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We study analytically the time-dependent boundary conditions of superconducting microwave circuit
experiments in the high plasma frequency limit, in which the conditions are Robin-type and relate the value
of the field to the spatial derivative of the field. We give an explicit solution to the field evolution for
boundary condition modulations that are small in magnitude but may have arbitrary time dependence, in a
formalism that applies both to a semiopen waveguide and to a closed waveguide with two independently
adjustable boundaries. The correspondence between the microwave Robin boundary conditions and the
mechanically moving Dirichlet boundary conditions of the dynamical Casimir effect is shown to break
down at high field frequencies, approximately 1 order of magnitude above the frequencies probed in the
2011 experiment of Wilson et al. Our results bound the parameter regime in which a microwave circuit can
be used to model relativistic effects in a mechanically moving cavity, and they show that beyond this
parameter regime moving mirrors produce more particles and generate more entanglement than their
nonmoving microwave waveguide simulations.
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I. INTRODUCTION

The quantum theory of relativistic fields with moving
boundaries was first explored by Moore in a remarkably
original paper on the quantum formulation of linearly
polarized light in a one-dimensional moving cavity [1].
The primary result of this investigation was the discovery
that moving mirrors in vacuum create photons. Later,
motivated by developments in quantum field theory in
curved spacetimes, the specialization to a single moving
mirror in Minkowski spacetime was carried out by Fulling
and Davies [2], who again found that nonuniformly
accelerating mirrors generate radiation. These effects, in
which particles are produced by moving boundaries, are
generally referred to as the dynamical Casimir effect (DCE)
or the nonstationary Casimir effect [3–5].
An experimental verification of theDCE in a systemwith a

mechanically moving boundary has remained elusive
because of the technological challenges in creating suffi-
ciently large accelerations [3–5]. However, an experimental
observation of a similar particle creation effect has been
reported in a mechanically static semiconductor waveguide
where the boundary condition on the field is modulated
electrically, by a superconducting quantum-interference
device (SQUID) [6]. A related experimental observation of
particle creation in Josephsonmetamaterial has been reported
in [7]. These observations open fascinating prospects for
simulating on a mechanically static desktop device quantum
phenomena due to motion, including entanglement gener-
ation and degradation, in a regime where the moving system
would experience significant relativistic effects [8–10].
In this paper we address the evolution of a quantum field

in waveguides of the type used in the experiment of [6] in

situations where the modulation of the SQUID(s) at the
end(s) of the waveguide is small in magnitude but may have
arbitrary time dependence, under the further assumption
that the plasma frequency of the SQUID(s) is negligibly
high compared with the frequencies where the experiment
operates. More precisely, recall that the field Φðt; xÞ in the
experiment of [6] satisfies, under the approximations
described in [11,12], the ð1þ 1Þ-dimensional Klein-
Gordon equation

0 ¼
� ∂2

∂t2 − v2
∂2

∂x2
�
Φðt; xÞ ð1:1Þ

with the boundary condition

0 ¼ CJϕ̈ðt; 0Þ þ
�
2π

Φ0

�
2

EJðtÞΦðt; 0Þ þ
1

L0

Φ0ðt; 0Þ; ð1:2Þ

where the cavity is at x ≤ 0, the SQUID is at x ¼ 0, the
meaning of the positive constants v, Φ0, CJ and L0 is as
described in [12], and EJðtÞ can be given arbitrary time
dependence by modulating the magnetic field applied to the
SQUID. In the regime where the SQUID’s plasma fre-
quency is large compared to the frequency of Φ, the time
derivative term in (1.2) is negligible, and (1.2) reduces to

0 ¼ Φðt; 0Þ þ Leff
0 ðtÞΦ0ðt; 0Þ; ð1:3Þ

where Leff
0 ðtÞ ¼ ½Φ0=ð2πÞ�2½L0EJðtÞ�−1. We shall consider

the regime in which the boundary condition (1.3) applies
and the time dependence of Leff

0 ðtÞ is arbitrary in profile but
small in magnitude. The regime where the SQUID’s plasma
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frequency is large but not negligibly so is considered in
[13–15].
Our interest in the boundary condition (1.3) is twofold.

First, considering the condition in its own right, we give an
explicit solution to the quantum dynamics to leading
perturbative order in the time variation of the boundary
condition, using a formalism that allows us to handle both
the semiopen waveguide and a closed waveguide, and
allowing for the closed waveguide the modulations at the
two ends to remain independent of each other. The
mathematical observation underlying our formalism is that
(1.3) is a linear relation between the value of the field and
the spatial derivative of the field, known as a Robin
boundary condition, and when this condition is indepen-
dent of time, it has a well-known role in making the spatial
part of the wave operator in (1.1) self-adjoint and hence
ensuring the unitarity of the time evolution [16–18]. A
time-dependent boundary condition can then be treated
perturbatively by combining the spectral methods of
[16–18] to the techniques developed in [19,20] for mechan-
ically moving cavities. For the semiopen waveguide our
results agree with those found in [21–24] via a different
formalism.
Second, we wish to address the sense in which (1.3)

models a mechanically moving boundary of the DCE.
For a Dirichlet mirror at the time-dependent location
x ¼ xDCEðtÞ, the boundary condition on the field reads

0 ¼ Φðt; xDCEðtÞÞ: ð1:4Þ

If we choose in (1.3) Leff
0 ðtÞ ¼ xDCEðtÞ, (1.3) reduces to

(1.4) for field frequencies much smaller than v=jLeff
0 j, but

for higher field frequencies the correspondence no longer
holds. We shall see that our perturbative solution of the
field evolution with the condition (1.3) indeed differs from
the similar perturbative solution with the condition (1.4) for
frequencies that are not much smaller than v=jLeff

0 j, both
for a semiopen waveguide and a closed waveguide; in
particular, the large frequency falloff properties of the
solution are qualitatively different. Simulations of relativ-
istic motion with the mechanically static semiconductor
waveguide would hence need to take place in the low
frequency regime where the successive approximations
from (1.2) via (1.3) to (1.4) hold. Both the experiment
of [6] and the proposals of [8–10] appear to operate within
in this domain by a margin of approximately 1 order of
magnitude.
The plan of the paper is as follows:
Section II considers evolution under a small discontinu-

ous change in the boundary condition (1.3) for a semiopen
waveguide, and Sec. III presents the similar analysis for the
closed waveguide. Evolution under small changes in the
boundary condition with arbitrary time dependence for
both types of waveguides is written out in Sec. IV.
Section V compares the evolution to that under Dirichlet

boundary conditions at one or two mechanically moving
boundaries. Section VI presents a summary and concluding
remarks.
Appendix A collects technical identities in a perturbative

expansion of Bogoliubov coefficients. Appendix B treats
the evolution under the Dirichlet boundary condition at one
mechanically moving boundary in a small acceleration
expansion in which velocities and travel distances are
unrestricted, adapting to one moving boundary the treat-
ment of mechanically rigid cavities given in [19,20]. In
Appendix C we derive the first-order formula for the
negativity measure of entanglement in the case when the
modes have a continuous spectrum.

II. SEMIOPEN WAVEGUIDE

In this section we discuss a semiopen waveguide under a
sudden change in the Robin boundary condition (1.3).
Section II A establishes the notation and reviews the known
properties of a time-independent Robin boundary condi-
tion. The sudden change is implemented in Sec. II B, and
small sudden changes about the Robin boundary condition
relevant for the experiment of [6] and about the Dirichlet
boundary condition are discussed respectively in Secs. II C
and II D.

A. Static boundary condition

We adopt units in which the phase velocity v in (1.1) is
set to unity. We may hence think of the field as a real scalar
field ϕ on a ð1þ 1Þ-dimensional Minkowski spacetime,
with the global Minkowski coordinates ðt; xÞ and the metric
ds2 ¼ −dt2 þ dx2. We take the boundary to be at x ¼ 0
and the field to live in the half 0 ≤ x < ∞.
We consider the massive Klein-Gordon field equation

ð∂2
t − ∂2

x þ μ2Þϕ ¼ 0; ð2:1Þ

where μ ≥ 0 is the mass. The massless special case μ ¼ 0
reduces to (1.1). We keep here μ general, in part because
setting μ ¼ 0 does not significantly simplify the analysis,
but also in part in view of prospective future comparisons
with mechanically moving cavities in situations where
transverse dimensions may generate a positive μ by
Fourier decomposition [19,20,25].
We introduce at x ¼ 0 the Robin family of boundary

conditions

0 ¼ ϕðt; 0Þ þDϕ0ðt; 0Þ; ð2:2Þ

where D ∈ R∪f∞g is a constant independent of t. The
special case D ¼ 0 gives the Dirichlet boundary condition,
ϕðt; 0Þ ¼ 0, the special case D ¼ ∞ gives the Neumann
boundary condition, ϕ0ðt; 0Þ ¼ 0, and all other values of D
mix ϕðt; 0Þ and ϕ0ðt; 0Þ.
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Any choice for D makes −∂2
x self-adjoint [16–18]

and would hence yield a consistent quantum theory of a
nonrelativistic particle on the half-line, although the choice
D ¼ 0 may in that context be considered less fine-tuned
than the others [26]. In the present context of a relativistic
quantum field theory, we consider only the values ofD that
make the spectrum of −∂2

x þ μ2 strictly positive. For μ ¼ 0
this means D ∈ ð−∞; 0�∪f∞g, and for μ > 0 it means
D ∈ ð−∞; 0�∪f∞g∪ðμ−1;∞Þ. A negative eigenvalue of
−∂2

x þ μ2 would give a tachyonic instability, and the zero
eigenvalue that occurs when μ > 0 and D ¼ μ−1 would
give a zero mode and hence a theory without a Fock
vacuum.
The field is quantized in the usual fashion. A continuum

of mode solutions that are positive frequency with respect
to ∂t are

ϕkðt; xÞ ¼
1ffiffiffiffiffiffi
πω

p e−iωt sinðkxþ δÞ; ð2:3Þ

where k > 0, ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2

p
, δ is determined as a function

of k from

tan δ ¼ −kD; ð2:4Þ

and we may fix the phase by choosing jδj < π=2 forD ∈ R
and δ ¼ π=2 for D ¼ ∞. When μ > 0 and μ−1 < D < ∞,
there is in addition a discrete ground state mode, given by

ϕgðt; xÞ ≔
1

ðμ2D2 − 1Þ1=4 e
−i

ffiffiffiffiffiffiffiffiffiffiffiffi
μ2−D−2

p
te−x=D: ð2:5Þ

Writing the Klein-Gordon inner product in the conventions
of [27] as

ðϕ; χÞ ¼ −i
Z

∞

0

ðϕð∂tχ̄Þ − ð∂tϕÞχ̄Þdx; ð2:6Þ

where the overline denotes complex conjugation, the
continuum modes ϕk are Dirac orthonormal,

ðϕk;ϕk0 Þ ¼ δðk − k0Þ; ð2:7Þ

and when the discrete ground state ϕg (2.5) exists, it is
normalized and orthogonal to the continuum modes. The
Fock space is built on the vacuum that is annihilated by the
annihilation operators associated with the continuummodes
ϕk and with the discrete mode ϕg when the latter exists.

B. Sudden change in the boundary condition

Suppose that for t < 0 we use the field modes as
introduced above and for t > 0 we use a similar set of
field modes with D replaced by D0. Denoting the new
continuum modes by ~ϕk0 and the new discrete mode by ~ϕg0,

we may match the two sets of modes at t ¼ 0 in the notation
of [27] as

~ϕk0 ¼
Z

∞

0

ðoαk0kϕk þ oβk0kϕkÞdkþ oαk0gϕg þ oβk0gϕg;

ð2:8aÞ

~ϕg0 ¼
Z

∞

0

ðoαg0kϕk þ oβg0kϕkÞdkþ oαg0gϕg þ oβg0gϕg;

ð2:8bÞ
where we have included the lower left subscript o in the
Bogoliubov coefficients oα and oβ to indicate that the
change in the boundary condition is sudden.
Expressions for the Bogoliubov coefficients can be

found by taking inner products of (2.8) with the untilded
modes and their complex conjugates [27]. For the con-
tinuum-to-continuum Bogoliubov coefficients, we find

oαk0k ¼ cosðδ − δ0Þδðk − k0Þ þ sin δ sin δ0

π
ffiffiffiffiffiffiffiffi
ωω0p

�
1

D0 −
1

D

�

× P
�

1

ω − ω0

�
; ð2:9aÞ

oβk0k ¼
sin δ sin δ0

π
ffiffiffiffiffiffiffiffi
ωω0p ðωþ ω0Þ

�
1

D0 −
1

D

�
; ð2:9bÞ

where δ and δ0 are determined by

tan δ ¼ −kD; ð2:10aÞ
tan δ0 ¼ −k0D0; ð2:10bÞ

and P in (2.9a) denotes the principal value in the integration
over k at k ¼ k0. In the special cases D ¼ 0 and D0 ¼ 0
the formulas (2.9) are understood in their well-defined
limiting sense. The continuum-to-discrete and discrete-to-
continuum Bogoliubov coefficients will not be needed
below and we omit the formulas.
We note that while oβk0k (2.9b) is a function for all k and

k0, oαk0k (2.9a) has distributional support at k ¼ k0 because
of the Dirac delta in the first term and the principal value
integral in the second term.

C. Small sudden change: Far from Dirichlet

We now consider the case where D and D0 are negative
and close to each other. This is the situation relevant for the
waveguide experiment of [6]. (Recall that in our conven-
tions the field ϕ lives at x ≥ 0, while the field Φ in
(1.1)–(1.3) lives at x ≤ 0.)
We write

D ¼ −Λ; ð2:11aÞ
D0 ¼ −Λð1þ ηÞ; ð2:11bÞ
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where Λ is a positive constant of dimension length and η is small. The mode expansion contains no discrete mode for any
value of μ.
Expanding the Bogoliubov coefficients (2.9) in η, we find

oαk0k ¼
�
1 −

η2ðkΛÞ2
2½1þ ðkΛÞ2�2

�
δðk − k0Þ þ ηΛkk0

π
ffiffiffiffiffiffiffiffi
ωω0p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðkΛÞ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðk0ΛÞ2
p �

1 −
ηðk0ΛÞ2

1þ ðk0ΛÞ2
�
P

�
1

ω − ω0

�
þOðη3Þ;

ð2:12aÞ

oβk0k ¼
ηΛkk0

π
ffiffiffiffiffiffiffiffi
ωω0p

ðωþ ω0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðkΛÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðk0ΛÞ2

p �
1 −

ηðk0ΛÞ2
1þ ðk0ΛÞ2

�
þOðη3Þ: ð2:12bÞ

As a consistency check, we have verified that the expansion
(2.12) is consistent with the identities satisfied by the
Bogoliubov coefficients, collected in Appendix A, in the
sense that the linear order identities (A4a) hold and the off-
diagonal part of the quadratic order identities (A4b) holds.
We are not aware of reasons to suspect inconsistencies in
the diagonal part of (A4b) but we have not undertaken the
distributional analysis to examine this.

D. Small sudden change: Near Dirichlet

As a second regime of interest, we perturb around the
Dirichlet boundary condition. This case is not directly
relevant for the experiment of [6], but we shall see in Sec. V
that it exhibits close theoretical similarity with a mechan-
ically moving boundary.
We set D ¼ 0 and assume D0 to be close to 0. If D0 is

negative, the result may be obtained from (2.12) by writing
ηΛ ¼ −b and letting Λ → 0 while b remains finite and
negative but small: then D0 ¼ b < 0, and the Bogoliubov
coefficients are given by

oαk0k ¼
�
1 −

1

2
ðkbÞ2

�
δðk − k0Þ

−
bkk0

π
ffiffiffiffiffiffiffiffi
ωω0p P

�
1

ω − ω0

�
þOðb3Þ; ð2:13aÞ

oβk0k ¼ −
bkk0

π
ffiffiffiffiffiffiffiffi
ωω0p ðωþ ω0Þ þOðb3Þ: ð2:13bÞ

IfD0 is positive, the t > 0 theory has a tachyonic instability
(for all positive D0 if μ ¼ 0 and for 0 < D0 < μ−1 if μ > 0)
because of the negative eigenvalue of −∂2

x þ μ2; however,
the tachyon is nonperturbative in D0, and we have verified
that just ignoring the tachyon and proceeding directly from
(2.9) leads again to (2.13), where now D0 ¼ b > 0.
As a consistency check, we have verified that (2.13)

satisfies the linear order Bogoliubov identities (A4a) and
the off-diagonal part of the quadratic order Bogoliubov
identities (A4b), regardless the sign of b.

III. CLOSED WAVEGUIDE

In this section we adapt the analysis of Sec. II to a cavity
waveguide that is closed at both ends. For simplicity, we
treat only the massless field, μ ¼ 0.

A. Static boundary condition

We follow the notation of Sec. II, setting μ ¼ 0. We place
the cavity at 0 ≤ x ≤ L, where the positive constant L is the
length of the cavity.
We write the static Robin boundary conditions at the

ends of the cavity as

0 ¼ ϕðt; 0Þ þD1ϕ
0ðt; 0Þ; ð3:1aÞ

0 ¼ ϕðt; LÞ þD2ϕ
0ðt; LÞ; ð3:1bÞ

where D1 and D2 are constants independent of t, taking
values in R∪f∞g.
Any choice for D1 and D2 makes −∂2

x self-adjoint
[16–18]. To avoid instabilities and zero modes, we assume
initially D1 and D2 to be such that the spectrum of −∂2

x is
strictly positive. We shall however see in Sec. III C that a
perturbative treatment inD1 andD2 remains consistent even
in the presence of a nonperturbative tachyon, on a par with
what happened for the semiopen waveguide in Sec. II D.
The field is again quantized in the usual fashion. The

Klein-Gordon inner product is as in (2.6) but integrated
over x ∈ ½0; L�. The equation for the eigenvalues can be
written down using (3.1).

B. Small sudden change: Far from Dirichlet

We consider the case where D1 < 0 and D2 > 0, and
there is a sudden but small change in their values. This
models a waveguide whose each end terminates at a
SQUID as in the experiment of [6].
For t < 0, we set D1 ¼ −κ1L and D2 ¼ κ2L, where κ1

and κ2 are positive dimensionless constants. With this
boundary condition −∂2

x is positive definite. The mode
functions are
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ϕqðt; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κ21q

2Þð1þ κ22q
2Þ

qFðqÞ

s
e−iqt=L sinðqx=Lþ δqÞ;

ð3:2Þ

where

FðqÞ ≔ ð1þ κ1 þ κ21q
2Þð1þ κ2 þ κ22q

2Þ − κ1κ2; ð3:3Þ

q goes over the positive solutions to

cot q ¼ κ1κ2q2 − 1

ðκ1 þ κ2Þq
; ð3:4Þ

tan δq ¼ κ1q, and we choose the phase so that
0 < δq < π=2. There is exactly one q in each interval
mπ < q < ðmþ 1Þπ, m ¼ 0; 1; 2;…. The mode functions
are normalized to ðϕq;ϕq

0Þ ¼ δqq0 .
For t > 0, we set D1 ¼ ð−κ1 þ η1ÞL and D2 ¼

ðκ2 þ η2ÞL, where η1 and η2 are dimensionless constants,
assumed to be small. We work perturbatively in η1 and η2,
setting both of them to be proportional to a formal
expansion parameter η which at the end is set to unity.
The mode functions are proportional to e−ikt sinðkxþ δÞ

where k and δ are determined from (3.1). We label the mode
functions by the positive solutions to

cotp ¼ κ1κ2p2 − 1

ðκ1 þ κ2Þp
; ð3:5Þ

such that k ¼ p=LþOðηÞ, we denote them by ~ϕp, and we
choose their phase to agree with that of (3.2) in the zeroth
perturbative order. We then find that the eigenfrequencies
are given by

kp ¼
�
1þ η1ð1þ κ22p

2Þ − η2ð1þ κ21p
2Þ

FðpÞ
�
p
L
þOðη2Þ:

ð3:6Þ

The Bogoliubov coefficients are now defined by match-
ing the modes at t ¼ 0 as

~ϕp ¼
X
q

ðoαpqϕq þ oβpqϕqÞ: ð3:7Þ

Proceeding as in [19,25], we find

oαpp ¼ 1þOðη2Þ; ð3:8aÞ

oαpq ¼

�
η1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κ22p

2Þð1þ κ22q
2Þ

p
− ð−1Þφpþφqη2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κ21p

2Þð1þ κ21q
2Þ

p � ffiffiffiffiffiffi
pq

p

ðp − qÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðpÞFðqÞp þOðη2Þ for p ≠ q; ð3:8bÞ

oβpq ¼ −

�
η1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κ22p

2Þð1þ κ22q
2Þ

p
− ð−1Þφpþφqη2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κ21p

2Þð1þ κ21q
2Þ

p � ffiffiffiffiffiffi
pq

p

ðpþ qÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðpÞFðqÞp þOðη2Þ; ð3:8cÞ

where the map q ↦ φq labels the consecutive solutions to
(3.4) by consecutive integers. The expressions for the order
η2 terms in (3.6) and (3.8) are lengthy and we suppress
them here.
As a consistency check, the linear terms in (3.8) satisfy

the linear order Bogoliubov identities (A4a). We are not
aware of reasons to suspect inconsistencies in the quadratic
order identities (A4b) but examining these would require a
nontrivial evaluation of the left-hand side in (A4b) and we
have not carried out this evaluation.

C. Small sudden change: Near Dirichlet

We consider also a perturbation around the Dirichlet
boundary condition. If η1 < 0 and η2 > 0, the result may be

obtained from (3.8) simply by taking the limit κ1 → 0 and
κ2 → 0. The t < 0 mode functions are given by

ϕnðt; xÞ ¼
1ffiffiffiffiffiffi
πn

p e−inπt=L sinðnπx=LÞ; ð3:9Þ

where n ¼ 1; 2;…. Using positive integers to label both the
t < 0 mode functions and the t > 0 mode functions, we
find that the t > 0 eigenfrequencies are given by

km ¼ ð1þ ðη1 − η2Þ þ ðη1 − η2Þ2Þ
πm
L

þOðη3Þ; ð3:10Þ

where m ¼ 1; 2;…, and the Bogoliubov coefficients are
given by
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oαmm ¼ 1 −
1

6
ðη21 þ η1η2 þ η22Þm2π2 þOðη3Þ; ð3:11aÞ

oαmn ¼
ðη1 − ð−1Þmþnη2Þ

ffiffiffiffiffiffiffi
mn

p
ðm − nÞ −

ðη1 − ð−1Þmþnη2Þðη1 − η2Þn
ffiffiffiffiffiffiffi
mn

p
ðm − nÞ2 þOðη3Þ for m ≠ n; ð3:11bÞ

oβmn ¼ −
ðη1 − ð−1Þmþnη2Þ

ffiffiffiffiffiffiffi
mn

p
ðmþ nÞ −

ðη1 − ð−1Þmþnη2Þðη1 − η2Þn
ffiffiffiffiffiffiffi
mn

p
ðmþ nÞ2 þOðη3Þ; ð3:11cÞ

where we have now displayed also the order η2 terms. If
η1 ≥ 0 and/or η2 ≤ 0, the t > 0 theory may have tachyonic
instabilities or zero modes; however, both of these are
nonperturbative, and we have verified that setting D1 ¼
D2 ¼ 0 for t < 0, D1 ¼ η1L and D2 ¼ η2L for t > 0,
ignoring any tachyons or zero modes, and working directly
from (3.1) and (3.7), yields (3.10) and (3.11) regardless the
signs of η1 and η2.
As a consistency check, the expressions in (3.11) can be

verified to satisfy the perturbative Bogoliubov identities
(A4). The elements of the matrix square on the left-hand
side of (A4a) are given by absolutely convergent sums that
can be evaluated by residue techniques.

IV. BOUNDARY CONDITION WITH ARBITRARY
TIME DEPENDENCE

When the boundary condition has arbitrary time depend-
ence but the variations remain so small in magnitude that
first-order perturbation theory suffices, the evolution of the
field can be obtained by composing the sudden changes of
Secs. II and III and passing to the limit [20]. We discuss first
the semiopen waveguide and then the closed waveguide.

A. Semiopen waveguide

For the semiopen waveguide of Sec. II, we consider a
boundary condition of the form (2.2) where D may change
in time but only within the interval t0 ≤ t ≤ tf.

1. Far from Dirichlet

Consider first the far-from-Dirichlet case. We write
D ¼ −Λð1þ ηðtÞÞ, where Λ is a positive constant and
the function ηðtÞ is vanishing outside the interval t0 ≤ t ≤
tf and satisfies jηðtÞj ≪ 1.
At t < t0, we introduce early time basis modes that are as

in (2.3) but with the replacement e−iωt → e−iωðt−t0Þ. At
t > tf, we similarly introduce late time basis modes that are
as in (2.3) but with the replacement e−iωt → e−iωðt−tfÞ. Let
αk0k and βk0k be the coefficients in the Bogoliubov trans-
formation from the early time modes to the late time modes.
Working perturbatively in η, we may proceed as in [20],
and the outcome can be read off from formulas (6) and (7)
therein. We find

αk0k ¼ eiω
0ðtf−t0Þðδðk − k0Þ þ Âk0k þOðη2ÞÞ; ð4:1aÞ

βk0k ¼ eiω
0ðtf−t0ÞB̂k0k þOðη2Þ; ð4:1bÞ

where

Âk0k ¼ −
iΛkk0

π
ffiffiffiffiffiffiffiffi
ωω0p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðkΛÞ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðk0ΛÞ2
p

×
Z

tf

t0

e−iðω0−ωÞðt−t0ÞηðtÞdt; ð4:2aÞ

B̂k0k ¼
iΛkk0

π
ffiffiffiffiffiffiffiffi
ωω0p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðkΛÞ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðk0ΛÞ2
p

×
Z

tf

t0

e−iðω0þωÞðt−t0ÞηðtÞdt: ð4:2bÞ

When μ ¼ 0, (4.1) and (4.2) reduce to what was found in
[21–24] via a different formalism.

2. Near Dirichlet

In the near-Dirichlet case, we take D ¼ bðtÞ, where the
function bðtÞ is vanishing outside the interval t0 ≤ t ≤ tf.
Proceeding as above, we find

αk0k ¼ eiω
0ðtf−t0Þðδðk − k0Þ þ Âk0k þOðb2ÞÞ; ð4:3aÞ

βk0k ¼ eiω
0ðtf−t0ÞB̂k0k þOðb2Þ; ð4:3bÞ

where

Âk0k ¼
ikk0

π
ffiffiffiffiffiffiffiffi
ωω0p

Z
tf

t0

e−iðω0−ωÞðt−t0ÞbðtÞdt; ð4:4aÞ

B̂k0k ¼ −
ikk0

π
ffiffiffiffiffiffiffiffi
ωω0p

Z
tf

t0

e−iðω0þωÞðt−t0ÞbðtÞdt: ð4:4bÞ

B. Closed waveguide

For the closed waveguide of Sec. III, we consider a
boundary condition of the form (3.1) whereD1 andD2 may
change in time but only within the interval t0 ≤ t ≤ tf. We
may proceed as above. The only new aspect is that the
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method of [20] needs to be generalized to accommodate the
linear term that appears in the frequencies (3.6) and (3.10).

1. Far-from Dirichlet

In the far-from-Dirichlet case, we write D1 ¼ ð−κ1 þ
η1ðtÞÞL and D2 ¼ ðκ2 þ η2ðtÞÞL, where κ1 and κ2 are
positive constants and the functions η1ðtÞ and η2ðtÞ are
vanishing outside the interval t0 ≤ t ≤ tf and satisfy
jη1ðtÞj ≪ 1 and jη2ðtÞj ≪ 1. Indexing the mode functions
in the notation of Sec. III B, writing

ωp ¼ p=L; ωq ¼ q=L; ð4:5Þ

and proceeding as above, we find that the coefficients in the
Bogoliubov transformation from the early time modes to
the late time modes are given by

αpq ¼ eiωpðtf−t0Þðδpq þ Âpq þOðη2ÞÞ; ð4:6aÞ

βpq ¼ eiωpðtf−t0ÞB̂pq þOðη2Þ; ð4:6bÞ

where

Âpq ¼
i

ffiffiffiffiffiffi
pq

p

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðpÞFðqÞp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ κ22p
2Þð1þ κ22q

2Þ
q Z

tf

t0

e−iðωp−ωqÞðt−t0Þη1ðtÞdt

− ð−1Þφpþφq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κ21p

2Þð1þ κ21q
2Þ

q Z
tf

t0

e−iðωp−ωqÞðt−t0Þη2ðtÞdt
�
; ð4:7aÞ

B̂pq ¼ −
i

ffiffiffiffiffiffi
pq

p

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðpÞFðqÞp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ κ22p
2Þð1þ κ22q

2Þ
q Z

tf

t0

e−iðωpþωqÞðt−t0Þη1ðtÞdt

− ð−1Þφpþφq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κ21p

2Þð1þ κ21q
2Þ

q Z
tf

t0

e−iðωpþωqÞðt−t0Þη2ðtÞdt
�
: ð4:7bÞ

2. Near Dirichlet

In the near-Dirichlet case, we write D1 ¼ η1ðtÞL and
D2 ¼ η2ðtÞL. Indexing the past and future mode functions
by positive integers in the notation of Sec. III C, and writing

ωm ¼ πm=L; ωn ¼ πn=L; ð4:8Þ

we find

αmn ¼ eiωmðtf−t0Þðδmn þ Âmn þOðη2ÞÞ; ð4:9aÞ

βmn ¼ eiωmðtf−t0ÞB̂mn þOðη2Þ; ð4:9bÞ

where

Âmn ¼
iπ

ffiffiffiffiffiffiffi
mn

p
L

Z
tf

t0

e−iðωm−ωnÞðt−t0Þðη1ðtÞ − ð−1Þmþnη2ðtÞÞdt; ð4:10aÞ

B̂mn ¼ −
iπ

ffiffiffiffiffiffiffi
mn

p
L

Z
tf

t0

e−iðωmþωnÞðt−t0Þðη1ðtÞ − ð−1Þmþnη2ðtÞÞdt: ð4:10bÞ

V. COMPARISON

Weare now ready to compare the evolution under the time-
dependent Robin boundary condition to the evolution under
the Dirichlet condition at a mechanically moving boundary.

A. Semiopen waveguide

For the semiopen waveguide, the evolution of a field
with mass μ ≥ 0 under the time-dependent Robin boundary

condition was given in Sec. IVA. The evolution of a
massless field under a Dirichlet condition at a mechanically
moving boundary is given in Appendix B in terms of the
acceleration of the boundary, in a small acceleration
approximation that allows the velocity and the travel
distance to remain arbitrary and overlaps with the DCE
literature results [3–5] in the common domain of validity.
Comparing (4.3)–(4.4) and (B11)–(B12), we see that the

massless field with the mechanically moving boundary can
be simulated to the leading order in perturbation theory by
the μ ¼ 0 near-Dirichlet Robin boundary condition
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provided we choose bðtÞ so that aðτÞ ¼ ∂2
τbðτÞ, where aðτÞ

is the proper acceleration of the boundary as a function of
its proper time τ, and the modulation starts and ends so
gently that both b and _b vanish. This is precisely the
relation one would have expected from the low frequency
equivalence between the Robin boundary condition (1.3)
and the mechanically moving Dirichlet boundary condition
(1.4). The simulation is reliable in the frequency range
where the first-order perturbation theory results on both the
Robin side and on the mechanical side remain reliable; we
shall not attempt to quantify this range more precisely, but
for given aðτÞ and bðτÞ the range is unlikely to include
arbitrarily high frequencies.
Comparing further (4.3)–(4.4) and (B11)–(B12) with

(4.1)–(4.2), we see that the massless field with the
mechanically moving boundary can be simulated by the
μ ¼ 0 far-from-Dirichlet Robin boundary condition pro-
vided we choose ηðtÞ so that aðτÞ ¼ −Λ∂2

τ ηðτÞ, the
frequencies are much smaller than Λ−1, and the modulation
starts and ends so gently that both η and _η vanish. Again,
this is precisely the outcome one would have expected from
(1.3) and (1.4). When the frequencies are not much smaller
than Λ−1, the evolution with the Robin boundary condition
differs from the evolution with the mechanically moving
boundary because the square root factors in (4.2) differ
from unity.
Investigating these differences further, recall that the beta

coefficients are directly related to the total photon produc-
tion number by

N ¼
Z

jβk0kj2dkdk0: ð5:1Þ

Taking ηðtÞ to be a sinusoidal function:

ηðtÞ ¼ ε sin½ωdðt − t0Þ�; ð5:2Þ

with positive constant ε ≪ 1 and driving frequency ωd, the
integrals in (4.2) can be performed exactly. The dominant
part of the photon flux occurs for frequencies below the
driving frequency. We therefore define the photon flux
density, nðk̄Þ, as a function of the reduced frequency
k̄ ≔ k0=ωd, by

nðk̄Þ ≔ ωd

Z
∞

0

jβωdk̄kj2dk; ð5:3Þ

so that

N ¼
Z

∞

0

nðk̄Þdk̄: ð5:4Þ

Figure 1 presents numerical plots of the photon flux
density for Λ ≪ 1=ωd and Λ ≫ 1=ωd. In both cases the
spectrum has in the range 0 < k̄ < 1 a distinctive parabolic
shape that is qualitatively characteristic of the DCE, and for
Λ ≪ 1=ωd there is good agreement with the zero temper-
ature curve of Fig. 8 in [12].
For a quantitative comparison with the DCE, Fig. 1

presents also the photon flux density for the mechanically
moving Dirichlet boundary, obtained from (B11)–(B12)
with the matching aðτÞ ¼ −Λ∂2

τ ηðτÞ. When the effective
length, Λ, is much smaller than the effective wavelength of
the driving frequency (Λ ≪ 1=ωd), the moving boundary
and Robin boundary systems produce almost identical
spectral functions, even though the modulation used for
the plot has nonvanishing _η at the start and end. On the
other hand, when the effective length is larger than the
effective wavelength of the driving frequency (Λ ≫ 1=ωd),
the spectral functions from the moving boundary system

0 1 2 3 4
k

1

2

3 10 3
n k

0 1 2 3 4
k

0.5

1

1.5
n k

FIG. 1 (color online). Photon flux densities nðk̄Þ (5.3) for the semiopen waveguide in terms of the reduced frequency k̄ ¼ k=ωd for
moving boundary (red dashed) and nonmoving time-varying Robin boundary (blue solid). (Left) In the small effective length limit
Λ ≪ 1=ωd the two systems display near identical behavior. (Right) In the large effective length limit Λ ≫ 1=ωd the moving and
nonmoving systems have different photon production profiles. In both plots we use the values (in units with v ¼ 1), ϵ ¼ 0.25,
ωd ¼ 0.155 mm−1 and tf − t0 ¼ 40.5 mm. In the left plot we take Λ ¼ 0.44 mm and in the right plot we take Λ ¼ 10 mm. The
parameters in the left plot can be matched to those suggested in [12] by taking the propagation velocity v ¼ 1.2 × 1011 mm=s and noting
that Leff

0 → Λ, δLeff
0 =Leff

0 → ε.
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and the Robin boundary systems differ: the radiation from
the moving boundary has a higher intensity, and the
spectrum from the Robin boundary condition decays more
rapidly at high frequencies. Both of these behaviors result
from the square root factors which suppress the beta
coefficients in (4.2).
One of the signatures of the DCE radiation is that emitted

photons are entangled. We can quantify the amount of
entanglement produced using the negativity [28,29] which
is defined as minus the sum of the negative eigenvalues of
the partially transposed state. We show in Appendix C that
for perturbative Bogoliubov coefficients of the type (4.1)–
(4.2) the leading term in the negativity between sharply
peaked field modes k and k0 is given by ΔkjB̂k0kj where Δk
is the spectral linewidth of the frequencies.
For the driving function given in Eq. (5.2), jB̂k0kj is

highest for values of kþ k0 near the driving frequency.
Therefore, we define Δω ¼ ðk − k0Þ=2, and we expand the
frequencies near half driving frequency as

k ¼ ωd=2þ Δω; ð5:5aÞ

k0 ¼ ωd=2 − Δω: ð5:5bÞ

The results for jB̂k0kj as a function of Δω=ωd are shown in
Fig. 2. These plots are qualitatively similar to those of
Fig. 14 in [12] for the “without resonator” line. We again

observe good agreement when Λ ≪ 1=ωd between moving
mirrors and nonmoving microwave waveguides. Also,
when Λ ≫ 1=ωd we find that the moving mirrors generate
more entanglement than their associated nonmoving micro-
wave waveguide simulations.
The entanglement considered above is entanglement

between the field modes. This entanglement could be
observed directly with a homodyne setup by coupling
the emitted radiation into an optics circuit with stationary
photodetectors. Another possibility would be to harvest the
entanglement by inserting localized detectors, such as an
atomic qubit. This has been discussed in a range of settings
in [30–35] and the references therein.

B. Closed waveguide

For the closed waveguide, the evolution of a massless
field under the time-dependent Robin boundary condition
was given in Sec. IV B. The evolution of a massless field in
a moving, mechanically rigid cavity of proper length Lwith
Dirichlet boundary conditions is given by [19,20]

αmn ¼ eiωmðτf−τ0Þðδmn þ Âmn þOða2ÞÞ; ð5:6aÞ

βmn ¼ eiωmðτf−τ0ÞB̂mn þOða2Þ; ð5:6bÞ

where

Ânn ¼ 0; ð5:7aÞ

Âmn ¼ −
iπ

ffiffiffiffiffiffiffi
mn

p ð1 − ð−1ÞmþnÞ
L2ðωm − ωnÞ2

Z
τf

τ0

e−iðωm−ωnÞðτ−τ0ÞaðτÞdτ for m ≠ n; ð5:7bÞ

B̂mn ¼
iπ

ffiffiffiffiffiffiffi
mn

p ð1 − ð−1ÞmþnÞ
L2ðωm þ ωnÞ2

Z
τf

τ0

e−iðωmþωnÞðτ−τ0ÞaðτÞdτ; ð5:7cÞ
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FIG. 2 (color online). The plots show the negativity function jB̂k0kj ¼ N =Δk (see Appendix C) with k ¼ ωd=2þ Δω and k0 ¼
ωd=2 − Δω in terms of Δω=ωd for moving boundary (red dashed) and nonmoving time-varying Robin boundary (blue solid). (Left) In
the small effective length limit Λ ≪ 1=ωd the two systems display near identical behavior. (Right) In the large effective length limit
Λ ≫ 1=ωd the moving system produces more entanglement than the nonmoving system. We use the same parameters as in Fig. 1.
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m and n are positive integers, ωm and ωn are given by (4.8),
τ is the proper time at the center of the cavity and aðτÞ is the
proper acceleration at the center of the cavity.
Comparing (4.9)–(4.10) and (5.6)–(5.7), we see that the

massless field in the rigidly moving cavity can be simulated
to the leading order in perturbation theory by the near-
Dirichlet Robin boundary condition provided we choose
η1ðτÞ ¼ η2ðτÞ and aðτÞ ¼ L∂2

τη1ðτÞ, and the modulation
starts and ends so gently that both η and _η vanish. Again,
this is precisely the relation one would have expected from
(1.3) and (1.4), and the simulation is reliable in the
frequency range where the first-order perturbation theory
results on both sides are reliable.
Comparing further with (4.6)–(4.7), we see that the

rigidly moving cavity can be simulated by the far-from-
Dirichlet Robin boundary condition with η1ðτÞ ¼ η2ðτÞ and
aðτÞ ¼ L∂2

τη1ðτÞ when the frequencies are much smaller
than κ−11 and κ−12 and the modulation starts and ends so
gently that both η and _η vanish.
We anticipate that the simulation can be extended to a

moving cavity that is not rigid, in the small amplitude
regime commonly considered in the DCE literature [3–5],
by equating Lη1ðtÞ [respectively Lη2ðtÞ] to the variation in
the position of the left (right) boundary. We have however
not examined this question systematically.

VI. CONCLUSIONS

In this paper we have analyzed the evolution of a quantum
field in 1þ 1 dimensions under time-dependent Robin
boundary conditions that occur in superconducting micro-
wave circuit experiments in the high plasma frequency limit.
We solved the evolution explicitly to linear order in the time
variation of the Robin boundary condition, in a formalism
that allowed us to handle both a semiopen waveguide and a
closed waveguide, and for the latter allowing the boundary
conditions at the two ends to be varied independently. For
frequencies that are much smaller than the effective inverse
length associated with the SQUID(s) at the end(s) of the
waveguide, we verified that a suitable modulation of the
SQUID(s) allows the waveguide to simulate a Dirichlet
boundary condition at a mechanically moving boundary of
the DCE, even in the regime where the mechanical motion is
relativistic; both the experiment reported in [6] and the
experimental proposals of [8–10] appear to operate within in
this domain by a margin of approximately 1 order of
magnitude. For higher frequencies the waveguide still
exhibits particle creation and mode mixing, but these can
no longer be quantitatively matched to those of the DCE, and
in particular the large frequency falloff properties in the
evolution are qualitatively different. These features in the
large frequency Bogoliubov coefficients result in differing
particle emission spectrum for the moving and nonmoving
systems when the effective length is larger than the inverse
driving frequency L ≫ 1=ωd. In this limit, mechanically
moving boundary radiation can be characterized as having a

larger total flux and a less steep falloff at high frequencies
compared to radiation from the static waveguide with time-
varying Robin boundary conditions.
While the analogy between a moving Dirichlet boundary

and a time-varying Robin boundary condition is useful for
simulation purposes it is important to keep in mind that the
physical systems corresponding to these two situations are
different and therefore can lead to different outcomes. On
the one hand, our results support proposals to simulate in a
mechanically static waveguide quantum phenomena due to
motion, including entanglement generation and degrada-
tion, even in a regime where the mechanically moving
system experiences significant relativistic effects [8–10].
On the other hand, our results demonstrate that the
interpretation of a waveguide experiment in terms of the
simulation of the DCE is possible only in certain parameter
ranges. Within the Robin boundary condition approxima-
tion that we have analyzed, the range of DCE interpretation
is determined just by the effective inverse length scale set
by the SQUID(s) at the end(s) of the waveguide. It remains
a subject to future work to establish the range of DCE
interpretation when all relevant effects beyond the Robin
boundary condition approximation are considered [11,12],
including the effects due to a large but finite SQUID plasma
frequency analyzed in [13–15].
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APPENDIX A: PERTURBATIVE BOGOLIUBOV
IDENTITIES

In this appendix we record identities satisfied by a
perturbative expansion of the Bogoliubov coefficients.
These identities are used in the main text for consistency
checks of the perturbative treatment.
Let α and β denote the matrices of a Bogoliubov trans-

formation in the notation of [27], with the matrix elements
αjk and βjk. The indices may be discrete or continuous; in the
latter case the matrix is understood as the kernel of an
integral operator and may include a distributional part. By
construction, the matrices satisfy the Bogoliubov identities

I ¼ αα† − ββ†; ðA1aÞ
0 ¼ αβT − βαT; ðA1bÞ

where I stands for the identity matrix.
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Suppose now that α and β have the formal power series
expansions

α ¼ Iþ ϵα1 þ ϵ2α2 þ ϵ3α3 þ � � � ; ðA2aÞ

β ¼ ϵβ1 þ ϵ2β2 þ ϵ3β3 þ � � � ; ðA2bÞ

where ϵ is a real-valued expansion parameter. Substituting
(A2) in (A1) and collecting terms order by order, order ϵ0 is
identically satisfied while orders ϵ1 and ϵ2 give

ϵ1∶
�
0 ¼ α1 þ α†1;

0 ¼ β1 − βT1 ;
ðA3aÞ

ϵ2∶
�
0 ¼ α1α

†
1 − β1β

†
1 þ α2 þ α†2;

0 ¼ β1α
T
1 − α1β

T
1 þ β2 − βT2 :

ðA3bÞ

When α and β are real, (A3) simplifies to

ϵ1∶
�
α1 ¼ −αT1 ;
β1 ¼ βT1 ;

ðA4aÞ

ϵ2∶ ðα1 � β1Þ2 ¼ α2 þ αT2 � ðβ2 − βT2 Þ: ðA4bÞ

APPENDIX B: ACCELERATED BOUNDARY
IN MINKOWSKI SPACETIME

In this appendix we consider a quantized massless scalar
field in ð1þ 1Þ-dimensional Minkowski spacetime subject
to the Dirichlet boundary condition at one accelerated
boundary, in the limit where the acceleration is treated
perturbatively but may have arbitrary time dependence, and
the velocity and travel distance of the boundary remain
arbitrary. We follow the methods that were developed for a
mechanically rigid accelerated cavity in [19,20]. The
results overlap with those in the DCE literature [3–5] for
small amplitude oscillations in the common domain of
validity. The corresponding problem for a classical scalar
field has been analyzed in [36–38].

1. Inertial boundary to uniformly accelerated boundary

We work with a massless scalar field ϕ in ð1þ 1Þ-
dimensional Minkowski spacetime, in the notation of the
main text: the metric is ds2 ¼ −dt2 þ dx2, and the wave
equation is (2.1) with μ ¼ 0.
For t < 0, we take the field to live in the half-space

x ≥ a−1, where a is a positive constant of dimension
inverse length, and we adopt at x ¼ a−1 the Dirichlet
boundary condition. We adopt the basis of mode functions

ϕkðt; xÞ ¼
1ffiffiffiffiffi
πk

p e−ikt sin½kðx − a−1Þ�; ðB1Þ

where k > 0. ϕk has the positive frequency kwith respect to∂t, and the normalization in the Klein-Gordon inner
product is ðϕk;ϕk0 Þ ¼ δðk − k0Þ.
For t ≥ 0, we make the boundary follow the uniformly

accelerated worldline x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ a−2

p
. The proper acceler-

ation of the boundary is equal to a. The field lives in the
region x ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ a−2

p
, and we take the field to satisfy the

Dirichlet boundary condition at the accelerated boundary.
We adopt the basis of mode functions

Φkðt; xÞ ¼
1

2i
ffiffiffiffiffi
πk

p f½aðx − tÞ�ik=a − ½aðxþ tÞ�−ik=ag; ðB2Þ

where k > 0. Φk has the positive frequency k=a with
respect to the boost Killing vector x∂t þ t∂x, and it has
the positive frequency k with respect to the proper time of
the boundary. The normalization in the Klein-Gordon inner
product is ðΦk;Φk0 Þ ¼ δðk − k0Þ.
At the junction t ¼ 0, we match the two sets of modes by

the Bogoliubov transformation

Φk0 ¼
Z

∞

0

ðoαk0kϕk þ oβk0kϕkÞdk: ðB3Þ

From the inner products that give the Bogoliubov coef-
ficients [27], we find

oαk0k ¼
1

πa

ffiffiffiffi
k0

k

r
Re

�Z
∞

1

dy
y
y−ik

0=aeiðk=aÞðy−1Þ
�
; ðB4aÞ

oβk0k ¼
1

πa

ffiffiffiffi
k0

k

r
Re

�Z
∞

1

dy
y
yik

0=aeiðk=aÞðy−1Þ
�
: ðB4bÞ

2. Small acceleration expansion

We wish to find the asymptotic form of oαk0k and oβk0k
(B4) when the acceleration a of the boundary is small
compared with both k and k0.
The small a expansion of oβk0k may be obtained by

applying to (B4b) the method of repeated integration by
parts [39]. The result is

oβkk0 ¼
a

ffiffiffiffiffiffi
k0k

p

πðkþ k0Þ3 þOða3Þ: ðB5Þ

The small a expansion of oαk0k is more involved since we
expect the coefficients in this expansion to be no longer
functions but distributions, the leading term being
δðk − k0Þ. We shall not give a rigorous treatment but
proceed heuristically as follows.
Starting from the integral in (B4a), we replace k in the

integrand by kþ iϵ where ϵ > 0. If ϵ is considered fixed,
the asymptotic small a expansion can be obtained by the
method of repeated integration by parts [39], with the result
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oαk0k ¼
1

π

ffiffiffiffi
k0

k

r �
−Im

�
1

ðk − k0 þ iϵÞ
�
þ aRe

�
kþ iϵ

ðk − k0 þ iϵÞ3
�

þ a2Im

�ðkþ iϵÞ½2ðkþ iϵÞ þ k0�
ðk − k0 þ iϵÞ5

�
þOða3Þ

�
:

ðB6Þ

Each of the three terms shown in (B6) has a well-defined
distributional limit as ϵ → 0, as follows from the identity

lim
ϵ→0þ

Z
dk

fðkÞ
kþ iϵ

¼ −iπfð0Þ þ P
Z

dk
fðkÞ
k

; ðB7Þ

and its derivatives. Assuming that the ϵ → 0 limit com-
mutes with the small a expansion, we obtain

oαk0k ¼ δðk − k0Þ þ aG1ðk0; kÞ þ a2G2ðk0; kÞ þOða3Þ;
ðB8Þ

where the distributions G1 and G2 are given byZ
∞

0

dkG1ðk0; kÞfðkÞ

¼ ðk0Þ1=2
2π

P
Z

∞

0

dk
1

ðk − k0Þ ∂
2
kðk1=2fðkÞÞ; ðB9aÞ

Z
∞

0

dkG2ðk0; kÞfðkÞ

¼ −
ðk0Þ1=2
12

∂4
k0 ððk0Þ3=2fðk0ÞÞ −

ðk0Þ3=2
24

∂4
k0 ððk0Þ1=2fðk0ÞÞ:

ðB9bÞ

Both G1 and G2 are hence representable by a function
except at the coincidence limit, and we may write

G1ðk0; kÞ ¼
ffiffiffiffiffiffi
kk0

p

πðk − k0Þ3 for k ≠ k0; ðB10aÞ

G2ðk0; kÞ ¼ 0 for k ≠ k0: ðB10bÞ

As a consistency check, the expansions in (B5) and (B8)
satisfy the linear order Bogoliubov identities (A4a). The
quadratic order Bogoliubov identities (A4b) would require
a distributional treatment and we shall not analyze
them here.

3. Arbitrarily accelerated boundary

Let τ denote the proper time of the boundary and aðτÞ the
proper acceleration of the boundary, such that positive
(negative) values of aðτÞ mean acceleration towards
increasing (decreasing) x. We assume that aðτÞ is vanishing
outside the interval τ0 ≤ τ ≤ τf and non-negative within

this interval, and we assume that aðτÞ remains much
smaller than the frequencies to be considered.
We define the early (respectively late) time modes by

(B1) in the inertial frame in which the boundary is at rest in
the early (late) times. Proceeding as in [19,20], or in Sec. IV
of the present paper, we find that the Bogoliubov coef-
ficients from the early time modes to the late time modes
are

αk0k ¼ eik
0ðτf−τ0Þðδðk − k0Þ þ Âk0k þOða2ÞÞ; ðB11aÞ

βk0k ¼ eik
0ðτf−τ0ÞB̂k0k þOða2Þ; ðB11bÞ

where

Âk0k ¼ −
i

ffiffiffiffiffiffi
kk0

p

πðk − k0Þ2
Z

τf

τ0

e−iðk0−kÞðτ−τ0ÞaðτÞdτ for k ≠ k0;

ðB12aÞ

B̂k0k ¼
i

ffiffiffiffiffiffi
kk0

p

πðkþ k0Þ2
Z

τf

τ0

e−iðk0þkÞðτ−τ0ÞaðτÞdτ; ðB12bÞ

and we omit the examination of the distributional part of
Âk0k at k ¼ k0.
The above treatment assumes aðτÞ to be non-negative.

We shall not examine the validity of (B12) when aðτÞ may
take negative values.

APPENDIX C: ENTANGLEMENT FORMULA
FOR CONTINUOUS SPECTRA

In this appendix we derive the formula for the perturba-
tive approximation to the bipartite mode entanglement of
the field, as measured by the entanglement negativity, in the
case when the field solutions have continuous spectra.
These generalize the negativity formulas found for field
solutions with discrete eigenvalues in [40]. The field is
prepared initially in the vacuum state and is subjected to an
evolution which can be described by Bogoliubov trans-
formations that are assumed to take the general form:

αk0k ¼ cðk0Þðδðk − k0Þ þ Âk0k þOðη2ÞÞ; ðC1aÞ

βk0k ¼ cðk0ÞB̂k0k þOðη2Þ; ðC1bÞ

where η ≪ 1, k and k0 are continuous real-valued param-
eters, Âk0k and B̂k0k are of linear order in η and cðkÞ is a
phase taking the general form, cðkÞ ¼ eifðkÞ, where f is a
real-valued function of k. Furthermore, we assume that Âk0k
and B̂k0k satisfy the conditions:

Âk0k ¼ −Â⋆
kk0 for k ≠ k0; ðC2aÞ

B̂k0k ¼ B̂kk0 ; ðC2bÞ
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where the star denotes complex conjugation. Equation (C2)
is satisfied by the evolution in the semiopen waveguide (4.1)
and by the evolution with the accelerated mirror (B12).
The added difficulty of systems with continuous spectra

is that the states are Dirac δ-normalized which can lead to
apparent infinities in formulas for the entanglement if not
correctly handled. The infinities are an artifact of working
with infinitely precise frequencies which in practice is not
possible—there is always a spectral linewidth, Δk, asso-
ciated with the measurement of a frequency. Experiments
which measure bipartite entanglement of the field do so by
measuring two distinct frequencies each with a small
linewidth. For simplicity, we will assume that the modes
measured are uniform wave packets of frequencies having
spectral linewidth Δk and central frequencies kp, k0p
respectively. We define

fkpðkÞ ¼
8<
:

1ffiffiffiffiffi
Δk

p for k ∈
�
kp − Δk

2
; kp þ Δk

2

�
;

0 otherwise:
ðC3Þ

We will also assume that the measured frequencies are
sufficiently separated such that there is no overlap of their
supports in frequency space:Z

fkpðkÞfk0pðkÞdk ¼ 0: ðC4Þ

Let âðkÞ be the annihilation operator associated with
the frequency k. After the evolution the annihilation
operators are transformed by the Bogoliubov transforma-
tions according to

ˆ̄aðkÞ ¼
Z

ðα⋆kk0 âðk0Þ − β⋆kk0 âðk0Þ†Þdk0: ðC5Þ

The quadrature operators associated with these frequencies
are

ˆ̄xðkÞ ¼ ˆ̄aðkÞ þ ˆ̄aðkÞ†; ðC6aÞ

ˆ̄pðk0Þ ¼ 1

i
ð ˆ̄aðkÞ − ˆ̄aðkÞ†Þ; ðC6bÞ

where we use the conventions of [41].
As already alluded these frequencies are not measured

precisely rather the actual measurement occurs over a small
band of frequencies. We can define the quadrature oper-
ators associated with a wave packet centered at the
frequency kp by

ˆ̄xkp ¼
Z

fkpðkÞ ˆ̄xðkÞdk; ðC7aÞ

ˆ̄pkp ¼
Z

fkpðkÞ ˆ̄pðkÞdk: ðC7bÞ

A short calculation shows that the quadrature operators
satisfy the commutation relations:

½ ˆ̄xi; ˆ̄pj� ¼ 2iδij; ðC8aÞ
½ ˆ̄xi; ˆ̄xj� ¼ ½ ˆ̄pi; ˆ̄pj� ¼ 0; ðC8bÞ

where i; j ∈ fkp; k0pg.
Since the Bogoliubov transformations are linear and the

vacuum state is a Gaussian state, it follows that the final
state of the field will also be a Gaussian state. Gaussian
states are completely characterized by their first and second
statistical moments. It is the second moments which are
important for determining the amount of entanglement in a
Gaussian state. The second moments can be arranged into a
covariance matrix: we define R ¼ ð ˆ̄xkp ; ˆ̄pkp ; ˆ̄xk0p ; ˆ̄pk0pÞ, then
the covariance matrix can be defined by

σij ¼
1

2
hfRi; Rjgi − hRiihRji; ðC9Þ

where curly braces denote anticommutator and the covari-
ance matrix is normalized such that the covariance matrix
of the vacuum state is the identity matrix. Expectation
values are to be taken with respect to the initial state which
in our case is the vacuum state. It is easy to see that the
second term in (C9) vanishes.
We define the kernels:

Xðk; k0Þ ¼ 1

2
hf ˆ̄xðkÞ; ˆ̄xðk0Þgi

¼
Z

dlðα⋆kl − βklÞðαk0l − β⋆k0lÞ; ðC10aÞ

Hðk; k0Þ ¼ 1

2
hf ˆ̄xðkÞ; ˆ̄pðk0Þgi

¼ i
Z

dlðα⋆kl − βklÞðαk0l þ β⋆k0lÞ − iδðk − k0Þ;

ðC10bÞ

Pðk; k0Þ ¼ 1

2
hf ˆ̄pðkÞ; ˆ̄pðk0Þgi

¼
Z

dlðα⋆kl þ βklÞðαk0l þ β⋆k0lÞ; ðC10cÞ

and the matrix:

Sðk; k0Þ ¼
�
Xðk; k0Þ Hðk; k0Þ
Hðk0; kÞ Pðk; k0Þ

�
; ðC11Þ

then the covariance matrix takes the form:

σ ¼
�
σa σc

σTc σb

�
; ðC12Þ

where superscript T indicates matrix transposition and
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σa ≡
Z

fkpðkÞfkpðk0ÞSðk; k0Þdkdk0; ðC13aÞ

σb ≡
Z

fk0pðkÞfk0pðk0ÞSðk; k0Þdkdk0; ðC13bÞ

σc ≡
Z

fkpðkÞfk0pðk0ÞSðk; k0Þdkdk0: ðC13cÞ

Using relations (C1) and (C2), the matrix Sðk; k0Þ
simplifies to

Sðk; k0Þ ¼ δðk − k0Þ þ S1ðk; k0Þ þOðη2Þ; ðC14Þ
where the matrix elements of S1ðk; k0Þ are given by

S111 ¼ −S122 ¼ −cðkÞ⋆β⋆k0k − cðk0Þβkk0 ; ðC15aÞ

S121 ¼ −S112 ¼ iðcðkÞ⋆β⋆k0k − cðk0Þβkk0 Þ: ðC15bÞ
We can also write the covariance matrix as a Taylor
expansion in η:

σ ¼ σ0 þ σ1 þOðη2Þ; ðC16Þ
and with Eq. (C14) it is easily seen that σ0 is the 4 × 4
identity matrix.
To determine the bipartite entanglement, it is necessary

to calculate the symplectic eigenvalues, ~ν�, of the

covariance matrix of the partially transposed state, ~σ.
The partial transpose is implemented by a transformation
of the covariance matrix given by [42]

σa → ~σa ¼ σa; ðC17aÞ

σb → ~σb ¼ σ3σbσ3; ðC17bÞ

σc → ~σc ¼ σcσ3; ðC17cÞ

where σ3 ¼ diagð1;−1Þ is the z-direction Pauli matrix.
The symplectic values of ~σ can be found from the

absolute values of the eigenvalues of the matrix Ω ~σ, where
Ω ¼ diagðω;ωÞ and

ω ¼
�

0 1

−1 0

�
: ðC18Þ

The zeroth order eigenvalues are �i and both eigenval-
ues have double degeneracy. It is therefore necessary to use
degenerate perturbation theory to determine the eigenval-
ues to the linear order. The linear order corrections to the
eigenvalues are found to be

λ� ¼ �2i
ffiffi
I

p
; ðC19Þ

where

I ≡
Z

dl
Z

dl0
Z

dk
Z

dk0fkpðlÞfk0pðl0ÞfkpðkÞfk0pðk0Þcðl0ÞcðkÞ⋆βll0β⋆k0k: ðC20Þ

The symplectic eigenvalues are therefore

~ν� ¼ j1� 2
ffiffi
I

p
j; ðC21Þ

and the negativity is

N ¼ max

�
0;
1 − ~νs
2~νs

�
; ðC22Þ

where ~νs is the smallest of the two symplectic values. Let us
now assume that the wave packets are very sharply peaked
Δk=kp ≪ 1 and Δk=kp0 ≪ 1, then the integrals in Eq. (C20)
can be approximated by

I ¼ Δk2cðk0pÞcðkpÞ⋆βkpk0pβ⋆k0pkp
¼ Δk2jB̂kpk0p j2; ðC23Þ

and the negativity (to first order in η) simplifies to

N ¼ ΔkjB̂kpk0p j: ðC24Þ

This is the continuous spectrum formula for the entangle-
ment negativity and holds for noninteger values of the
frequencies. It is equivalent to the formula for discrete
frequency modes in the case when the modes have opposite
parity, i.e., when ðkþ k0Þ is odd [40].
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