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We argue that Lovelock theories of gravity suffer from shock formation, unlike general relativity. We
consider the propagation of (i) a discontinuity in curvature, and (ii) weak, high frequency, gravitational
waves. Such disturbances propagate along characteristic hypersurfaces of a “background” spacetime and
their amplitude is governed by a transport equation. In general relativity, the transport equation is linear. In
Lovelock theories, it is nonlinear and its solutions can blow up, corresponding to the formation of a shock.
We show that this effect is absent in some simple cases, e.g. a flat background spacetime, and demonstrate
its presence for a plane wave background. We comment on weak cosmic censorship, the evolution of
shocks, and the nonlinear stability of Minkowski spacetime, in Lovelock theories.
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I. INTRODUCTION

Lovelock theories of gravity [1] are natural alternatives
to general relativity (GR) in more than four spacetime
dimensions. These are higher curvature theories of gravity
where the equations of motion remain second order in
derivatives. A well-known feature of Lovelock theories is
that gravitational signals can propagate faster or slower
than light [2,3]. It is natural to ask whether or not the back
of a wave packet can catch up with the front and form a
shock. In this paper we will argue that Lovelock theories do
suffer from such shock formation, unlike GR.
Causality of a physical theory is determined by its

characteristic hypersurfaces. For example, given initial
data specified on a suitable hypersurface Σ, the region
of spacetime determined uniquely by the data inside a
compact ðd − 2Þ-dimensional surface S ⊂ Σ is bounded by
a characteristic hypersurface emanating from S. In GR, a
hypersurface is characteristic if, and only if, it is null.
Characteristic surfaces in Lovelock theories have been
discussed in Refs. [2–5]. Such surfaces are generically
non-null so gravitational signals can travel faster (or
slower) than light.1 Furthermore, different polarizations
of the graviton are associated to different characteristic
surfaces; i.e., they propagate with different speeds. For
example, in Ref. [5] we demonstrated that, for a certain

class of spacetimes (Ricci flat with Weyl tensor of type N),
generically there is a distinct “ingoing” and “outgoing”
characteristic hypersurface emanating from S for each
polarization of the graviton. This is sketched in Fig. 1.
We expect this to be typical of the behavior in a generic
background; i.e., Lovelock theories are “multirefringent.”2

Since the “speed” of a particular graviton polarization
can vary in spacetime, one could construct initial data
corresponding to a gravitational wave packet in which the
back of the wave packet is moving faster than the front.
This might result in wave steepening and shock formation.
The canonical example of such behavior is Burgers’
equation

ut þ uux ¼ 0; ð1:1Þ

where subscripts denote partial derivatives. For this equa-
tion, uðt; xÞ is constant along characteristics which are
straight lines with velocity dx=dt ¼ u. If initial data are
such that uxðt; x0Þ < 0 at some point x0, then after a finite
time, the characteristic emanating from x ¼ x0 will inter-
sect its neighbors. When this happens, there is a blowup of
ux. This is interpreted as shock formation.
Awell-known method for investigating this phenomenon

for partial differential equations (PDEs) of order k is to
consider the evolution of initial data with a discontinuity in
the kth derivatives of the fields. As we will explain, such a
discontinuity must propagate along a characteristic surface
in spacetime. Characteristic surfaces are ruled by bichar-
acteristic curves (null geodesics in GR). The amplitude of a

1For asymptotically anti–de Sitter or asymptotically flat
boundary conditions, it has been argued that “asymptotic cau-
sality” is violated in Einstein-Gauss-Bonnet theory (a Lovelock
theory) [6,7]. This means that a signal from the boundary can
propagate through the bulk and return to the boundary faster than
any signal that remains in the asymptotic region. This excludes
the existence of a consistent dual conformal field theory.
However, it is not obvious that it implies pathological behavior
for the initial value problem in the bulk; see e.g. Ref. [8].

2Reference [5] also showed that, when the curvature is
comparable to the scale set by the Lovelock coupling constants,
the theory can fail to be hyperbolic, in which case the initial value
problem is ill posed.
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discontinuity is governed by a transport equation [an
ordinary differential equation (ODE)], along a bicharacter-
istic curve. By solving this ODE, one can determine
whether the amplitude can diverge at some finite time.
A particularly interesting case is when the solution on

one side of the discontinuity is known explicitly. We refer
to this known solution as the “background” solution. The
discontinuity propagates along an outgoing characteristic
hypersurface of the background solution, corresponding to
a wavefront “invading” the region described by the back-
ground solution. In this case, the discontinuity transport
equation depends only on the background solution. Hence,
one can determine whether or not blowup occurs without
having to determine the solution on the other side of the
discontinuity.
A closely related approach is to consider a nonlinear

generalization of geometric optics [9–12]. In this approach,
one considers weak (small amplitude) high frequency
waves propagating in a background solution. The surfaces
of constant phase are characteristic hypersurfaces of the
background solution. The waves are transported along the
bicharacteristic curves within these surfaces according to a
certain ODE that depends only on the background solution.
By solving this equation one can determine whether or not
blowup of the waves occurs.
The transport equations for thediscontinuity and forweak,

high frequencywaves typicallycontain anonlinear term.The
coefficient of this nonlinear term is the same for both
equations. For some physical theories, this nonlinear term
vanishes for any background; i.e., the transport equations are
always linear. Such theories are referred to as “exceptional”
or “linearly degenerate.” If the ODEs are generically non-
linear, then the theory is “genuinely nonlinear.”
GR is an exceptional theory. For example, the transport

equation for a discontinuity in second derivatives of the
metric, i.e., a curvature discontinuity, is [13]

Ve∇e½Rabcd� þ
1

2
θ½Rabcd� ¼ 0; ð1:2Þ

where Va is tangent to the affinely parameterized null
geodesic generators of the null hypersurface along which

the discontinuity propagates, θ ¼ ∇aVa is the expansion of
these generators, and ½Rabcd� is the curvature discontinuity.
Yang-Mills theory is also exceptional, and so is Born-Infeld
theory [14]. In contrast, a relativistic perfect fluid is
genuinely nonlinear except for certain special equations
of state such as a stiff fluid (p ¼ ρ) [9,15].
In the exceptional case, a solution of the transport

equations can diverge only if bicharacteristic curves inter-
sect, i.e., at a caustic. If one arranges a discontinuity to
travel along a characteristic surface which does not form a
caustic, then the discontinuity will not diverge. For exam-
ple, in GR, if we take the background solution to be an
asymptotically flat spacetime, and consider a caustic-free
outgoing characteristic (i.e., null) hypersurface, then the
amplitude of a curvature discontinuity propagating along
this surface will decrease as the discontinuity moves
outwards. Weak high frequency waves behave similarly.
In a genuinely nonlinear theory, for which the transport

equations are nonlinear, a solution of these ODEs may
diverge even when no caustics are present. This corre-
sponds to shock formation. In the case of a discontinuity,
the divergence occurs because faster-moving outgoing
characteristic surfaces in the region “behind” the disconti-
nuity eventually intersect (“catch up with”) the character-
istic surface along which the discontinuity propagates.
In an exceptional theory, since the transport equations

are linear, the initial size of the discontinuity (or amplitude
of the high frequency waves) does not affect its subsequent
evolution beyond setting an overall scale. Blowup occurs
only if a caustic forms. However, in a genuinely nonlinear
theory, the nonlinear nature of these ODEs implies that one
can ensure that the discontinuity or high frequency wave
blows up simply by taking it to be large enough initially
(with appropriate sign), irrespective of whether or not the
characteristic surface along which it propagates contains a
caustic. This corresponds to the formation of a shock from
“large” initial data.
One might wonder whether such divergences are an

artifact of assuming a discontinuity in the initial data, or of
making the high frequency approximation. But, in a
genuinely nonlinear theory, similar behavior can occur
for exact solutions arising from smooth initial data. For
example, for a large class of (systems of) genuinely
nonlinear first order PDEs, it has been proved that there
exist exact plane wave solutions, arising from smooth
initial data of arbitrarily small amplitude, which blow up
in finite time [16,17]. A detailed study of shock formation
in fluids is given in Ref. [18], which proved that blowup
can occur for smooth, small amplitude, initial data for a
relativistic perfect fluid in 3þ 1 dimensions (extending
earlier work of Ref. [19] for a nonrelativistic compressible
perfect fluid). This blowup is associated to a divergence in
the “density” of outgoing characteristic hypersurfaces; i.e.,
such surfaces catch up with each other as described
heuristically above.

S

FIG. 1 (color online). Characteristic hypersurfaces emanating
from ðd − 2Þ-dimensional surface S.
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In this paper we will investigate whether Lovelock
theories suffer from shock formation. This amounts to
asking whether such theories are exceptional or genuinely
nonlinear. This question has been considered before,
with conflicting results. References [20,21] considered
a particular (toroidal) reduction of Lovelock theory to
1þ 1 dimensions and concluded that the resulting theory
is exceptional. Reference [22] considered weak high
frequency waves in Einstein-Gauss-Bonnet theory (a
Lovelock theory) in a limit in which the Gauss-Bonnet
coupling scales in inverse proportion to the frequency of the
waves. The result was a linear ODE governing transport of
the waves. Nevertheless, it was stated that the form of this
ODE implies that the theory is not exceptional. As we will
discuss below, this claim refers to a notion of exceptionality
that is different (although related) to the one discussed
above and is not related to shock formation.
We will show that Lovelock theories are genuinely

nonlinear. We do this using the two methods described
above. First, we consider solutions with a discontinuity in
second derivatives of the metric, i.e., a discontinuity in
curvature. Second, we consider weak, high frequency,
gravitational waves, but without the assumption of
Ref. [22] that the coupling constants scale with frequency.
In both cases, we find a nonlinear transport equation.
Since Lovelock theories are genuinely nonlinear, shock

formation is generic.3 Nevertheless, in a number of simple
cases with special symmetries, we find that the nonlinear
term in the transport equations vanishes, and hence no
shock formation occurs. These include (i) any characteristic
hypersurface in a flat background, (ii) spherically sym-
metric characteristic hypersurfaces in static, spherically
symmetric backgrounds, and (iii) Killing horizons (which
are characteristic hypersurfaces in Lovelock theories [4,5]).
To obtain a tractable example of shock formation, we

take our background spacetime to be a homogeneous plane
wave. In this case, we find a characteristic hypersurface
for which the nonlinear term is nonzero and there exist
solutions of the transport equations which form shocks,
starting from an initial disturbance of arbitrarily small
amplitude. In this case, the hypersurface has a caustic
which leads to focusing of the curvature discontinuity (or
weak high frequency waves) and a shock forms before the
caustic.
It is natural to ask whether our results have any

implications for cosmic censorship, or for the stability
of Minkowski spacetime, in Lovelock theories. We will
discuss these issues at the end of this paper. This paper
concerns the formation of shocks in Lovelock theories. It
is an interesting question whether there is any sense in
which a solution can be extended beyond shock for-
mation. In particular, can one develop a theory of the

evolution of shocks? This will also be discussed at the
end of this paper.
This paper is organized as follows. In the following

section, we discuss in general terms characteristic hyper-
surfaces and the transport of discontinuities and high
frequency waves. In Sec. III, we focus on Lovelock theories
and demonstrate that the transport equations are generically
nonlinear. We then give a number of examples and finish
with a discussion.

II. TRANSPORT EQUATIONS IN SECOND
ORDER THEORIES

A. Characteristic hypersurfaces and
bicharacteristic curves

In this section we will review the definitions of
characteristic hypersurfaces and bicharacteristic curves
[23]. Consider a field theory in d spacetime dimensions, in
which the unknown fields form a column vector gI,
I ¼ 1;…; N, with equation of motion

EIðg; ∂g; ∂2gÞ ¼ 0: ð2:1Þ

(In a Lovelock theory gI will stand for the dynamical
components of the metric.) The theory is quasilinear if EI
is linear in ∂2gJ. We will not assume this. However, as we
will show in Sec. III, in any coordinate chart xμ, the
Lovelock equations of motion depend linearly on ∂2

0gμν
[2]. So we will assume that EI has this property. Hence in
any chart the equation of motion takes the form

AIJ∂2
0gJ þ � � � ¼ 0; ð2:2Þ

where the ellipsis denotes terms involving fewer than two
derivatives with respect to x0 and AIJ does not depend
on ∂2

0gJ.
Now consider a hypersurface Σ and introduce adapted

coordinates ðx0; xiÞ so that Σ has equation x0 ¼ 0. Assume
that gI and ∂μgI are known on Σ. By acting with ∂i we then
also know ∂i∂μgI on Σ. The only second derivatives that we
do not know are ∂2

0gI. These are uniquely determined by
the equation of motion (2.2) if, and only if, the matrix AIJ is
invertible. If this is the case, then Σ is said to be
noncharacteristic. If the matrix is not invertible anywhere
on Σ, then Σ is characteristic:

detA ¼ 0⇔Σ characteristic: ð2:3Þ
To write things covariantly we define the principal symbol
of the equation

Pðx; ξÞIJ ¼
∂EI

∂ð∂μ∂νgJÞ
ξμξν ð2:4Þ

for an arbitrary covector ξμ. We then have AIJ¼Pðx;dx0ÞIJ.
The characteristic polynomial is

3This statement is independent of the sign of the cosmological
constant.
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Qðx; ξÞ ¼ detPðx; ξÞ: ð2:5Þ
Q is a homogeneous polynomial in ξ. A hypersurface
ϕðxÞ ¼ const is characteristic iff Qðx; dϕÞ ¼ 0 everywhere
on the surface. This is a first order PDE for ϕ. The theory of
first order PDEs implies that such surfaces are generated by
bicharacteristic curves ðxμðsÞ; ξνðsÞÞ defined by [23]

_xμ ¼ ∂Q
∂ξμ ;

_ξμ ¼ −
∂Q
∂xμ ; ð2:6Þ

with the initial values of ξμ chosen so that Q ¼ 0 (this is
preserved along the curves). In GR, a hypersurface is
characteristic if, and only if, it is null, and bicharacteristic
curves are null geodesics.

B. Propagation of discontinuities

Consider a solution which is smooth everywhere except
across a hypersurface Σ on which the solution is C1 but
∂2gI is discontinuous. In this case, the equations of motion
cannot uniquely determine ∂2gI on Σ. Hence Σ must be a
characteristic surface. In adapted coordinates, the discon-
tinuous components of ∂2gI are ∂2

0gI since, as discussed
above, the components ∂i∂μgI are determined uniquely.
Notice that AIJ is continuous because it does not depend on∂2
0gI. Therefore, detA is also continuous so the hypersur-

face is characteristic with respect to the solution on both
sides of Σ.4

Taking the discontinuity in the equation of motion across
Σ gives

AIJ½∂2
0gJ� ¼ 0; ð2:7Þ

where square brackets denote the discontinuity. Hence
½∂2

0gJ� is an eigenvector of AIJ with eigenvalue 0; i.e., it
is an element of the kernel of A. Write this element as rJ
and let ξ ¼ dx0 be the normal to hypersurface. Written
covariantly we have

½∂μ∂νgI� ¼ ξμξνrI; ð2:8Þ

where rI is an element of the kernel of Pðx; ξÞ.
Now consider initial data specified on a noncharacteristic

hypersurface, such that the data have a discontinuity in ∂2gI
across a ðd − 2Þ-dimensional surface S within this hyper-
surface. In the resulting solution, any discontinuity must
propagate along a characteristic hypersurface. In a general
second order hyperbolic theory with N degrees of freedom,
there will be 2N characteristic surfaces emanating from S:
an outgoing and an ingoing characteristic surface for each

degree of freedom (see Fig. 1). In GR, the outgoing
surfaces are all coincident and the ingoing surfaces are
all coincident because all gravitational degrees of freedom
propagate at the speed of light (surfaces are characteristic if
and only if they are null). However, as discussed in the
introduction, this is not true in Lovelock theories.
In general, the discontinuity in the initial data at S will

lead to discontinuities propagating along each of the
characteristic surfaces through S. A particularly interesting
case is when S divides the initial data surface into two
regions and the initial data on one side of S correspond to a
known explicit solution, which we will call the background
solution. We will refer to this side of S as the “outside” and
the other side as the “inside” with a corresponding division
of the characteristic surfaces into outgoing and ingoing.
Everywhere outside the outermost outgoing characteristic
surface, the solution will coincide with the background
solution. Inside this characteristic surface, the solution will
depend on the initial data inside S. Hence this characteristic
surface is a wavefront invading the region of spacetime
described by the background solution. We will focus on the
amplitude of the discontinuity propagating along this
outermost outgoing characteristic surface since, as we will
show, it satisfies a transport equation that can be determined
from the form of the background solution.
A useful reference for the propagation of discontinuities

is Ref. [11]. What follows is an application of the methods
described there to the class of theories described above.
Introduce coordinates ðx0; xiÞ adapted to the outermost

outgoing characteristic hypersurface Σ with x0 < 0 cor-
responding to the background where the solution is
known explicitly. We assume the equation of motion
takes the form

AIJðgij;g0;gi;g; xÞðgJÞ00 þ bIðg0i;gij;g0;gi;g; xÞ ¼ 0:

ð2:9Þ

Here subscripts 0, i denote partial derivatives with respect
to x0, xi and gðxÞ is a vector with components gI . Note that
we are now assuming that AIJ does not depend on g0i,
which was not assumed above but is true for Lovelock
theories, as we will show in Sec. III.
The characteristic condition for our surface Σ with

equation x0 ¼ 0 is detA ¼ 0, which implies that A admits
left and right eigenvectors lI and rJ with eigenvalue 0:

lIAIJ ¼ AIJrJ ¼ 0 ðx0 ¼ 0Þ: ð2:10Þ

We will assume that the eigenvalue 0 is nondegenerate so
that lI , rI are unique up to scaling. In Lovelock theories, we
showed that this is true for a generic Ricci flat type N
spacetime [5] and we believe it to be true generically.
We now allow for a discontinuity in second derivatives

across Σ. As explained above, the discontinuous compo-
nents are ðgIÞ00 and these must be proportional to rI:

4By taking derivatives of the equation of motion one can see
that discontinuities in ∂kgI , k ≥ 3 also propagate along character-
istic hypersurfaces; i.e., if a solution is smooth on either side of Σ
and Ck−1 on Σ with a discontinuity in ∂kgI on Σ, then Σ must be
characteristic.

HARVEY S. REALL, NORIHIRO TANAHASHI, AND BENSON WAY PHYSICAL REVIEW D 91, 044013 (2015)

044013-4



½ðgIÞ00� ¼ ΠrI ð2:11Þ

for some scalar ΠðxiÞ defined on Σ. Here we assume that rI
has been normalized in some way so thatΠ gives a measure
of the size of the discontinuity.
To obtain an evolution equation for Π we take a x0

derivative of (2.9), evaluate at x0 ¼ 0, and contract with lI
to eliminate third derivatives with respect to x0. This gives

lIfðAIJÞ0ðgJÞ00 þ ðbIÞ0g ¼ 0 ðx0 ¼ 0Þ: ð2:12Þ

Now we use the chain rule:

ðAIJÞ0 ¼
∂AIJ

∂ðgKÞij ðgKÞ0ij þ
∂AIJ

∂ðgKÞ0 ðgKÞ00 þ
∂AIJ

∂ðgKÞi ðgKÞ0i

þ ∂AIJ

∂ðgKÞ ðgKÞ0 þ
∂AIJ

∂x0 ; ð2:13Þ

ðbIÞ0 ¼
∂bI

∂ðgJÞ0i ðgJÞ00i þ
∂bI

∂ðgJÞ0 ðgJÞ00 þ
∂bI

∂ðgJÞij ðgJÞ0ij

þ ∂bI
∂ðgJÞi ðgJÞ0i þ

∂bI
∂ðgJÞ ðgJÞ0 þ

∂bI
∂x0 ; ð2:14Þ

where the final term of these equations arises from the
explicit x0 dependence of AIJ and bI, if present.
Substituting this into (2.12) and taking the discontinuity
gives

lI

� ∂bI
∂ðgJÞ0i ½ðgJÞ00i� þ

∂AIJ

∂ðgKÞ0 ½ðgKÞ00ðgJÞ00� þ BIJ½ðgJÞ00�
�

¼ 0; ð2:15Þ

where

BIJ ¼
∂AIJ

∂ðgKÞij ðgKÞ0ij þ
∂AIJ

∂ðgKÞi ðgKÞ0i þ
∂AIJ

∂ðgKÞ ðgKÞ0

þ ∂AIJ

∂x0 þ ∂bI
∂ðgJÞ0 : ð2:16Þ

Let ðgIÞ−00 ¼ limx0→0−ðgIÞ00. Then we have

½ðgIÞ00ðgJÞ00� ¼ ½ðgIÞ00�½ðgJÞ00� þ ½ðgIÞ00�ðgJÞ−00
þ ðgIÞ−00½ðgJÞ00�: ð2:17Þ

Using this, and (2.11), Eq. (2.15) becomes

KiΠi þ NΠ2 þMΠ ¼ 0; ð2:18Þ

where

Ki ¼ lI
∂bI

∂ðgJÞ0i rJ; ð2:19Þ

N ¼ lI
∂AIJ

∂ðgKÞ0 rJrK; ð2:20Þ

and

M ¼ lI

� ∂bI
∂ðgJÞ0i ðrJÞi þ

� ∂AIJ

∂ðgKÞij ðgKÞ0ij þ
∂AIJ

∂ðgKÞi ðgKÞ0i

þ ∂AIJ

∂ðgKÞ ðgKÞ0 þ
∂AIJ

∂x0 þ ∂bI
∂ðgJÞ0

�
rJ

þ ∂AIJ

∂ðgKÞ0 ððgKÞ
−
00rJ þ ðgJÞ−00rKÞ

�
: ð2:21Þ

Equation (2.18) is an ODE along the integral curves of Ki,
which lie within Σ (x0 ¼ 0). Let s be a parameter along
such a curve, i.e.,

dxi

ds
¼ KiðxjÞ; ð2:22Þ

and then (2.18) becomes

_Πþ NΠ2 þMΠ ¼ 0; ð2:23Þ

where a dot denotes a derivative with respect to s. Note
that N andM can be determined by the limiting behavior of
the background solution as x0 → 0−. Hence the transport
equation (2.23) for the discontinuity depends only on the
form of this background solution.
We will now show that the curves xiðsÞ are the

bicharacteristic curves which generate Σ. The principal
symbol of (2.9) is

Pðx; ξÞIJ ¼ AIJðξ0Þ2 þ 2
∂bI

∂ðgJÞ0i ξ0ξi

þ
� ∂AIK

∂ðgJÞij ðgKÞ00 þ
∂bI

∂ðgJÞij
�
ξiξj: ð2:24Þ

Bicharacteristic curves ðxμðsÞ; ξμðsÞÞ are determined by
(2.6). For the bicharacteristic generators of Σ we have
x0 ¼ 0, ξi ¼ 0, ξ0 ≠ 0. To evaluate the derivative of Q in
(2.6) we use

∂Q
∂ξμ ¼ ðadjPÞIJ

∂PJI

∂ξμ ; ð2:25Þ

where adjP is the adjugate matrix of P (the transpose of the
cofactor matrix). Hence evaluating at x0 ¼ 0 gives

_xi ¼ 2adjðξ20AÞIJξ0
∂bJ

∂ðgIÞ0i : ð2:26Þ

At x0 ¼ 0 we know that A has left and right eigenvectors lI
and rJ with eigenvalue 0. This implies that ðadjAÞIJ ∝ lIrJ
and hence
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_xi ∝ lI
∂bJ

∂ðgIÞ0i rJ ¼ Ki: ð2:27Þ

We can make this expression an equality by an appropriate
choice of the parameter s along the bicharacteristic curves.
Hence solutions of (2.22) (with x0 ¼ 0) are indeed the
bicharacteristic curves which generate Σ.
Equation (2.23) is our transport equation, an ODE

governing the propagation of the discontinuity along the
bicharacteristic curves of Σ. In general, N ≠ 0 so this
equation is nonlinear. However, some theories have the
special property that N vanishes for any background
solution. Such theories are referred to as exceptional or
linearly degenerate.5 If N is generically nonzero, then the
theory is called genuinely nonlinear.
Along any bicharacteristic curve, Eq. (2.23) has the

general solution [11]

ΠðsÞ ¼ Πð0Þe−ΦðsÞ
�
1þ Πð0Þ

Z
s

0

Nðs0Þe−Φðs0Þds0
�

−1
;

ð2:28Þ

where Φ is defined by

ΦðsÞ ¼
Z

s

0

Mðs0Þds0: ð2:29Þ

Now we can ask whether ΠðsÞ can blow up at finite s. In an
exceptional theory (N ¼ 0), the only way that this can
happen is if e−ΦðsÞ blows up at finite s. SinceΦ is determined
entirely by the background solution, this can happen only if
the background solution is not smooth, or the characteristic
surface Σ is not smooth. Assuming that the background is
smooth and that S is smooth, the only way that Σ can fail to
be smooth is if nearby bicharacteristic curves within Σ
intersect; i.e., Σ forms a caustic. If S is chosen so that Σ is
free of caustics, then ΠðsÞ will not blow up. Note that this
statement is independent of the initial amplitude Πð0Þ
because (2.23) is linear in an exceptional theory.
In a genuinely nonlinear theory, ΠðsÞ will diverge if

1þ Πð0Þ
Z

s

0

Nðs0Þe−Φðs0Þds0 → 0: ð2:30Þ

This is a nonlinear effect. It corresponds to the formation of
a shock. Shock formation can be understood heuristically
as follows. On the initial data surface, consider foliating the
interior of S with surfaces diffeomorphic to S. Denote this
foliation by Sr, r ≥ 0, where S0 ¼ S. From each Sr, let Σr
denote the outermost outgoing characteristic surface, so
Σ0 ¼ Σ. A shock forms when, for infinitesimal r, Σr

intersects Σ0. See Fig. 2. The shock forms because the
disturbance behind the wavefront travels faster than the
front itself. This heuristic picture is supported more
rigorously by studies of genuinely nonlinear first order
systems in 1þ 1 dimensions [the simplest being Eq. (1.1)]
[16,17], and by Christodoulou’s analysis of shock forma-
tion in relativistic perfect fluids in 3þ 1 dimensions [18].
In this work, he proved that shock formation corresponds to
the divergence of a certain “density” of outgoing character-
istic surfaces.
In an exceptional theory, the initial amplitude Πð0Þ does

not affect the subsequent evolution of the discontinuity,
beyond setting a scale. In contrast, in a genuinely nonlinear
theory, shock formation can be guaranteed simply by taking
Πð0Þ large enough, with appropriate sign. To see this,
assume that N ≠ 0 at some point on S and consider the
bicharacteristic curve in Σ that passes through this point.
Along this curve, NðsÞe−ΦðsÞ has a definite sign for small s.
Hence the magnitude of the integral in (2.30) is monoton-
ically increasing for small s. Therefore by takingΠð0Þ to be
large enough, with opposite sign to N, we can ensure that
(2.30) occurs for small s.
Above we assumed a discontinuity in second derivative

across Σ. We could instead consider continuous second
derivatives and a discontinuity in third derivatives. A
transport equation for such a discontinuity is obtained by
differentiating (2.9) twicewith respect to x0, contracting with
lI and setting x0 ¼ 0. In contrast to the above equation, this
ODE is linear. This seems to be the reason why Refs. [20,21]
found that Lovelock theories are exceptional when toroidally
reduced to 1þ 1 dimensions. These papers reformulated the
equations as a first order system, which involved introducing
second derivatives of the metric as fields. In a first order
system, one considers a discontinuity in first derivatives of
the fields. This corresponds to a discontinuity in third
derivatives of the metric. As just explained, a discontinuity
in third derivatives propagates according to a linear equation,
even in a genuinely nonlinear theory.

C. Weak high frequency waves

Here we consider high frequency, small amplitude,
waves propagating in a background field and perform an

S=S0

Σr

Σ0
Sr

FIG. 2 (color online). Foliation by Sr and the outermost
outgoing characteristic surfaces Σr. If Σr intersects Σ0 for
infinitesimal r, a shock forms at the intersection (green dot-
dashed curve).

5An equivalent definition states that the derivatives of Qðx; ξÞ
with respect to xμ should be continuous across a characteristic
surface along which a discontinuity propagates [24].
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expansion in inverse powers of the frequency. This is very
similar to the WKB approximation, or geometric optics,
except that it is nonlinear. More detailed discussion of this
approach can be found in Refs. [9–12].
Wewill continue to work with the theory defined by (2.9)

and specialize to Lovelock theories in the next section.
Introduce coordinates xμ ¼ ðx0; xiÞ with the idea that
surfaces of constant x0 are, to leading order, surfaces of
constant phase for the waves. We then make the ansatz

gIðxÞ ¼ ḡIðxÞ þ ω−2hIðx; ηÞ þ ω−3κIðx; ηÞ þOðω−4Þ;
ð2:31Þ

where η ¼ ωx0, subscripts denote partial derivatives, and
we are interested in large ω. The idea is that the solution
depends on the “slow” coordinates xμ associated with the
background field ḡI and also the “fast” coordinate η
associated with the oscillation of the waves. In particular,
note that the dependence on η determines the dependence
on ω. This is very similar to geometric optics except that we
do not assume a factorized form for hI.
We assume that hI, kI and their derivatives with respect

to η are uniformly bounded functions of η. Substituting into
(2.9) and expanding in ω−1 gives, at order ω0,

A½ḡ� · ðḡ00 þ h00Þ þ b½ḡ� ¼ 0; ð2:32Þ

where a prime denotes a derivative with respect to η and
subscripts 0 or i denote derivative with respect to x0 or xi

at fixed η. Now average η over the interval ½0; T�, i.e., act
with T−1

R
T
0 dη. Let T → ∞. Our boundedness assumption

implies that the h00 term drops out, giving

A½ḡ� · ḡ00 þ b½ḡ� ¼ 0; ð2:33Þ

i.e., the background ḡ must satisfy the equation of motion.
Plugging back in above then gives

A½ḡ� · h00 ¼ 0: ð2:34Þ

Hence if h00 ≠ 0, then A½ḡ� must be degenerate:

detA½ḡ� ¼ 0; ð2:35Þ

which means that surfaces of constant x0, i.e., surfaces of
constant phase, are characteristic. Furthermore we must
have

h00I ðx; ηÞ ¼ Ω00ðx; ηÞrIðxÞ ð2:36Þ

for some function Ω00, where rI is a right eigenvector of
A½ḡ� with eigenvalue 0 (which we assume to be non-
degenerate, as above). Integrating with respect to η we
obtain

hIðx; ηÞ ¼ Ωðx; ηÞrIðxÞ; ð2:37Þ

where our boundedness assumption implies the absence of
a term linear in η, and we have assumed, for simplicity, the
vanishing of an η-independent part (this could be included
but makes some of the equations longer).
Now consider the Oðω−1Þ term in the equation of

motion. This gives

∂A½ḡ�IJ
∂ðḡKÞ0 h

0
KððḡJÞ00 þ h00JÞ þ A½ḡ�IJð2ðh0JÞ0 þ κ00JÞ

þ ∂b½ḡ�I
∂ðḡJÞ0i ðh

0
JÞi þ

∂b½ḡ�I
∂ðḡJÞ0 h

0
J ¼ 0: ð2:38Þ

To eliminate dependence on κ, we now contract with lI , a
left eigenvector of A½ḡ� with eigenvalue 0, to obtain

KiΩ0
i þ NΩ0Ω00 þ ~MΩ0 ¼ 0; ð2:39Þ

where Ki is defined by (2.19), N is defined by (2.20) and

~M ¼ lI

�
A½ḡ�IJ
∂ðḡKÞ0 ðḡJÞ00rK þ ∂b½ḡ�I

∂ðḡJÞ0i ðrJÞi þ
∂b½ḡ�I
∂ðḡJÞ0 rJ

�
:

ð2:40Þ
Equation (2.39) is a first order PDE for Ω0. It constrains the
dependence of Ω0 on both ðx0; xiÞ and η. We solve this
equation by the method of characteristics [11]. Consider
curves ðxμðsÞ; ηðsÞÞ defined by

dx0

ds
¼ 0;

dxi

ds
¼ Ki;

dη
ds

¼ NΩ0: ð2:41Þ

Equation (2.39) reduces to the ODE

dΩ0

ds
þ ~MΩ0 ¼ 0: ð2:42Þ

Note that x0 is constant and xiðsÞ are simply the bichar-
acteristic curves within the surfaces of constant x0. But we
must also take account of the fact that η evolves along these
curves.
To solve this system of ODEs, pick a surface Σ trans-

verse to the (characteristic) surfaces of constant x0. Let αi

(i ¼ 1;…; d − 1) be coordinates on Σ so that Σ is given
parametrically by xμ ¼ xμðαÞ. Define the parameter along
the bicharacteristic curves so that s ¼ 0 on Σ. Consider a
bicharacteristic curve that intersects Σ at the point with
coordinates αi. Then this curve will be given by x0 ¼ x0ðαÞ,
xi ¼ xiðs; αÞ (since x0 is constant along the curve). See
Fig. 3. As αi varies, these bicharacteristic curves define a
congruence in a region of spacetime.
Let ηð0Þ ¼ β. Then, at last for small s, there is a unique

solution to the above ODE specified by ðs; α; βÞ. The
general solution to (2.42) is

Ω0ðs; α; βÞ ¼ Ω0ð0;α; βÞe− ~Φðs;αÞ; ð2:43Þ
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where [cf. (2.29)]

~Φðs; αÞ ¼
Z

s

0

~Mðxðs0; αÞÞds0 ð2:44Þ

and Ω0ð0; α; βÞ is determined by initial conditions at s ¼ 0.
We can now solve for η:

ηðs; α; βÞ ¼ β þΩ0ð0; α; βÞIðs; αÞ; ð2:45Þ

where

Iðs; αÞ ¼
Z

s

0

Nðxðs0; αÞÞe− ~Φðs0;αÞds0: ð2:46Þ

We have solved (2.39) and specified the solution para-
metrically in terms of ðs; α; βÞ. The final step is to perform a
change of variables from ðs; α; βÞ to ðx; ηÞ so that we can
express Ω0 as a function of ðx; ηÞ.
First consider the exceptional case N ≡ 0. Then we have

β ¼ η. In a region without caustics, the relation between
ðs; αÞ and xμ is smooth and invertible so we can write

Ω0 ¼ Ω0ð0; αðxÞ; ηÞe− ~ΦðsðxÞ;αðxÞÞ ðexceptionalÞ;
ð2:47Þ

where η ¼ ωx0. Recall that Ω0ð0; αðxÞ; ηÞ is determined by
initial conditions. Since αðxÞ is constant along bicharac-
teristic curves, the first factor above does not change along
these curves. In particular, consider a choice of initial data
so that Ω0ð0; α; βÞ ¼ W1ðαÞW2ðβÞ, a function of position
times a function of phase. Then the resulting solution also
factorizes: Ω0ðx; ηÞ ¼ AðxÞW2ðηÞ, where A ¼ W1e−

~Φ.
So the solution is given by a slowly varying (i.e.,
η-independent) amplitude A times a fixed phase factor
W2, just as in linear geometrical optics. Hence the depend-
ence on η does not change in time so there is no “distortion

of signals” [9]. The solution fails to be smooth only at a
caustic, where derivatives of Ω0 will blow up. This is also
just as in geometrical optics.
Now consider the genuinely nonlinear case N ≠ 0 and

assume that there is no caustic in the region of interest.
Then we can write ðs; αÞ in terms of xμ as above. But now
we have to solve (2.45) to determine β as a function of η, s
and α and hence as a function of η, xμ. We can do this as
long as ð∂βηÞs;α ≠ 0. We have

ð∂βηÞs;α ¼ 1þ Ω00ð0; α; βÞIðs; αÞ; ð2:48Þ

which is nonzero for small s [because Ið0; αÞ ¼ 0]. Hence,
at least for small s we can write

Ω0 ¼ Ω0ð0; αðxÞ; βðsðxÞ; αðxÞ; ηÞÞe− ~ΦðsðxÞ;αðxÞÞ; ð2:49Þ

with η ¼ ωx0. As above, consider the case for which
the initial data factorize into a function of position and
a function of phase: Ω0ð0; α; βÞ ¼ W1ðαÞW2ðβÞ. The full
solution takes the form Ω0ðx; ηÞ ¼ AðxÞW2ðβðx; ηÞÞ. Since
the second factor depends on x, the factorized form is not
preserved in time evolution: “signals are distorted” in a
genuinely nonlinear theory [9].
For larger values of s, it might happen that the rhs of

(2.48) vanishes at some finite value of s, beyond which we
can no longer determine β in terms of η, s and α. As we
approach this value of s, ∂ηβ ¼ 1=∂βη becomes large; i.e.,
β is a rapidly varying function of η at fixed s, α. This
implies that Ω0ðx; ηÞ develops a large gradient with respect
to η at fixed x: the profile of the waves “become very steep.”
To see this more precisely, consider6

Ω00ðs; α; βÞ ¼ ð∂ηΩ0Þx ¼ ð∂ηΩ0Þs;α ¼
ð∂βΩ0Þs;α
ð∂βηÞs;α

¼ Ω00ð0; α; βÞe− ~Φðs;αÞ

1þΩ00ð0;α; βÞIðs; αÞ : ð2:50Þ

This expression blows up when (2.48) vanishes. This
corresponds to shock formation.
As long as N ≠ 0 we can arrange that a shock forms by

choosing the initial data appropriately. If N ≠ 0 for s ¼ 0
and some α, then jIðs; αÞj is monotonically increasing for
small positive s. Hence, by choosing the initial data
Ωð0; α; βÞ so that Ω00ð0; α; βÞ is large enough, with appro-
priate sign, we can arrange that (2.48) vanishes for small s;
i.e., a shock forms at small s. There is no analogue of this
for an exceptional theory.
The distortion effect discussed above is the reason why

Ref. [22] claimed that Lovelock theories are genuinely

αi 

s (s=0, αi) 

x0=const. Σ 

FIG. 3 (color online). Parametrization of the bicharacteristic
curves. Parameterizing Σ, a surface transverse to the characteristic
surfaces of constant x0, by ðs ¼ 0; αiÞ (i ¼ 1;…; d − 1), the
bicharacteristic curves are given by x0 ¼ x0ðαÞ, xi ¼ xiðs; αÞ.

6Note the exact correspondence with (2.28). A discontinuity in
second derivatives corresponds to a limit in which the weak high
frequency wave approximation becomes exact.
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nonlinear. As discussed in the introduction, Ref. [22]
considered weak high frequency waves in Einstein-
Gauss-Bonnet theory, taking the Gauss-Bonnet coupling
to be of order ω−1. This results in a linear ODE governing
the transport of such waves along bicharacteristics. This
ODE includes a term linear in Ω00. Such an equation can be
solved as above [11], with the result that η ¼ β þΨðs; αÞ
for some function Ψ. Since β ≠ η, this still leads to
distortion of signals effect. Reference [22] took the absence
of such distortion as the defining property of an exceptional
theory and therefore asserted that Einstein-Gauss-Bonnet
theory is not exceptional. However, this argument does not
imply that Einstein-Gauss-Bonnet theory must suffer from
shock formation since ∂ηβ never vanishes in this case. To
demonstrate the possibility of shock formation, it is
necessary to show that the theory has N ≠ 0, as we will
do below for Lovelock theories.

III. LOVELOCK THEORIES

A. Introduction

In this section we will apply the general theory of the
previous section to Lovelock theories. First we will
demonstrate that the equation of motion of a Lovelock
theory can be written in the form (2.9). Then we will
calculate the quantity N defined by (2.20) and show that
generically N ≠ 0 so Lovelock theories are genuinely
nonlinear, unlike GR.

B. Lovelock theories are genuinely nonlinear

We will consider Lovelock theories for which the coef-
ficient of the Einstein term is nonvanishing. Normalizing this
coefficient to 1, the equation of motion (without matter) can
be written7

0 ¼ Ea
b ≡ Λδab þ Ga

b

þ
X
p≥2

kpδ
ac1…c2p
bd1…d2p

Rc1c2
d1d2…Rc2p−1c2p

d2p−1d2p ; ð3:1Þ

where kp, p ≥ 2 are the Lovelock coupling constants. The
antisymmetry implies that only terms with 2pþ 1 ≤ d
contribute. We can also write this as

Ea
b ≡

X
p≥0

kpδ
ac1…c2p
bd1…d2p

Rc1c2
d1d2…Rc2p−1c2p

d2p−1d2p ; ð3:2Þ

where

k0 ¼ Λ; k1 ¼ −
1

4
: ð3:3Þ

In a chart xμ ¼ ðx0; xiÞ we have

Rμνρσ ¼
1

2
ðgμσ;νρ þ gνρ;μσ − gμρ;νσ − gνσ;μρÞ þ � � � : ð3:4Þ

The only Riemann components involving second derivatives
with respect to x0 are

R0i0j ¼ −
1

2
∂2
0gij þ � � � ð3:5Þ

and components related to it by symmetry. Hence second x0

derivatives of g0μ do not appear in the equations of motion.
We regard these metric components as nondynamical. They
have to be fixed by a gauge choice. For example, if surfaces
of constant x0 are spacelike, then g0μ corresponds to the
choice of lapse and shift. If a particular surface with constant
x0 is null, then we could use Gaussian null coordinates,
which also fix g0μ.
We now define

Aμνρσ

¼ −2
X
p≥1

pkpδ0μρi3…i2pj0νσj3…j2pRi3i4j3j4…Ri2p−1i2pj2p−1j2p ;

ð3:6Þ

where δμ1…μnjν1…νn is defined by raising the lower indices
on δμ1…μn

ρ1…ρn . Using (3.5), the terms involving second deriv-
atives with respect to x0 in Eμν can be written

Eμν ¼ Aμνρσ∂2
0gρσ þ � � � ¼ Aμνij∂2

0gij þ � � � ; ð3:7Þ

where the ellipses denote terms independent of second
derivatives with respect to x0. Note that

Aμνρσ ¼ ∂Eμν

∂ð∂2
0gρσÞ

≡ Pðx; dx0Þμνρσ; ð3:8Þ

where for a 1-form ξa, Pðx; ξÞ is the principal symbol of
(3.1). From this we deduce the basis-independent result8

Pðx; ξÞabcd ¼ −2
X
p≥1

pkpδ
acef3…f2pjbde0f03…f0

2pξeξe0

× Rf3f4f03f
0
4
…Rf2p−1f2pf02p−1f02p : ð3:9Þ

Notice that this is symmetric on ab and on cd, and
7Lowercase Latin letters near the start of the alphabet

(a; b; c;…) are abstract indices, reserved for equations valid in
any basis. Lowercase Greek letters (α; β;…; μ; ν;…) refer to a
particular basis and take values 0; 1;…; ðd − 1Þ. Lowercase Latin
letters from the middle of the alphabet (i; j; k;…) take values
1;…; ðd − 1Þ.

8This differs from the principal symbol defined in [5] because
there the equation of motion was written in the “trace-reversed”
form Rab þ � � � ¼ 0.
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Pðx; ξÞabcd ¼ Pðx; ξÞcdab; ð3:10Þ

Pðx; ξÞabcdξa ¼ Pðx; ξÞabcdξc ¼ 0: ð3:11Þ

Returning to our ðx0; xiÞ coordinate basis, this implies that

Aμνρσ ¼ Aρσμν; A0νρσ ¼ Aμν0σ ¼ 0: ð3:12Þ

The latter equality implies that E0μ is independent of
second derivatives with respect to x0 and hence the
equations E0μ ¼ 0 are constraints, just as in GR.
The ij components Eij ¼ 0 are evolution equations.

Note that Eij is linear in ∂2
0gij and the coefficient of this

term depends on second derivatives only of the form
∂i∂jgkl. Hence if we denote the dynamical fields gij
collectively as gI, then the evolution equations take the
form (2.9) assumed in the previous section. The explicit xμ

dependence in (2.9) arises through the dependence on the
nondynamical components g0μ. The terms involving second
x0 derivatives in the evolution equations are Aijkl∂2

0gkl.
Hence in the notation of the previous section, AIJ corre-
sponds to Aijkl.
Assume that the surface x0 ¼ 0 is characteristic;

i.e., there exists nonzero (symmetric) rij such that, at
x0 ¼ 0,

Aijklrkl ¼ 0: ð3:13Þ

From the symmetry of A we have

rijAijkl ¼ 0: ð3:14Þ

That is, the left and right eigenvectors of A are the same
(lI ¼ rI in the notation of the previous section).
The symmetries of A imply that (3.13) can be rewritten

as

Aμνρσrρσ ¼ 0: ð3:15Þ

Note that the components r0μ do not contribute to this
expression: they are pure gauge. More covariantly, a
surface with normal ξa is characteristic if, and only if,
there exists symmetric rab such that

Pðx; ξÞabcdrcd ¼ 0; ð3:16Þ

where rcd is not pure gauge, i.e., not of the form ξðcXdÞ for
some Xd [5].
The coefficient of the nonlinear term in the transport

equations for a discontinuity in second derivatives, or weak,
high frequency waves, is N defined by (2.20). Converting
to the notation of this section gives

N ≡ ∂Aijkl

∂ð∂0gmnÞ
rijrklrmn: ð3:17Þ

To calculate this we use9

∂Rijkl

∂ð∂0gmnÞ
rmn ¼ Γ0

i½krl�j − Γ0
j½krl�i: ð3:18Þ

We then find [see below Eq. (3.6) for the definition of the
Kronecker delta appearing here]

N ¼ −4
X
p≥2

pðp − 1Þkpδ0ikmpr5…r2pj0jlnps5…s2p

× Γ0
ijrklrmnrpqRr5r6s5s6…Rr2p−1r2ps2p−1s2p : ð3:19Þ

The sum starts at p ¼ 2 so (3.19) vanishes in GR, where
kp ¼ 0 for all p ≥ 2. Hence GR is an exceptional theory.
But if kp ≠ 0 for some p ≥ 2, then the above expression
does not vanish in general. This proves that Lovelock
theories are genuinely nonlinear.

C. Shock formation in Lovelock theories

We showed above that a Lovelock theory has an
evolution equation of the form (2.9) and so the derivation
of the transport equations for a discontinuity in second
derivatives of the metric, or weak high frequency gravita-
tional waves, is a special case of the theory developed in
Secs. II B and II C.
First consider the case of a discontinuity in second

derivatives of the metric, i.e., a discontinuity in curvature.
This must propagate along a characteristic hypersurface. In
coordinates xμ ¼ ðx0; xiÞ adapted to this hypersurface we
have

½∂2
0gij� ¼ ΠðxÞrij: ð3:20Þ

We should note that the components ½∂2
0g0μ� are not gauge

invariant: they transform inhomogeneously under coordi-
nate transformations which are C2 but not C3 at x0 ¼ 0
[11,13]. However, the lhs above is gauge invariant and
hence Π is gauge invariant.
We should briefly discuss the role of the constraint

equations. Since these equations do not involve second
derivatives with respect to x0, they are continuous at x0 ¼ 0
and hence are satisfied automatically because the back-
ground solution (in the region x0 < 0) satisfies them. So the
constraints at x0 ¼ 0 do not impose any restrictions on Π.
The behavior of Π along a bicharacteristic curve xi ¼

xiðsÞ within the surface x0 ¼ 0 is given by (2.28). Shock
formation corresponds to a vanishing denominator in this
expression. As noted above, a shock will form if Πð0Þ is
large enough, with appropriate sign. We can estimate how
large this must be by using dimensional analysis. Let us

9If the characteristic hypersurface is non-null, as will be the
case generically, then Γ0

ij is proportional to the extrinsic curvature
of this surface.
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focus on the case of Einstein-Gauss-Bonnet theory, for
which only the p ¼ 2 term is present in (3.19).
Assume that components of the extrinsic curvature of

the characteristic hypersurface are of order R−1 for some
length R and adopt the convention that rij is dimensionless.
Then we have N ∼ k2=R. Dimensional analysis suggests
that NðsÞe−ΦðsÞ will not vary significantly for 0 < s ≪ R
and hence in this range the integral in (2.28) is of
order k2s=R. Hence the denominator in (2.28) vanishes
for s ∼ R=ðk2Πð0ÞÞ. Self-consistency (s ≪ R) requires
k2Πð0Þ ≫ 1. So a shock will form if the initial amplitude
of the curvature discontinuity is large compared to the scale
set by the Gauss-Bonnet coupling (and has appropriate
sign). This is a sufficient condition for shock formation but
not a necessary one. More generally, we could write the
denominator of (2.28) in the form 1þ k2Πð0Þfðs=RÞ and
this will vanish at some positive value of s when k2Πð0Þ
exceeds some critical value of order 1. So a shock will form
when the initial amplitude of the discontinuity is compa-
rable to the scale set by the Gauss-Bonnet coupling (with
appropriate sign).
Now consider weak, high frequency, gravitational

waves, as discussed in Sec. II C. Here we use the ansatz

gμνðx; ηÞ ¼ ḡμνðxÞ þ ω−2hμνðx; ηÞ þ ω−3κμνðx; ηÞ þ � � � ;
ð3:21Þ

where η ¼ ωx0 and ḡμν is the background solution. If we
consider coordinate transformations of the form xμ ¼
~xμ þ ω−3Ψμð~x; ηÞ, then h0μ transforms inhomogeneously
but hij is gauge invariant [12]. The analysis of Sec. II C
shows that the surfaces of constant x0 are characteristic
hypersurfaces of the background spacetime and we can
take

hijðx; ηÞ ¼ Ωðx; ηÞrijðxÞ ð3:22Þ

for some function Ωðx; ηÞ, where rij is defined using the
principal symbol of the background solution.
The analysis of Sec. II C involves only the evolution

equations, not the constraints. In the Appendix, we show
that the constraint equations do not impose any further
restrictions on Ω.
The solution for Ω00 is given in (2.50). The same

dimensional analysis argument that we used above shows
that this blows up if k2Ω00ð0; α; βÞ ≫ 1 (with appropriate
sign). Again, this is a sufficient condition for shock
formation but not a necessary one. Generically we expect
a shock to form when k2Ω00ð0; α; βÞ is of order 1 (with
appropriate sign). Note that the high frequency waves make
a contribution to the curvature of order Ω00. Hence weak,
high frequency waves form a shock if the initial curvature is
comparable compared to the scale set by the Gauss-Bonnet
coupling (and has appropriate sign).

These arguments indicate that shocks will form for a
generic class of initial data with curvature comparable to
the scale set by the Gauss-Bonnet coupling. In some
circumstances, shocks might form even when the curvature
of the initial data is small compared to this scale. For
example, in particular backgrounds, the integrals in (2.28)
or (2.50) might grow monotonically with s. If this happens,
then a shock will form for arbitrarily small initial curvature.
We will see an example of this when we discuss a plane
wave spacetime below.
Shock formation corresponds to divergent curvature

(since Π or Ω00 diverges) and hence corresponds to the
formation of a curvature singularity. This raises the ques-
tion of whether this singularity is naked, or whether it is
hidden inside a black hole. At the end of this paper we will
argue that shocks are not always hidden inside black holes;
i.e., weak cosmic censorship is violated in Lovelock
theories without matter. Another question is whether the
formation of a shock represents the end of time evolution,
or whether one can develop a theory of the evolution of
shocks, as is the case for a perfect fluid. This will also be
discussed at the end of this paper.
Our discussion of shock formation presupposes that the

initial value problem makes sense in Lovelock theories. But
Ref. [5] showed that Lovelock theories can fail to be
hyperbolic when the curvature is comparable to the scale
set by the coupling constants. This does not always happen;
e.g. such theories are hyperbolic in any Ricci flat type N
background, no matter how large the curvature may be [5].
We need to check that the theory is hyperbolic for initial
data that will form a shock. Consider the case of a
discontinuity propagating along a characteristic hypersur-
face x0 ¼ 0. On this hypersurface, the principal symbol is
independent of the amplitude of the discontinuity (because
it does not depend on ∂2

0gμν). Hence the theory is hyper-
bolic on this hypersurface (assuming it is hyperbolic in the
background spacetime). Therefore shock formation occurs
in a region of spacetime in which the theory is hyperbolic
so the initial value problem makes sense.

D. Special cases with N ¼ 0

Although N is generically nonzero, it can still vanish
under special circumstances. In this section we will show
that N vanishes for some of the simplest examples of
characteristic surfaces in Lovelock theories. We will list
four examples below and then prove that N vanishes for
these cases.
Example 1: Flat spacetime.—In this case, the principal

symbol coincides with that of GR, so a hypersurface is
characteristic if, and only if, it is null. It is not obvious that
N vanishes in this case because the p ¼ 2 term of (3.19)
does not depend on the Riemann tensor.
Example 2: A Ricci flat spacetime with a Weyl tensor of

typeN in the classification of [25].—Any such spacetime is
a solution of a Lovelock theory with Λ ¼ 0 [22]. In such a
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spacetime, associated to the type N property is a preferred
null vector field la. If this is hypersurface orthogonal, then
the null hypersurfaces orthogonal to it are characteristic [5].
Example 3: A spherically symmetric characteristic hyper-

surface in a static, spherically symmetric spacetime.—Such
a surface must be null [5]; i.e., “gravity travels at the speed of
light in the radial direction.”
Example 4: A Killing horizon.—Reference [4] proved

that a Killing horizon is a characteristic hypersurface in
Einstein-Gauss-Bonnet theory. This result was generalized
to an arbitrary Lovelock theory in Ref. [5].
These examples have in common the feature that they

all involve null characteristic surfaces. So first we will
discuss the case of a null characteristic surface Σ in more
detail. For such a surface we can introduce Gaussian
null coordinates ðx0; x1; xIÞ ðI ¼ 2;…; d − 1) so that Σ
is given by x0 ¼ 0 and the metric in a neighborhood of this
surface is

ds2 ¼ 2dx0dx1 − ðx0Þ2Fðdx1Þ2 þ 2x0hIdx1dxI

þ hIJdxIdxJ; ð3:23Þ

where F, hI and hIJ depend on all the coordinates. This
coordinate system is of the type discussed above; in these
coordinates we have xi ¼ ðx1; xIÞ. For most of the follow-
ing, we will only need the metric evaluated at x0 ¼ 0:

ds2jx0¼0 ¼ 2dx0dx1 þ hIJdxIdxJ: ð3:24Þ

The condition for the surface to be characteristic is the
existence of nonzero rij satisfying (3.13). If we separate out
the p ¼ 1 (GR) contribution from the p ≥ 2 terms in this
equation, and use the above metric, we obtain

δði1 g
jÞkr1k −

1

2
δi1δ

j
1g

klrkl −
1

2
gijr11 þ Bijklrkl ¼ 0; ð3:25Þ

where

Bijkl ¼−2
X
p≥2

pkpδ0iki3…i2pj0jlj3…j2pRi3i4j3j4…Ri2p−1i2pj2p−1j2p :

ð3:26Þ

Let us now consider the examples discussed above. In flat
spacetime we have Bijkl ¼ 0. Solving the above equation
then gives

r11 ¼ r1I ¼ hIJrIJ ¼ 0: ð3:27Þ

In the case of a Ricci flat type N spacetime for which la is
hypersurface orthogonal, we choose our coordinates so that
l ∝ dx0 which implies lμ ∝ δμ1. The only nonvanishing
Riemann components are R0J0K. But these do not contrib-
ute to Bijkl. Hence Bijkl ¼ 0 in this case so (3.27) holds in
this case too.

For the example of a spherically symmetric hypersurface
in a static, spherically symmetric spacetime, the coordi-
nates xI parameterize a sphere Sd−2. In this case, the
Riemann tensor components can all be written as functions
of radius (of Sd−2) times products of gAB and gIJ where A, B
take values in f0; 1g [5]. This implies that, at x0 ¼ 0, the
only nonvanishing Riemann components are RIJKL and
components Rμνρσ with an equal number of 0 and 1 indices.
Components with a (downstairs) 0 index do not contribute
to Bijkl so we have

Bijkl ¼ −2
X
p≥2

pkpδ0ikI3…I2pj0jlJ3…J2p

× RI3I4J3J4…RI2p−1I2pJ2p−1J2p : ð3:28Þ

Similarly, in the case of a Killing horizon, the fact that
∂=∂x1 is parallel to a null Killing vector field at x0 ¼ 0
implies that R1I1J ¼ R1IJK ¼ 0 at x0 ¼ 0 (see e.g. [4,5]) so
the only nonvanishing Riemann components of the form
Rijkl are RIJKL. Hence (3.28) holds for this case too. So we
will discuss our third and fourth examples together. At x0 ¼
0 we have

δ0ikI3…I2pj0jlJ3…J2p ¼ δ
0ikI3…I2p
1ρσJ0

3
…J0

2p
gjρglσhJ3j

0
3…hJ2pJ

0
2p ; ð3:29Þ

and for this to be nonzero we need either i or k to take the
value 1 (to balance the “downstairs” 1) and either ρ or σ to
take the value 0 (to balance the “upstairs” 0), which
requires that either j or l takes the value 1. So Bijkl is
nonzero only if either i or k takes the value 1 and either j or
l takes the value 1. Consider the i ¼ I, j ¼ J components
of (3.25). These give

�
−
1

2
hIJ þ BIJ11

�
r11 ¼ 0; ð3:30Þ

and hence r11 ¼ 0. Now set i ¼ 1, j ¼ J in (3.25) to
obtain

�
1

2
hJK þ 2B1J1K

�
r1K ¼ 0; ð3:31Þ

and hence r1K ¼ 0. Finally set i ¼ 1, j ¼ 1 in (3.25) and
use r11 ¼ 0 to obtain

�
−
1

2
gKL þ B11KL

�
rKL ¼ 0: ð3:32Þ

In the spherically symmetric case, B11KL ∝ hKL so this
equation implies hKLrKL ¼ 0. Hence in this example,
(3.25) is satisfied if, and only if, the conditions (3.27)
are satisfied. In the case of a Killing horizon, (3.25) is
satisfied if, and only if, r11 ¼ r1I ¼ 0 and the condition
(3.32) is satisfied.
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In the first three examples, we have shown that the
characteristic condition (3.13) reduces to the conditions
(3.27). These conditions are the same as the “transverse”
condition for the polarization of a graviton in GR. They are
d conditions on the dðd − 1Þ=2 components of rij.
Similarly in the case of a Killing horizon we have d
independent conditions on rij. Hence in all four of our
examples, there will be dðd − 1Þ=2 − d ¼ dðd − 3Þ=2 lin-
early independent solutions. This is the number of degrees
of freedom of a graviton. Hence in all the examples, the null
hypersurface is characteristic for all gravitational degrees
of freedom. (For the case of a Killing horizon, this was
proved in [4,5].) This is a consequence of the high degree of
symmetry of these examples: generically, one expects only
one solution for rij for a given characteristic surface.10

To evaluate N we first note that the only nonzero
components of Γ0

ij on Σ are

Γ0
IJjx0¼0 ¼ −

1

2
∂1hIJ: ð3:33Þ

(The trace and traceless part of this are proportional to the
expansion and shear of the generators of Σ.) Now r11 ¼
r1I ¼ 0 implies that the rhs of (3.19) reduces to

2
X
p≥2

pðp − 1Þkpδ0I1…I4i5…i2pj0J1…J4j5…j2p

× ∂1hI1J1rI2J2rI3J3rI4J4Ri5i6j5j6…Ri2p−1i2pj2p−1j2p : ð3:34Þ

But at x0 ¼ 0,

δ0I1…I4i5…i2pj0J1…J4j5…j2p

¼ δ
0I1…I4i5…i2p
1J0

1
…J0

4
ρ5…ρ2p

hJ1J
0
1…hJ4J

0
4gj5ρ5…gj2pρ2p ; ð3:35Þ

and for the rhs of this to be nonzero we need one of the i
indices to be a 1 and one of the ρ indices to be a 0. Hence,
on the lhs, one of the i indices must be a 1 and one of the j
indices must be a 1 (which is possible only for p > 2 since
otherwise there are no i, j indices). But these indices are the
ones contracted with the Riemann tensors. Therefore N
vanishes in flat spacetime. In our second example, the type
N condition implies that any Riemann components with a
downstairs 1 index must vanish and hence N vanishes also
in this case. In our third and fourth examples, any nonzero
Riemann component with a downstairs 1 index must also
have a downstairs 0 index. But none of the i or j indices can
be zero because of the upstairs 0’s in the Kronecker deltas.
Hence N vanishes in these case too.
We emphasize that the vanishing of N in the above

examples is atypical. It is a consequence of the special

symmetries assumed in these examples. The most interest-
ing generalization of these examples for which N is
nonzero would be to consider a nonspherically symmetric
characteristic hypersurface in a static spherically symmetric
spacetime. Reference [5] showed that a hypersurface is
characteristic in such a background if, and only if, it is null
with respect to one of three “effective” metrics, with the
bicharacteristic curves corresponding to null geodesics of
this effective metric. It would be interesting to pick a
ðd − 2Þ-dimensional surface with axisymmetry, but not
spherical symmetry, and determine the outgoing character-
istic hypersurface emanating from it. It could be arranged
that this hypersurface is free of caustics (unlike our plane
wave example below with N ≠ 0). One could then study
shock formation along such a hypersurface.
We have ignored a technicality in the above discussion.

In our derivation of the transport equations governing a
curvature discontinuity or weak high frequency waves, we
assumed that the eigenvector rij satisfying (3.13) is non-
degenerate; i.e., there exists a unique rij on the character-
istic surface in question. However, we have seen that this is
not the case for the examples discussed above, for which
there are dðd − 3Þ=2 linearly independent rij obeying
(3.13). The derivation of the transport equations can be
generalized to allow for such degeneracy [9,11]. We will
briefly describe the method here for the case of a curvature
discontinuity. The treatment of weak high frequency waves
is similar.

Following the notation of Sec. II B, denote by lðIÞI and

rðIÞI a basis of solutions of (2.10), normalized in some
convenient way. We then expand the discontinuity in terms
of this basis as

½ðgJÞ00� ¼
X
I

ΠIr
ðIÞ
J : ð3:36Þ

We then proceed as in Sec. II B, differentiating the equation

of motion with respect to x0, contracting with lðIÞI and
evaluating at x0 ¼ 0. This gives a system of ODEs for the
quantities ΠI . The nonlinear term in these ODEs is of the
form

P
J ;KNIJKΠJΠK, where NIJK is obtained from

(3.19) by the replacement of rklrmnrpq by rðIÞkl r
ðJ Þ
mn r

ðKÞ
pq . It

is easy to see that the above argument generalizes immedi-
ately to this case: using rI11 ¼ rI1J ¼ 0, one finds that
NIJK ¼ 0 for the examples discussed above so the trans-
port equations are linear.

E. Plane wave spacetime

We saw above that N vanishes in various simple
situations. We emphasize that these examples are atypical
and will now give an explicit example for which N is
nonzero. The spacetime is a homogeneous plane wave
spacetime with metric

10This expectation is confirmed by the results of Ref. [5] for
Ricci flat type N spacetimes, for the case of a generic character-
istic hypersurface, i.e., one not orthogonal to la.
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ds2 ¼ aIJxIxJdu2 þ 2dudvþ δIJdxIdxJ; aII ¼ 0:

ð3:37Þ

This is a solution of any Lovelock theory with Λ ¼ 0 [26].
It belongs to the class of Ricci flat type N spacetimes,
whose characteristic hypersurfaces were determined in
Ref. [5]. Associated to the type N property is the null
vector field la ¼ ∂=∂v (la ¼ du).
We will use results of Ref. [5] to determine the character-

istic hypersurfaces emanating from the surface u ¼ v ¼ 0
in this spacetime. These fall into two classes (correspond-
ing to the ingoing and outgoing families discussed in
previous sections). One class consists of the null hyper-
surface u ¼ 0. Note that this has normal la and hence is a
special case of example 2 of the previous subsection. Hence
it is characteristic for all gravitational degrees of freedom
and has N ¼ 0. Therefore shocks do not form for disturb-
ances propagating in the same direction as the plane wave
itself. The second family is more complicated. Generically,
there are dðd − 3Þ=2 hypersurfaces in this family, one for
each polarization of the graviton (see Fig. 4). We will show
that the “outermost” one of these has N ≠ 0, determine the
transport equations for this hypersurface, and show that
shocks form (before reaching a caustic) for arbitrarily
small initial data. This effect can be attributed to focusing
caused by the existence of a caustic on this hypersurface.
Reference [5] showed that for any Ricci flat type N

spacetime there exist dðd − 3Þ=2 “effective metrics” such
that a hypersurface is characteristic if, and only if, it is null
with respect to one of these metric. Each effective metric
has the form

Gab ¼ gab − ωlalb; ð3:38Þ

where each ω depends on the spacetime curvature so ω is
constant in the homogeneous plane wave spacetime. Hence
we have

Gμνdxμdxν ¼ ðaIJxIxJ − ωÞdu2 þ 2dudvþ δIJdxIdxJ

¼ aIJxIxJdu2 þ 2dudv0 þ δIJdxIdxJ; ð3:39Þ

where

v0 ¼ v − ωu=2: ð3:40Þ

This shows that, for this particular spacetime, each effective
metric is isometric to the physical metric [5]. The isometry
depends on ω and is therefore different for each effective
metric.
To determine the characteristic hypersurfaces emanating

from the surface u ¼ v ¼ 0 we need to determine hyper-
surfaces which are null and orthogonal to this surface with
respect to one of the effective metrics. This is equivalent to
determining the null geodesics orthogonal to this surface
with respect to each of the effective metrics. Since each of
the effective metrics has the form (3.39), we just need to
determine the null geodesics of this metric that are
orthogonal to the surface u ¼ v0 ¼ 0.
Let λ be an affine parameter along such a geodesic with

λ ¼ 0 on this surface. Orthogonality implies that the
tangent vector at λ ¼ 0 must be a linear combination of
∂=∂u and ∂=∂v0 ¼ ∂=∂v. There are two possibilities (up to
scaling): ∂=∂u − ð1=2ÞaIJxIxJ∂=∂v0 and ∂=∂v0 ¼ ∂=∂v.
The latter corresponds to the trivial case (u ¼ 0 hypersur-
face) discussed above so let us focus on the former.
The geodesic equation for Gab gives (dot denotes

differentiation by the affine parameter λ)

_u ¼ P ⇒ uðλÞ ¼ Pλ; ð3:41Þ

for some constant P. P must be nonzero because we know
the tangent vector at λ ¼ 0 has a nonvanishing u compo-
nent. We normalize the affine parameter so that P ¼ 1 so

uðλÞ ¼ λ: ð3:42Þ

The geodesic equation for xI gives

ẍI − aIJxJ ¼ 0: ð3:43Þ

Without loss of generality, we can assume that aIJ is
diagonal with components aI and henceforth we will not
use the summation convention for indices I; J;…. Using
the form of the tangent vector at λ ¼ 0, the solution of this
equation is

xIðλÞ ¼ ηI coshð ffiffiffiffiffi
aI

p
λÞ; ð3:44Þ

where ηI ¼ xIð0Þ. This solution is valid for aI ≤ 0 as well
as aI > 0. The condition that the geodesic is null with
respect to Gab gives an equation for _v0 which can be
integrated to give

v0ðλÞ ¼ −
1

4

X
I

ffiffiffiffiffi
aI

p
ηI2 sinhð2 ffiffiffiffiffi

aI
p

λÞ: ð3:45Þ

In terms of the original coordinates we have

v u

a

FIG. 4 (color online). Characteristic hypersurfaces in the plane
wave spacetime. The coordinates xI are suppressed. The green
and purple lines denote ingoing and outgoing characteristic
hypersurfaces, respectively, emanating from the ðd − 2Þ-
dimensional surface u ¼ v ¼ 0.
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u ¼ λ; xI ¼ ηI coshð ffiffiffiffiffi
aI

p
λÞ;

v ¼ ω

2
λ −

1

4

X
I

ffiffiffiffiffi
aI

p
ηI2 sinhð2 ffiffiffiffiffi

aI
p

λÞ: ð3:46Þ

This defines our characteristic hypersurface with param-
eters ðλ; ηIÞ. The curves of constant ηI are the bichar-
acteristic curves within this hypersurface. These curves
are generically non-null with respect to the physical
metric.
Since

P
IaI ¼ 0, at least one of the aI must be negative.

Assume a1 < 0 and consider bicharacteristic curves with
η2 ¼ η3 ¼ � � � 0. All such curves intersect when
λ

ffiffiffiffiffi
aI

p ¼ �iπ=2, i.e., λ ¼ �π=ð2 ffiffiffiffiffiffiffiffi−a1
p Þ. Hence our char-

acteristic surface contains caustics.
Let us switch to a coordinate system adapted to our

characteristic hypersurface. Let

ηI ¼ xI

coshð ffiffiffiffiffi
aI

p
uÞ ;

x0 ¼ v −
ω

2
uþ 1

4

X
I

ffiffiffiffiffi
aI

p
ηI2 sinhð2 ffiffiffiffiffi

aI
p

uÞ; ð3:47Þ

so that x0 ¼ 0 is our characteristic surface. Then the
physical metric becomes11

ds2 ¼ 2dx0duþ ωdu2 þ
X
I

cosh2ð ffiffiffiffiffi
aI

p
uÞðdηIÞ2: ð3:48Þ

Note that these coordinates break down at a caustic. We
will denote the coordinates ðu; ηIÞ collectively by xi,
i ¼ 1;…; d − 1, as in previous sections. Note that the
characteristic surface is spacelike if ω > 0 and timelike
if ω < 0.

The allowed values of the constant ω are determined by
imposing the condition that the above surface is character-
istic. To do this, we must find a symmetric tensor rμν that is
in the kernel of the principal symbol Pðx; dx0Þ given in
(3.9), which is not pure gauge (i.e., rij ≠ 0). This was done
in Ref. [5] for a general Ricci flat type N spacetime.12 We
summarize the results here.
The allowed values of ω are of two types. They depend

only on the Gauss-Bonnet coupling k2 and not on kp for
p > 2. The first type is given for I ≠ J by

ω ¼ ωfI;Jg ≡ 32k2ðaI þ aJÞ; ð3:49Þ

and the associated right eigenvector rμν is given by

rfI;Jgμν ¼
�
1∶fμ; νg ¼ fI; Jg
0∶otherwise

ðI ≠ JÞ: ð3:50Þ

This gives ð1=2Þðd − 2Þðd − 3Þ values of ω. The remaining
d − 3 values are obtained by solving an eigenvalue problem
for a ðd − 3Þ × ðd − 3Þ symmetric matrix. For d ¼ 5 we
can give the result explicitly. The allowed values of ω in
this case are

ω ¼ ω� ≡∓32k2ν; ð3:51Þ

where

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ða21 þ a22 þ a23Þ

r
: ð3:52Þ

The associated rμν are given by

r�μ
ν ¼ diag

�
∓ 1

ν
;∓ 1

ν
;

3ð2a1∓νÞ
2ða1 − a2Þða1 − a3Þ

;
3ð2a2∓νÞ

2ða2 − a1Þða2 − a3Þ
;

3ð2a3∓νÞ
2ða3 − a1Þða3 − a2Þ

�
: ð3:53Þ

Note that the components r0μ are pure gauge. We have
made a particular choice of gauge and normalization in the
above expressions for rμν.
Reference [5] showed that, at any point of a Ricci flat

type N spacetime, the light cones of the effective metrics
form a nested set. Causality is determined by the effective
metric with the outermost light cone. This corresponds to
the effective metric with the most positive value of ω, i.e.,
the “most spacelike” characteristic surface. For the above

spacetime with d ¼ 5 this corresponds to ω ¼ ω−. Hence if
we are interested in a discontinuity invading a background
plane wave spacetime, then ω ¼ ω− will correspond to the
outermost characteristic surface, which separates the back-
ground spacetime from the spacetime on the other side of
the discontinuity (see Sec. II B).
Now we can determine N, the nonlinear term in the

transport equations. Henceforth we will assume d ¼ 5 so
that we can use the above expressions. For d ¼ 5, only the
p ¼ 2 (Gauss-Bonnet) term is present in (3.19). This gives

N ¼ −8k2δ0ikmpj0jlnpΓ0
ijrklrmnrpq: ð3:54Þ

The nonzero components of Γ0
ij are

12Note that even though the principal symbol in [5] uses the
trace-reduced equations of motion, and so is different than (3.9),
the right eigenvectors rμν are unchanged.

11A coordinate change x0 ¼ w − ωu=2 gives the “Rosen form”
of the plane wave metric.
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Γ0
II ¼ −

1

2

ffiffiffiffiffi
aI

p
sinhð2 ffiffiffiffiffi

aI
p

uÞ: ð3:55Þ

We can now evaluate N for the characteristic hypersurfaces
corresponding to different values of ω. First, for ω ¼ ωfI;Jg
we find that setting r ¼ rfI;Jg gives N ¼ 0 since rfI;Jg does
not have enough nonzero components. So there is no shock
formation along these hypersurfaces. Now consider
ω ¼ ω�. Setting r ¼ r� we find the nonzero result

N ¼ ∓ 108k2ω�
ν

� ð2a2∓νÞð2a3∓νÞt1
ða1 − a2Þða1 − a3Þða2 − a3Þ2

þ ð2a1∓νÞð2a3∓νÞt2
ða2 − a1Þða2 − a3Þða1 − a3Þ2

þ ð2a1∓νÞð2a2∓νÞt3
ða3 − a1Þða3 − a2Þða1 − a2Þ2

�
; ð3:56Þ

where

tI ¼
ffiffiffiffiffi
aI

p
tanhð ffiffiffiffiffi

aI
p

uÞ: ð3:57Þ

Note that N diverges at a caustic.
To determine the full transport equations we could use

the general results given in Secs. II B and II C. But the
linear term is quite complicated so it is easier to rederive the
equations using computer algebra as follows. First consider
the case of a curvature discontinuity propagating along the
characteristic hypersurface x0 ¼ 0. For x0 < 0 our physical
metric is the plane wave metric give above. But for x0 > 0
it is different, with a discontinuity in second derivatives at
x0 ¼ 0:

½∂2
0gμν� ¼ Πrμν: ð3:58Þ

The general theory presented in Sec. II B shows that we can
derive an equation which depends only on this disconti-
nuity and the background solution. Hence we can derive
this equation by writing down an ansatz for the metric in
x0 > 0 which has the correct discontinuity:

gμν ¼ ḡμν þ
1

2
ðx0Þ2Πðu; ηIÞrμν; x0 > 0; ð3:59Þ

where ḡμν is the background solution and we take r ¼ r�.
The above metric will not solve the equations of motion in
x0 > 0 but it will give the correct evolution equation for the
discontinuity at x0 ¼ 0. We now follow, using computer
algebra, the steps of Sec. II B to obtain the evolution
equation for Π. The result is an equation of the form (2.18)
with N given above:

Ki ¼ Kδiu; ð3:60Þ

where K is a constant given by

K ¼ −
9

4

� ð2a1∓νÞ2
ða1 − a2Þ2ða1 − a3Þ2

þ ð2a2∓νÞ2
ða2 − a1Þ2ða2 − a3Þ2

þ ð2a3∓νÞ2
ða1 − a3Þ2ða2 − a3Þ2

�
ð3:61Þ

and

M ¼ K
2
ðt1 þ t2 þ t3Þ; ð3:62Þ

where tI is given in (3.57). Note that Ki ∝ δiu implies that
the integral curves of Ki are the bicharacteristic curves, as
expected. In terms of the parameter s along these curves
defined by (2.22) we have

u ¼ Ks: ð3:63Þ

A similar procedure can be used to obtain the transport
equation for weak, high frequency, gravitational waves. In
this case we put

gμν ¼ ḡμν þ ω−2Ωðx0; u; ηI; ηÞrμν ð3:64Þ

into the equations of motion, where η ¼ ωx0, and evaluate
the equations of motion to first order in ω−1 and contract
with rμν. The result is a transport equation of the form
(2.39) with Ki and N as given above and

~M ¼ M: ð3:65Þ

We can now discuss shock formation in the plane wave
background. Let us focus on the case of a discontinuity in
curvature, for which the solution along a bicharacteristic
curve is given in (2.28). We find that

e−ΦðsÞ ¼ Π3
I¼1ðcoshð

ffiffiffiffiffi
aI

p
KsÞÞ−1=2: ð3:66Þ

For definiteness, let us focus on the case for which a1 < 0
and a2; a3 > 0. Then we have a caustic at u ¼
−π=ð2 ffiffiffiffiffiffiffiffi−a1

p Þ and hence at s ¼ π=ð2jKj ffiffiffiffiffiffiffiffi−a1
p Þ≡ s� (note

that K < 0). As we approach s� we have

Ne−Φ ∝ ðs� − sÞ−3=2; ð3:67Þ

and hence the integral in (2.28) diverges as ðs� − sÞ−1=2 as
s → s�−. As long as Πð0Þ has the right sign, the denom-
inator in (2.28) will vanish at s ¼ s0 for some 0 < s0 < s�.
This implies that ΠðsÞ diverges as ðs0 − sÞ−1 as s → s0−,
corresponding to shock formation. Note that this occurs for
arbitrarily small Πð0Þ. Similar results hold for weak, high
frequency waves.
It is easy to understand why shock formation occurs for

small initial data here. The presence of the caustic focuses
the initial discontinuity. This can be seen by considering the
analogous problem in GR, e.g. by setting k2 ¼ 0 above.
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The solution (2.28) reduces to ΠðsÞ ¼ Πð0Þe−ΦðsÞ, which
diverges as ðs� − sÞ−1=2. So even in GR one has a
divergence, at the caustic, caused by focusing.13 In
Einstein-Gauss-Bonnet theory, this focusing causes the
amplitude of the discontinuity to grow as the caustic is
approached. We have argued above that, generically, a
shock must form once the amplitude is large enough (and
the sign is right) and indeed a shock does form before
reaching the caustic.

IV. DISCUSSION

A. Shock formation from smooth initial data

We have shown that Lovelock theories are genuinely
nonlinear and hence suffer from divergences analogous to
the formation of shocks in a perfect fluid. We have shown
this by considering (i) solutions with a curvature disconti-
nuity and (ii) weak high frequency gravitational waves. In
both cases, a divergence occurs in finite time whenever the
initial amplitude of the disturbance is large enough (on a
scale set by the Lovelock coupling constants) with appro-
priate sign.
Based on what is known for other genuinely nonlinear

theories, it seems likely that shocks will also form in exact
solutions arising from a large class of smooth initial data. It
would be interesting to find explicit examples of this. As
discussed in the introduction, many genuinely nonlinear
theories admit plane wave solutions with arbitrarily small
initial amplitude that blow up in finite time [17]. Of course,
Lovelock theories also admit plane wave solutions: any
Ricci flat pp-wave solution of GR is also a solution of any
Lovelock theory withΛ ¼ 0 [26]. But such solutions do not
blow up. This appears closely related to our result that weak
high frequency gravitational waves never form shocks in a
flat background spacetime, even though they can form
shocks in a generic background spacetime. Hence presum-
ably the behavior of pp-wave solutions is not typical of the
behavior of more general solutions.

B. Weak cosmic censorship

If we start from geodesically complete, asymptotically
flat, initial data that form a shock, then is this singularity
naked, or does it occur in the interior of a black hole? We
have argued that shocks will form for outgoing disturb-
ances if these are strong enough. This does not seem related
to the usual mechanisms for black hole formation, namely
gravitational collapse or focusing of ingoing gravitational
waves. Furthermore, if the amplitude of the initial disturb-
ance is decreased, then the “time” it takes for the shock to
form increases. Hence the wavefront at the time of shock
formation is likely to be larger for a weak initial disturbance
than for a strong one. If the shock is to be hidden inside a

black hole, this implies that the black hole would have to be
larger for a weak initial disturbance than for a strong one,
which seems unlikely because the weaker disturbance
would have smaller energy. This suggests that shocks
are not always hidden inside black holes.
We have not been very careful with our use of the term

“black hole” in the above paragraph. This term is ambigu-
ous in Lovelock theories because the causal structure is not
determined by the light cone. A better way of posing the
question is to ask whether any signal can be sent from the
shock to future null infinity, i.e., whether there exists a
bicharacteristic curve extending from the shock to future
null infinity.14

In the case of a curvature discontinuity invading an
asymptotically flat background spacetime, it is clear that a
signal can be sent from the shock to future null infinity. To
see this, note that characteristic hypersurfaces of the
background spacetime approach null hypersurfaces near
infinity (because the Lovelock terms are negligible when
the curvature is small). Hence such hypersurfaces intersect
future null infinity. Given an initial ðd − 2Þ-dimensional
surface S of spherical topology, pick an outermost outgoing
characteristic hypersurface Σ emanating from S. Assume
no caustic forms on Σ. Then we can arrange a shock to form
on Σ by taking the initial amplitude of the discontinuity to
be large enough. This shock is “visible” to future null
infinity because Σ extends to future null infinity. This
suggests that the same will happen for a shock that forms
from smooth initial data.
In summary, it seems likely that shock formation implies

that weak cosmic censorship is violated in Lovelock
theories without matter. This discussion assumes that
one cannot evolve the solution further once a shock forms.
However, if it is possible to develop a theory of the
evolution of shocks (see below), then this would enlarge
the class of admissible spacetimes to allow for dynamical
shocks, and shock formation might be consistent with a
version of weak cosmic censorship in this enlarged class of
spacetimes.

C. Nonlinear stability of Minkowski spacetime

Genuinely nonlinear theories can form shocks if an
initial disturbance is large enough. What about “small”
initial data, i.e., initial data close to some trivial solution? In
some cases, this can also lead to shock formation. For
example, consider a (compressible) perfect fluid in 3þ 1
dimensions. In this case, it has been proved that small initial
data of compact support can form shocks [18,19].
Small initial data in a Lovelock theory with Λ ¼ 0

correspond to almost flat initial data. The formation of a
shock starting from such initial data would correspond to a

13This is sometimes called a linear shock because it occurs
even for linear equations [11].

14An even better formulation is to ask whether the “maximal
development” of such initial data is (generically) an asymptoti-
cally flat spacetime with a complete future null infinity.
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nonlinear instability of Minkowski spacetime. We will
argue that Minkowski spacetime is stable in Lovelock
theories, essentially because such theories are higher
dimensional.
In harmonic coordinates, the equation of motion of a

Lovelock theory takes the form

□hμν ¼ F μνðh; ∂h; ∂2hÞ; ð4:1Þ

where hμν ¼ gμν − ημν, □ is the Minkowski spacetime
wave operator and the rhs is of quadratic order.
Compare this with a nonlinear scalar wave equation in
Minkowski spacetime

□ϕ ¼ F ðϕ; ∂ϕ; ∂2ϕÞ; ð4:2Þ

where F is of quadratic order. In this case, for d > 4, it is
known that the trivial solution ϕ ¼ 0 is stable: any solution
arising from small amplitude, compactly supported, initial
data will decay [27].15 For d ¼ 4, the problem is much
harder because the slower decay of solutions of the
linearized equation of motion make it harder to control
the nonlinear terms. For d > 4, solutions of the linearized
equation decay faster because there are more dimensions
for a disturbance to spread into.
This analogy suggests that Minkowski spacetime is

stable in Lovelock theories, essentially because the
higher-dimensional nature of such theories guarantees
that solutions of the linearized equation decay sufficiently
rapidly that nonlinear effects do not become important.
This is the same reason why proving stability of
Minkowski spacetime in GR is expected to be much
easier in higher dimensions than the four-dimensional
case. In the d ¼ 4 case the proof is highly nontrivial [28].
The above discussion assumed asymptotically flat

boundary conditions. But one could also consider
Kaluza-Klein boundary conditions, with d − 4 compact
dimensions. In this case, it seems plausible that Lovelock
theories would behave analogously to a perfect fluid in
3þ 1 dimensions, with blowup for small initial data; i.e.,
flat spacetime would be unstable with these boundary
conditions.

D. Evolution of shocks

We have used the word “shock” in this paper because
the mechanism behind singularity formation appears to
be the same as for a compressible perfect fluid. In fluid
mechanics, the formation of a shock does not represent
the end of time evolution: there is a theory governing the
evolution of shocks. This theory is based on the notion of
weak solutions to the equations of motion. Once a shock

forms, one continues the solution by allowing the fluid
variables to be discontinuous across a hypersurface (the
shock). For a perfect fluid, conservation of energy-
momentum and particle number leads to a set of junction
conditions (the Rankine-Hugoniot conditions) which
connect the solutions on the two sides of the shock.
The shock propagates along a noncharacteristic hyper-
surface. This hypersurface travels faster than sound with
respect to the fluid outside the shock and slower than
sound with respect to the fluid inside.
Could one do something similar for Lovelock theories?

The analogous procedure appears to be to consider a
hypersurface across which the first derivative of the
metric (extrinsic curvature) is discontinuous. A natural
notion of weak solution is to demand that the fields
extremize the action even in the presence of the dis-
continuity.16 This is the same way that the junction
conditions for a domain wall are derived so the result
is the same as these junction conditions, but with no
matter source term present. In adapted coordinates
ðx0; xiÞ so that the hypersurface is at x0 ¼ 0, the junction
condition specifies the discontinuity in the canonical
momentum πij conjugate to the metric components gij
[30]. Hence the junction condition with no matter source
is that πij should be continuous at x0 ¼ 0.
In a Lovelock theory, πij is a nonlinear polynomial in

the extrinsic curvature of the surface [31]. Hence, unlike
in GR, it is possible for πij to be continuous even if the
extrinsic curvature is not. This suggests that it might be
possible to define a shock in a Lovelock theory as a
hypersurface Σ across which the extrinsic curvature is
discontinuous but πij must be continuous.17 In analogy
with a perfect fluid, it might be necessary to demand
that this surface travel “faster than gravity” with respect
to the spacetime on one side of the shock and “slower
than gravity” with respect to the spacetime on the other
side. More precisely, consider an outgoing shock in an
asymptotically flat spacetime. The shock front should
“catch up with” outgoing characteristic hypersurfaces
outside the shock. Inside the shock, the outgoing
characteristic hypersurfaces should catch up with
the shock.
Shock formation and evolution in Lovelock theories

might be treated following the discussion for a perfect fluid
in Ref. [18]. Consider smooth initial data which lead to a
solution that blows up on a ðd − 2Þ-dimensional surface.
Now try to extend the solution further by allowing the first
derivative of the metric to be discontinuous across a
hypersurface Σ emanating from this ðd − 2Þ-dimensional

15For d ¼ 5 this requires the extra condition that
F ðϕ; 0; 0Þ ¼ Oðϕ3Þ, which would be satisfied in the analogy
with a Lovelock theory, for which F μνðh; 0; 0Þ ¼ 0.

16If one does this in GR, then one finds that the discontinuity
must propagate along a characteristic (i.e., null) hypersurface [29],
which does not correspond to a shock but simply to propagation of
a feature already present in the initial data.

17Hypersurfaces satisfying such junction conditions have been
discussed previously, with different motivation (see e.g. [32]).
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surface, demanding continuity of πij across Σ. See Fig. 5. It
would be interesting to see whether this can be done.
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APPENDIX: CONSTRAINT EQUATIONS FOR
GRAVITATIONAL WAVES

Lovelock theories have additional structure to that of the
theories described in Sec. II, namely gauge freedom and
constraints. Here, we will show that these do not affect the
transport equations. The starting point is an expansion

gμνðxÞ ¼ ḡμνðxÞ þ ω−2hμνðx; ηÞ þ ω−3κμνðx; ηÞ þ � � � ;
ðA1Þ

where η ¼ ωϕðxÞ and zero set of ϕ is the surface of
constant phase for the waves. (Previously we choose
coordinates so that ϕ ¼ x0, we will not do that here.)
Working in a coordinate basis, the Riemann tensor to
Oðω−1Þ is given by [12]

Rμν
ρσ ¼ R̄μν

ρσ þ Sμνρσ þ ω−1Tμν
ρσ þOðω−2Þ; ðA2Þ

where nμ ¼ ∂μϕ, R̄μν
ρσ is the Riemann tensor for the

background ḡ and

Sμνρσ ¼ 2n½μh00ν�
½ρnσ� ðA3Þ

Tμν
ρσ ¼ 2ð∇̄½ρh0σ�½μnν� þ ∇̄½μh0ν�

½ρnσ� − h0½μ
½ρ∇̄ν�nσ�

þ n½μκ00ν�
½ρnσ�Þ: ðA4Þ

Indices are raised and lowered by the background metric ḡ.
We then expand the equations of motion in inverse powers
or ω. At lowest order, we find

Eμ
ν ¼ Ēμ

ν − 2
X
p≥0

pkpδ
μσ1…σ2p
νρ1…ρ2p nσ1n

ρ1h00σ2
ρ2

× R̄σ3σ4
ρ3ρ4…R̄σ2p−1σ2p

ρ2p−1ρ2p þOðω−1Þ: ðA5Þ

Following the discussion in Sec. II C, if ḡ is a background
solution, then Ēμ

ν ¼ 0, and h can be integrated to give
something of the form hμνðx; ηÞ ¼ Ωðx; ηÞrμνðxÞ, where rμν
is in the kernel of the principal symbol (3.9).
The transport equations are given by the next order

Oðω−1Þ in the expansion. We will now show that the
constraint equations (given by nμEμ

ν ¼ 0) are automati-
cally satisfied at this order. The contraction with n ensures
that any terms involving Sμνρσ would vanish by antisym-
metry. Therefore, we are left with terms involving just Tμν

ρσ

and R̄μν
ρσ. Further terms in Tμν

ρσ drop out due to anti-
symmetry and we are left with

nμEμ
ν ¼

X
p≥0

pkpδ
μσ1…σ2p
νρ1…ρ2p ð∇̄σ1h

0
σ2

ρ1nρ2 − h0σ1
ρ1∇̄σ2n

ρ2Þnμ

× R̄σ3σ4
ρ3ρ4…R̄σ2p−1σ2p

ρ2p−1ρ2p þOðω−2Þ
¼

X
p≥0

pkpδ
μσ1…σ2p
νρ1…ρ2p ∇̄σ1ðh0σ2ρ1nρ2Þnμ

× R̄σ3σ4
ρ3ρ4…R̄σ2p−1σ2p

ρ2p−1ρ2p þOðω−2Þ: ðA6Þ

Now we can turn this expression into a total derivative. The
Bianchi identity and the identity ∇̄μnν ¼ ∇̄νnμ (recall n is a
gradient) cause the extra terms to vanish. The result is

nμEμ
ν ¼

X
p≥0

∇̄σ1 ½Ω0pkpδ
μσ1…σ2p
νρ1…ρ2p rσ2

ρ1nρ2nμR̄σ3σ4
ρ3ρ4…

× R̄σ2p−1σ2p
ρ2p−1ρ2p � þOðω−2Þ; ðA7Þ

where we have replaced hμν with Ωrμν. This is proportional
to the derivative of the principal symbol (3.9). Since rμν
belongs to the kernel of the principal symbol, this quantity
vanishes.

Σ

FIG. 5 (color online). Shock evolution. Starting from smooth
initial data, as in Fig. 2, a shock forms on the dot-dashed line. The
solution is extended by allowing first derivatives of the metric to
be discontinuous across a noncharacteristic hypersurface (in
green) satisfying the junction condition that πij should be
continuous.
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