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We discuss the near singularity region of the linear mass Vaidya metric for massless particles with
nonzero angular momentum. In particular we look at massless geodesics near the vanishing point of a
special subclass of linear mass Vaidya metrics. We also investigate this same structure in the numerical
solutions for the scattering of the Maxwell field from the singularity. In both cases we find that the null-
singularity effectively becomes repulsive close to the final vanishing point leading us to argue that this
metric could be plausibly used as a semiclassical model for the endpoint of black hole evaporation.
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I. INTRODUCTION

The linear mass Vaidya metric is a special class of Vaidya
metrics [1–3] over which one has a certain degree of
analytic control, in particular as a consequence of the
additional homothety symmetry that these metrics possess.
In general the Vaidya metric in radiation coordinates has
the form

ds2 ¼ c

�
1 −

2mðuÞ
r

�
du2 − 2dudrþ r2dΩ2 ð1:1Þ

where −∞ < u < 0 and 0 < r < ∞. When c ¼ −1 this
metric describes an outgoing flux of radiation with the
Bondi mass given by the monotonically decreasing func-
tion mðuÞ. When mðuÞ ¼ −μu this metric has a homothety
symmetry under rescaling of the coordinates u and r
together with an overall rescaling of the metric. In addition,
when 0 < μ < 1=16 they have the special property that
they contain a null singularity that vanishes at an interior
point of the spacetime. These metrics have been studied in
detail in [4] and for the above range of μ the detailed causal
structure of the space-time is illustrated in the Penrose
diagram of Fig. 1 where D indicates the vanishing point.
These metrics have been used in [5–17] to study various
aspects of black hole evaporation and cosmic censorship.
Nevertheless there is still no consistent picture of the
complete evaporation of a black hole. The current paper
does not claim to resolve this question but presents various
arguments to support the proposal that the final stages of
evaporation can be modeled at the semiclassical level by a
linear mass Vaidya metric.
The outgoing Vaidya metric has also recently been used

in [18] to study evaporating black-holes and unitarity.
Questions of information loss and unitarity are of great
interest but the current paper does not address them as
we are specifically looking at the evolution from the Page
time [19] (the time after which, assuming that evaporation
is unitary, a black hole has reemitted almost all of the
information that it contained), up to complete evaporation.

The motivation for this paper is to propose these linear-
mass Vaidya metrics as semiclassical models for the
endpoint of black hole evaporation. To make this more
realistic, one should use a more general mass function that
follows the Hawking radiation formula mðuÞ ¼ ð−uÞ1=3 up
to the point that the mass of the black hole becomes
Planckian, after which it becomes linear. Various scenarios
have been hypothesized for the conclusion of black hole
evaporation [20,21] such as massive remnants or naked
singularities, though the most conservative that is also
consistent with the resolution of the information loss
problem proposes the complete disappearance of the black
hole and the singularity that it contains. We do not know
precisely what happens beyond the future horizon of this
(possibly cataclysmic) event but one expects that the space-
time returns to an asymptotically flat and nonsingular
configuration (protected from more singular fates by
cosmic censorship and positive mass theorems). We will
assume that the linear mass Vaidya metric is continuously

FIG. 1. Penrose diagram for the linear mass Vaidya metric with
0 < μ < 1=16, D is the vanishing point. The z–coordinates are
introduced in Sec. II.

PHYSICAL REVIEW D 91, 044020 (2015)

1550-7998=2015=91(4)=044020(8) 044020-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.044020
http://dx.doi.org/10.1103/PhysRevD.91.044020
http://dx.doi.org/10.1103/PhysRevD.91.044020
http://dx.doi.org/10.1103/PhysRevD.91.044020


attached to Minkowski space-time as in [22] (some dis-
cussion of these issues in a slightly more general context
can also be found in [23,24]). A qualitative sketch of this
evolution is illustrated in Fig. 2.
To investigate the viability of this picture in this paper we

perform a detailed study of null geodesics and the Maxwell
field with nonzero angular momentum in the linear mass
Vaidya metrics. We will use a mixture of analytic and
numerical techniques to get a complete picture of their
behavior.Ouraimis todemonstrate that, close to thevanishing
point, the null-singularity effectively becomes repulsive
leading to the possibility that it is stable under the effects of
small perturbations, backscattering and subsequent backreac-
tion, however a nonlinear stability analysis will not be carried
out in this paper. This stability is a necessary condition for
the suitability of this metric as a semiclassical model for
the endpoint of black hole evaporation.
Most of this article is dedicated to the presentation and

discussion of the analysis for massless particles with

nonzero angular momentum. In the first section we will
look at null ingoing geodesics and then in the second
section we study the wave equation for the Maxwell field in
this background. In the concluding section we will present
a discussion of our results and some additional evidence for
our proposal that the linear mass Vaidya metric is a viable
candidate for a semiclassical model of the final stages of
black hole evaporation.

II. NULL GEODESICS

In the following we will be investigating particles in the
background of the linear mass Vaidya metric with mðuÞ ¼
−μu studied in detail by Waugh and Kayll Lake [4]1

ds2 ¼ −
�
1þ 2μu

r

�
du2 − 2dudrþ r2dΩ2: ð2:1Þ

For 0 < μ < 1=16 this class of space-times has the
conformal structure illustrated in Fig. 1—note in particular
that to the future of the vanishing pointD there is no longer
a singularity. This metric (for u < 0) is a solution to the
Einstein equations with the stress-energy tensor

Tαβ ¼
μ

4πGr2
δuαδ

u
β ð2:2Þ

corresponding to a purely outgoing spherically symmetric
flux of radiation.
We are interested in null geodesics with nonzero angular

momentum in region II of Fig. 1. For zero angular
momentum the null geodesic equations are integrable
and one can find various discussions of these in the
literature e.g. [5]. The above coordinate system is however
not very useful for the study of the metric in particular near
the null singularity due to the degeneracy between r and u
for u → 0−. In fact, as the singularity is approached we
find that away from the endpoint r → −uð1 − ΔÞ=4
while precisely at the endpoint r → −uð1þ ΔÞ=4, where
Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 16μ
p

. It will be convenient to sometimes also use
the coordinate z ¼ −u=r in terms of which r → r� ¼
−uð1� ΔÞ=4 corresponds to z → z∓ ¼ ð1� ΔÞ=4μ as
indicated in Fig. 1. Note that region II corresponds to r− <
r < rþ (zþ > z > z−, as z� ¼ −1=r∓) while region III
corresponds to r > rþ. To study the behavior of the metric
around the vanishing point D (which lies on the boundary
between regions II and III) it is much more convenient to
change to the double-null coordinates [4] for which the
metric has the form

ds2 ¼ −2fðu; vÞdudvþ rðu; vÞ2dΩ2 ð2:3Þ
FIG. 2. An adiabatically evaporating Schwarzschild space-time
evolving to a linear mass Vaidya metric. D is the vanishing point
and SH the stretched horizon. The region S is blown up in Fig. 6.
An hypothetical evolution of the Bondi mass function mðuÞ is
indicated on Iþ, up to the complete evaporation at u ¼ 0 after
which we assume Minkowski space and thus m ¼ 0.

1Actually Waugh and Lake study the ingoing Vaidya metric in
detail but, as noted in their paper, all of their calculations apply
equally to the outgoing metric via a reflection of the coordinates
around the horizontal axis.
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with source

Tαβ ¼
μ

4πGrðu; vÞ2 δ
u
αδ

u
β ð2:4Þ

and where

fðu; vÞ ¼ 1þ Δ
2Δrðu; vÞ ðrðu; vÞ þ uð1 − ΔÞ=4Þ2=ð1þΔÞ;

ð2:5Þ

which is valid, as pointed out in [4], for regions II and III
where r > r−.

In these coordinates v ¼ 0 coincides with r ¼ rþ ¼
−uð1þ ΔÞ=4 (z ¼ z−) while the singularity is at u ¼ 0 and
v < 0 corresponding to r ¼ r− ¼ −uð1 − ΔÞ=4 (z ¼ zþ).
The coordinate transformation from ðu; rÞ to ðu; vÞ can be
obtained, in principle, by solving the implicit equation [4]

jvj1þΔðrðu; vÞ þ uð1 − ΔÞ=4Þ1−Δ
¼ ðrðu; vÞ þ uð1þ ΔÞ=4Þ1þΔ ð2:6Þ

for rðu; vÞ. For the specific values Δ ¼ 1=5, 1=3 and 1=2
where Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 16μ
p

, rðu; vÞ can be found explicitly by
solving at most a cubic polynomial equation,2 leading to the
following expressions for rΔðu; vÞ;

r1=5ðu; vÞ ¼
1

30

 ffiffiffiffiffi
5v3

p  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27ðu3ð27u − 40v3ÞÞ

q
þ 27u2 − 180uv3 þ 200v6

3

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27ðu3ð27u − 40v3ÞÞ

q
þ 27u2 − 180uv3 þ 200v6

3

r !
− 9uþ 10v3

!
; ð2:7Þ

r1=3ðu; vÞ ¼
1

2

�
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 −

2u
3

r
−
2u
3
þ v2

�
; ð2:8Þ

r1=2ðu; vÞ ¼
1

8

 
4

32=3

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3v6ð27u2 − 64v3Þ

q
− 9uv3

3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3v6ð27u2 − 64v3Þ

q
þ 9uv3

3

r !
− 3u

!
: ð2:9Þ

These explicit forms for rðu; vÞ will be used for the
quantitative numerical analysis of the geodesic equations
and below also for the numerical study of the Maxwell field
on this geometry.
Due to the spherical symmetry angular momentum L is

conserved and the null condition is

L2

r2
¼
�
1þ 2μu

r

�
_u2 þ 2_u _r ¼ 2fðu; vÞ _u _v : ð2:10Þ

In addition, the linear mass Vaidya metrics have a homo-
thety symmetry under rescalings of u and r with a
corresponding overall rescaling of the metric. This gives
rise to an additional conserved quantity

P ¼
�
1þ 2μu

r

�
u _uþ r _uþ u_r: ð2:11Þ

Solving these two equations for _u and _v we find

_u� ¼ P
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − L2

P2
u
r kðu=rÞ

q
rkðu=rÞ ð2:12Þ

and

_v� ¼ L2

2fr2 _u�
; ð2:13Þ

where

kðu=rÞ ¼ 2μ
u2

r2
þ u

r
þ 2: ð2:14Þ

In region II, between the two roots r ¼ r� of kðu=rÞ we
demand that both _u and _v are positive (guaranteeing that the
geodesics are future directed) and this leads to the require-
ment that P < 0. This implies that to each value of P < 0

there correspond two distinct solutions for ð _u�; _v�Þ. They
are both physical but correspond to two different ranges
of initial conditions. We can qualitatively understand the
behavior of these solutions by considering the argument
of the square root in the expression for _u. Clearly any
complete classical trajectory (that does not run into the

2One could also go to quartic polynomials, for Δ ¼ 1=7 and
Δ ¼ 3=5 but the general behavior of solutions does not change so
we will not pursue these more complicated solutions further.
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singularity) should be such that the argument of the square
root is always positive, leading to the constraint that

hðzÞ ¼ −zð2μz2 − zþ 2Þ ≤ P2

L2
: ð2:15Þ

The crossover from the þ branch solutions for ð _u; _vÞ to
the—branch solutions occurs at the trajectory
hðzÞ ¼ P2=L2. These special trajectories are indicated in
Fig. 3 by the boundaries of the classically forbidden
regions.
hðzÞ has a maximum at z ¼ zmax between zþ and z−

along the curve

u
r
¼ −zmax ¼ −

1

6μ

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12μ

p �
ð2:16Þ

and its value there is

hmax ¼
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 12μ
p Þð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 12μ
p

− 24μÞ
108μ2

: ð2:17Þ

Ingoing particles with z < zmax and P2=L2 < hmax will
be reflected by the potential barrier continuing on to Iþ.
Taking the limit of small μ, one finds the bound P2=L2 <
1=ð27μ2Þ which is the same as that for massless geodesics
outside a Schwarzschild black hole of mass μ. For particles
with P2=L2 > hmax on the other hand, they clearly run into
the singularity coming in from z < zmax. The numerical
plots of the vector fields ð _u�; _v�Þ shown in Fig. 3 confirm
this qualitative analysis. We will refer to the curve z ¼ zmax
as the Vaiyda photon sphere.3 It plays exactly the same role

as the photon sphere for the Schwarzschild metric which
lies at r ¼ 3GM and has a height E2=L2 ¼ 1=ð27M2Þ—
incoming/outgoing photons below the barrier will be
reflected while those above the barrier continue in the
same direction.
This above analysis gives us a clear picture of the

qualitative behavior of geodesics, however the full numeri-
cal analysis of these equations remains quite complicated.
To confirm our qualitative discussion, we can extract some
analytic information from the geodesic equations if we take
a near singularity limit. In particular we can expand around
small v, studying the behavior as u → 0−. The ratio _u= _v
expanded for small u and v

du
dv

¼ _u
_v
¼ ð−uÞað−vÞb ð2:18Þ

is characterized by the exponents a and b with solution

uðvÞ ¼ −
�
1 − a
1þ b

ð−vÞ1þb þ C

�
1=ð1−aÞ

: ð2:19Þ

We can easily see that geodesics will avoid the singularity
at u ¼ 0 and v < 0 only if both 1 − a and 1þ b are
negative. To determine the exponents we need an expansion
of rðu; vÞ around u ¼ 0. In the region v < 0 and for
u → 0− one can solve to subleading order in u the implicit
Eq. (2.6) for rΔðu; vÞ giving

rΔðu; vÞ ¼ −
uð1 − ΔÞ

4
þ
�
−
Δu
2v

�ð1þΔÞ=ð1−ΔÞ
: ð2:20Þ

It is easy to check that for the ðuþ; vþÞ branch a ¼ ð1 −
3ΔÞ=ð1 − ΔÞ and b ¼ 2Δ=ð1 − ΔÞ, while for the ðu−; v−Þ
branch we have a¼ð1þΔÞ=ð1−ΔÞ and b ¼ −2=ð1 − ΔÞ.
Thus for the þ branch there is a class of geodesics that can

0

vu

0

vu

FIG. 3 (color online). Region II near the singularity for Δ ¼ 1=2. The white region is classically forbidden when P2=L2 < hmax ¼
3.75575 and for the plot we chose P2=L2 ¼ 3.7.

3A previous discussion of the photon sphere for various
metrics including the ingoing Vaidya metric, with however a
different mass function to the one used here, can be found in [25].
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run into the singularity while for the − branch the geodesics
go precisely to the vanishing point at u ¼ v ¼ 0.
Alternatively we can look at an expansion relevant for
geodesics approaching the potential barrier from the
external region. The “−” branch is such that all geodesics
cross the v ¼ 0 line before reaching u ¼ 0 while all of
the þ branch solutions again go to the vanishing point at
u ¼ v ¼ 0. These conclusions clearly agree with the flow
lines of the explicit solutions for ð _u�; _v�Þ displayed
in Fig. 3.

III. MAXWELL FIELD

To further understand the nature of the null singularity
and the potential barrier that surrounds it we will now
present the results of the numerical analysis for the
Maxwell field in this geometry, in particular studying
the scattering of an ingoing Gaussian wave packet from
the near singularity region.
We will study in detail the equation for axial electro-

magnetic perturbations. After an expansion in terms of
vector spherical harmonics, [26] the simplest choice being

Aϕ ¼ Ψðu; vÞ sinðθÞ d
dθ

Plðcos θÞ; ð3:1Þ

we are left with a nontrivial equation for the function
Ψðu; vÞ,

∂2Ψ
∂u∂vþ

lðlþ 1Þ
2r2

fΨ ¼ 0: ð3:2Þ

The potential Vðu; vÞ ¼ lðlþ 1Þf=2r2 is infinite around
the vanishing point, and is also divergent along the null-
singularity when Δ < 1=3 as can be seen clearly in Fig. 4.
As can be seen from the plots the potential for Δ ¼ 1=2
grows more rapidly in the region v < 0 than does that for
Δ ¼ 1=5, the crossover between these two behaviors is at

Δ ¼ 1=3 (not shown) for which the potential is completely
symmetric about v ¼ 0.
Thus to understand the physics of the Maxwell field

near the singularity we simply need to study the potential.
Taking the expression for fðu; vÞ from (2.5) we obtain,
in the limit that u → 0 while v < 0, the leading term in
Vðu; vÞ,

Vðu;vÞ¼lðlþ1Þ
�
1þΔ
2Δ

��
−

4

uð1−ΔÞ
�

3
�
−
ΔU
2v

�
2=ð1−ΔÞ

¼ λðΔÞð−uÞð−1þ3ΔÞ=ð1−ΔÞð−vÞ−2=ð1−ΔÞ ð3:3Þ

where

λðΔÞ ∼ Δð1þΔÞ=ð1−ΔÞ ð1þ ΔÞ
ð1 − ΔÞ : ð3:4Þ

As the potential near the singularity is a simple product
of a function of u and a function of v we can make the
ansatz that near the singularity the wave function factorizes
Ψðu; vÞ ∼UðuÞVðvÞ and thus (3.2) can be trivially inte-
grated to obtain

Ψðu; vÞ ¼ N eκðu;vÞ; ð3:5Þ

where the exponent κðu; vÞ is

κðu; vÞ ¼ 2CΔ
1 − Δ

ð−uÞ2Δ=ð1−ΔÞ

þ λðΔÞ
C

ð1 − ΔÞ
ð1þ ΔÞ ð−vÞ

−ð1−ΔÞ=ð1þΔÞ: ð3:6Þ

To avoid possibly unphysical divergences at v → 0− we
require that the integration constant C > 0. This means that
the singularity is mildly repulsive and thus is not sufficient

FIG. 4. Scattering potentials on the boundary between regions II and III. Darker shades correspond to larger Vðu; vÞ with divergence
precisely at u ¼ v ¼ 0 for Δ ¼ 1=2 and at u ¼ 0, v < 0 for Δ ¼ 1=5.
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to completely repel an incoming particle. However it does
become more repulsive as v → 0−.
Looking instead at the behavior of the potential for small

v, along the line v ¼ 0 (z ¼ z−) we find that the leading
term in Eq. (2.6) for small v is simply

rðu; vÞ ¼ −
uð1þ ΔÞ

4
; ð3:7Þ

giving the leading term in the potential

Vðu; vÞ ≈ κu−ð1þ3ΔÞ=ð1þΔÞ: ð3:8Þ

Inserting this into the wave equation we find as the leading
behavior of the wave function along the line z ¼ z−

Ψðu; vÞ ∼ exp ð−u−2Δ=ð1þΔÞÞ; ð3:9Þ

which clearly goes to zero for 0 < Δ < 1. Ingoing waves
localized around z− are thus repelled from the singularity
as anticipated above. The effectiveness of this repulsion is
obviously greater as Δ → 1.
To check the global consistency of this analysis and the

detailed behavior close to the singularity we once again
used the explicit solutions for rΔðu; vÞ of (2.9) to carry out
the numerical integration of the wave equation on the linear
mass Vaidya metric. The integration method used was the
double-null characteristics technique as originally proposed
in [27]. The incoming wavefunction is a Gaussian centered
and boundary conditions at v ¼ v0 < 0 were simply
Ψðu; v0Þ ¼ 0, again as proposed and used in [27]. The
results for Δ ¼ 1=2 are shown in Fig. 5 and are very similar
to those for Δ ¼ 1=5, 1=3. It is clear that the behavior is
exactly that predicted in the above limits. Note in particular
that ingoing waves very close to the singularity and with
v≲ 0 are strongly reflected towards Iþ. To check the

consistency of the numerical integration towards the
singularity of the metric at z ¼ zþ, increasingly fine
meshes were used and very good convergence was
observed.

IV. DISCUSSION

This final section will be a speculative discussion about
the possible role of the linear Vaidya metric in the final
stages of black hole evaporation. It will necessarily be
much more qualitative than the preceding sections, but we
believe that the general semiclassical picture for the final
stages of black hole evaporation should have features
similar to that which we will present here.
As we do not have control over the late stages of the

evolution of the Schwarzschild black hole we will assume
that there is a Planckian sized transition region between the
lines s and s0 in Fig. 6, interpolating from a near Planck-
mass Schwarzschild black hole to a linear mass Vaidya
metric with 0 < μ < 1=16. To investigate the possible
consistency of this proposal we will first look at the
Kretschmann scalar as a measure of the magnitude of
the curvature.
For a Schwarzschild black hole of mass M

KS ¼ 48G2M2

r6
ð4:1Þ

while for Vaidya

KV ¼ 48μ2u2

r6
: ð4:2Þ

We propose that the linear mass Vaidya metric should be
inserted at a point in the evaporation where the stretched
horizon at r ¼ Gð2M þMPlÞ meets the photon sphere of

FIG. 6. A blowup of the region S of Fig. 2.

FIG. 5. Plot of jΨðu; vÞj showing the scattering of a Gaussian
wave packet with l ¼ 1 and center at v ¼ 0 from the singularity of
the Δ ¼ 1=2 metric. Light-shaded regions correspond to jΨj≊ 0.
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the Vaidya metric at z ¼ zmax and at this point the strength
of the curvatures of Schwarzschild and Vaidya should
be similar. Furthermore, continuity of the radius of the
transverse sphere requires that the radial coordinates in
Schwarzschild and Vaidya coincide in the matching
region T . Looking at the Kretschmann scalar we thus
require that

M
2M þMPl

¼ μzmax ¼
1

6

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12μ

p �
: ð4:3Þ

Introducing mass measured in Planck units M̄ ¼ M=MPl
we find

6M̄
2M̄ þ 1

¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12μ

p
; ð4:4Þ

and this implies that

μ ¼ M̄ð1 − M̄Þ
ð2M̄ þ 1Þ2 : ð4:5Þ

In addition we would also like the heights of the photon
sphere barriers to be similar in the crossover region and
thus

1

27M̄2
¼ hmaxðμÞ; ð4:6Þ

or solving for μ,

μ ¼ −9M̄2 − 216M̄4

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̄2 þ 108M̄4 þ 3888M̄6 þ 46656M̄8

p
: ð4:7Þ

Solving (4.5) and (4.7) simultaneously gives M̄ ¼
0.5086 ≈ 1=2 at μ ¼ 0.0614 < 1=16, indicating that the
ideal matching point is close toM ¼ MPl=2. If we consider
only the matching of the Kretschmann scalar we find that
we are restricted to a crossover from Schwarzschild to
Vaidya that takes place in the interval MPl=2 < M < MPl
corresponding to 0 < μ < 1=16. However, from (4.5), we
see that increasing the mass at the transition region towards
M ¼ MPl corresponds to μ → 0. In this limit we find that
the height of the photon barrier of Schwarzschild decreases
as 1=ð27M̄2Þ → 1=27 whereas that of the Vaidya metric
increases as 1=ð27μ2Þ → ∞. Note also that, from the
discussion of the previous section, the potential for scatter-
ing near the singularity and with v < 0 is more repulsive
when Δ → 1 (μ → 0) as can be seen from (3.9) and in
Fig. 4. If indeed the matching occurs closer to MPl it is
necessary that after the Page time [19], when the mass of
the black hole is on the order of several times MPl, the
space-time becomes modified such that the potential rises
more rapidly. The ideal choice of transition region requires

some more information about the evolution after the
Page time.
At this point we would like to add a couple of comments

on the stability and self-consistency of our construction.
In [5] it has been argued that the null singularity of these
metrics may be unstable to backscattering due to large
blueshifts as particles approach the singularity. Back-
scattered particles outside the photon sphere will generi-
cally have l ≠ 0 and thus will feel the repulsive nature of
the singularity possibly reducing the effect of potential
blueshifts. Furthermore, outgoing particles that come from
the near horizon region can escape to infinity only if they
can pass the photon sphere from the inside, implying
that those that get out must have either an energy that is
significantly transplanckian, or zero angular momentum.
In turn this appears to imply that in the final stages of
evaporation outgoing Hawking radiation will predomi-
nantly have angular momentum close to zero leading to
an a posteriori justification for the use of the Vaidya metric
and for its stability.
Another interesting effect of the linear mass Vaidya

modification of the final phase of evaporation is a slight
cooling down of the black hole to T ∼ 1=

ffiffiffiffiffi
M

p
compared to

the well-known T ∼ 1=M of Schwarzschild. This is still
divergent for vanishing mass, but it should be noted that in
[9] the inclusion of backreaction causes a more significant
cooling down with a finite temperature at the endpoint of
evaporation.
Obviously this is not a complete analysis of the crossover

region but we believe that the picture we are presenting is
quite plausible. To make this more concrete it would be
interesting to search for a deformation of the linear mass
Vadiya metric for which the stress energy tensor is only
spherically symmetric in the final Planckian region and
becomes more like the stress-energy tensor of Hawking
radiation further in the null past, thus providing also a
semiclassical model for the adiabatically evaporating
Schwarzschild to linear mass Vaidya transition. Along
these lines there is a proposal in [23] for an evolution
from a Robinson-Trautmann metric to a Vaidya metric in
the final phase of evaporation.
Finally it is worthwhile highlighting the appearance of a

scale-invariant metric in the final stages of evaporation. It
would be very interesting to further investigate the possible
role of scale invariance in black hole production and
evaporation. Some interesting examples in black hole physics
where scale invariance can be found are Choptuik scaling [28]
and the universality of scale-invariant metrics in the Penrose
limit of spacelike and null space-time singularities [29].
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