
Born-Infeld gravity with a massless graviton in four dimensions

İbrahim Güllü,1,* Tahsin Çağrı Şişman,2,3,† and Bayram Tekin1,‡
1Department of Physics, Middle East Technical University, 06800 Ankara, Turkey

2Centro de Estudios Científicos (CECS), Casilla 1469 Valdivia, Chile
3Department of Astronautical Engineering, University of Turkish Aeronautical Association,

06790 Ankara, Turkey
(Received 31 October 2014; published 3 February 2015)

We construct Born-Infeld (BI) type gravity theories which describe tree-level unitary (nonghost and
nontachyonic) massless spin-2 modes around their maximally symmetric vacua in four dimensions.
Building unitary BI actions around flat vacuum is straightforward, but this is a complicated task around
(anti)-de Sitter backgrounds. In this work, we solve the issue and give details of constructing perturbatively
viable determinantal BI theories. It is interesting that the Gauss-Bonnet combination, which is a total
derivative in four dimensions, plays an important role in the construction of viable BI theories.
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I. INTRODUCTION

It is well known that Einstein’s gravity, otherwise an
excellent theory in the “intermediate” scales, needs to be
modified both at large and small scales. At large distances,
the galaxy rotation curves and the accelerated expansion of
the Universe are somewhat urgent problems which could be
provisionally solved by keeping Einstein’s theory intact
but introducing large amounts of dark matter and dark
energy or, alternatively, by modifying gravity at long
distances such as upgrading it to massive gravity. (Of
course, it could happen that one may need to both modify
gravity and also add dark matter and dark energy to
solve these long distance problems. This possibility should
not be ruled out.) At small scales or at high energies, the
problem is more complicated, even if phenomenologically
less urgent, due to lack of data. It is more complicated
because what one really needs is a quantum theory of
gravity whose basic degrees of freedom, symmetries, and
even principles as applied to spacetime are unknown.
Namely, the geometric nature of spacetime, even its number
of dimensions at small distances, is not clear. Even though
there are candidates such as string theory, loop quantum
gravity, or asymptotically safe theories, it is fair to say that
we are still far away from a consistent theory of quantum
gravity.
In the absence of guiding principles for a renormalizable

theory of gravity, one is forced to introduce effective
theories which work better than Einstein’s gravity at small
distances and hopefully also at large distances. One such
attempt is, emulating pre-quantum-electrodynamics era
electromagnetism, to write Born-Infeld (BI) type gravity
theories [1] which were inspired by the work of Eddington

[2] who used the idea of “generalized volume” suggested
actions of the form

I ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detRμνðΓÞ

q
; ð1Þ

and assumed the metric and the connection to be indepen-
dent variables. (A note about history: Eddington’s work in
gravity precedes the works of Born and Infeld [3] in
electrodynamics, but it is actually difficult to find this
action in Eddington’s book in one compact form even
though the discussion is scattered in the book. Schrodinger
attributes this theory to Eddington on page 113 of his book
[4].) After all, good ideas never disappear: Eddington’s idea
was resuscitated recently in a number of works [5–7],
which led to interesting results such as singularity-free
cosmology.
In analogy with the minimal electromagnetic BI theory,

in the current work, we take the more conventional path of
assuming the metric to be the only independent variable,
following Deser and Gibbons [1] who gave a jumpstart to
the BI gravity theories. This line of reasoning recently
[8–11] bore much fruit in the lower dimensional setting
where we have found a BI-type action which reads

IBINMG ¼ −
4m2

κ2

Z
d3x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det

�
gμν −

1

m2
Gμν

�s

−
�

Λ0

2m2
þ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
; ð2Þ

where Gμν is the Einstein tensor without a cosmological
constant. This theory is called the Born-Infeld new massive
gravity (BINMG) theory with the following remarkable
properties:
(1) For Λ0 ≠ 0, unlike any generic finite order theory

besides the cosmological Einstein’s theory, it has a
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unique maximally symmetric vacuum with an ef-
fective cosmological constant Λ ¼ Λ0ð1þ Λ0

4m2Þ for
Λ0 > −2m2 [9,12]. Flat space is the unique vacuum
when Λ0 ¼ 0.

(2) It has a unitary spin-2 massive degree of freedom
with M2 ¼ m2 þ Λ about the flat (Λ ¼ 0) and AdS
backgrounds. This provides an infinite order exten-
sion of the quadratic NMG1 [14–16].

(3) It reproduces, up to desired order in the curvature
expansion, the extended NMG theories that are
consistent with the AdS/CFT duality and that have
a c-function [9,17,18].

(4) The BINMG action appears as a counterterm in
AdS4 [13].

In addition to these properties, the existence of a super-
symmetric extension to the cubic order truncation of the
theory suggests that a supersymmetric extension presum-
ably exists for the full theory [19].
All these virtues of the three-dimensional BI gravity led

us to search for similar theories beyond three dimensions
and especially in the more relevant 3þ 1 dimensions. In
this work, this is the task that we take on. Some of our
computations, especially in the context of general formal-
ism, will be in generic n dimensions, but in most of the
current work we focus on n ¼ 3þ 1 dimensions since it
has rather distinctive features compared to the n > 4 cases.
The generic n dimensional theory is somewhat more
complicated and deserves separate attention [20]. As we
shall see, the set of viable Lagrangians is larger in four
dimensions compared to the three dimensional case, where
there are only two theories as mentioned above, since
vanishing of the Weyl tensor and the linear theory having
no propagating degrees of freedom by itself in three
dimensions make n ¼ 2þ 1 rather simple and unique.
One should not expect such a simplicity in four dimensions
and beyond.
In constructing viable BI-type gravity theories, the

important point is to find the physical constraints that
one imposes on the theory. Here, the constraints we assume
are as follows:
(1) In small curvature expansion, the theory at the

lowest order reduces to (cosmological) Einstein’s
gravity.

(2) The theory admits flat or (A)dS vacuum.
(3) The theory describes only massless spin-2 excita-

tions around its flat vacuum or the (A)dS vacuum,
and these excitations are nonghost and nontachyonic
(namely, the theory is tree-level unitary) as a full
theory (thus, infinitely many terms in the curvature
expansion contribute to the propagator of the
theory).

(4) On top of the previous condition, the theory is tree-
level unitary at any finite truncated order in the
curvature expansion.

Let us briefly explain why these conditions are imperative
for a healthy theory. We require that in small curvature
expansion the theory reduces to the (cosmological) Einstein
theory which is a natural condition to reproduce the
plethora of data explained by Einstein’s theory. The second
requirement is sort of self-explanatory since one needs a
maximally symmetric vacuum with vanishing conserved
quantities such as energy and angular momentum. The third
requirement is also somewhat obvious both in the context
of the stability of the vacuum and perturbative viability of
the quantum version of the theory. The fourth condition is
extremely difficult to satisfy in the curvature expansion for
(A)dS backgrounds. Observe that we require not only that
the theory is tree-level unitary as a whole (condition 3) but
that it is also tree-level unitary at any truncated order in the
curvature expansion (condition 4). To the best of our
knowledge, the theories that we present are the only ones
that satisfy this requirement in four dimensions. (There are
Lovelock theories [21] in higher dimensions that also
satisfy this requirement, but they reduce to Einstein’s
theory in four dimensions.)
As we shall find out, these conditions still leave a large

set of viable theories. Of course, one can additionally
impose that there be no dimensionless or dimensionful
parameters, save the Newton’s constant and, perhaps, the
BI parameter, which highly constrains the viable theories.
As we shall see, the most “minimal” BI theory also has a
unique vacuum. This is actually quite important since, once
Einstein’s theory is augmented with additional powers of
curvature, immediately one undesired feature arises that is
the nonuniqueness of the maximally symmetric vacuum.
Since asymptotic structures of spacetimes with different
cosmological constants are not the same, their energy
properties are not comparable. Therefore, there is no
way to choose one vacuum over the other if there is more
than one viable vacuum. Hence, it would be highly
desirable to have a theory with a unique vacuum.
To see that four dimensional BI theories are somewhat

special, let us start with the following n dimensional
generic action:

I ¼ 2

κγ

Z
dnx

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det ðgμν þ γAμνÞ

q
− ðγΛ0 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−detg

p �
;

ð3Þ

1There are in fact two extensions of NMG, the second one
being

I ¼ −
4m2

κ2

Z
d3x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det

�
gμν þ

1

m2

�
Rμν −

1

6
gμνR

��s

−
�

Λ0

2m2
þ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
;

which has the same perturbative properties. It was conjectured in
[13] that this action could appear as a dS4 counterterm. This
theory is yet to be explored further.
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where κ is the modified Newton’s constant which in four
dimensions reads κ ¼ 16πG, G is the Newton’s constant,
and γ is a dimensionful BI parameter with mass dimension
−2 in four dimensions. To stick to the idea of obtaining
minimal theories, we will find the simplest two tensor Aμν

which does not have derivatives of the Riemann tensor and
which has as small powers and contractions of the Riemann
tensor as possible. The most naive approach would be to
take Aμν ¼ Gμν þ βgμνR, similar to the 2þ 1 dimensional
case. As shown in Appendix A, upon small curvature
expansion, this theory will generate quadratic terms which
have massless spin-2, massive spin-0 and massive spin-2
modes, the last one being a ghost even around flat

spacetime.2 Hence, this too optimistic guess does not lead
to a perturbatively viable theory. In the small curvature
expansion (jγAμνj ≪ 1) of the action (3), either quadratic
terms must be eliminated or they must appear in the benign
Gauss-Bonnet combination to get rid of the massive modes;
therefore, in four dimensions and beyond, to build viable
BI-gravity theories, one has to take Aμν to be up to at least
quadratic order in the curvature, which of course leads to
an eight order theory in the curvature under the square root
when the determinant is explicitly written in terms of the
traces.
Upon inspection, one can see that the most general two-

tensor up to and including quadratic order can be written as

Aμν ¼ Rμν þ βSμν þ γða1CμρσλCν
ρσλ þ a2CμρνσRρσ þ a3RμρR

ρ
ν þ a4SμρS

ρ
νÞ

þ γ

n
gμνðb1CρσλγCρσλγ þ b2RρσRρσ þ b3SρσSρσÞ; ð4Þ

where Sμν ≡ Rμν − 1
n gμνR is the traceless-Ricci tensor and

Cμανβ is the Weyl tensor, and β, ai, and bi are dimensionless
constants. Observe that there is no RμνSμν cross term
because of the following relation:

RμρS
ρ
ν ¼ 1

2
RμρR

ρ
ν þ 1

2
SμρS

ρ
ν −

1

2n
gμνðRρσRρσ − SρσSρσÞ:

ð5Þ

Suppose ḡμν is a maximally symmetric vacuum of the
theory and we would like to study excitations (hμν) about
this vacuum. If this vacuum is flat, then our task is easy
since all we need is to expand the action up to quadratic
order in the curvature, then expand the resultant action up
to Oðh2μνÞ and check the propagating modes in the theory.
But, if this vacuum is an (A)dS space, then in principle all
the terms in the curvature expansion contribute to the free
theory [that is the vacuum and the Oðh2μνÞ theory], and
hence one has a highly complicated task. Therefore, in
building viable BI actions for gravity the main hurdle is to
satisfy the tree-level unitarity around nonflat maximally
symmetric backgrounds, but, fortunately, we have built the
necessary formalism to carry out this task in [10]. (The
Ph.D thesis [24] of one of the authors is devoted to these
issues and expounds upon many of the discussions in the
published papers.)
It was shown in these works (and we shall give another

argument in this paper) that in four dimensions no terms
beyondOðA2

μνÞ expansion around Aμν ¼ 0 contribute to the
free theory, namely the vacuum and the excitations.

Therefore, to study the excitations of (3) about its max-
imally symmetric vacua in four dimensions, all one needs
to study is the following theory:

I ¼ 1

κγ

Z
d4x

ffiffiffiffiffiffi
−g

p �
A − 2 γ Λ0 þ

1

4
A2 −

1

2
Aμν Aμν

�
; ð6Þ

with A≡ Aμ
μ, and note that this is a fourth order theory in

the curvature. For generic even n dimensions, one needs to
expand up to OðAn=2

μν Þ, and for odd dimensions, all the
powers contribute. In four dimensions, because of the
identity

CμρσλCν
ρσλ ¼ 1

4
gμνCαρσλCαρσλ; ð7Þ

we can also eliminate a1 or b1; without loss of generality,
we choose a1 ¼ 0. Note that instead of this basis (namely
theWeyl, Ricci and traceless-Ricci tensors), one can use the
Riemann and Ricci tensors and the scalar curvature, which
we do in Appendix B for the purpose of comparison. There,
we also give formulas relating one basis to the other. The
Aμν tensor with these seven dimensionless parameters looks
cumbersome, but in what follows unitarity of theory with
only massless spin-2 excitations about the (A)dS vacua will
eliminate three (or four depending on the theory) of these
parameters and in addition, conforming to the notion of
minimality, will lead to a theory without free dimensionless
parameters. Note that we do not count the dimensionful BI
parameter γ which can be constrained by experiments: As
long as γR is small, any γ is viable in our analysis. Hence, it
should be considered as a new dimensionful parameter. Of
course, not to introduce a new dimensionful parameter, one

2Nevertheless, it is remarkable that instead of the square root
Lagrangian, if one considers a different power in n dimensions
½det ðgþ γGÞ�1=ðn−1Þ then one has a massive gravity theory
without the nonlinear Boulware-Deser ghost [22,23].
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can choose γ ¼ κ since they are of the same dimensions.3

(Observe that, since κ ¼ 4πl2
p with lp being the Planck

length, the condition κR ≪ 1 is satisfied as long as we are
far away from the Planck regime: R ≪ 1

l2p
.)

The layout of the paper is as follows: In Sec. II, we recall
that the “free theory” of BI gravity should be the same as
the free theory of Einstein–Gauss-Bonnet (EGB) theory
that describes unitary massless spin-2 excitations around
flat and (A)dS spaces. In Sec. III, we give details of finding
the maximally symmetric vacua of generic gravity theories,
including the BI gravity, with the help of equivalent linear
actions (ELAs) which circumvent the complicated task of
deriving the field equations. In that section, we also derive
the equivalent quadratic curvature action (EQCA) that has
the same free theory, including the vacuum of the original
generic gravity, specifically the BI theory. In Sec. IV, we
determine the vacua of the BI gravity. In Sec. V, we impose
that the BI gravity describes unitary massless spin-2
gravitons around its flat background. In Sec. VI, we study
the unitarity of the BI theory around its unique viable (A)dS
vacuum and impose the condition that only the massless
spin-2 particle is allowed. In the appendixes, we give
details of the computations relevant to the results in the text.

II. CONSTRUCTING THE BORN-INFELD ACTION

The most general quadratic theory in n dimensions that
describes only massless spin-2 excitations around its flat or
(A)dS vacuum is the EGB theory with the Lagrangian

L ¼ 1

κ
ðR − 2Λ0 þ γχGBÞ; ð8Þ

where the GB combination is given as

χGB ≡ RμνρσRμνρσ − 4RμνRμν þ R2: ð9Þ

In four dimensions, the GB part is a total derivative, and
hence does not contribute to the field equations and plays
no role in the particle spectrum or the vacuum of the theory.
But as we shall see here, it plays a major role in
constructing BI-type actions: Namely, we will see that at
the quadratic level BI gravity reduces to the EGB theory
instead of the Einstein’s theory even though classically they
are equivalent. In some sense, the dimensionful parameter γ
in front of the GB term plays the role of the BI parameter.
It is clear that flat space is a vacuum for Λ0 ¼ 0, and

if Λ0 ≠ 0 (A)dS is the vacuum with Λ ¼ Λ0. In the basis
discussed in the Introduction, we can recast the EGB action
as

L¼ 1

κ

�
R− 2Λ0 þ γ

�
CμνρσCμνρσ þ

2

3
RμνRμν −

8

3
SμνSμν

��
;

ð10Þ

where we have used the four dimensional identity

CμνρσCμνρσ ¼ RμνρσRμνρσ − 2RμνRμν þ
1

3
R2: ð11Þ

It is not difficult to see that (10) describes only massless
spin-2 excitations in flat and AdS vacua. There are many
ways to show this but because this is almost common
knowledge let us briefly sketch the proof without going into
further details: Linearization of the field equations derived
from (10) about its (A)dS vacuum yields

1

κ
Gμν ¼ 0; ð12Þ

where Gμν is the linearized Einstein tensor, which in the
transverse-traceless gauge for perturbations hμν ¼
gμν − ḡμν reads

1

κ
Gμν ¼ −

1

2κ

�
□̄ −

2Λ0

3

�
hμν ¼ 0: ð13Þ

Despite the appearance of a masslike term, Eq. (13),
together with the transversality and the tracelessness
conditions, describes a massless spin-2 excitation. This
can be easily seen if one writes the AdS metric in its
conformal to flat coordinates ḡμν ¼ Ω2ημν with Ω ¼
ð1 − 3

4
Λ0x2Þ−1 where x2 ¼ ημνxμxν which reduces (13) to

the massless wave equation in flat space ∂2hμν ¼ 0 [25].
For this massless spin-2 excitation to be unitary, there is
only one condition that is the positivity of the Newton’s
constant, κ > 0; namely, gravity is attractive or, similarly,
the massless spin-2 field has a positive kinetic energy as
seen from the action (in the mostly positive signature
convention)

I ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

4κ
hμν

�
□̄ −

2Λ0

3

�
hμν þ hμνTμν

�
:

ð14Þ

If one requires a generic gravity theory of the form
L≡ ffiffiffiffiffiffi−gp

fðRμν
ρσÞ, namely with a Lagrangian density built

from arbitrary powers of the Riemann tensor and its
contractions but not its derivatives to propagate only unitary
massless spin-2 excitations, it should have the same propa-
gator structure as the EGB theory (or equivalently the
cosmological Einstein’s theory). It appears to be a highly
cumbersome task to find the propagator of a generic gravity
theory or a BI-type gravity theory in constant curvature
backgrounds because, in principle, infinitely many terms

3In Born-Infeld electrodynamics, one necessarily introduces a
dimensionful BI parameter, but in BI gravity one can simply
recycle Newton’s constant and no new parameter is introduced.
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contribute to the propagator. Fortunately, there is a highly
useful shortcut which works by constructing an equivalent
quadratic curvature action that has the same propagator
structure and the vacua as the generic theory under study.We
work this out in the next section.

III. EQUIVALENT LINEAR ACTION
AND EQUIVALENT QUADRATIC

CURVATURE ACTION

The first step in finding the particle spectrum of a given
gravity theory about its maximally symmetric vacuum is to
show that the theory in fact admits such a vacuum, and if it
does admit such a solution, one must find the effective
cosmological constant of the vacuum. The most direct way
to find the maximally symmetric vacuum is to derive the

field equations first and then solve these equations. But, for
the determinantal actions of the form that we study in this
work or for higher derivative theories with many powers of
curvature, finding the field equations is by itself a difficult
task. As a demonstration of the complication, the reader
could check the field equations of the action we study in
this work in Appendix F.
In this section, we shall give a method to find the

maximally symmetric vacuum or vacua of a given theory
which circumvents the procedure of deriving the field
equations. The method involves constructing an ELA that
has the same vacuum or vacua as the original action, and it
is so powerful that it pays to lay out some details here.
Consider a generic action of the form4

I ¼
Z

dnx
ffiffiffiffiffiffi
−g

p
fðgαβ; Rμ

νρσ;∇ρRμ
νρσ;…;∇ρ1∇ρ2…∇ρmR

μ
νρσÞ; ð15Þ

for which we ask if it admits a maximally symmetric
vacuum, and if it does, what is the effective cosmological
constant? Here we work in generic n dimensions. At this
stage, it is clear that the derivative termswill not contribute to
the maximally symmetric vacuum since they will yield
covariant derivatives of the metric tensor at the level of the
field equationswhich vanish bymetric compatibility. There-
fore, for notational simplicity let us denote the action as

I ¼
Z

dnx
ffiffiffiffiffiffi
−g

p
fðRμν

αβÞ; ð16Þ

where we have also gotten rid of the inverse metric without
loss of generality and taken the independent variable to be
Rμν
αβ which could stand for the Riemann tensor, or if once

contracted to the Ricci tensor, and if twice contracted to the
scalar curvature. For example, the Einstein-Hilbert action in
this language reads

R
dnx

ffiffiffiffiffiffi−gp
δαμδ

β
νR

μν
αβ. To find the field

equations for the maximally symmetric spacetime, one
varies the action as

δI ¼
Z

dnx

�
δ

ffiffiffiffiffiffi
−g

p
fðRμν

αβÞ þ
ffiffiffiffiffiffi
−g

p ∂f
∂Rμν

ρσ
δRμν

ρσ

�
: ð17Þ

Needless to say, this procedure will not yield the full
equations of the most general theory (15) but only the part
relevant for the maximally symmetric spacetime. On the
other hand, if f does not depend on the derivatives of the
Riemann tensor, as will be the case in this work, it will yield
the full equations.We canwrite the variation of the Riemann
tensor as

δRμν
ρσ ¼ 1

2
ðgαρ∇σ∇ν − gασ∇ρ∇νÞδgμα

−
1

2
ðgαρ∇σ∇μ − gασ∇ρ∇μÞδgαν

−
1

2
Rρσ

ν
αδg

μα þ 1

2
Rρσ

μ
αδg

αν; ð18Þ

which was obtained from

δRμ
νρσ ¼ ∇ρδΓ

μ
νσ −∇σδΓ

μ
νρ: ð19Þ

In calculating the derivative ∂f
∂Rμν

αβ
in (17), one may try to

symmetrize it in such away that it satisfies the symmetries of
theRiemann tensor.However, this is not required since at the
end, it is multiplied with δRμν

ρσ which kills the parts of ∂f
∂Rμν

αβ

that do not obey the symmetries of the Riemann tensor.
Then, inserting the variation of the Riemann tensor (18) into
the varied action (17) leads to a bunch of terms

δI ¼
Z

dnx

�
−
1

2
gμν

ffiffiffiffiffiffi
−g

p
fðRαβ

ρσÞδgμν
�

þ 1

2

Z
dnx

ffiffiffiffiffiffi
−g

p ∂f
∂Rμν

ρσ
ðgαρ∇σ∇ν − gασ∇ρ∇νÞδgμα

−
1

2

Z
dnx

ffiffiffiffiffiffi
−g

p ∂f
∂Rμν

ρσ
ðgαρ∇σ∇μ − gασ∇ρ∇μÞδgαν

−
1

2

Z
dnx

ffiffiffiffiffiffi
−g

p ∂f
∂Rμν

ρσ
ðRρσ

ν
αδg

μα − Rρσ
μ
αδg

ανÞ: ð20Þ

After integration by parts and dropping the boundary terms,
one arrives at the field equations

4Of course one can work in the basis introduced in the
Introduction, but here we work with the Riemann tensor, as this
basis is more common in many other applications.
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1

2
ðgνρ∇λ∇σ − gνσ∇λ∇ρÞ

∂f
∂Rμλ

ρσ

−
1

2
ðgμρ∇λ∇σ − gμσ∇λ∇ρÞ

∂f
∂Rλν

ρσ

−
1

2

� ∂f
∂Rμλ

ρσ

Rρσ
λ
ν −

∂f
∂Rλν

ρσ
Rρσ

λ
μ

�
−
1

2
gμνfðRαβ

ρσÞ ¼ 0: ð21Þ

For themaximally symmetric spacetimes, the first line of the
field equations just yields zero. Therefore, the relevant part
of the field equations that determines the effective cosmo-
logical constant is the second line

� ∂f
∂Rμλ

ρσ

�
R̄μλ
ρσ

R̄ρσ
λ
ν −

� ∂f
∂Rλν

ρσ

�
R̄μλ
ρσ

R̄ρσ
λ
μ þ gμνfðR̄αβ

ρσÞ ¼ 0;

ð22Þ

where the barred quantities are evaluated at the maximally
symmetric value of the Riemann tensor given as

R̄μλ
ρσ ¼ 2Λ

ðn − 1Þðn − 2Þ ðδ
μ
ρδλσ − δμσδλρÞ: ð23Þ

Equation (22) is the vacuum field equation, and the
information on the functional form of the Lagrangian enters
the field equation through only two background-evaluated
quantities

� ∂f
∂Rμλ

ρσ

�
R̄μλ
ρσ

; fðR̄αβ
ρσÞ: ð24Þ

Therefore, Eq. (22) tells us that if these two quantities are the
same for any given two gravity theories, then those two
gravity theories have the same maximally symmetric vacua;
namely their effective cosmological constants are equal.
Then, for a theory defined by a given fðRμν

αβÞ, one can
determine the vacua of the theory by performing a first order
Taylor series expansion around a yet to be determined
maximally symmetric background as

I ¼
Z

dnx
ffiffiffiffiffiffi
−g

p �
fðR̄μν

αβÞ þ
� ∂f
∂Rλν

ρσ

�
R̄μλ
ρσ

ðRλν
ρσ − R̄λν

ρσÞ
�
;

ð25Þ

which from now on will be called an equivalent linearized
action (ELA). At the risk of being a little pedantic, let us
reiterate the above observation: Considered as another
generic gravity theory, Eq. (25) has the same vacua as
(16).As a result, to get the effective cosmological constant of
the vacuum (or vacua) of the most general gravity theory, all
one needs to do is a first order Taylor series expansion of the
generic theory in the Riemann tensor and construct the
equivalent linear action.

Furthermore, let us show that (25) reduces to a cosmo-
logical Einstein-Hilbert action. Let us define ζ which
satisfies

� ∂f
∂Rμν

ρσ

�
R̄μλ
ρσ

Rμν
ρσ ≡ ζR: ð26Þ

Here, the term ½∂f=∂Rμν
ρσ�R̄μν

ρσ
is made up of the Kronecker

deltas such as δρμδσν , and it should satisfy the symmetries of
the Riemann tensor, so antisymmetrizing δρμδσν yields

δ½ρμ δ
σ�
ν .

5 Considering this together with (26) yields the
background-evaluated first derivative of fðRμν

αβÞ as
� ∂f
∂Rμλ

ρσ

�
R̄μλ
ρσ

¼ ζδ½ρμ δ
σ�
ν : ð27Þ

Using these, one can recast the equivalent linear action (25)
in a more explicit form such that it becomes the usual
cosmological Einstein-Hilbert action as

IELA ¼ 1

κl

Z
dnx

ffiffiffiffiffiffi
−g

p ðR − 2Λ0;lÞ; ð28Þ

where the subindex l denotes the equivalent linear action
values. The effective Newton’s constant and the effective
“bare” cosmological constant are

1

κl
¼ ζ;

Λ0;l

κl
¼ −

1

2
f̄ þ nΛ

n − 2
ζ; ð29Þ

where we have used R̄ ¼ 2nΛ
n−2 and defined f̄ ≡ fðR̄αβ

ρσÞ.
Then, the field equation for the maximally symmetric
background is simply Λ ¼ Λ0;l which yields Λ ¼ n−2

4ζ f̄.
Note that this is definitely the field equation that one gets
after putting (23) and (27) in (22).
This construction implies that the maximally symmetric

vacua of a generic gravity theory can also be found by
expanding the original action in the metric perturbation hμν
up to the first order OðhμνÞ and taking the variation with
respect to hμν.
Once the vacuum of the theory is established, one can

move on to discuss the particle spectrum around this

5Note that the total antisymmetrization in the up indices
implies the total antisymmetrization in the down indices, that
is, δ½ρμ δ

σ�
λ ¼ δ½ρ½μδ

σ�
λ� .
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vacuum by expanding the action up to Oðh2μνÞ in the metric
perturbation. Directly expanding the action in powers of
hμν is a highly complicated task, but again, fortunately, a
similar method to the one described above exists [26]. The
method amounts to finding an EQCA that has the same
degrees of freedom around the same vacua as the original
theory. EQCA can be found by expanding the action in
Taylor series up to quadratic order in the Riemann tensor as
we show below. Here we shall assume that the action does
not depend on the derivatives of the Riemann tensor.
For an action that does not depend on the derivatives of

the Riemann tensor, the field equations are (21). To analyze
the spectrum of the fðRαβ

ρσÞ theory, that is, the excitations
around a given background, one needs the linearized field
equations from which one can identify the excitations by
decoupling the linearized field equations into a set of
individual wave equations for each excitation. As we
discussed above, one way to obtain this linearized field
equation is to expand the action in hμν up to second order

and perform variation with respect to hμν. On the other
hand, naturally, one can also directly linearize the field
equations (21). To obtain the linearized field equations, one
needs the following two linearized tensors:

½gμνfðRμν
αβÞ�L ¼ hμνfðR̄μν

αβÞ þ ḡμν

� ∂f
∂Rαβ

ρσ

�
R̄αβ
ρσ

ðRαβ
ρσÞL ð30Þ

and

� ∂f
∂Rμλ

ρσ

Rλ
ρσν

�
L

¼
� ∂2f

∂Rηθ
ατ∂Rμλ

ρσ

�
R̄μλ
ρσ

ðRηθ
ατÞLR̄ρσ

λ
ν

þ
� ∂f
∂Rμλ

ρσ

�
R̄μλ
ρσ

ðRρσ
λ
νÞL; ð31Þ

and

�
gνρ∇λ∇σ

∂f
∂Rμλ

ρσ

�
L

¼ ḡνρ

� ∂2f

∂Rηθ
ατ∂Rμλ

ρσ

�
R̄μλ
ρσ

∇̄λ∇̄σðRηθ
ατÞL þ ḡνρ

� ∂f
∂Rμλ

ρα

�
R̄μλ
ρσ

∇̄λðΓσ
σαÞL

− ḡνρ

� ∂f
∂Rαλ

ρσ

�
R̄μλ
ρσ

∇̄λðΓα
σμÞL − ḡνρ

� ∂f
∂Rμα

ρσ

�
R̄μλ
ρσ

∇̄λðΓα
σλÞL; ð32Þ

where the subindex L means that the quantity is expanded
up to OðhμνÞ. The linearization of the other terms in (21)
follows from these terms upon symmetrization and anti-
symmetrization. Notice that the information on the func-
tional form of the Lagrangian enters the linearized field
equations through the following three background-
evaluated quantities:

� ∂2f

∂Rηθ
ατ∂Rμλ

ρσ

�
R̄μλ
ρσ

;

� ∂f
∂Rμλ

ρσ

�
R̄μλ
ρσ

; fðR̄αβ
ρσÞ: ð33Þ

Therefore, if these three quantities are the same for any two
given gravity theories, then those two theories have the
same spectrum around the same vacua. Then, for a theory
defined by a given fðRμν

αβÞ, one can determine the spectrum
of the theory through the quadratic gravity defined by the
up-to-second-order Taylor series expansion of fðRμν

αβÞ
around the maximally symmetric background as

I ¼
Z

dnx
ffiffiffiffiffiffi
−g

p �
fðR̄μν

αβÞ þ
� ∂f
∂Rλν

ρσ

�
R̄μν
ρσ

ðRλν
ρσ − R̄λν

ρσÞ

þ 1

2

� ∂2f

∂Rηθ
ατ∂Rμλ

ρσ

�
R̄μν
ρσ

ðRηθ
ατ − R̄ηθ

ατÞðRμλ
ρσ − R̄μλ

ρσÞ
�
; ð34Þ

which from now on will be called the equivalent quadratic
curvature action (EQCA). Note that this action not only has
the same spectrum but also has the same vacua as the
original fðRμν

αβÞ theory.
Now, let us further recast (34) in the form of a quadratic

gravity theory. To do this, first let us define the quadratic
curvature parameters α, β, and γ as

1

2

� ∂2f

∂Rηθ
ατ∂Rμλ

ρσ

�
R̄μν
ρσ

Rηθ
ατR

μλ
ρσ

≡ αR2 þ βRλ
σRσ

λ þ γðRηλ
ρσR

ρσ
ηλ − 4Rλ

σRσ
λ þ R2Þ: ð35Þ

Since the background-evaluated second order derivative of
fðRμν

αβÞ just involves Kronecker deltas and obeys the
symmetries of the Riemann tensors Rηθ

ατ and Rμλ
ρσ, one has

� ∂2f

∂Rηθ
ατ∂Rμλ

ρσ

�
R̄μν
ρσ

¼ 2αδ½αη δ
τ�
θ δ

½ρ
μ δ

σ�
λ

þ βðδα½ηδ½ρθ�δjτj½μ δσ�λ� − δτ½ηδ
½ρ
θ�δ

jαj
½μ δ

σ�
λ� Þ

þ 12γδ½αη δτθδ
ρ
μδ

σ�
λ ; ð36Þ

where the last term, clearly, should have the totally
antisymmetric form since the Gauss-Bonnet combination
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is the quadratic Lovelock term.6 Using these together with
(26), one can put (34) in a more explicit form as a quadratic
gravity theory F[27]:

IEQCA ¼
Z

dnx
ffiffiffiffiffiffi
−g

p �
1

~κ
ðR− 2 ~Λ0ÞþαR2þ βRλ

σRσ
λ þ γχGB

�
;

ð37Þ

where the effective Newton’s constant is given as

1

~κ
¼ ζ −

4Λ
n − 2

�
nαþ β þ γ

ðn − 2Þðn − 3Þ
ðn − 1Þ

�
; ð38Þ

and the effective “bare” cosmological constant reads

~Λ0

~κ
¼ −

1

2
fðR̄αβ

ρσÞ þ nΛ
n − 2

ζ

−
2Λ2n

ðn − 2Þ2
�
nαþ β þ γ

ðn − 2Þðn − 3Þ
ðn − 1Þ

�
: ð39Þ

The maximally symmetric solution of (37) satisfies [28]

Λ − ~Λ0

2~κ
þ
�
ðnαþ βÞ ðn − 4Þ

ðn − 2Þ2 þ γ
ðn − 3Þðn − 4Þ
ðn − 1Þðn − 2Þ

�
Λ2 ¼ 0;

ð40Þ
which certainly is the same vacuum equation as that
of the fðRμν

αβÞ theory and its equivalent linearized version

(28). We made the equivalence between the linearized field
equations of the fðRμν

αβÞ theory and (37) more explicit in
Appendix D.

A. ELA and EQCA construction
for Born-Infeld gravity

The above discussion was for generic fðRμν
αβÞ theories; let

us now focus on the BI-type theories. To calculate the
EQCA, one basically needs (A)dS background calculated
values for the matrix function

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρν þ γAρ

νÞ
p

and its first
and second derivatives. (Note that we are pulling out a
factor of

ffiffiffiffiffiffiffiffiffiffiffiffi
−detg

p
so that we can work with the Kronecker

delta δνμ whose variation is zero.) First, the background

value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρν þ γAρ

νÞ
p

is given as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρν þ γĀρ

νÞ
q

¼ ð1þ āÞn2; ð41Þ

where ā is defined via γĀρ
ν ¼ āδρν. Then, by using

detN ¼ exp ðTrðlnNÞÞ, the first and second order
differentials of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρν þ γAρ

νÞ
p

can be, respectively,
expressed as

∂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρν þ γAρ

νÞ
q

¼ γ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρν þ γAρ

νÞ
q

Bλ
γ∂Aγ

λ ð42Þ

and

∂2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρν þ γAρ

νÞ
q

¼ γ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρν þ γAρ

νÞ
q �

Bλ
γ∂2Aγ

λ − γBλ
θB

τ
γð∂Aθ

τÞ∂Aγ
λ þ

γ

2
ðBλ

γ∂Aγ
λÞ2

�
; ð43Þ

where Bλ
γ represents the inverse of the matrix (δλγ þ γAλ

γ)
and for the differential of B we use ∂B ¼ −γBð∂AÞB. Note
that one may not be able to find the explicit form of the B
matrix for a given A matrix, and in fact, even for the simple
case of Aμν ¼ Rμν it is not possible to find the explicit form
of B. However, this is not needed since just the (A)dS
background value of the B matrix is required to calculate
the background values for the first and second derivatives
of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρν þ γAρ

νÞ
p

. One can calculate it as

B̄λ
γ ¼ ð1þ āÞ−1δλγ: ð44Þ

Note that the matrix (I þ A) becomes singular for ā ¼ −1,
so we assume that ā ≠ −1. In the absence of the specific
definition for the A tensor, there is no need to further study

the background values of (42) and (43) by employing (41)
and (44).
To find the EQCA for a specific BI gravity theory, one

needs to find ā and calculate the first and second derivatives
of the A tensor with respect to the Riemann tensor, Rμν

ρσ.
Then, the formulas (41)–(44) are enough to work out the
EQCA for the BI gravity theory.

1. Even-dimensional EQCA and ELA

In order to calculate the EQCA and ELA of BI gravity,
one needs to calculate the following three (A)dS back-
ground-evaluated quantities as explicitly seen from (34):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδβν þ γĀβ

νÞ
q

;

� ∂
∂Rλν

ρσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδβν þ γAβ

νÞ
q �

R̄μν
ρσ

;

� ∂
∂Rηθ

ατ∂Rμλ
ρσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδβν þ γAβ

νÞ
q �

R̄μν
ρσ

: ð45Þ
6More explicitly, the Lovelock Lagrangian density

can be written as δμ1μ2μ3μ4ν1ν2ν3ν4 R
ν1ν2
μ1μ2R

ν3ν4
μ3μ4 ¼ 4χGB where δμ1μ2μ3μ4ν1ν2ν3ν4 ¼

ϵabcdδ
μ1
νaδ

μ2
νbδ

μ3
νc δ

μ4
νd ¼ 4!δμ1ν½aδ

μ2
νbδ

μ3
νc δ

μ4
νd� .
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Using (41)–(44) and γĀρ
ν ¼ āδρν, the (A)dS-evaluated value of the Lagrangian can be calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδβν þ γĀβ

νÞ
q

¼ ð1þ āÞn2; ð46Þ

and its first derivative reads

� ∂
∂Rλν

ρσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδβν þ γAβ

νÞ
q �

R̄μλ
ρσ

¼ γ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδβν þ γĀβ

νÞ
q

B̄κ
γ

� ∂Aγ
κ

∂Rλν
ρσ

�
R̄μλ
ρσ

¼ γ

2
ð1þ āÞðn−2Þ2 δκγ

� ∂Aγ
κ

∂Rλν
ρσ

�
R̄μλ
ρσ

; ð47Þ

and finally its second derivative boils down to

� ∂2

∂Rηθ
ατ∂Rμλ

ρσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδβν þ γAβ

νÞ
q �

R̄μν
ρσ

¼ γ

2
ð1þ āÞðn−2Þ2 δκγ

� ∂2Aγ
κ

∂Rηθ
ατ∂Rμλ

ρσ

�
R̄μν
ρσ

−
γ2

2
ð1þ āÞðn−4Þ2 δκξδ

ζ
γ

� ∂Aξ
ζ

∂Rηθ
ατ

�
R̄μν
ρσ

� ∂Aγ
κ

∂Rμλ
ρσ

�
R̄μν
ρσ

þ γ2

4
ð1þ āÞðn−4Þ2 δκγδ

ζ
ξ

� ∂Aγ
κ

∂Rμλ
ρσ

�
R̄μν
ρσ

� ∂Aξ
ζ

∂Rηθ
ατ

�
R̄μν
ρσ

: ð48Þ

Here, a difference between the odd and even dimensional
cases arises: It is important to notice that only finite integer
powers of ā appear in these expansions for even dimensions.
But, for odd dimensions, infinite powers of ā appear. This
observation is crucial, because the same second order
expansion in curvature around an (A)dS background can
be obtained by first performing an infinite order expansion in
Aμν “around Aμν ¼ 0,” and then carrying out the second
order expansion in curvature by using this infinite order
series in Aμν. A priori, all orders in Aμν contribute to the
second order expansion in curvature in (A)dS backgrounds;
however, as we just observed for even dimensions, only a
finite number of terms in the Aμν expansion contribute to the
EQCA. More specifically for even n dimensions expansion

up toOðAn
2
μνÞ is necessary and sufficient. In four dimensions,

we need to expand up toOðA2
μνÞ, as given in (I). On the other

hand, one needs all the powers of Ai
μν for odd dimensions.

Since there are nontrivial cancellations, it pays to make
this observation more explicit in four dimensions. To
construct the EQCA of the OðA2

μνÞ which is

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδβν þ γAβ

νÞ
q i

OðA2Þ
¼ 1þ γ

2
Aμ
μ þ γ2

8
Aμ
μAν

ν −
γ2

4
Aν
μA

μ
ν ;

ð49Þ

one first needs the (A)dS background-evaluated value of
the OðA2

μνÞ Lagrangian which can be calculated by putting
γĀρ

ν ¼ āδρν in (49) as

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδβν þ γĀβ

νÞ
q i

OðA2Þ
¼ 1þ 2āþ 2ā2 − ā2 ¼ ð1þ āÞ2;

ð50Þ

which is an exact expression represented by a finite number
of terms in the Aμν expansion, and it matches (46) when
n ¼ 4. Moving on to the first and second derivatives (49),
one gets, respectively,

∂
∂Rλν

ρσ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδβν þ γAβ

νÞ
q i

OðA2Þ
¼ γ

2

∂Aκ
κ

∂Rλν
ρσ
þ γ2

4
Aβ
β

∂Aκ
κ

∂Rλν
ρσ

−
γ2

2
Aβ
κ

∂Aκ
β

∂Rλν
ρσ

ð51Þ

and

∂2

∂Rηθ
ατ∂Rμλ

ρσ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδβν þ γAβ

νÞ
q i

OðA2Þ
¼ γ

2

∂2Aκ
κ

∂Rηθ
ατ∂Rλν

ρσ

þ γ2

4
Aβ
β

∂2Aκ
κ

∂Rηθ
ατ∂Rλν

ρσ

−
γ2

2
Aβ
κ

∂2Aκ
β

∂Rηθ
ατ∂Rλν

ρσ

þ γ2

4

∂Aβ
β

∂Rηθ
ατ

∂Aκ
κ

∂Rλν
ρσ
−
γ2

2

∂Aβ
κ

∂Rηθ
ατ

∂Aκ
β

∂Rλν
ρσ
:

ð52Þ
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These derivatives can be evaluated for the (A)dS background, respectively, as

� ∂
∂Rλν

ρσ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδβν þ γAβ

νÞ
q i

OðA2Þ

�
R̄μν
ρσ

¼ γ

2

� ∂Aκ
κ

∂Rλν
ρσ

�
R̄μν
ρσ

þ γā

� ∂Aκ
κ

∂Rλν
ρσ

�
R̄μν
ρσ

−
γ

2
āδβκ

� ∂Aκ
β

∂Rλν
ρσ

�
R̄μν
ρσ

¼ γ

2
ð1þ āÞδβκ

� ∂Aκ
β

∂Rλν
ρσ

�
R̄μν
ρσ

; ð53Þ

� ∂2

∂Rηθ
ατ∂Rμλ

ρσ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδβν þ γAβ

νÞ
q i

OðA2Þ

�
R̄μν
ρσ

¼ γ

2
ð1þ āÞ

� ∂2Aκ
κ

∂Rηθ
ατ∂Rλν

ρσ

�
R̄μν
ρσ

þ γ2

4

� ∂Aβ
β

∂Rηθ
ατ

�
R̄μν
ρσ

� ∂Aκ
κ

∂Rλν
ρσ

�
R̄μν
ρσ

−
γ2

2

� ∂Aβ
κ

∂Rηθ
ατ

�
R̄μν
ρσ

� ∂Aκ
β

∂Rλν
ρσ

�
R̄μν
ρσ

ð54Þ

which matches (47) and (48), respectively, when n ¼ 4.
Hence, we have achieved our goal of showing that in four
dimensions, to get the vacuum and the spectrum of a
determinantal BI gravity theory, one needs to expand only
up to OðA2

μνÞ around Aμν ¼ 0. It is a remarkable fact about
this determinantal action that at every order OðA2þi

μν Þ,
contributions of the various terms to the EQCA cancel
among each other; that is, they do not contribute to the free
theory around the maximally symmetric background.
Moreover, this cancellation works in such a way that
Oðγ0Þ, Oðγ1Þ and OðβÞ terms cancel among each other.
This fact also means that when Aμν is at most quadratic in
curvature as in (4), one can also get the same result by
performing a Taylor series expansion in small curvature,
that is, around Rμν

ρσ ¼ 0, up to OðR4Þ in four dimension;
hence, we end up with a quartic gravity theory. This also
immediately leads to the fact that a priori there will be four
possible maximally symmetric vacua of the theory which
we study next.

IV. DETERMINING THE VACUA
OF THE BI THEORY

Let us find the maximally symmetric vacua (generically
there will be four different vacua in four dimensions as
noted above) of our theory,

κL ¼ 2

γ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρσ þ γAρ

σÞ
q

− ðλ0 þ 1Þ
i
; ð55Þ

with Aμν as (4), and we have defined a dimensionless
cosmological parameter λ0 ≡ γΛ0 which we shall use from
now on. We resort to the equivalent linear action formalism
described above which in this basis follows from the zeroth
and the first order Taylor series expansion of the action (55),

κLELA ¼ 2

γ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρσ þ γĀρ

σÞ
q

− ðλ0 þ 1Þ
i
þ
� ∂L
∂Cμν

αβ

�
R̄μν
ρσ

Cμν
αβ

þ
�∂L
∂Sμν

�
R̄μν
ρσ

Sμν þ
� ∂L
∂Rμ

ν

�
R̄μν
ρσ

ðRμ
ν − R̄μ

νÞ: ð56Þ

Note that the background values C̄μν
αβ and S̄μν are zero, and

R̄μν
ρσ is given in (23) with n ¼ 4 and R̄μ

ν ¼ Λδμν . The
background values of the Lagrangian density and its first
order derivatives are calculated in Appendix E, and using
these results, the equivalent linearized action of the BI theory
given in (3) becomes

LELA ¼ 1

κl

�
R −

2

γ
λ0;l

�
: ð57Þ

The Newton’s constant and the cosmological constant, upon
using the computations in Appendix E, turn out to be

1

κl
¼ ð1þ āÞ½1þ 2λða3 þ b2Þ�;

ā ¼ λþ λ2ða3 þ b2Þ;
λ0;l ¼ κlð1þ λ0 − ð1þ āÞ2Þ þ 2λ; ð58Þ

where we assumed 1=κl is not zero; otherwise the theory
would not reproduce Einstein’s gravity. Then, since the
vacua of the equivalent linear theory is determined by

λ ¼ λ0;l; ð59Þ

one arrives at the quartic equation that gives the four possible
maximally symmetric vacua

c2λ4 þ cλ3 − λþ λ0 ¼ 0; ð60Þ

where we have defined c≡ a3 þ b2. Let us not depict the
solutions in their general form since they are not needed, but
let us note some specific points. If c ¼ 0, then we have a
unique vacuum with λ ¼ λ0. If c ≠ 0, then there are real and
complex solutions depending on the values of c and λ0. It is
possible to have four real solutions if 0 < c < 1

4
and if a

complicated condition on λ0 is satisfied. As an example,
let us take c ¼ 1

8
and λ0 ¼ 3

4
; then we have

λ ¼ ð−6;−2ð1� ffiffiffi
2

p Þ; 2Þ. But, as we shall see later on,
unitarity will demand that c ¼ 1

4
and λ < 1, and the non-

vanishing of the effective Newton’s constant demands that
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λ ≠ −2. These conditions are satisfied if λ0 < 11
16

and
λ0 ≠ −1. One can compute the discriminant to be Δ ¼
1
256

ð1þ λ0Þ2ð−11þ 16λ0Þ which is always negative in the
allowed region. This says that there are two real and two
complex-conjugate roots. One of the real roots does not
satisfy the λ < 1 condition, but the other one always satisfies
this condition. Therefore, we have a unique viable vacuum.

V. UNITARITY AROUND FLAT BACKGROUNDS

First, let us start with the flat space λ ¼ 0 for which we
must take the bare cosmological parameter to be λ0 ¼ 0.
From (60) we see that flat space is the vacuum of the theory
but it is not the only vacuum since the equation reduces to

λðc2λ3 þ cλ2 − 1Þ ¼ 0; ð61Þ
with at least one more real solution with a nonzero λ with
the exception that c ¼ 0. For example, for c ¼ 1

4
, whose

relevance will appear below, one has λ ≈ 1.679.
Let us focus on the flat vacuum. In this case our job is not

complicated at all: All we need to do is expand (3) up to
OðR2Þ and demand that it matches either with the Einstein-
Hilbert action or with the Einstein–Gauss-Bonnet action.
The determinant ½det ð1þMÞ�1=2 can be expanded up to

OðM4Þ as

½det ð1þMÞ�1=2 ¼ 1þ 1

2
TrM þ 1

8
ðTrMÞ2 − 1

4
TrðM2Þ

þ 1

6
TrðM3Þ − 1

8
TrMTrðM2Þ

þ 1

48
ðTrMÞ3; ð62Þ

where TrM ¼ gμνMμν. Using this expression, the OðR2Þ
expansion of (3) yields the quadratic Lagrangian

κLOðR2Þ ¼ Rþ γb1CμρσλCμρσλ þ γ

�
a3 þ b2 þ

1

2

�
RμρRμρ

þ γ

�
a4 þ b3 − 1 −

βðβ þ 2Þ
2

�
SμρSμρ: ð63Þ

Here, note that a2 does not appear in the OðR2Þ expansion,
so unitarity constraints around the flat background do not
put any condition on the CμρνσRρσ term. As already noted,
there are two unitary theories that (63) can reduce to: the
Einstein theory and the EGB theory, which need separate
attention even though they are classically equivalent in four
dimensions. Let us start with the reduction to Einstein’s
theory.

A. Reduction to the Einstein theory

We will compare (63) with

κL ¼ R; ð64Þ

which yields the elimination of three parameters,

b1 ¼ 0; a3 ¼ −
1

2
− b2; a4 ¼

βðβ þ 2Þ
2

þ 1 − b3;

ð65Þ

leaving a theory with four dimensionless parameters that
can be built from

Aμν ¼ Rμν þ βSμν þ
γ

4
gμνðb2RρσRρσ þ b3SρσSρσÞ þ γ

�
a2CμρνσRρσ −

�
1

2
þ b2

�
RμρR

ρ
ν þ

�
βðβ þ 2Þ

2
þ 1 − b3

�
SμρS

ρ
ν

�
:

ð66Þ

It is important to understand that the BI gravity defined
with this Aμν describes a massless, unitary spin-2 graviton
about its flat vacuum in all finite orders in the curvature
expansion as well as the full theory, namely in the infinite
order in the curvature expansion. This is because in flat
backgrounds, only terms up to quadratic in curvature
contribute to the propagator of the theory. However,
this theory does not have quadratic terms, and when
expanded in curvature it symbolically reads
L ¼ Rþ R3 þ….
Let us also note that if we require the uniqueness of the

vacuum, namely that the flat space is the unique vacuum,
then one cannot reduce the theory to Einstein’s gravity
since a unique vacuum condition is achieved with c ¼ 0 but
Einsteinian reduction is achieved with c ¼ − 1

2
as seen from

the second equation of (65), hence the contradiction.
Therefore, the theory (66) has two vacua, one with λ ¼
0 and the other with λ ≈ 2.594. Of course, to have a
consistent theory we must check its unitarity about the
second vacuum. As we shall see in the next section, c ¼ − 1

2

is excluded. Before that discussion, let us consider some
specific theories by taking the undetermined dimensionless
parameters to be zero.
Unitarity about its flat vacuum does not constrain this

theory any further: Let us use the notion of minimality and
fix the undetermined parameters. There could be many
ways to define minimal theories here: For example, if we
set β ¼ a2 ¼ a3 ¼ a4 ¼ 0 we arrive at a unitary theory
around its flat background with the action
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I ¼ 2

κγ

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det

�
gμν þ γRμν þ

γ2

8
gμνRσρGσρ

�s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
; ð67Þ

which was already given in [1]. Another option is choosing β ¼ b2 ¼ b3 ¼ a2 ¼ 0 which yields another theory

I ¼ 2

κγ

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det

�
gμν þ γRμν þ

γ2

2

�
GμρG

ρ
ν −

1

8
gμνR2

��s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
: ð68Þ

Of course, with four free parameters there are many other options, but in any case the most general theory that has a unitary
massless spin-2 excitation around its flat vacuum is constructed with (66).

B. Reduction to the Einstein–Gauss-Bonnet theory

The next possible option is to try to reduce (63) to the EGB theory which has the same spectrum, field equations, etc., in
four dimensions with Einstein’s gravity. We will compare (63) with (10) for λ0 ¼ 0 which yields the following relations
between the parameters:

a3 ¼
2

3
b1 − b2 −

1

2
; a4 ¼

βðβ þ 2Þ
2

−
8

3
b1 − b3 þ 1; ð69Þ

eliminating two of them and yielding the following Aμν tensor with five parameters:

Aμν ¼ Rμν þ βSμν þ γ

�
a2CμρνσRρσ þ

�
2

3
b1 − b2 −

1

2

�
RμρR

ρ
ν þ

�
βðβ þ 2Þ

2
−
8

3
b1 − b3 þ 1

�
SμρS

ρ
ν

�

þ γ

4
gμνðb1CρσλγCρσλγ þ b2RρσRρσ þ b3SρσSρσÞ: ð70Þ

This defines the most general theory that has a massless unitary graviton about its flat vacuum. Unlike the previous case, we
can further require that the flat vacuum is the unique vacuum, that is, c ¼ 0; then we arrive at the relations

a3 ¼ −b2; b1 ¼
3

4
; a4 ¼

βðβ þ 2Þ
2

− b3 − 1; ð71Þ

which reduces the general Aμν tensor to

Aμν ¼ Rμν þ βSμν þ γða2CμρνσRρσ þ a3RμρR
ρ
ν þ a4SμρS

ρ
νÞ

þ γ

4
gμν

�
3

4
CρσλγCρσλγ − a3RρσRρσ þ

�
βðβ þ 2Þ

2
− a4 − 1

�
SρσSρσ

�
: ð72Þ

Hence, the unitarity and the unique vacuum conditions give us a four parameter theory. By judiciously choosing some of
these parameters to vanish, we can define various minimal theories. The first choice can be to set β ¼ a2 ¼ b2 ¼ b3 ¼ 0
yielding

Aμν ¼ Rμν þ
3γ

16
gμνχGB þ 3γ

8
gμνRσρGσρ − γRμρG

ρ
ν: ð73Þ

Another minimal theory option is obtained after setting β ¼ a2 ¼ a3 ¼ a4 ¼ 0 yielding an Aμν in terms of the Ricci tensor
and the metric tensor multiplied with specific quadratic terms as

Aμν ¼ Rμν þ
γ

8
gμν

�
3

2
χGB þ RρσGρσ

�
; ð74Þ

where we have made use of the GB identity. The second option leads to the action
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I ¼ 2

κγ

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
-det

�
gμν þ γRμν þ

γ2

8
gμν

�
3

2
χGB þ RσρGσρ

��s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
; ð75Þ

which should be considered as an exact theory for all values of the curvature: At any order in the curvature expansion the flat
vacuum is the unique vacuum solution and the theory describes a unitary massless graviton. Now, let us see in small
curvature expansion what kind of theory we get up to OðR3Þ. For this purpose we use (62) and get from (75) the following
effective theory:

I ¼ 1

κ

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
Rþ 3γ

4
χGB þ γ2

48
ð9RRμσνρRμσνρ þ 16Rα

μR
β
αR

μ
β − 42RRμνRμν þ 8R3Þ

�
: ð76Þ

The Gauss-Bonnet term does not contribute to the field equations. In case it is not apparent that this theory has a unique
vacuum and a unitary massless spin-2 excitation from our construction above, let us show this here in a different way. In fact,
these can be seen either from the field equations or from the equivalent quadratic curvature action that the flat space is the
unique vacuum. Let us follow the second path and find the vacuum and the excitations for this BI-generated cubic curvature
modification of Einstein’s theory. Unitarity and the particle spectrum of all cubic curvature gravity theories based on the
Riemann tensor and its contractions were studied in [29]. The most general cubic curvature gravity is defined with the action as

I ¼ 1

κ

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2Λ0 þ αR2 þ βRμνRμν þ γχGB þ FðRμν
ρσÞ�; ð77Þ

where FðRμν
ρσÞ represents the eight possible cubic curvature terms with no derivatives,

FðRμν
ρσÞ≡ c1R

μν
ρσR

ρβ
μαRσα

νβ þ c2R
μν
ρσR

αβ
μνR

ρσ
αβ þ c3R

μ
νR

ρσ
αμRαν

ρσ þ c4RR
μν
ρσR

ρσ
μν

þ c5R
μ
νR

ρ
σRνσ

μρ þ c6R
μ
νR

ρ
μRν

ρ þ c7RR
μ
νRν

μ þ c8R3: ð78Þ

The EQCA of (77) was calculated in [29] as

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

~κ
ðR − 2 ~Λ0Þ þ ~αR2 þ ~βR2

ab þ ~γðR2
abcd − 4R2

ab þ R2Þ
�
; ð79Þ

with effective parameters

1

~κ
≡ 1

κ
−
Λ2

3κ
½c1 þ 4c2 þ 6ðc3 þ 4c4Þ þ 9ðc5 þ c6 þ 4c7 þ 16c8Þ�;

~Λ0 ≡ ~κ

κ
Λ0 þ

2Λ
3

�
1 −

~κ

κ

�
;

~α≡ α

κ
þ Λ
3κ

½3c1 − 6c2 − 8c4 þ c5 þ 3ð−c3 þ 2c7 þ 12c8Þ�;

~β≡ β

κ
þ Λ
3κ

½−9c1 þ 24c2 þ 16c3 þ 5c5 þ 3ð16c4 þ 3c6 þ 4c7Þ�;

~γ ≡ γ

κ
þ Λ

κ
½−c1 þ 2c2 þ ðc3 þ 4c4Þ�: ð80Þ

Comparing (77) with (76), one obtains the following parameters for the EQCA from (80):

1

~κ
¼ 1

κ
; ~Λ0 ¼ 0; ~α ¼ −

Λ
4κ

γ2; ~β ¼ Λ
2κ

γ2; ~γ ¼ 3γ

4κ
ð1þ ΛγÞ; ð81Þ

which give the equivalent quadratic curvature action of (76),

I ¼ 1

κ

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
Rþ 3

4
γχGB þ γ2Λ

4
ð3χGB þ 2RμνRμν − R2Þ

�
: ð82Þ
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Here, we still have to find Λ which corresponds to the
maximally symmetric vacuum. There are two ways to do
this: One can either derive the field equations of the cubic
theory (82) and get the vacuum from those equations, or
one can find the field equations of the equivalent quadratic
theory (82) instead. Of course the second method is easier,
and in fact these field equations were given in [30]; hence,
there is no need to repeat them here. Inserting Rμσνρ ¼
Λ
3
ðgμνgσρ − gμρgσνÞ to the field equations, one finds that

Λ ¼ 0. Therefore, flat space is the unique vacuum. In fact,
more importantly, Λ ¼ 0 also kills the ghost term (RμνRμν)
in the action. As expected (76) has a unitary massless spin-
2 excitation just like its exact “mother” (75). Happily, this
state of affairs is intact for anyOðRiÞ truncation of the exact
theory: That is, at any order the vacuum is uniquely flat and
the theory has a massless unitary graviton.

VI. UNITARITY AROUND (A)DS BACKGROUNDS

Let us now study the unitarity of the BI gravity around its
(A)dS background. It is important to establish what we
mean by the tree-level unitarity of the BI theory in (A)dS

backgrounds: As we noted in the Introduction, we require
that the theory is tree-level unitary at any finite order in the
curvature expansion and at infinite order in the curvature
expansion which is the full theory. Namely, the full theory
or any truncated version of the theory, for example the
linear Einstein theory, quadratic gravity or, in general,
OðRiÞ theory, should be unitary. Note that this condition on
unitarity is stronger than the unitarity condition in string
theory generated effective gravity models. For example, the
full string theory is unitary, yet OðR3Þ effective theory is
nonunitary for bosonic string theory [31] as shown in [29].
In (A)dS backgrounds, unlike the flat space case, infinitely
many terms contribute to the propagator and to the free
theory, i.e., the vacuum etc. Therefore, as explained above,
we need the equivalent quadratic curvature theory of

κL ¼ 2

γ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρν þ γAρ

νÞ
q

− ðλ0 þ 1Þ
i
; ð83Þ

which upon use of (34) in the Weyl–traceless-Ricci–Ricci
(CSR) basis reads as

κLEQCA ¼ 2

γ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρν þ γĀρ

νÞ
q

− ðλ0 þ 1Þ
i
þ
� ∂L
∂Cμν

αβ

�
R̄μν
ρσ

Cμν
αβ þ

�∂L
∂Sμν

�
R̄μν
ρσ

Sμν þ
� ∂L
∂Rμ

ν

�
R̄μν
ρσ

ðRμ
ν − R̄μ

νÞ

þ 1

2

� ∂2L

∂Cμν
αβC

ηθ
λτ

�
R̄μν
ρσ

Cμν
αβC

ηθ
λτ þ

1

2

� ∂2L
∂Sμν∂Sαβ

�
R̄μν
ρσ

SμνSαβ þ
1

2

� ∂2L
∂Rμ

ν∂Rα
β

�
R̄μν
ρσ

ðRμ
ν − R̄μ

νÞðRα
β − R̄α

βÞ

þ
� ∂2L
∂Cμν

αβ∂Sηθ
�
R̄μν
ρσ

Cμν
αβS

η
θ þ

� ∂2L
∂Cμν

αβ∂Rη
θ

�
R̄μν
ρσ

Cμν
αβðRη

θ − R̄η
θÞ þ

� ∂2L
∂Sμν∂Rα

β

�
R̄μν
ρσ

SμνðRα
β − R̄α

βÞ; ð84Þ

where the bracketed and barred quantities denote the
maximally symmetric background values for the corre-
sponding expressions. Note again that C̄μν

αβ ¼ 0 and S̄μν ¼ 0.
The terms up to quadratic order are just the ELA given in
(57), so we just need the quadratic contributions which are
again given in Appendix E. By using these results, the
equivalent quadratic curvature action of (3) can be com-
pactly written as

κLEQCA ¼ 1

~κ

�
R −

2

γ
~λ0 þ α1C

μν
ρσC

ρσ
μν þ α2Rν

μR
μ
ν þ α3SνμS

μ
ν

�
;

ð85Þ

where the effective Newton’s constant and the effective
“bare” cosmological constant are given as

1

~κ
¼ 1þ ā − λð2λcþ 1Þ2; ð86Þ

~λ0 ¼ ~κ½λð1þ āÞð2λcþ 1Þ − āð2þ āÞ þ λ0� þ λ; ð87Þ

and the quadratic curvature parameters read as

α1 ¼ γb1 ~κð1þ āÞ; ð88Þ

α2 ¼
γ

2λ
½~κð1þ āÞð2λcþ 1Þ − 1�; ð89Þ

α3 ¼
γ

2λ
½~κðð1þ āÞð2λða4 þ b3Þ − 1Þ − λð2a3λþ β þ 1Þ2Þ

þ 1�: ð90Þ

Here, ā represents the combination

ā ¼ λþ λ2c: ð91Þ

Note that in the λ → 0 limit, the equivalent quadratic action
of the full theory (85) reduces to the second order of the full
theory in small curvature expansion (63) as expected.
Let us list the conditions that our full theory should

satisfy:
(1) It should reduce to the cosmological Einstein or

Einstein–Gauss-Bonnet theory at the lowest order.
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(2) It should describe unitary massless spin-2 excita-
tions at any finite order in the curvature expansion
and infinite order in the curvature expansion. We
have shown that if the theory is unitary atOðR4Þ it is
unitary at any order of the form OðR4þiÞ including
i → ∞. Therefore, together with the first condition,
once exact unitarity of the theory is checked, all that
is required is to check the unitarity at OðR3Þ.

A. Reduction to cosmological Einstein theory

To reduce (85) to Einstein’s theory one should set
α1 ¼ α2 ¼ α3 ¼ 0. These conditions together with the
condition that the theory is unitary at OðR2Þ, which are

b1 ¼ 0; a3 ¼ −
1

2
− b2; a4 ¼

βðβ þ 2Þ
2

þ 1 − b3;

ð92Þ
lead to the following relation:

0 ¼ ~κð1þ āÞð−λþ 1Þ − 1; ð93Þ
which is obtained from α2 ¼ 0, and

0 ¼ ~κ

�
ð1þ āÞ

�
2λ

�
βðβ þ 2Þ

2
þ 1

�
− 1

�

− λ

�
−2

�
1

2
þ b2

�
λþ β þ 1

�
2
�
þ 1; ð94Þ

which is obtained from α3 ¼ 0. Note that for c ¼ − 1
2
, 1
~κ and

ā take the forms

1

~κ
¼ 1 − λ3 þ 3λ2

2
; ā ¼ λ −

λ2

2
: ð95Þ

With these results, the α2 ¼ 0 condition becomes

λðλ − 2Þ ¼ 0; ð96Þ
which is consistent only if λ0 ¼ 2 or λ0 ¼ 0, namely λ ¼ λ0.
We have studied the λ ¼ 0 case before. For the other case,
that is, λ ¼ 2, the theory is not unitary since ~κ ¼ −1 as
follows from (95). This means that we cannot reduce our
theory to the cosmological Einstein theory.

B. Reduction to Einstein–Gauss-Bonnet theory

The next possible option is to try to reduce it to the EGB
theory. Unitarity of the theory at OðR2Þ yields

a3 ¼
2

3
b1 − b2 −

1

2
; a4 ¼

βðβ þ 2Þ
2

−
8

3
b1 − b3 þ 1;

ð97Þ
and using (86) and (87), one gets the effective Newton’s
constant and the effective “bare” cosmological constant as

1

~κ
¼ 1þ ā − λ

�
2λ

�
2

3
b1 −

1

2

�
þ 1

�
2

; ð98Þ

~λ0 ¼ ~κ

�
λð1þ āÞ

�
2λ

�
2

3
b1 −

1

2

�
þ 1

�
− āð2þ āÞ þ λ0

�

þ λ: ð99Þ

In addition, the quadratic curvature parameters of EQCA
also become

α1 ¼ γb1 ~κð1þ āÞ; ð100Þ

α2 ¼
γ

2λ

�
~κð1þ āÞ

�
2λ

�
2

3
b1 −

1

2

�
þ 1

�
− 1

�
; ð101Þ

α3 ¼
γ

2λ

�
~κ

�
ð1þ āÞ

�
2λ

�
βðβ þ 2Þ

2
−
8

3
b1 þ 1

�
− 1

�

− λð2a3λþ β þ 1Þ2
�
þ 1

�
: ð102Þ

Here, ā represents the combination

ā ¼ λþ λ2
�
2

3
b1 −

1

2

�
: ð103Þ

To reduce our theory to the EGB theory, we must impose
two conditions:

α2
α1

¼ 2

3
;

α3
α1

¼ −
8

3
;

which, respectively, lead to the following two equations:

3γ

2λ

�
~κð1þ āÞ

�
2λ

�
2

3
b1 −

1

2

�
þ 1

�
− 1

�
¼ 2γb1 ~κð1þ āÞ;

ð104Þ

3γ

2λ

�
~κ

�
ð1þ āÞ

�
2λ

�
βðβ þ 2Þ

2
−
8

3
b1 þ 1

�
− 1

�

− λð2a3λþ β þ 1Þ2
�
þ 1

�

¼ −8γb1 ~κð1þ āÞ: ð105Þ

Simplification of (104) yields

�
b1 −

9

8

��
b1 −

3

4

�
λ ¼ −

3

2

�
b1 −

9

8

�
: ð106Þ

Note that it is immediately clear that b1 ≠ 3
4
. Here, the

discussion bifurcates: Either b1 ≠ 9
8
or b1 ¼ 9

8
. We have to

study both cases.
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C. Case 1: b1 ≠ 9
8

Then, from (106), one gets

λ ¼ −3
2ðb1 − 3

4
Þ ; ð107Þ

and inserting this in (103) leads to ā ¼ 0 which also gives
1
~κ ¼ 1 − λ; therefore, one has the constraint λ < 1 for the
unitarity of the theory. From (107) λ < 1 yields jb1j > 3

4
.

Note that, this condition on b1 also guarantees that λ ≠ 1.
Now, let us look at the second constraint (105) which
simplifies to

−4a3λða3λþ β þ 1Þ ¼ 0: ð108Þ

Since we are studying the λ ≠ 0 case, this equation is
satisfied when either a3 ¼ 0 or a3λþ β þ 1 ¼ 0. We must
consider these subclasses separately.

1. Case 1a: a3 ¼ 0

Using (69) b2 can be determined as

b2 ¼
2

3

�
b1 −

3

4

�
: ð109Þ

Making use of (107) one obtains b2 ¼ − 1
λ. Since b2 ¼ c in

this case the vacuum equation (60) leads to λ ¼ λ0. Then we
have the following Aμν tensor:

Aμν ¼ Rμν þ βSμν þ γ

�
a2CμρνσRρσ þ

�
βðβ þ 2Þ

2
þ 4

λ0
− b3 − 1

�
SμρS

ρ
ν

�

þ γ

4
gμν

��
3

4
−

3

2λ0

�
CρσλγCρσλγ −

1

λ0
RρσRρσ þ b3SρσSρσ

�
: ð110Þ

2. Case 1b: a3λþ βþ 1 ¼ 0

Together with (107) one has

a3 ¼
2

3
ðβ þ 1Þ

�
b1 −

3

4

�
: ð111Þ

Then from (69) b2 can be determined as

b2 ¼ −
2

3
β

�
b1 −

3

4

�
; ð112Þ

which leads to

c ¼ 2

3

�
b1 −

3

4

�
: ð113Þ

From (60) these lead to λ ¼ λ0, b1 ¼ 3
4
− 3

2λ0
, b2 ¼ β

λ0
and

a3 ¼ − βþ1
λ0

yielding

Aμν ¼ Rμν þ βSμν þ γ

�
a2CμρνσRρσ −

β þ 1

λ0
RμρR

ρ
ν þ

�
βðβ þ 2Þ

2
þ 4

λ0
− b3 − 1

�
SμρS

ρ
ν

�

þ γ

4
gμν

��
3

4
−

3

2λ0

�
CρσλγCρσλγ þ β

λ0
RρσRρσ þ b3SρσSρσ

�
: ð114Þ

Note that, since λ0 appears in the inverse power there is no
λ0 → 0 limit for (110) and (114). Therefore, we will not
study these theories anymore even though they describe
unitary massless spin-2 excitations at all orders in the
curvature expansion about their (A)dS vacuum. Let us
study the second case.

D. Case 2: b1 ¼ 9
8

In this case, λ is not determined from (106). This choice
reduces (97) and (98) to

a3 ¼
1

4
− b2; a4 ¼

βðβ þ 2Þ
2

− 2 − b3; ð115Þ

1

~κ
¼ ð1 − λÞ

�
1þ λ

2

�
2

: ð116Þ

Again, positivity of the Newton’s constant leads to λ < 1,
and we demand that λ ≠ −2, so that the Newton’s constant
does not vanish. The vacuum equation (60) boils down to

λ4

16
þ λ3

4
− λþ λ0 ¼ 0: ð117Þ

The solutions of this equation were discussed in Sec. IV;
hence, we do not repeat them here, but just note that there is
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a unique viable solution with λ < 1 as long as λ0 < 11
16
. Note

also that for λ ≠ −2, one must have λ0 ≠ −1. The second
condition (105) gives

1

2
ðλþ 2Þðβ þ 1Þ ¼ � ð2a3λþ β þ 1Þ: ð118Þ

We must study both signs separately.
Let us consider the minus sign case which yields

a3 ¼ −
ðλþ 4Þðβ þ 1Þ

4λ
: ð119Þ

Since we would like to have a smooth λ → 0 limit, we must
have β ¼ −1 and a3 ¼ 0. Then, the theory is

Aμν ¼ Rμν − Sμν

þ γ

�
a2CμρνσRρσ −

�
b3 þ

5

2

�
SμρS

ρ
ν

�

þ γ

4
gμν

�
9

8
CρσλγCρσλγ þ 1

4
RρσRρσ þ b3SρσSρσ

�
;

ð120Þ

which will also appear as a subcase below.
Let us consider the final case, choosing the plus sign in

(118), which leads to a3 ¼ βþ1
4
. The Aμν tensor reads

Aμν ¼ Rμν þ βSμν þ γ

�
a2CμρνσRρσ þ β þ 1

4
RμρR

ρ
ν

þ
�
βðβ þ 2Þ

2
− 2 − b3

�
SμρS

ρ
ν

�

þ γ

4
gμν

�
9

8
CρσλγCρσλγ −

β

4
RρσRρσ þ b3SρσSρσ

�
;

ð121Þ

where a2, b3 and β are arbitrary real parameters.
Let us summarize the properties of this theory:
(1) With a given λ0 < 11

16
, it has a unique viable max-

imally symmetric vacuum with a cosmological
parameter λ < 1, and an effective Newton’s constant
1
~κ ¼ ð1 − λÞð1þ λ

2
Þ2.

(2) It describes a unitary massless spin-2 excitation
around this vacuum for any value of λ0 < 11

16
includ-

ing λ0 ¼ 0, except λ0 ¼ −1, which yields λ ¼ −2,
and so it is ruled out by the requirement of a nonzero
effective Newton’s constant. This statement means
that the theory has the same propagator structure as
Einstein’s gravity in (A)dS and flat backgrounds.

(3) It provides an infinite order unitary extension of
Einstein’s gravity.

All these features are quite attractive but we still have to
show that the theory is also healthy at the truncated orders
OðR2Þ and OðR3Þ. At OðR2Þ since the theory is equivalent
to the Einstein-Gauss-Bonnet theory it is unitary as long as
κ is positive. Let us now check the OðR3Þ theory.
Expanding the Lagrangian density built with (121) up to
OðR3Þ, we arrive at

κLOðR3Þ ¼ R − 2Λ0 þ γ

�
−
2b1
3

−
a4 þ b3

4
þ ðβ þ 1Þ2

8
þ 1

8

�
R2

þ γ

�
2b1 þ b2 þ a3 þ b3 þ a4 −

ðβ þ 1Þ2
2

�
RμνRμν þ γb1χGB

þ γ2
b1
4
RRμρνσRμρνσ − γ2ðβ þ 1Þa2RμνRμσνρRσρ

þ γ2
�
7ðβ þ 1Þa2

6
þ b2 þ b3 − 2b1

4
þ ð3β þ 4Þa4

4
þ ðβ þ 2Þa3

4
−
ðβ þ 1Þ3

4

�
RRμνRμν

þ γ2
�
b1
12

−
ð2β þ 3Þa4

16
−
b3
16

−
ðβ þ 1Þa2

6
þ ðβ þ 1Þ3

24

�
R3

þ γ2ðβ þ 1Þ
�
−a2 − a3 − a4 þ

ðβ þ 1Þ2
3

�
RμνRν

ρRρμ: ð122Þ

The question is if one takes this theory as the full theory
what kind of excitations will it have? We can answer this
question with the methods we have employed several times
in this work. Namely we can construct an equivalent
quadratic action that has the same vacuum and excitations

as this theory. Using the above cubic curvature parameters
in (80) yields the EQCA parameters for (122) as

1

~κ
≡ 1

κ
½1 − 3λ2ða3 þ b2Þ�; ð123Þ
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~λ0 ≡ ~κ

κ
λ0 þ

2λ

3

�
1 −

~κ

κ

�
; ð124Þ

κ ~α≡ γ

�
−
2b1
3

−
a4 þ b3

4
þ ðβ þ 1Þ2

8
þ 1

8

�
þ λγ

3

�
−2b1 þ

3b2
2

−
3b3
4

þ 3ðβ þ 2Þa3
2

−
3a4
4

�
; ð125Þ

κ ~β≡ γ

�
2b1 þ b2 þ a3 þ b3 þ a4 −

ðβ þ 1Þ2
2

�
þ λγð2b1 þ b2 − ð2β þ 1Þa3 þ b3 þ a4Þ; ð126Þ

κ~γ ≡ γð1þ λÞb1: ð127Þ

For this theory to describe unitary massless spin-2 excita-
tions we must set ~α ¼ 0 ¼ ~β. These conditions are auto-
matically satisfied because of the conditions (104) and (105)
of the full unitary theory. We only need to show that the
effective Newton’s constant remains positive. Thus we have

1

κ

�
1 −

3λ2

4

�
> 0; ð128Þ

which is satisfied only if − 2ffiffi
3

p < λ < 2ffiffi
3

p . The upper bound is

weaker than λ < 1 but a lower bound is introduced. Thus,
unitarity of our theory atOðR3Þ is achieved if − 2ffiffi

3
p < λ < 1.

Of course now the vacuum equation should allow such a
solution. Here the vacuum equation at this order is

λ3 − 4λþ 4λ0 ¼ 0; ð129Þ

and if − 4

3
ffiffi
3

p < λ0 <
4

3
ffiffi
3

p then there is such a real λ. Observe

that the upper bound is larger than 11
16
. Hence, the condition

on λ0 is − 4

3
ffiffi
3

p < λ0 < 11
16
.

Therefore, with these constraints coming from the uni-
tarity of the theory at OðR3Þ, we can now summarize the
properties of the theory (121) as follows: It describes a
unitary massless spin-2 excitation about its unique viable
vacuum (with − 2ffiffi

3
p < λ < 1) at every order in the curvature

expansion including the infinite order expansion as long as
κ > 0, − 4

3
ffiffi
3

p < λ0 < 11
16
for arbitrary real β, a2 and b3. What

is fascinating is that no new condition arises at any OðR4þiÞ
expansion. Namely, at every such order, contributions to the
effective parameters vanish among each other; therefore, for
example, the effective Newton’s constant or the vacuum
equation does not receive any corrections from the terms of
the OðR4þiÞ theory. This is the first known theory in four
dimensions which is unitary at every order in the curvature
expansion in its (A)dS vacuum.
Having three arbitrary parameters at our disposal, we can

define various minimal theories out of which one is
particularly interesting: For β ¼ −1, a2 ¼ 0 and
b3 ¼ − 5

2
, one has the BI action

I ¼ 2

κγ

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
-det

�
gμν þ

γ

4
gμνRþ 9γ2

32
gμν

�
χGB −

1

9
R2

��s
− ðλ0 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
; ð130Þ

which actually can be recast as

I ¼ 2

κγ

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ��
1þ γ

4
Rþ 9γ2

32

�
χGB −

1

9
R2

��
2

− ðλ0 þ 1Þ
�
; ð131Þ

or more explicitly

I ¼ 1

κ

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
R − 2Λ0 −

γ2

32
R3 þ 9γ2

32
RχGB þ γ3

512
R4 −

9γ3

256
R2χGB þ 81γ3

512
χ2GB

�
; ð132Þ

where we dropped the boundary term. The important point here is that as an OðR4Þ theory, this describes massless unitary
excitations about its (A)dS vacuum, but it also describes massless unitary excitations at order OðRiÞ for i ≤ 4, when
expanded in small curvature.
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VII. CONCLUSION AND FURTHER DISCUSSIONS

Using physical requirements such as the existence of a
unique viable maximally symmetric vacuum with a zero or
a nonzero curvature, unitary massless spin-2 excitations
about this vacuum at tree level, and the reduction to the
cosmological Einstein theory for weak field gravity, we
have constructed Born-Infeld gravity actions with the
metric being the only independent variable following the
route of [1]. To the best of our knowledge, the theory we
have constructed is the only known theory in four dimen-
sions that is unitary at every order in the curvature
expansion about its (A)dS vacuum.
One interesting observation is that the four dimensional

Gauss-Bonnet term, being a total derivative, which has no
classical effect, plays an important role in the construction
of the actions: Namely, at the lowest order BI gravity
reduces to the Einstein-Gauss-Bonnet theory and not to its
classically equivalent partner, the Einstein’s theory. In
addition to the above-mentioned physical requirements,
we have also employed the notion of minimality which is
essentially constructing determinantal actions that are as
simple as possible and that do not involve many powers of
curvature and derivatives of curvature. This leads to a
quadratic theory inside the determinant. In the most general
form, the set of such theories has three dimensionless and
one dimensionful parameter which is the BI parameter that
comes from the coefficient of the Gauss-Bonnet term. To
further restrict the viable BI theories, one must turn to their
phenomenological applications. By construction, the
theory matches Einstein’s gravity for small curvature;
hence, deviations from the results of Einstein’s theory
should be expected at the strong gravity regime.
In this work, we have concentrated on pure gravity and

have not worried about matter couplings which can either
be done by the usual way of assuming a

R
d4x

ffiffiffiffiffiffi−gp
gμνTμν

type interaction in the action or in the nonminimal way by
inserting matter fields into the determinant. As an example
of the latter case, one can couple Maxwell theory by simply
taking Aμν → Aμν þ αFμν, with Fμν being the field strength
tensor. Conformally invariant versions of the actions can
also be found following [32,33].
We shall study cosmological and black-hole-type sol-

utions in a separate work, but here with the tools in our
hands, we can find some exact solutions of the BI gravity
(121). These solutions are the AdS-wave solutions of the
cosmological Einstein’s theory [34–36]. These solutions
not only solve the exact cosmological Einstein’s theory, but
also its linearized version. These solutions remain intact in
the BI gravity (121), and the only thing that one needs to
change is the effective cosmological constant which can be
found from the vacuum equation (117). This comes from
the fact that the equivalent quadratic curvature action of a
theory determines the linearized field equations which in
turn determine the properties of its AdS-wave solutions
[34,36], and here we have shown that for BI gravity this

action is the Einstein–Gauss-Bonnet action whose linear-
ized field equations are the same as the Einstein’s theory.
The same fact gives a way to construct the conserved
charges of the BI theory which we now show.

A. Conserved charges in the BI gravity

The conserved charges of a given fðRμν
αβÞ theory can be

written in terms of the conserved charges of cosmological
Einstein’s gravity as was shown in [27]. This follows from
the linearized field equations of the generic fðRμν

αβÞ theory
given in Appendix D and the charge construction in
[28,30]. Without going into further details, let us recall
the expression in [27]:

Q0
fðξ̄Þ ¼

�
1

~κ
þ 4Λn
n − 2

αþ 4Λ
n − 2

β

þ 4Λðn − 3Þðn − 4Þ
ðn − 1Þðn − 2Þ γ

�
Q0

Einsteinðξ̄Þ; ð133Þ

where ξ̄ is the background Killing vector which for energy
reads ξ̄μ ¼ ð−1; 0; 0; 0Þ. Q0

Einstein is the Abbott-Deser
charge for asymptotically (A)dS spacetimes in cosmologi-
cal Einstein’s gravity [37]. For the viable BI gravity theory
given in (121), α ¼ 0, β ¼ 0, and n ¼ 4; hence, the
conserved charges of asymptotically (A)dS spacetimes read

Q0
BIðξ̄Þ ¼ ð1 − λÞ

�
1þ λ

2

�
2

Q0
Einsteinðξ̄Þ: ð134Þ

For example, for an asymptotically rotating (A)dS-
Schwarzschild black hole,7 the energy and the angular
momentum read

E ¼ ð1 − λÞ
�
1þ λ

2

�
2

m; J ¼ ð1 − λÞ
�
1þ λ

2

�
2

ma;

where m is the mass parameter and a is the rotation
parameter. It is also clear that the black hole has a positive
mass when the graviton has a positive kinetic energy, that
is, λ < 1.
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APPENDIX A: NAIVE BI GRAVITY

Let us consider the following BI-gravity action:

I ¼ −
2

κγ

Z
dnx

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgμν þ γGμν þ γβgμνRÞ

q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p i
: ðA1Þ

Expanding to the OðR2Þ yields

LOðR2Þ ¼
n − 2

2κ

�
Rþ γ

n − 2

�
RμνRμν −

n2 − 6nþ 12

8
R2

��

− β
n
κ

�
Rþ n − 2

4
γβR2

�
: ðA2Þ

For n ¼ 3 and β ¼ 0 one gets the BINMG action which
describes a unitary massive spin-2 graviton, but for any
other dimension there is a massive spin-2 ghost due to the
RμνRμν term [40].

APPENDIX B: CONVERSIONS BETWEEN
CSR BASIS AND RRR BASIS

In this appendix, we discuss the conversions between the
Weyl–traceless-Ricci–Ricci (CSR) basis and Riemann–
Ricci–curvature-scalar (RRR) basis.
The Aμν tensor written in the CSR basis, which is

Aμν ¼ Rμν þ βSμν þ γða1CμρσλC
ρσλ
ν þ a2CμρνσRρσ þ a3RμρR

ρ
ν þ a4SμρS

ρ
νÞ þ γ

4
gμνðb1CρσλγCρσλγ þ b2RρσRρσ þ b3SρσSρσÞ;

ðB1Þ

can be converted to the RRR basis, which is

Aμν¼ð1þ ~βÞRμν−
~β

4
gμνRþc1gμνR2þc2RRμνþc3gμνRρσRρσþc4Rσ

μRνσþc5RμσνρRσρþc6gμνRρσλγRρσλγþc7Rμ
σρτRνσρτ;

ðB2Þ

by using Sμν ¼ Rμν − 1
4
gμνR and the definition of the Weyl tensor in four dimensions,

Cμανβ ¼ Rμανβ − gμ½νRβ�α þ gα½νRβ�μ þ
R
3
gμ½νgβ�α; ðB3Þ

in place. Then, the coefficients in (B2) become

~β¼ β; c1 ¼
γ

48
ð−8a1þ8a2þ3a4þ4b1−3b3Þ; c2 ¼ γ

�
a1−

2

3
a2−

1

2
a4

�
; c3 ¼

γ

4
ð2a1−2a2−2b1þb2þb3Þ;

c4 ¼ γð−2a1þa2þa3þa4Þ; c5¼ γð−2a1þa2Þ; c6 ¼
γ

4
b1; c7¼ γa1: ðB4Þ

Sometimes the inverse transformation is also needed; therefore, we shall give it here:

β ¼ ~β; a1 ¼
c7
γ
; a2 ¼

1

γ
ðc5 þ 2c7Þ; a3 ¼

1

γ

�
2c2 þ c4 þ

c5
3
þ 2c7

3

�
; a4 ¼

1

γ

�
−2c2 −

4c5
3

−
2c7
3

�
;

b1 ¼
4c6
γ

; b2 ¼
1

γ

�
16c1 þ 2c2 þ 4c3 þ

2c5
3

þ 8

3
c6

�
b3 ¼

1

γ

�
−16c1 − 2c2 þ

4c5
3

þ 16c6
3

þ 2c7

�
: ðB5Þ

In the RRR basis, the EQCA takes the form

LEQCA¼−2Λ0þ
2

3

�
2þ l1Λ

γ

�
l1Λ3þ

�
1− l1Λ2−

4

9γ
l21Λ

3

�
R

þ1

γ

�
ð4c1þc2Þ

�
1þγΛþ l1

3
Λ2

�
þ1

8
ðγð~βþ1Þþ2l2ΛÞ2þ

1

2

�
γ

2
þ l1
3
Λ

�
2
�
R2

þ1

γ

�
ð4c3þc4þc5Þ

�
1þγΛþ l1

3
Λ2

�
−
1

2
ðγð ~βþ1Þþ2l2ΛÞ2

�
R2
μνþ

1

γ
ð4c6þc7Þ

�
1þγΛþ l1

3
Λ2

�
R2
μσνρ; ðB6Þ
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where the coefficients read

l1 ¼ 48c1 þ 12c2 þ 12c3 þ 3c4 þ 3c5 þ 8c6 þ 2c7;

ðB7Þ

l2 ¼
1

3
ð6c2 þ 3c4 þ c5 þ 2c7Þ: ðB8Þ

APPENDIX C: AN EXAMPLE ON EQCA
CONSTRUCTION

The unitarity discussions using the EQCA construction
involve various Taylor series expansions of functions
depending on tensor quantities which sometimes compli-
cate the inherent physical meaning. To understand the basic
idea of the EQCA and the relation between various
expansions, it may be worth considering analogue expan-
sions for a function with a single scalar variable. First,
remember that the EQCA of a gravity theory is given with
the second order Taylor series expansion of the Lagrangian
in the curvature around the maximally symmetric back-
ground, R̄μν

ρσ, which is either already determined by using
the ELA of the theory or will be determined by using the
EQCA of the theory. Then, for a function fðxÞ, the
analogue of EQCA is the following second order Taylor
series expansion around x ¼ x̄:

fEQCAðxÞ ¼ fðx̄Þ þ f0ðx̄Þðx − x̄Þ þ 1

2
f00ðx̄Þðx − x̄Þ2;

ðC1Þ

which can be recast in the form

fEQCAðxÞ ¼ fðx̄Þ − f0ðx̄Þx̄þ 1

2
f00ðx̄Þx̄2

þ ½f0ðx̄Þ − f00ðx̄Þx̄�xþ 1

2
f00ðx̄Þx2: ðC2Þ

Here, note that in the gravitational setting, the OðxÞ term
represents the Einstein-Hilbert piece and its coefficient is
the effective Newton’s constant of the theory whose
positivity puts a constraint on the theory. The Oð1Þ term
determines the effective “bare” cosmological constant
while the Oðx2Þ term is the quadratic curvature term.
In addition to this EQCA expansion, we also discussed

the small curvature expansion of a gravitational theory
which corresponds to the Taylor series expansion of fðxÞ
around x ¼ 0 as

fðxÞ ¼
X∞
n¼0

fðnÞð0Þ
n!

xn: ðC3Þ

Note that unless fðnÞð0Þ is zero, each order in (C3) will
contribute to EQCA as

ðxnÞEQCA ¼
�
1 −

3n
2
þ n2

2

�
x̄n þ n2x̄n−1x

þ nðn − 1Þ
2

x̄n−2x2: ðC4Þ

This result implies that to see the contributions to the
EQCA of a gravity theory coming from the OðRiÞ terms in
the small curvature expansion of the theory, one needs to
look at the Λi−2 terms at the quadratic curvature level, the
Λi−1 terms in the effective Newton’s constant part 1

~κ, and Λ
i

terms in the effective bare cosmological part
~Λ0

~κ .
Another implication of this result is that once the EQCA

analogue of fðxÞ is found, there is no need to calculate the
EQCA analogue of any finite order truncation of (C3)
separately. One just needs to have Oðx̄iÞ, Oðx̄i−1Þ, and
Oðx̄i−2Þ expansions of Oð1Þ, OðxÞ, and Oðx2Þ terms in
(C2), respectively, around x̄ ¼ 0. For example, let us write
the Oðx3Þ truncation of (C3):

fx3ðxÞ ¼ fð0Þ þ f0ð0Þxþ 1

2
f00ð0Þx2 þ 1

6
f000ð0Þx3;

whose EQCA analogue expansion is

fx3−EQCAðxÞ ¼ fð0Þ þ 1

6
f000ð0Þx̄3

þ
�
f0ð0Þ − 1

2
f000ð0Þx̄2

�
x

þ 1

2
½f00ð0Þ þ f000ð0Þx̄�x2: ðC5Þ

Up to Oðx̄3Þ expansion of the Oð1Þ term in (C2), that is,
fðx̄Þ − f0ðx̄Þx̄þ 1

2
f00ðx̄Þx̄2, around x̄ ¼ 0 gives the first line

of (C5). Then, up to Oðx̄2Þ expansion of the OðxÞ term in
(C2), that is, f0ðx̄Þ − f00ðx̄Þx̄, around x̄ ¼ 0 gives the
coefficient of x in (C5). Finally, up to Oðx̄Þ expansion
of the Oðx2Þ term in (C2), that is, 1

2
f00ðx̄Þ, around x̄ ¼ 0

gives the coefficient of x2 in (C5).
The same approach can be used in the gravitational

setting. For example, the EQCA of the BI theory defined by
(121) can be obtained by using (85) as

κLEQCA ¼ −2
λ0
γ
þ λ3

γ

�
1þ 3λ

8

�
þ Rð1 − λÞ

�
1þ λ

2

�
2

þ 9

8
γ

�
1þ λ

2

�
2

χGB: ðC6Þ

Then, the EQCA of the OðR3Þ expansion of the BI theory
defined by (121) can be obtained by taking up to λ3

γ order in

the cosmological constant term, up to λ2 order in the
effective Newton’s constant term, and up to λ order in the
quadratic curvature parameters in (C6) as
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κLEQCA−OðR3Þ ¼ −2
λ0
γ
þ λ3

γ
þ R

�
1 −

3

4
λ2
�

þ 9

8
γð1þ λÞχGB; ðC7Þ

which can also be obtained by using the EQCA result for
κLOðR3Þ given in (122). In addition, the vacuum equation
for OðR3Þ truncation can be calculated from (C7) as

λ ¼ λ0 − λ3

2

ð1 − 3
4
λ2Þ ⇒ λ − λ0 −

1

4
λ3 ¼ 0; ðC8Þ

which can again be obtained from the vacuum equation of
the whole theory which is

λ − λ0 −
λ3

16
ð4þ λÞ ¼ 0; ðC9Þ

by eliminating the highest power coming from the OðR4Þ
truncation.

APPENDIX D: LINEARIZATION OF THE
FIELD EQUATIONS OF f ðRμν

αβÞ
In this appendix, we carry out the linearization of the

field equations of an fðRμν
αβÞ theory, which is a gravity

theory whose Lagrangian is constructed from the contrac-
tions of the Riemann tensor but not its derivatives, and we
show that these linearized field equations are the same as
those of a quadratic curvature gravity theory with redefined
parameters. First, note that the field equations of an fðRμν

αβÞ
theory are

1

2
ðgνρ∇λ∇σ − gνσ∇λ∇ρÞ

∂f
∂Rμλ

ρσ

−
1

2
ðgμρ∇λ∇σ − gμσ∇λ∇ρÞ

∂f
∂Rλν

ρσ

−
1

2

� ∂f
∂Rμλ

ρσ

Rρσ
λ
ν −

∂f
∂Rλν

ρσ
Rρσ

λ
μ

�
−
1

2
gμνfðRμν

αβÞ

¼ 0: ðD1Þ
In Sec. III, we showed that the (A)dS spacetime solutions of
this theory satisfy

−2ζR̄μν þ gμνfðR̄αβ
ρσÞ ¼ 0; ðD2Þ

where ζ is defined in (26) as ½ ∂f
∂Rμν

ρσ
�
R̄μλ
ρσ

Rμν
ρσ ≡ ζR. Let us

linearize (D1) in the metric perturbation hμν ≡ gμν − ḡμν
where ḡμν is the (A)dS background solving (D2). Starting
with the last term in (D1), which becomes

½gμνfðRμν
αβÞ�L ¼ hμνfðR̄μν

αβÞ þ ḡμν

� ∂f
∂Rαβ

ρσ

�
R̄αβ
ρσ

ðRαβ
ρσÞL; ðD3Þ

and using the equation defining ζ, one finds

� ∂f
∂Rμλ

ρσ

�
R̄μλ
ρσ

¼ ζδ½ρμ δ
σ�
ν : ðD4Þ

As discussed in Sec. III, one gets

½gμνfðRμν
αβÞ�L ¼ hμνfðR̄αβ

ρσÞ þ ḡμνζRL: ðD5Þ

Moving to the first term in the third line of (D1), one has the
linearization

� ∂f
∂Rμλ

ρσ

Rρσ
λ
ν

�
L

¼
� ∂2f

∂Rηθ
ατ∂Rμλ

ρσ

�
R̄μλ
ρσ

ðRηθ
ατÞLR̄ρσ

λ
ν

þ
� ∂f
∂Rμλ

ρσ

�
R̄μλ
ρσ

ðRρσ
λ
νÞL: ðD6Þ

Here, remember that ½ ∂2f
∂Rηθ

ατ∂Rμλ
ρσ
�
R̄μλ
ρσ

has the following form as

we discussed in Sec. III:

� ∂2f

∂Rηθ
ατ∂Rμλ

ρσ

�
R̄μν
ρσ

¼ 2αδ½αη δ
τ�
θ δ

½ρ
μ δ

σ�
λ

þ βðδα½ηδ½ρθ�δjτj½μ δσ�λ� − δτ½ηδ
½ρ
θ�δ

jαj
½μ δ

σ�
λ� Þ

þ 12γδ½αη δτθδ
ρ
μδ

σ�
λ : ðD7Þ

Using this result together with (D4) and R̄μλ
ρσ ¼

2Λ
ðn−1Þðn−2Þ ðδμρδλσ − δμσδλρÞ, one has

� ∂f
∂Rμλ

ρσ

Rρσ
λ
ν

�
L

¼ −
�
α

4Λ
ðn− 2Þ þ β

nΛ
ðn− 1Þðn− 2Þ

�
RLḡμν

þ
�
γ

8Λðn− 3Þ
ðn− 1Þðn− 2Þ− β

2Λ
n− 1

�

×

�
RL
μν −

1

2
ḡμνRL −

2Λ
n− 2

hμν

�
− ζRL

μν:

Now, let us linearize the first term in (D1), gνρ∇λ∇σ
∂f
∂Rμλ

ρσ
,

and to do this, first note that the linearization of the metric
compatibility, ∇μgνρ ¼ 0, yields

∇̄μhνρ ¼ ðΓσ
μνÞLḡσρ þ ðΓσ

μρÞLḡνσ: ðD8Þ

Then, for a two-tensor Aμν with the background value
Āμν ¼ āḡμν, the linearization of ∇μAνρ yields

ð∇μAνρÞL ¼ ∇̄μAL
νρ − ā½ðΓσ

μνÞLḡσρ þ ðΓσ
μρÞLḡνσ�; ðD9Þ

and with (D8), one has
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ð∇μAνρÞL ¼ ∇̄μAL
νρ − ā∇̄μhνρ: ðD10Þ

Next, let us consider the linearization of ð∇σ∇μAνρÞL:

ð∇σ∇μAνρÞL ¼ ∇̄σ∇̄μAL
νρ − ðΓλ

σμÞL∇̄λĀνρ − ðΓλ
σνÞL∇̄μĀλρ

− ðΓλ
σρÞL∇̄μĀνλ − ∇̄σððΓλ

μνÞLĀλρÞ
− ∇̄σððΓλ

μρÞLĀνλÞ; ðD11Þ

which boils down to

ð∇σ∇μAνρÞL ¼ ∇̄σð∇̄μAL
νρ − ā∇̄μhνρÞ: ðD12Þ

Finally, we have

�
gνρ∇λ∇σ

∂f
∂Rμλ

ρσ

�
L

¼ ḡνρḡλβ∇̄β∇̄σ

� ∂f
∂Rμλ

ρσ

�
L

þ ḡνρḡλβ∇̄β

�
ðΓα

σÞL
� ∂f
∂Rμλ

ρσ

�
R̄μλ
ρσ

�
; ðD13Þ

where the second term represents

ðΓα
σÞL

� ∂f
∂Rμλ

ρσ

�
R̄μλ
ρσ

≡ ðΓρ
σαÞL

� ∂f
∂Rμλ

ασ

�
R̄μλ
ρσ

þ ðΓσ
σαÞL

� ∂f
∂Rμλ

ρα

�
R̄μλ
ρσ

− ðΓα
σμÞL

� ∂f
∂Rαλ

ρσ

�
R̄μλ
ρσ

− ðΓα
σλÞL

� ∂f
∂Rμα

ρσ

�
R̄μλ
ρσ

; ðD14Þ

and using (D4), one has

ðΓα
σÞL

� ∂f
∂Rμλ

ρσ

�
R̄μλ
ρσ

¼ 0: ðD15Þ

On the other hand, ð ∂f
∂Rμλ

ρσ
Þ
L
takes the following form by using (D7):

� ∂f
∂Rμλ

ρσ

�
L

¼
� ∂2f

∂Rηθ
ατ∂Rμλ

ρσ

�
R̄μλ
ρσ

ðRηθ
ατÞL ¼ 2αδ½ρμ δ

σ�
λ RL þ 2βδ½ρθ δ

jτj
½μ δ

σ�
λ� ðRθ

τÞL þ 2γδ½ρμ δ
σ�
λ RL − 8γδ½ρθ δ

jτj
½μ δ

σ�
λ� ðRθ

τÞL þ 2γδ½ρη δ
σ�
θ ðRηθ

μλÞL:

ðD16Þ
Using these results, one arrives at
�
gνρ∇λ∇σ

∂f
∂Rμλ

ρσ

�
L

¼ αðḡμν∇̄λ∇̄λRL − ∇̄ν∇̄μRLÞ þ
β

2
½ḡνρ∇̄λ∇̄λðRρ

μÞL − ḡνρ∇̄λ∇̄μðRρ
λÞL − ∇̄ν∇̄σðRσ

μÞL þ ḡμν∇̄λ∇̄σðRσ
λÞL�

þ γ½ḡμν∇̄λ∇̄λRL − 2ḡνρ∇̄σ∇̄σðRρ
μÞL þ 2ḡνρ∇̄λ∇̄μðRρ

λÞL þ 2ḡνρ∇̄λ∇̄σðRρσ
μλÞL�

− γ½∇̄ν∇̄μRL − 2∇̄ν∇̄σðRσ
μÞL þ 2ḡμν∇̄λ∇̄σðRσ

λÞL�: ðD17Þ
Let us recap the definitions of the linearized Ricci tensor ðRρ

μÞL and linearized Ricci scalar:

ðRρ
μÞL ¼ ðgραRμαÞL ¼ ḡραRL

μα −
2Λ
n − 2

hρμ; RL ¼ ðRρ
ρÞL; ðD18Þ

and the linearized Einstein tensor:

GL
μν ≡ RL

μν −
1

2
ḡμνRL −

2Λ
n − 2

hμν; ðD19Þ

which satisfies the linearized Bianchi identity ∇̄μGL
μν ¼ 0. With these two background tensors and RL, one has

�
gνρ∇λ∇σ

∂f
∂Rμλ

ρσ

�
L

¼ αðḡμν□̄RL − ∇̄μ∇̄νRLÞ þ
β

2

�
□̄GL

μν − ḡνρ∇̄λ∇̄μðRρ
λÞL −

1

2
∇̄ν∇̄μRL þ ḡμν□̄RL

�

þ γ

�
−2□̄RL

μν þ
4Λ
n − 2

□̄hμν þ 2ḡνρ∇̄λ∇̄μðRρ
λÞL þ 2ḡνρ∇̄λ∇̄σðRρσ

μλÞL
�
; ðD20Þ
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where ḡνρ∇̄λ∇̄μðRρ
λÞL can be calculated as

ḡνρ∇̄λ∇̄μðRρ
λÞL ¼ 1

2
∇̄μ∇̄νRL þ 2nΛ

ðn − 1Þðn − 2ÞG
L
μν

þ Λ
n − 1

ḡμνRL: ðD21Þ

Finally, the last term in (D20) requires the linearized
form of

∇μ∇νR
νβ
μα ¼ □Rβ

α −∇μ∇αR
β
μ; ðD22Þ

which can be obtained from the once-contracted Bianchi
identity

∇νRμανβ ¼ ∇μRαβ −∇αRμβ; ðD23Þ

and the linearization yields

∇̄μ∇̄νðRνβ
μαÞL ¼ □̄ðRβ

αÞL − ∇̄μ∇̄αðRβ
μÞL: ðD24Þ

Then, putting the pieces together, one arrives at the desired
expression

�
gνρ∇λ∇σ

∂f
∂Rμλ

ρσ

�
L

¼ ð2αþ βÞ
2

ðḡμν□̄RL − ∇̄μ∇̄νRLÞ þ
β

2
□̄GL

μν

−
β

2

�
2nΛ

ðn − 1Þðn − 2ÞG
L
μν þ

Λ
n − 1

ḡμνRL

�
: ðD25Þ

Now, let us start collecting terms in the linearization of
the field equations (D1). Note that the linearization of the
other three terms in the first line of (D1) yields the same
contribution as ðgνρ∇λ∇σ

∂f
∂Rμλ

ρσ
Þ
L
. In addition, the lineariza-

tion of the first two terms in the second line of (D1) gives
the same contribution. As a result, the linearized field
equations become

�
ζ − β

2Λ
ðn − 1Þðn − 2Þ − γ

4Λðn − 3Þ
ðn − 1Þðn − 2Þ

�
GL
μν

þ ð2αþ βÞðḡμν□̄RL − ∇̄μ∇̄νRLÞ þ β□̄GL
μν ðD26Þ

þ
�
α

4Λ
ðn − 2Þ þ β

2Λ
ðn − 1Þðn − 2Þ

�
RLḡμν

− hμν

�
1

2
fðR̄αβ

ρσÞ − 2Λ
n − 2

�
¼ 0: ðD27Þ

The last line vanishes because of the background
equation (D2). The final equation can be recast in the
form of the linearized field equations coming from the
quadratic gravity theory

L ¼ 1

~κ
ðR − 2 ~Λ0Þ þ αR2 þ βRλ

σRσ
λ þ γχGB; ðD28Þ

given in [28] as

�
1

~κ
þ 4Λnα

n − 2
þ 4Λβ
n − 1

þ 4Λγðn − 4Þðn − 3Þ
ðn − 2Þðn − 1Þ

�
GL
μν

þ ð2αþ βÞ
�
ḡμν□̄ − ∇̄μ∇̄ν þ

2Λ
n − 2

gμν

�
RL

þ β

�
□̄GL

μν −
2Λ
n − 1

ḡμνRL

�

¼ 0: ðD29Þ

To match (D27) and (D29), one must have

1

~κ
¼ 2ζ −

4Λ
n − 2

�
ðnαþ βÞ þ γ

ðn − 2Þðn − 3Þ
ðn − 1Þ

�
: ðD30Þ

In addition, we have to require that both theories have the
same vacua, which determines ~Λ0 as

~Λ0

~κ
¼ −fðR̄αβ

ρσÞ þ 2nΛ
n − 2

ζ

−
2Λ2n

ðn − 2Þ2
�
ðnαþ βÞ þ γ

ðn − 2Þðn − 3Þ
ðn − 1Þ

�
; ðD31Þ

which follows from the vacuum field equation of (D28),

Λ − ~Λ0

2~κ
þ Λ2

�
ðnαþ βÞ ðn − 4Þ

ðn − 2Þ2 þ γ
ðn − 3Þðn − 4Þ
ðn − 1Þðn − 2Þ

�
¼ 0;

ðD32Þ

and (D2).

APPENDIX E: TERMS IN ELA AND EQCA

In order to calculate ELA and EQCA for the BI gravity
theory defined by the Lagrangian density

LðCμν
αβ; R

μ
ν ; R

μ
νÞ ¼ 2

γ
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρσ þ γAρ

σÞ
q

− ðλ0 þ 1Þ�; ðE1Þ

one needs to calculate the background values of L, and its
first and second order derivatives. To find the background
value of L, one needs the background value of Aρ

σ which
can be found as

γĀρ
σ ≡ δρσā ¼ δρσλ½1þ λða3 þ b2Þ�: ðE2Þ

In calculating the first order derivatives of (E1), we use

∂ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδμν þ γAμ

νÞ
q

Þ ¼ γ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδμν þ γAμ

νÞ
q

Bσ
ρ∂Aρ

σ; ðE3Þ
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where Bσ
ρ is defined as Bα

ρðδρβ þ γAρ
βÞ ¼ δαβ with the back-

ground value B̄σ
ρ ¼ ð1þ āÞ−1δσρ. Thus, we just need the

derivatives of Aρ
σ which can be found as

∂Aρ
σ

∂Cμν
αβ

¼ γa1ðCαβ
σνδ

ρ
μ þ Cρβ

μνδασÞ þ
γb1
2

Cαβ
μνδ

ρ
σ þ γa2R

β
νδασδ

ρ
μ;

ðE4Þ

∂Aρ
σ

∂Sμν ¼ βδνσδ
ρ
μ þ γa4ðSνσδρμ þ SρμδνσÞ þ

γb3
2

Sνμδ
ρ
σ; ðE5Þ

∂Aρ
σ

∂Rμ
ν
¼ δνσδ

ρ
μ þ γa2C

ρν
σμ þ γa3ðRν

σδ
ρ
μ þ Rρ

μδνσÞ þ
γb2
2

Rν
μδ

ρ
σ;

ðE6Þ

and their background values are

� ∂Aρ
σ

∂Cμν
αβ

�
R̄μν
ρσ

¼ λa2δ
β
νδασδ

ρ
μ; ðE7Þ

�∂Aρ
σ

∂Sμν
�
R̄μν
ρσ

¼ βδνσδ
ρ
μ; ðE8Þ

�∂Aρ
σ

∂Rμ
ν

�
R̄μν
ρσ

¼ δνσδ
ρ
μ þ 2λ

�
a3δ

ρ
μδνσ þ

b2
4
δνμδ

ρ
σ

�
: ðE9Þ

Using these results, one can calculate the linear order terms
in ELA and EQCA. However, prior to any calculation, it is
clear that the Weyl term

� ∂L
∂Cμν

αβ

�
R̄μν
ρσ

Cμν
αβ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρν þ γĀρ

νÞ
q

B̄σ
ρ

� ∂Aρ
σ

∂Cμν
αβ

�
R̄μν
ρσ

Cμν
αβ

ðE10Þ

and the traceless-Ricci term

�∂L
∂Sμν

�
R̄μν
ρσ

Sμν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρν þ γĀρ

νÞ
q

B̄σ
ρ

�∂Aρ
σ

∂Sμν
�
R̄μν
ρσ

Sμν ðE11Þ

yield zero as they involve traces of Cμν
αβ and S

μ
ν . The unique

contribution comes from the Ricci term

� ∂L
∂Rμ

ν

�
R̄μν
ρσ

ðRμ
ν − R̄μ

νÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρν þ γĀρ

νÞ
q

B̄σ
ρ

�∂Aρ
σ

∂Rμ
ν

�
R̄μν
ρσ

ðRμ
ν − R̄μ

νÞ; ðE12Þ

which becomes

� ∂L
∂Rμ

ν

�
R̄μν
ρσ

ðRμ
ν − R̄μ

νÞ

¼ ðγR − 4λÞ 1
2
ð1þ āÞ½1þ 2λða3 þ b2Þ�: ðE13Þ

Adding the background value of L,

L̄ ¼ 2

γ
½ð1þ āÞ2 − ðλ0 þ 1Þ�; ðE14Þ

to this result yields the ELA given in (57).
The second order derivatives of L can be calculated by

using

∂2
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ðδρν þ γAρ
νÞ

q 


¼ γ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδρν þ γAρ

νÞ
q �

Bλ
γ∂2Aγ

λ − γBλ
θB

τ
γð∂Aθ

τÞ∂Aγ
λ

þ γ

2
ðBλ

γ∂Aγ
λÞ2

�
; ðE15Þ

where the second order derivatives of Aρ
σ are needed.

First, the second derivative of Aρ
σ with respect to the

Weyl tensor is

� ∂2Aρ
σ

∂Cμν
αβ∂Cηθ

λτ

�
R̄μν
ρσ

¼ γa1δασδ
β
θδ

λ
μδ

τ
νδ

ρ
η

þ γδαηδ
β
θδ

τ
ν

�
a1δλσδ

ρ
μþb1

2
δλμδ

ρ
σ

�
; ðE16Þ

where the result does not have the symmetries of the Weyl
tensor on the left-hand side. However, note that the result
becomes symmetric accordingly when it is multiplied with
Cμν
αβC

ηθ
λτ in finding the final contribution to the expression

� ∂2Aρ
σ

∂Cμν
αβ∂Cηθ

λτ

�
R̄μν
ρσ

Cμν
αβ∂Cηθ

λτ : ðE17Þ

Then, the other derivatives can be calculated as

� ∂2Aρ
σ

∂Cμν
αβ∂Rη

θ

�
R̄μν
ρσ

¼ γa2δ
β
ηδθνδ

α
σδ

ρ
μ;

� ∂2Aρ
σ

∂Sμν∂Sαβ
�
R̄μν
ρσ

¼ γa4ðδνσδβμδρα þ δναδ
β
σδ

ρ
μÞ þ γb3

2
δναδ

β
μδ

ρ
σ;

ðE18Þ
� ∂2Aρ

σ

∂Rμ
ν∂Rα

β

�
R̄μν
ρσ

¼ γa3ðδνσδβμδρα þ δναδ
β
σδ

ρ
μÞ þ γb2

2
δναδ

β
μδ

ρ
σ:

ðE19Þ
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It is clear that the remaining ones are just zero:

∂2Aρ
σ

∂Cμν
αβ∂Sηθ ¼ 0;

∂2Aρ
σ

∂Sμν∂Rα
β

¼ 0: ðE20Þ

Using these results in (E15) let us compute the second order contributions to the EQCA term by term. First, the Weyl square
term takes the form

1

2

� ∂2L

∂Cμν
αβC

ηθ
λτ

�
R̄μν
ρσ

Cμν
αβC

ηθ
λτ ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδμν þ γĀμ

νÞ
q �

B̄σ
ρ

� ∂2Aρ
σ

∂Cμν
αβ∂Cηθ

λτ

�
R̄μν
ρσ

− γB̄σ
ζ

� ∂Aζ
ϵ

∂Cηθ
λτ

�
R̄μν
ρσ

B̄ϵ
ρ

� ∂Aρ
σ

∂Cμν
αβ

�
R̄μν
ρσ

þ γ

2
B̄σ
ρ

� ∂Aρ
σ

∂Cμν
αβ

�
R̄μν
ρσ

B̄ϵ
ζ

� ∂Aζ
ϵ

∂Cηθ
λτ

�
R̄μν
ρσ

�
Cμν
αβC

ηθ
λτ ; ðE21Þ

which then yields

1

2

� ∂2L

∂Cμν
αβC

ηθ
λτ

�
R̄μν
ρσ

Cμν
αβC

ηθ
λτ ¼

1

2
γ2ð1þ āÞða1 þ b1ÞCμν

ρσC
ρσ
μν: ðE22Þ

Then, the term involving the square of the traceless-Ricci tensor has the form

1

2

∂2L
∂Sμν∂Sαβ S

μ
νSαβ ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδμν þ γĀμ

νÞ
q �

B̄σ
ρ

� ∂2Aρ
σ

∂Sμν∂Sαβ
�
R̄μν
ρσ

− γB̄σ
ζ

�∂Aζ
ϵ

∂Sαβ
�
R̄μν
ρσ

B̄ϵ
ρ

�∂Aρ
σ

∂Sμν
�
R̄μν
ρσ

þ γ

2
B̄σ
ρ

�∂Aρ
σ

∂Sμν
�
R̄μν
ρσ

B̄ϵ
ζ

�∂Aζ
ϵ

∂Sαβ
�
R̄μν
ρσ

�
SμνSαβ;

ðE23Þ

yielding

1

2

∂2L
∂Sμν∂Sαβ S

μ
νSαβ ¼ γ2

�
−
1

4
β2 þ 1

2
ð1þ āÞða4 þ b3Þ

�
SνμS

μ
ν : ðE24Þ

Moving to the Ricci square term which has the form

1

2

∂2L
∂Rμ

ν∂Rα
β

ðRμ
ν − R̄μ

νÞðRα
β − R̄α

βÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδμν þ γĀμ

νÞ
q �

B̄σ
ρ

� ∂2Aρ
σ

∂Rμ
ν∂Rα

β

�
R̄μν
ρσ

− γB̄σ
ζ

�∂Aζ
ϵ

∂Rα
β

�
R̄μν
ρσ

B̄ϵ
ρ

�∂Aρ
σ

∂Rμ
ν

�
R̄μν
ρσ

þ γ

2
B̄σ
ρ

�∂Aρ
σ

∂Rμ
ν

�
R̄μν
ρσ

B̄ϵ
ζ

�∂Aζ
ϵ

∂Rα
β

�
R̄μν
ρσ

�
ðRμ

ν − R̄μ
νÞðRα

β − R̄α
βÞ; ðE25Þ

we obtain

1

2

∂2L
∂Rμ

ν∂Rα
β

ðRμ
ν − R̄μ

νÞðRα
β − R̄α

βÞ ¼ −
�
γR − 2λ −

γ2

2λ
Rν
μR

μ
ν þ γ2

2λ
SνμS

μ
ν

�
λ

2
½2ð1þ āÞða3 þ b2Þ þ ð2λða3 þ b2Þ þ 1Þ2�

−
γ2ðð2a3λþ 1Þ2 − 2ð1þ āÞða3 þ b2ÞÞ

4
SνμS

μ
ν ; ðE26Þ

after using

R2 ¼ 4ðRν
μR

μ
ν − SνμS

μ
νÞ: ðE27Þ

Then, the first two cross terms yield zero as
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∂2L
∂Cμν

αβ∂Sηθ C
μν
αβS

η
θ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδμν þ γĀμ

νÞ
q �

B̄σ
ρ

� ∂2Aρ
σ

∂Cμν
αβ∂Sηθ

�
R̄μν
ρσ

− γB̄σ
ζ

�∂Aζ
ϵ

∂Sηθ
�
R̄μν
ρσ

B̄ϵ
ρ

� ∂Aρ
σ

∂Cμν
αβ

�
R̄μν
ρσ

þ γ

2
B̄σ
ρ

� ∂Aρ
σ

∂Cμν
αβ

�
R̄μν
ρσ

B̄ϵ
ζ

�∂Aζ
ϵ

∂Sηθ
�
R̄μν
ρσ

�
Cμν
αβS

η
θ; ðE28Þ

∂2L
∂Cμν

αβ∂Sηθ C
μν
αβS

η
θ ¼ 0; ðE29Þ

and

∂2L
∂Cμν

αβ∂Rη
θ

Cμν
αβðRη

θ − R̄η
θÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδμν þ γĀμ

νÞ
q �

B̄σ
ρ

� ∂2Aρ
σ

∂Cμν
αβ∂Rη

θ

�
R̄μν
ρσ

− γB̄σ
ζ

�∂Aζ
ϵ

∂Rη
θ

�
R̄μν
ρσ

B̄ϵ
ρ

� ∂Aρ
σ

∂Cμν
αβ

�
R̄μν
ρσ

þ γ

2
B̄σ
ρ

� ∂Aρ
σ

∂Cμν
αβ

�
R̄μν
ρσ

B̄ϵ
ζ

�∂Aζ
ϵ

∂Rη
θ

�
R̄μν
ρσ

�
Cμν
αβðRη

θ − R̄η
θÞ; ðE30Þ

∂2L
∂Cμν

αβ∂Rη
θ

Cμν
αβðRη

θ − R̄η
θÞ ¼ 0: ðE31Þ

Lastly, the nonzero cross term is

∂2L
∂Sμν∂Rα

β

SμνðRα
β − R̄α

βÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδμν þ γĀμ

νÞ
q �

B̄σ
ρ

� ∂2Aρ
σ

∂Sμν∂Rα
β

�
R̄μν
ρσ

− γB̄σ
ζ

�∂Aζ
ϵ

∂Rα
β

�
R̄μν
ρσ

B̄ϵ
ρ

�∂Aρ
σ

∂Sμν
�
R̄μν
ρσ

þ γ

2
B̄σ
ρ

�∂Aρ
σ

∂Sμν
�
R̄μν
ρσ

B̄ϵ
ζ

�∂Aζ
ϵ

∂Rα
β

�
R̄μν
ρσ

�
SμνðRα

β − R̄α
βÞ; ðE32Þ

∂2L
∂Sμν∂Rα

β

SμνðRα
β − R̄α

βÞ ¼ −
1

2
γ2βð1þ 2λa3ÞSνμSμν ; ðE33Þ

after using

Rν
μS

μ
ν ¼ SνμS

μ
ν : ðE34Þ

Adding all these second order contributions to the ELA yields the EQCA given in (85).

APPENDIX F: FIELD EQUATIONS

In this appendix we will derive the field equations by minimizing the action

I ¼ 2

κγ

Z
d4x

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgμν þ γAμνÞ

q
− ðλ0 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p i
; ðF1Þ

where we work in the Riemann–Ricci–curvature-scalar curvature basis:

Aμν ¼ ðβ þ 1ÞRμν −
β

4
gμνRþ c1gμνR2 þ c2RRμν þ c3gμνR2

σρ þ c4Rσ
μRνσ þ c5RμσνρRσρ þ c6gμνR2

σραβ þ c7Rμ
σρτRνσρτ:

ðF2Þ

One can eliminate c6 or c7 in favor of the other, but we will keep it this way.
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The variation of the action is

δI ¼ 2

κγ

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ��
−
1

2
gαβδgαβ

�h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδνμ þ γAν

μÞ
q

− ðλ0 þ 1Þ
i
þ
h
δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδνμ þ γAν

μÞ
q i�

: ðF3Þ

The first term is already in the desired form. On the other hand, the second term can be analyzed by using (42), that is,

δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδνμ þ γAν

μÞ
q

¼ γ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδνμ þ γAν

μÞ
q

Bα
βδA

β
α; ðF4Þ

where B≡ ðδþ γAÞ−1. For notational convenience, let us define Eα
β ≡ γ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδνμ þ γAν

μÞ
p

Bα
β . Then, after considering the

variations of the curvature terms in δAβ
α, a lengthy computation yields the field equations as

−
1

2
gαβ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδνμ þ γAν

μÞ
q

− ðλ0 þ 1Þ
i

þ ðβ þ 1Þ
�
Eμ
βRμα −∇μ∇βE

μ
α þ 1

2
□Eβα þ

1

2
gαβ∇μ∇νEμν

�
−
β

4
ðERαβ −∇β∇αE þ gαβ□EÞ

þ c1ð2ERRαβ − 2∇α∇βðERÞ þ 2gαβ□ðERÞÞ þ c2ðEμ
νRν

μRαβ þ Eμ
βRRαμÞ

þ c2

�
−∇α∇βðEμ

νRν
μÞ þ gαβ□ðEμ

νRν
μÞ −∇μ∇βðEμ

αRÞ þ 1

2
□ðEαβRÞ þ

1

2
∇μ∇λðEμλRÞgαβ

�

þ c3ð−2∇σ∇βðERσ
αÞ þ□ðERαβÞ þ∇ρ∇σðERσρÞgαβ þ 2ERαρR

ρ
βÞ

þ c4

�
ðEμ

νRαμRν
β þ Eμ

αRσ
μRβσÞ −∇μ∇βðEανRνμÞ −∇μ∇βðEμ

νRν
αÞ

þ□ðEβνRν
αÞ þ

1

2
∇μ∇σðEμ

νRνσÞgαβ þ
1

2
∇σ∇νðEμνRσ

μÞgαβ
�

þ c5

�
2Eμ

νRμ
σν

βRασ −∇σ∇λðEλ
αRσ

βÞ þ
1

2
∇λ∇σðEλσRαβÞ þ

1

2
∇σ∇λðEαβRλσÞ

−∇ρ∇βðEμ
νRνρ

μαÞ þ
1

2
□ðEμ

νRμα
ν
βÞ þ

1

2
∇ρ∇γðEμ

νRμ
γνρÞgαβ

�

þ 2c6

�
ERαπστRβ

πστ þ∇λ∇τðERλ
α
τ
βÞ þ∇π∇λðERβ

π
α
λÞ
�

þ c7

�
−EανRβσρτRνσρτ þ Eμ

νðRβμρτRα
νρτ þ 2RαρμσRβ

ρνσÞþ2∇λ∇πðEμ
αRμ

λ
β
π þ Eμ

βRμα
λπ − EλμRμαβ

πÞ
�
¼ 0; ðF5Þ

where E ¼ gμνEμν.
For the sake of comparison with the equivalent linear

action technique, let us find the maximally symmetric
vacuum using the field equations. Note that Ēα

β ¼ ēδαβ with
ē ¼ γ

2
ð1þ āÞ. In the calculations below, all the tensor

quantities are evaluated at their background values.
c7 contribution:

− EανRβσρτRνσρτ þ Eμ
νRμβρτRν

α
ρτ þ Eμ

νRμσατRνσ
β
τ

þ Eμ
νRμσραRνσρ

β ¼
4Λ2

3
ēḡαβ: ðF6Þ

c6 contribution:

2ERαπστRβ
πστ ¼ 16Λ2

3
ēḡαβ: ðF7Þ

c5 contribution:

2Eμ
νRμ

σν
βRασ ¼2Λ2ēḡαβ: ðF8Þ

c4 contribution:

Eμ
νRαμRν

β þ Eμ
αRσ

μRβσ ¼ 2ēRσβRσ
α ¼ 2Λ2ēḡαβ: ðF9Þ
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c3 contribution:

8ēRαρR
ρ
β ¼ 8Λ2ēḡαβ: ðF10Þ

c2 contribution:

Eμ
νRν

μRαβ þ Eμ
βRRαμ ¼ 2ēRRαβ ¼ 8Λ2ēḡαβ: ðF11Þ

c1 contribution:

2ERRαβ ¼ 32Λ2ēḡαβ: ðF12Þ

Using the conversion relations between the bases (B4) and

γĀρ
σ ≡ δρσā ¼ δρσλ½1þ λða3 þ b2Þ�; ðF13Þ

and after defining c≡ a3 þ b2,

ē ¼ γ

2
ð1þ λþ cλ2Þ; ðF14Þ

one arrives at

c2λ4 þ cλ3 − λþ λ0 ¼ 0; ðF15Þ
which is the same as the one found with ELA. Here ā is
defined in (58).
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