforward discussion of adjointness relations,
spectral resolutions, the commutator algebra, etc. of thebCðNÞ’s. One way to deal with these difficulties is to work

with the regulated constraints bCRðNÞ on Hkin. Thiemann
showed in Ref. [4] that the commutator of two regulated
constraints vanishes, as does the extension of the commu-
tator by the duality to Hdiff . It is in this sense that
Thiemann’s quantization is anomaly free. Remarkably,
Thiemann was also able to devise a symmetric regulated
constraint on Hkin in Ref. [5] which is anomaly free in the
same sense. A mathematically exact approach to the issue
of commuting two quantum scalar constraint operators
after removing the regulator was introduced in Ref. [10] by
extending the Hilbert space Hdiff to a suitable vector (no
longer Hilbert) space named a “habitat.” Other ways to deal
with the difficulties resulting from the unregulated con-
straint bCðNÞ not leaving its domain invariant have been
suggested (see for example Refs. [6,10]).
While these are acceptable resolutions to some of the

problems, there remains some uneasiness due to the fact
that there is no scalar constraint operator without a
regulator, acting on, and leaving invariant, a Hilbert space.
It is here that the present article contains a substantial
improvement. The solution we present has bCðNÞ act on—
and leave invariant—a new Hilbert space Hvtx of almost
diffeomorphism-invariant states. These new states can be
thought of as being obtained from the spin network states of
LQG by averaging over their images under diffeomor-
phisms which leave fixed sets of vertices in the spatial
manifold invariant, schematically,

Ψγ ∝
X

f∈DiffðΣÞv1…vn

UfΨγ ð1:1Þ

where γ is a graph with vertices v1…vn, the sum is over
elements of the stabilizer of the vertex set, and U is the
unitary action of the diffeomorphisms. Thiemann [4]
defined a regulated operator bCRðNÞ and then showed that

*Jerzy.Lewandowski@fuw.edu.pl
†hanno.sahlmann@gravity.fau.de

PHYSICAL REVIEW D 91, 044022 (2015)

1550-7998=2015=91(4)=044022(10) 044022-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.044022
http://dx.doi.org/10.1103/PhysRevD.91.044022
http://dx.doi.org/10.1103/PhysRevD.91.044022
http://dx.doi.org/10.1103/PhysRevD.91.044022


the limit R → 0 is well defined in a relatively weak
sense, namely on diffeomorphism-invariant distributions.
Technically, the regulator is similar to that in lattice gauge
theory—curvature is approximated by traces of holono-
mies. When acting with the regulated operator on the new
Hilbert space Hvtx, the partial group averaging (1.1) is
enough to obtain a well-defined operator in the limit of a
vanishing regulator. On the other hand, mostly due to the
nature of spatial volume in loop quantum gravity, the
resulting state will still belong to Hvtx.
In the new Hilbert space, the adjointness and commu-

tator properties of the constraint can be investigated,
and a physical Hilbert space can be defined by using
spectral decomposition.
How solutions to the new scalar constraint onHvtx relate

to those of Thiemann’s symmetric scalar constraint [5] is a
very interesting (and open) question. Similarly, one could
symmetrize Thiemann’s nonsymmetric scalar constraint on
Hdiff for the case of a constant lapse function and compare
it to our proposal.
We should note that there is a very interesting different

line of thought [11–14], which also suggests that one
should use a different Hilbert space to represent the
(diffeomorphism and scalar) constraints. Those methods
carry the additional benefit that they address the question of
anomalies in a direct fashion.
The present article is organized as follows. In Sec. II, we

briefly recall the setup of kinematic quantization in loop
quantum gravity. Section III A introduces the new Hilbert
space, which is used in Secs. III C and III D, respectively,
for the quantization of Euclidean and Lorentzian scalar
constraints. The space of solutions to all constraints is
discussed in Sec. III E. A summary can be found in Sec. IV.

II. KINEMATIC QUANTIZATION

In this section, for completeness and to fix notation we
briefly recall some basic notions of loop quantum gravity.

A. Classical theory

In this article, we will consider four-dimensional
Einstein gravity in vacuum, given by the action

S½ϕ; e;ω� ¼ SGR þ SHolst

with

SGR ¼ 1

32πG

Z
ϵIJKLeI∧eJ∧FKLðωÞ; ð2:1Þ

SHolst ¼ −
1

16βG

Z
eI∧eJ∧FIJðωÞ: ð2:2Þ

The canonical analysis of this action, and a partial gauge
fixing (time gauge) leads to a phase space Γ for the
gravitational field. For a detailed derivation see for example

Refs. [1,15]. It is coordinatized by the su(2)-valued 1-form
field

AðxÞ ¼ Ai
aðxÞτi ⊗ dxa;

and the canonically conjugate momentum vector density

EðxÞ ¼ Ea
i ðxÞτ�i ⊗ ∂a;

taking values on a spatial slice Σ of space-time. Indices
a; b;… are spatial, whereas i; j;… refer to su(2), the
algebra of the gauge group after partial gauge fixing.
The usual choice of the basis τ1; τ2; τ3 is such that

½τi; τj� ¼
X
k

ϵijkτk:

τ�i denotes the dual basis in suð2Þ�.
The Poisson bracket between two functionals F½A; E�;

G½A; E� is

fF;Gg ¼ 8πGβ
Z
Σ
d3x

δF
δAi

aðxÞ
δG

δEa
i ðxÞ

−
δG

δAi
aðxÞ

δF
δEa

i ðxÞ
:

The phase space Γ is not yet physical, however. Rather, the
physical phase space is induced by constraints on Γ. The
main concern of the present work is the implementation in
the quantum theory of the scalar constraint

C ¼
ffiffiffiffiffiffiffiffiffi
β

8πG

r
Ea
i E

b
jffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp ðϵijkFabk þ 2ðσ − β2ÞKi

½aK
j
b�Þ ð2:3Þ

which is the scalar constraint of vacuum gravity. F is the
curvature of A and K is the extrinsic curvature of Σ, which
is a function of A and E. For the Lorentzian gravity σ ¼ −1.
The Euclidean model of gravity is defined by σ ¼ 1.

B. Kinematic Hilbert space

In the present section, we will quantize the kinematic
phase space Γ, resulting in a Hilbert space H. The quantum
states in LQG are cylindrical functions of the variable A, i.e.,
they depend on A only through finitely many holonomies

he½A� ¼ Pexp

�
−
Z
e
A

�
ð2:4Þ

where e ranges over finite curves (we will also refer to them
as edges) in Σ.
To spell out the definition we need to be precise about the

meaning of “embedded graph” used in the definition of the
cylindrical function. A graph γ embedded in Σ is a set of
edges (unoriented) embedded in Σ, γ ¼ fe1;…; eng, of
three types:
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(1) embedded closed interval (two end points);
(2) immersed interval, such that the end points of

the image coincide, and there are no more self-
intersections (one end point);

(3) embedded circle (no end points).
The end points of the edges of a given graph γ form the set
fv1;…; vmg of the vertices of γ. The intersection of two
different edges is either empty or consists of vertices of γ,

eI∩eJ ⊂ fv1;…; vmg; whenever I ≠ J:

In particular, each edge of the type 3 (circle) does not
intersect any other edge of γ.
Definition II.1 A function Ψ∶ A ↦ Ψ½A� is called

cylindrical if there is a graph γ such that

Ψ½A� ¼ ψðhe1 ½A�;…; hen ½A�Þ ð2:5Þ

with a function ψ∶ SUð2Þn → C. Here, for every edge we
choose an orientation to define the parallel transport heI ½A�.
For each edge eJ of the type 3, we also choose an arbitrary
beginning-end point, and assume that

ψðh1;…; hJ;…Þ ¼ ψðh1;…; g−1hJg;…Þ∀ g ∈ SUð2Þ:

Some remarks about this definition are in order. First, we
understand that Eq. (2.5) includes the case of n ¼ 0, in
which case Ψ½A� ¼ const. Furthermore, the functions ψ in
Eq. (2.5) can be arbitrary; however they must be restricted
either to L2 functions when we integrate them (to calculate
the scalar product), or to Cn when we differentiate them (to
define quantum operators). The safe choice is to assume
that ψ is a polynomial in ρ1ðh1Þ;…; ρðhnÞ, where ρI are
representations of SU(2) including the trivial one.
To calculate the scalar product between two cylindrical

functions Ψ and Ψ0 defined by using graphs γ and γ0,
respectively, we find a refined graph γ00 ¼ fe001;…; e00n00 g,
such that both the functions can be written as1

Ψ½A� ¼ ψðhe00
1
½A�;…; he00

n00
½A�Þ;

Ψ0½A� ¼ ψ 0ðhe00
1
½A�;…; he00

n00
½A�Þ:

The scalar product is

hΨjΨ0i¼
Z

dg1…dgn”ψðg1;…;gn”Þψ 0ðg1;…;gn”Þ: ð2:6Þ

We denote the space of all the cylindrical functions defined
as above with a graph γ by ~Cylγ and, respectively, the space
of all the cylindrical functions by Cyl. The Hilbert space
Hkin is the completion

Hkin ¼ C̄yl

with respect to the Hilbert norm defined by Eq. (2.6).
Every cylindrical function Ψ is also a quantum operator

ðΨðbAÞΨ0Þ½A� ¼ Ψ½A�Ψ0½A�: ð2:7Þ

A connection operator bA by itself is not defined.
The field E is naturally quantized as

bEa
iΨ½A� ¼ ℏ

i
fΨ½A�; Ea

i ðxÞg ¼ 8πβl2P
i

δ

δAi
a
Ψ½A�: ð2:8Þ

It turns into well-defined operators in Hkin after smearing
along a 2-surface S ⊂ ΣZ

S

1

2
fibEa

i ϵabcdxb∧dxc; f∶ S → SUð2Þ

where f may involve parallel transports [17]:

fðxÞ ¼ ~fðxÞðhpx0xξhpxx0Þi

where S∋x ↦ pxx0 assigns to each point x ∈ S a path pxx0

connecting a fixed point x0 to x, ξ ∈ suð2Þ, and ~f∶ S → R.
There is an orthogonal decomposition of Hkin with

respect to subspaces labeled by the graphs defined above.
Given a graph γ, we denote by ~Hγ the subspace of Hkin

defined by the cylindrical functions (2.5) corresponding to
γ. Whenever a graph γ can be obtained from a graph γ0 by a
sequence of

(i) cutting an edge e0I into two, e0I ¼ eJ∘eK , and
(ii) adding a new edge, γ ¼ fe01;…; e0n−1; eng,

γ0 ¼ fe01;…; e0n−1g
then

~Hγ0 < ~Hγ;

that is, ~Hγ0 is a proper subset of ~Hγ . Hence,

Hkin ¼ ⋃
γ
~Hγ;

but this is not an orthogonal decomposition.
We define Ψ ∈ ~Hγ to be a proper element of ~Hγ if it is

true that

1The existence is ensured by assuming a suitable differenti-
ability class of the edges. A safe assumption is analyticity of the
edges. Since analytic diffeomorphisms are not local enough, in
Ref. [16] we introduced a new category of manifolds we called
semianalytic. Briefly, semianalyticity means differentiability of a
given finite order, and suitably defined piecewise analyticity.
Then, all the edges and diffeomorphisms are assumed to be
semianalytic.
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Ψ⊥ ~Hγ0 ⇐ ~Hγ0 < ~Hγ:

Given γ, the proper states form a subspace Hγ ⊂ ~Hγ . The
family ðHγÞγ does provide an orthogonal decomposition

Hkin ¼ ⨁
γ
Hγ: ð2:9Þ

This decomposition can also be applied directly to the
cylindrical functions

Cylγ ≔ Cyl∩Hγ ⊂ Cyl; ð2:10Þ
Cyl ¼ ⨁

γ
Cylγ: ð2:11Þ

III. QUANTUM SCALAR CONSTRAINT

The scalar constraint

CðNÞ ¼
Z

d3xNðxÞCðxÞ

has not been successfully quantized in the kinematical
Hilbert space Hkin of the previous section. We will
introduce now a new Hilbert space which admits quantum
operators bCðNÞ.

A. A new Hilbert space

The idea of the new Hilbert space we will introduce now
is to average each of the subspaces Hγ with respect to all
the diffeomorphisms DiffðΣÞv1;…;vm which act trivially on
the set v1;…; vm of the vertices of γ.2

Every f ∈ DiffðΣÞ defines a unitary operator
Uf∶ Hkin → Hkin,

UfΨ½A� ¼ Ψ½f�A�:

Given a graph γ consisting of edges and vertices

EðγÞ ≔ fe1;…; eng; VertðγÞ ¼ fv1;…; vmg;

the action of Uf on a cylindrical function [Eq. (2.5)] reads

UfΨ½A� ¼ ψðhfðe1Þ½A�;…; hfðenÞ½A�Þ; ð3:1Þ

where for the parallel transport along each edge fðeIÞ we
choose the orientation induced by the map f and by the
orientation of eI chosen in Eq. (2.5). We denote by
TDiffðΣÞγ the subset of DiffðΣÞ which consists of all the

diffeomorphisms acting trivially in ~Hγ . On the other hand,
for a general f ∈ DiffðΣÞ, we have a unitary isomorphism

Uf∶ Hγ ⟶ HfðγÞ:

The maps Hγ ⟶ Hkin obtained by the diffeomorphisms
DiffðΣÞv1;…;vm

are in a one-to-one correspondence with the
elements of the quotient

Dγ ≔ DiffðΣÞVertðγÞ=TDiffðΣÞγ: ð3:2Þ
Still, Dγ is a noncompact set and we do not know any
probability measure on it. Therefore it is not surprising, that
given Ψ ∈ Hγ , the result of the averaging will not, in
general, be an element of Hkin. However, it will be well
defined as an element of the space Cyl� dual to Cyl. Given
Ψ ∈ Hγ , we turn it into ðΨj ∈ Cyl�,

ðΨj∶ Ψ0 ↦ hΨjΨ0i;
and average in Cyl�,

ηðΨÞ ¼ 1

Nγ

X
½f�∈Dγ

ðUfΨj: ð3:3Þ

Nγ is a normalization factor that will be determined in a
moment.
Lemma III.1. ηðΨÞ is a well-defined linear functional

ηðΨÞ∶ Cyl → C

which is invariant under DiffðΣÞVertðγÞ.
Proof.—Each term in the sum (3.3) is independent of the

choice of a representative f ∈ ½f� because the action of
TDiffðΣÞγ onHγ is trivial. GivenΨ0 ∈ Cyl, only a finite set
of terms in the sum is not zero. Hence, the sum is finite. The
sum is invariant, because if ffig is a set of representatives
for the classes Dγ , then so is ff0fig; f0 ∈ DiffðΣÞVertðγÞ.
We define the map

Hγ∋Ψ ↦ ηðΨÞ ∈ Cyl�

for every embedded graph γ, and extend it by linearity to
the algebraic orthogonal sum

η∶ ⨁
γ
Hγ ⟶ Cyl�: ð3:4Þ

Note that Cyl ⊂ ⨁
γ
Hγ , and therefore Cyl is in the domain

of the averaging map η.
Definition III.1. The new Hilbert space Hvtx is defined

as the completion

Hvtx ¼ ηðCylÞ ð3:5Þ

under the norm induced by the scalar product

ðηðΨÞjηðΨ0ÞÞ ≔ ηðΨÞðΨ0Þ: ð3:6Þ
2The general idea of the averaging with respect to the diffeo-

morphisms has been already used in LQG; see Refs. [1,3].
We apply it now for our purposes.
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One can check [3] that Eq. (3.6) indeed has all the
properties of a scalar product, and hence Hvtx really is a
Hilbert space. It has an orthogonal decomposition that is
reminiscent of Eq. (2.9):
Lemma III.2. Let FSðΣÞ be the set of finite subsets of Σ.

Then

Hvtx ¼ ⨁
V∈FSðΣÞ

HV; ð3:7Þ

HV ¼ ⨁
½γ�∈½γðVÞ�

H½γ�; ð3:8Þ

H½γ� ¼ ηðH½γ�Þ; ð3:9Þ

where γðVÞ is the set of graphs γ with vertex set
V ¼ VertðγÞ, and ½γðVÞ� is the set of the DiffðΣÞV equiv-
alence classes ½γ� of the graphs γ ∈ γðVÞ.
Proof.—Both decompositions follow from the definition

(no spurious vertices) and the orthogonality of the sub-
spaces Hγ , together with Eq. (3.3).
To understand the structure of each of the subspaces

ηðHγÞ, we decompose the spaceHγ into the kernel of η, and
the orthogonal completion

Hγ ¼ KerðηÞ∩Hγ⊕Sγ: ð3:10Þ

The orthogonal completion Sγ consists of all the Ψ such
that for every f ∈ DiffðΣÞVertðγÞ

fðγÞ ¼ γ ⟹ UfΨ ¼ Ψ: ð3:11Þ

In other words, elements of Sγ are invariant with respect to
the symmetry group

Symγ ¼ ff ∈ DiffðΣÞfx1;…;xmg∶ fðγÞ ¼ γg=TDiffðΣÞγ
ð3:12Þ

of the graph γ. In fact, it is straightforward to show the
following.
Lemma III.3. The map

η∶ Sγ → ηðHγÞ

is a unitary embedding modulo an overall factor
jSymγj=Nγ , where Nγ is the free constant in the definition

)3.3 ) of η.
In the following, we set

jSymγj
Nγ

¼ 1:

Finally, we point out that Hvtx carries a natural action of
DiffðΣÞ, which we will also denote by U. It is defined by

UfηðΨÞ ≔ ηðUfΨÞ; f ∈ DiffðΣÞ ð3:13Þ

and extension by continuity. A short calculation shows the
following.
Lemma III.4. Uf as in Eq. (3.13) is unitary and maps

HV to HfðVÞ in the decomposition (3.7).

B. Lifting operators to Hvtx

In the kinematical Hilbert space H one often considers
quantum operators defined on the domain Cyl, and such
that

bO∶ Cyl → Cyl: ð3:14Þ

Each of them passes, by duality, to an operator bO� defined
in Cyl�. In particular, it is defined on ηðCylÞ ⊂ Hvtx.
However, while bO� maps ηðCylÞ into Cyl�, the image is
not necessarily inHvtx. Importantly, sometimes the domain
is actually mapped back into Hvtx. Then bO� becomes an
operator in Hvtx.
Lemma III.5. Suppose, an operator as in Eq. (3.14) is

of the form

bOðNÞ ¼
X
x∈Σ

NðxÞbOx;

where the bOx are operators that have a local action for all
x ∈ Σ,

Uf
bOx ¼ bOxUf for f ∈ Difffxg; ð3:15Þ

bOxj ~Hγ
¼ 0 for x∉VertðγÞ: ð3:16Þ

Then bO� is an operator on Hvtx.
Proof.—Using the conditions of locality (3.15) and

(3.16), one can pull the action of bO through the average
(3.3), resulting in an element of Cyl� of the same form.
There are several important operators which have this

property: the quantum volume element smeared against an
arbitrary function N ∈ CðΣÞ,

bVðNÞ ¼
Z

d3xNðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det bEjq

¼
X
x∈Σ

NðxÞbVx;

the Gauss constraint operator [for Λ ∈ CðΣ; suð2ÞÞ]Z
d3xΛiDa

bEa
i ¼

X
x∈Σ

ΛiðxÞbGix;

and also the integral of the Ricci scalar operator

bRðNÞ ¼
Z

d3xNðxÞ dffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEj
p

RðxÞ ¼
X
x∈Σ

NðxÞcVRx
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which has recently been introduced Ref. [18]. Our quantum
scalar constraint operator will take a similar form in Hvtx,
although it will not be well defined in Cyl itself. It will be
defined directly in Hvtx.

C. Scalar constraint operator for Euclidean gravity

The Euclidean scalar constraint in the absence of matter
can be obtained from Eq. (2.3) by setting the metric
signature σ to 1. For the choice of β ¼ 1, the expression
simplifies because the second term drops out. The remain-
ing term, in Thiemann form, is proportional to

CEucðNÞ ¼ −2
ð8πGÞ2β3

2

Z
d3xϵabcTrFabðxÞfAbðxÞ; VðNÞg

ð3:17Þ

where

VðNÞ ¼
Z

d3xNðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detEðxÞ

p
and N∶ Σ → R is an arbitrary lapse function.
In the Lorentzian case, the second term in Eq. (2.3)

cannot be made to vanish for real Ashtekar variables, and
thus CEucðNÞ is only one part of CðNÞ. But even in this
case, CEucðNÞ plays a vital part in the quantization of the
whole constraint [4].
To quantize the Euclidean scalar constraint, we express

F by the parallel transports along suitable loops αϵσ and we
express A in terms of parallel transport along suitable
curves sϵσ,

Cϵ
EucðNÞðA; EÞ ¼

X
σ

Bσðρσðhαϵσ Þ − ρσðhðαϵσÞ−1ÞÞ

· TrðρσðhðsϵσÞ−1Þfρσðhsϵσ Þ; VðNÞgÞ: ð3:18Þ

The Bσ are ϵ-independent constants and the ρσ representa-
tions of SU(2). The loops α and curves s approach points in
the limit ϵ → 0. Moreover, Bσ, ρσ, ασ and sσ are chosen
such that, the entire expression converges to Eq. (3.17),

lim
ϵ→0

Cϵ
EucðNÞðA; EÞ ¼ CEucðNÞðA;EÞ ð3:19Þ

for every smooth ðA;EÞ.
For every fixed value of ϵ, the operator

bCϵ
EucðNÞ ¼ 1

iℏ

X
σ

BσTrðð dρσðhαϵσ Þ − dρσðhðαϵσÞ−1ÞÞ

· dρσðhðsϵσ Þ−1Þ½ dρσðhsϵσÞ; bVðNÞ�Þ; ð3:20Þ

is well defined in the kinematic Hilbert space Hkin in the
domain Cyl. However, the limit ϵ → 0 does not exist. Also,
before taking the limit, for a constant ϵ, the operator is not

diffeomorphism covariant. The finite loops break the
covariance. Remarkably, there is a way out. First, we
improve the regularization. For that we apply the decom-
position (2.9), and adapt the regulated expression to each
subspace Hγ independently. We will do it below in such a
way, that for ðΨ1j ∈ ηðCylÞ ⊂ Hvtx and Ψ2 ∈ Cylγ ⊂ Hγ ,
the number

ðΨ1jðbCϵ
EucðNÞΨ2Þ ð3:21Þ

will be ϵ independent, either because it vanishes, or due to
the symmetries of ðΨ1j ∈ Hvtx. In this way, we will define
the limit

bC�
EucðNÞ ≔ lim

ϵ→0
ðbCϵ

EucðNÞÞ� ð3:22Þ

as an operator on Cyl�, by setting

ðbC�
EucðNÞðΨ1jÞðΨ2Þ ≔ lim

ϵ→0
ðΨ1jðbCϵ

EucðNÞΨ2Þ: ð3:23Þ

Note that this involves some abuse of notation, as bC�
Euc is

not the dual of any operator defined in Cyl.
We explain now, in what way we achieve the ϵ

independence of Eq. (3.21). We are making the same
assumptions about the loop-path assignment

ðγ; vÞ ↦ fαϵσ; sϵσjσ ¼ 1; 2;…g ð3:24Þ

as in Sec. VI C of Ref. [1]. For each σ, the pair sσ and ασ is
based at a point v ∈ Σ. If v is not a vertex of γ, then the
corresponding term of the operator vanishes. Here,
v ∈ VertðγÞ, and σ labels the pairs of loops and segments
based at v. As a result, the action of the regulator-dependent
operator bCϵ

EucðNÞ defined on Hγ takes the following form:

bCϵ
EucðNÞ ¼

X
v∈VertðγÞ

NðvÞ
X
σ

bCϵ
γvσ; ð3:25Þ

where

bCϵ
γvσ∶ Cylγ → Cylγ∪fαϵσg ⊂ Hγ∪fαϵσg: ð3:26Þ

In other words, the operator adds the loops αϵσ to γ, while
the paths sϵσ, possibly new elements of the graph γ, do not
change the graph, which is regarded as a subset in Σ. Every
loop αϵσ appearing in Eq. (3.26) begins and ends at a vertex
of γ, does not intersect γ in any other point, and does not
have self-intersections. Hence αϵσ becomes an edge (of type
2) of the new graph γ∪fαϵσg. One of the two key properties
we ask of the loop assignment (3.24) is that for every ϵ1 and
ϵ2 there is f ∈ DiffVertðγÞ such that

bCϵ2
γvσ ¼ Uf

bCϵ1
γvσ: ð3:27Þ

This is the property that ensures the independence of
Eq. (3.21) from ϵ:
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hΨ1jðbCϵ2
γvσΨ2Þ ¼ hΨ1jðUf

bCϵ1
γvσΨ2Þ

¼ hΨ1jðbCϵ1
γvIσΨ2Þ: ð3:28Þ

Consequently, the limit (3.23) on ηðHγÞ and, by linearity
over the γ sectors, on ηðCylÞ ⊂ Hvtx, can be taken. However,
the result is not necessarily an element ofHvtx. For example,
in general it may not be DiffðΣÞVertðγÞ invariant. To ensure
the invariance, we need to coordinate the assignments (3.24)
for graphs that are equivalent under DiffðΣÞv1;…;vm. Also, we
want the resulting operator-valued distribution to be invari-
ant with respect to all the DiffðΣÞ. Hence, as our second key
property, we ask the following. Given a graph γ, and f1 ∈
DiffðΣÞ then there exists f2 ∈ DiffðΣÞ such that

bCϵ
f1ðγÞf1ðvÞσUf1 ¼ Uf2

bCϵ
γvσ: ð3:29Þ

A simple calculation then completes the proof the following.
Proposition III.6. Let bC�

EucðNÞ be an operator on Cyl�
obtained as a limit

bC�
EucðNÞ ≔ lim

ϵ→0
ðbCϵ

EucðNÞÞ�;

where bCEucðNÞ is of the form (3.25) satisfying
(a) the covariance (3.27) under changes of ϵ, and
(b) the covariance (3.29) under DiffV.
Then bC�

EucðNÞ preserves Hvtx, i.e.,

bC�
EucðNÞðΨj ∈ Hvtx; ð3:30Þ

and it is diffeomorphism covariant, i.e.,

bC�
EucðNÞUf ¼ Uf

bC�
Eucðf−1�NÞ: ð3:31Þ

Above, the assumption made in Ref. [1] and adopted
here, that in Eq. (3.24) the assigned loops ασ do not overlap
γ is relevant for Eq. (3.30). Otherwise, the operator could
produce non-normalizable elements of Cyl�. We proceed to
discuss some further properties of bC�

EucðNÞ under the
assumptions of the previous proposition. First, we note
that we can write

bC�
EucðNÞ ¼

X
x∈Σ

NðxÞbC�
Euc;x; ð3:32Þ

where bC�
Euc;x has the following properties. It preserves the

spaces3 ηðCylÞV ≔ ηðCylÞ∩HV for V ∈ FSðΣÞ,

bC�
Euc;xηðCylÞV ⊆ ηðCylÞV:

This makes it clear that the operator bC�
EucðNÞ preserves the

decomposition (3.7) of Hvtx into sectors labeled by finite
subsets V of Σ. Moreover,

bC�
Euc;xjηðCylÞV ¼ 0; unless x ∈ V:

Also, bC�
Euc;x is covariant,

Uf
bC�
Euc;xUf−1 ¼ bC�

Euc;fðxÞ;

for every f ∈ DiffðΣÞ.
Finally, bC�

EucðNÞ does not preserve the decomposition
(3.8). Rather, by the duality to Eq. (3.26), the operator
annihilates the loops created by each bCϵ

γvσ .
The operator bC�

EucðNÞ is not symmetric. But the
Hermitian adjoint

ðbC�
EucðNÞÞ†

is well defined. A typical proposal for a symmetric
quantum scalar constraint operator is

bCEucðNÞ ≔ 1

2
ðbC�

EucðNÞ þ ðbC�
EucðNÞÞ†Þ: ð3:33Þ

The (essential) self-adjoitness is an open issue.

D. The quantum Lorentzian scalar constraint
of matter-free gravity

To define the quantum scalar constraint operator of the
Lorentzian gravity and with a general value of the Barbero-
Immirzi parameter β, we go back to the classical theory.
The gravitational part of the scalar constraint is

CðNÞ ¼
ffiffiffi
β

p
CEucðNÞ − 2

ð1þ β2Þ
ð8πGÞ4β6 TðNÞ

where T is written in a way compatible with LQG as
follows [4]:

TðNÞ ¼ −2
Z

d3xϵabcTrðfAaðxÞ; fCEucð1Þ; Vð1Þgg

· fAaðxÞ; fCEucð1Þ; Vð1ÞggfAcðxÞ; VðNÞgÞ:
ð3:34Þ

As before, for every subspace Hγ in the decomposition
(2.9) we use the family of paths sϵσ introduced above, and a
regulated classical expression

TϵðNÞ ¼
X
σ;σ0;σ”

eσσ
0σ”TrðH−1

σ fHσ; Kg

·H−1
σ0 fHσ0 ; KgHσ00fH−1

σ00 ; VðNÞgÞ ð3:35Þ

3In this paper we are using a vertex set preserving regulari-
zation of the quantum scalar constraint operator introduced in
Ref. [1]. In the case of a regularization which adds extra vertices,
we would have to modify our definition of the spaceHV suitably.
For example, if the quantum scalar constraint operator is defined
such that it adds planar vertices [7], the new HV would involve
the graphs such that the nonplanar vertex set is V.
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with

K ≔ fCEucð1Þ; Vð1Þg; Hσ ≔ ρðhsϵσ Þ

such that as ϵ → 0, the paths are shrunk, the constants eσσ
0σ”

are independent of ϵ, and4

lim
ϵ→0

TϵðNÞ½A;E� ¼ TðNÞ½A;E�: ð3:36Þ

We introduce that regulation for every graph γ. Next, in the
kinematical Hkin we define a quantum operator5 bTϵðNÞ∶
Cyl → Cyl� via

bTϵðNÞ ¼ 1

ðiℏÞ3
X
s∈S

eσσ
0σ”TrðH−1

σ ½Hσ; bKϵ�

·H−1
σ0 ½Hσ0 ; bK�Hσ00 ½H−1

σ00 ; bVðNÞ�Þ ð3:37Þ

with

bKϵ ≔
1

iℏ
½bCϵ

Eucð1Þ; bVð1Þ�:
As in the case of the Euclidean quantum gravitational
constraint,

ηðΨÞðbTϵ1ðNÞΨ0Þ ¼ ηðΨÞðbTϵ2ðNÞΨ0Þ

for Ψ;Ψ0 ∈ Cyl, and hence the limit is well defined as an
operator

bT�ðNÞ∶ ηðCylÞ → Cyl�:

If the constants eσσ
0σ” are assigned to each graph in a

DiffðΣÞVertðγÞ-invariant way, then analogous to the
Euclidean case,

bT�ðNÞηðCylÞ ⊆ ηðCylÞ;

and hence bT�ðNÞ becomes an operator inHvtx with domain
ηðCylÞ. The operator has a similar structure as bC�

EucðNÞ:

bT�ðNÞ ¼
X
x∈Σ

NðxÞbT�
x;

where, for any V ∈ FSðΣÞ,

bT�
x∶ HV → HV;

and

bT�
xjHV

¼ 0; unless x ∈ V:

If the constants eσσ
0σ” are assigned to each graph in a

DiffðΣÞ-invariant way, then

Uf
bT�
xU−1

f ¼ bT�
fðxÞ

that is the distribution x ↦ bT�
x is DiffðΣÞ invariant.

If the operator ðbC�
EucÞ† exists, then so does ðbT�ðNÞÞ†.

In that case we can define a symmetric operator

bTðNÞ ¼ 1

2
ðbT�ðNÞ þ ðbT�ðNÞÞ†Þ: ð3:38Þ

The final result is a quantum gravitational scalar constraint
operator

bCðNÞ ¼
ffiffiffi
β

p bCEucðNÞ − 2
ð1þ β2Þ
ð8πGÞ4β6

bTðNÞ ð3:39Þ

defined in Hvtx in the domain ηðCylÞ. As a consequence of
the properties of bCEucðNÞ and TðNÞ, it is again local and
covariant,

bCðNÞ ¼
X
x∈Σ

NðxÞbCx;

bCxHV ⊆ HV;bCxjHV
¼ 0; unless x ∈ V;

Uf
bCxU−1

f ¼ bCfðxÞ:

E. Solutions to the quantum constraints

Suppose the quantum constraint operators bCx, x ∈ Σ, are
essentially self-adjoint. Since

½bCx; bCx0 � ¼ 0;

every subspace Hfx1;…;xmg can be decomposed using the

spectral decomposition of the operators bCxI , I ¼ 1;…; m,

Hfx1;…;xmg ¼
Z

⊕
dμðc1Þ…dμðcmÞHc1…cm

fx1;…;xmg:

The elements of the subspace

H0…0
fx1;…;xmg

4The path assignment σ ↦ sϵσ obtained by ignoring the loops α
in the assignments σ ↦ αϵσ ; sϵσ used previously may assign the
same segment to two different σ ≠ σ0. That may be compensated
by choosing suitable values for the constants eσσ

0σ”.
5Notice, that in the classical regulated expression TϵðNÞ we

have CEuc whereas in the quantum regulated expression we use
Ĉϵ
Euc. If in the classical expression we replaced CEuc by Cϵ

Euc, then
Eq. (3.36) would not be true. On the other hand, we cannot use
ĈEuc in the quantum T̂ϵðNÞ, because the expression would not
make sense. This is a drawback of the regularization procedure of
the Lorentzian part of the scalar constraint.
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are solutions to the quantum scalar constraint. If
ðc1;…; cmÞ ¼ ð0;…; 0Þ is a point of the measure zero,
then some continuity in the map

ðc1;…; cmÞ ↦ Hc1…cm
fx1;…;xmg

is used to determine individual spaces Hc1…cm
fx1;…;xmg. In the

general case,

H0…0
fx1;…;xmg ⊂ ðηðCylÞx1;…;xmÞ�:

The elements are (finite or formal infinite) linear
combinations

H0…0
V ∋Ψ ¼

X
½γ�∈½γðVÞ�

ηðΨγÞ ð3:40Þ

where ½γ� ranges over the set of DiffðΣÞV equivalence
classes of the graphs with vertices V. In fact, there is a
natural embedding

H0…0
V → Cyl�;

in Cyl�; the infinite formal sum (3.40) becomes a well
defined element.
To turn elements of H0…0

V into solutions to the quantum
diffeomorphism constraint we average them with respect to
the remaining diffeomorphisms

Ψ ¼
X

½γ�∈½γðVÞ�
ηðΨγÞ ↦ ~ηðΨÞ ¼

X
½γ�

X
½f�

ηðUfΨγÞ

where the last sum ranges

½f� ∈ DiffðΣÞ=DiffðΣÞVertðγÞ:

The result is the subspace

~ηðH0…0
VertðγÞÞ ⊂ Cyl�;

and its elements are DiffðΣÞ invariant. On the other hand,
the operator bCðNÞ we have defined can be applied directly
on each DiffðΣÞ-invariant element of Cyl�. Then, for every
Ψ ∈ H0…0

V

bCðNÞ~ηðΨÞ ¼
X
½γ�

X
½f�

bCðNÞηðUfΨγÞ

¼
X
½γ�

X
½f�

Uf
bCðN∘fÞηðΨγÞ ¼ 0: ð3:41Þ

Solving the Gauss constraint is ensured either by restricting
H to the Yang-Mills gauge-invariant elements, or by
introducing a third rigging map, which consists in inte-
gration with respect to the SU(2) transformations in V for
each space H0…0

V .

IV. SUMMARY AND OUTLOOK

In this article, we have introduced a new Hilbert space
Hvtx of quantum states for the gravitational field. It can be
decomposed into sectors

Hvtx ¼ ⨁
V∈FSðΣÞ

HV

where the states in HV are invariant under all the spatial
diffeomorphisms that leave invariant the finite set V.
Using the ideas of Refs. [4,5], together with the class

of regularizations introduced in Ref. [1], we were able
to find quantizations of the scalar constraint of pure
gravity bCðNÞ as operators leaving Hvtx invariant. This
removes a long-standing technical problem, as previous
quantizations were either defined on the kinematic
Hilbert space Hkin without the possibility to directly
remove the regulator, or on the Hilbert space of fully
diffeomorphism-invariant states Hdiff , which is not left
invariant under the action of the constraint with non-
constant lapse.
In our setup, it is straightforward to symmetrize the

operator; see Eqs. (3.33) and (3.38). Moreover, one can
immediately work out the commutation relations. Since

bCðNÞ ¼ P
c∈Σ

NðxÞbCx; ð4:1Þ

½bCx; bCx0 � ¼ 0 ð4:2Þ

we find

½bCðMÞ; bCðNÞ� ¼ 0: ð4:3Þ

To discuss the question of anomalies of this quantization,
one would thus have to investigate the quantization of the
diffeomorphism generator which would classically result
from the Poisson bracket of two scalar constraints, as has
been done for Thiemann’s quantization [6,10,19]. It is
interesting to note that Eq. (4.3) immediately follows for
any quantization of the form (4.1) under the reasonable
condition (4.2).
We emphasize again that Thiemann also defined a

symmetric constraint, albeit, in a sense, at a finite regulator
[5]. A solution space of this constraint can be defined in
Hdiff . How solutions to the new scalar constraint on Hvtx
relate to those of Thiemann’s symmetric scalar constraint
[5] is a very interesting (and open) question. Similarly, one
should symmetrize Thiemann’s nonsymmetric scalar con-
straint onHdiff for the case of a constant lapse function and
compare it to our proposal.
There is a very interesting different line of thought which

also suggests that one should use a different Hilbert space
to represent the (diffeomorphism and scalar) constraints.
Those methods carry the additional benefit that they
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address the question of anomalies in a direct fashion. What
connection, if any, they have to the constructions of the
present article, remains to be seen.
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