PHYSICAL REVIEW D 91, 044007 (2015)

Born-Infeld gravity with a massless graviton in four dimensions
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We construct Born-Infeld (BI) type gravity theories which describe tree-level unitary (nonghost and
nontachyonic) massless spin-2 modes around their maximally symmetric vacua in four dimensions.
Building unitary BI actions around flat vacuum is straightforward, but this is a complicated task around
(anti)-de Sitter backgrounds. In this work, we solve the issue and give details of constructing perturbatively
viable determinantal BI theories. It is interesting that the Gauss-Bonnet combination, which is a total
derivative in four dimensions, plays an important role in the construction of viable BI theories.
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I. INTRODUCTION

It is well known that Einstein’s gravity, otherwise an
excellent theory in the “intermediate” scales, needs to be
modified both at large and small scales. At large distances,
the galaxy rotation curves and the accelerated expansion of
the Universe are somewhat urgent problems which could be
provisionally solved by keeping Einstein’s theory intact
but introducing large amounts of dark matter and dark
energy or, alternatively, by modifying gravity at long
distances such as upgrading it to massive gravity. (Of
course, it could happen that one may need to both modify
gravity and also add dark matter and dark energy to
solve these long distance problems. This possibility should
not be ruled out.) At small scales or at high energies, the
problem is more complicated, even if phenomenologically
less urgent, due to lack of data. It is more complicated
because what one really needs is a quantum theory of
gravity whose basic degrees of freedom, symmetries, and
even principles as applied to spacetime are unknown.
Namely, the geometric nature of spacetime, even its number
of dimensions at small distances, is not clear. Even though
there are candidates such as string theory, loop quantum
gravity, or asymptotically safe theories, it is fair to say that
we are still far away from a consistent theory of quantum
gravity.

In the absence of guiding principles for a renormalizable
theory of gravity, one is forced to introduce effective
theories which work better than Einstein’s gravity at small
distances and hopefully also at large distances. One such
attempt is, emulating pre-quantum-electrodynamics era
electromagnetism, to write Born-Infeld (BI) type gravity
theories [1] which were inspired by the work of Eddington
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[2] who used the idea of “generalized volume” suggested
actions of the form

= /d‘*x./detRW(r), (1)

and assumed the metric and the connection to be indepen-
dent variables. (A note about history: Eddington’s work in
gravity precedes the works of Born and Infeld [3] in
electrodynamics, but it is actually difficult to find this
action in Eddington’s book in one compact form even
though the discussion is scattered in the book. Schrodinger
attributes this theory to Eddington on page 113 of his book
[4].) After all, good ideas never disappear: Eddington’s idea
was resuscitated recently in a number of works [5-7],
which led to interesting results such as singularity-free
cosmology.

In analogy with the minimal electromagnetic BI theory,
in the current work, we take the more conventional path of
assuming the metric to be the only independent variable,
following Deser and Gibbons [1] who gave a jumpstart to
the BI gravity theories. This line of reasoning recently
[8—11] bore much fruit in the lower dimensional setting
where we have found a Bl-type action which reads

4m? 1
Iginmg = 2 d’x {\/— det <9;w - %Gm)

- (gt 1) v=etg | o)

where G, is the Einstein tensor without a cosmological
constant. This theory is called the Born-Infeld new massive
gravity (BINMG) theory with the following remarkable
properties:
(1) For Ay # 0, unlike any generic finite order theory
besides the cosmological Einstein’s theory, it has a
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unique maximally symmetric vacuum with an ef-
fective cosmological constant A = Ay(1 + f#) for
Ay > —2m? [9,12]. Flat space is the unique vacuum
when Ag = 0.

(2) It has a unitary spin-2 massive degree of freedom
with M? = m? + A about the flat (A = 0) and AdS
backgrounds. This provides an infinite order exten-
sion of the quadratic NMG' [14-16].

(3) It reproduces, up to desired order in the curvature
expansion, the extended NMG theories that are
consistent with the AdS/CFT duality and that have
a c-function [9,17,18].

(4) The BINMG action appears as a counterterm in
AdS, [13].

In addition to these properties, the existence of a super-
symmetric extension to the cubic order truncation of the
theory suggests that a supersymmetric extension presum-
ably exists for the full theory [19].

All these virtues of the three-dimensional BI gravity led
us to search for similar theories beyond three dimensions
and especially in the more relevant 3 + 1 dimensions. In
this work, this is the task that we take on. Some of our
computations, especially in the context of general formal-
ism, will be in generic n dimensions, but in most of the
current work we focus on n = 3 4 1 dimensions since it
has rather distinctive features compared to the n > 4 cases.
The generic n dimensional theory is somewhat more
complicated and deserves separate attention [20]. As we
shall see, the set of viable Lagrangians is larger in four
dimensions compared to the three dimensional case, where
there are only two theories as mentioned above, since
vanishing of the Weyl tensor and the linear theory having
no propagating degrees of freedom by itself in three
dimensions make n =2+ 1 rather simple and unique.
One should not expect such a simplicity in four dimensions
and beyond.

In constructing viable Bl-type gravity theories, the
important point is to find the physical constraints that
one imposes on the theory. Here, the constraints we assume
are as follows:

(1) In small curvature expansion, the theory at the

lowest order reduces to (cosmological) Einstein’s
gravity.

"There are in fact two extensions of NMG, the second one
being

- (%-’— 1>\/—detg},
m

which has the same perturbative properties. It was conjectured in
[13] that this action could appear as a dS; counterterm. This
theory is yet to be explored further.
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(2) The theory admits flat or (A)dS vacuum.

(3) The theory describes only massless spin-2 excita-
tions around its flat vacuum or the (A)dS vacuum,
and these excitations are nonghost and nontachyonic
(namely, the theory is tree-level unitary) as a full
theory (thus, infinitely many terms in the curvature
expansion contribute to the propagator of the
theory).

(4) On top of the previous condition, the theory is tree-
level unitary at any finite truncated order in the
curvature expansion.

Let us briefly explain why these conditions are imperative
for a healthy theory. We require that in small curvature
expansion the theory reduces to the (cosmological) Einstein
theory which is a natural condition to reproduce the
plethora of data explained by Einstein’s theory. The second
requirement is sort of self-explanatory since one needs a
maximally symmetric vacuum with vanishing conserved
quantities such as energy and angular momentum. The third
requirement is also somewhat obvious both in the context
of the stability of the vacuum and perturbative viability of
the quantum version of the theory. The fourth condition is
extremely difficult to satisfy in the curvature expansion for
(A)dS backgrounds. Observe that we require not only that
the theory is tree-level unitary as a whole (condition 3) but
that it is also tree-level unitary at any truncated order in the
curvature expansion (condition 4). To the best of our
knowledge, the theories that we present are the only ones
that satisfy this requirement in four dimensions. (There are
Lovelock theories [21] in higher dimensions that also
satisfy this requirement, but they reduce to Einstein’s
theory in four dimensions.)

As we shall find out, these conditions still leave a large
set of viable theories. Of course, one can additionally
impose that there be no dimensionless or dimensionful
parameters, save the Newton’s constant and, perhaps, the
BI parameter, which highly constrains the viable theories.
As we shall see, the most “minimal” BI theory also has a
unique vacuum. This is actually quite important since, once
Einstein’s theory is augmented with additional powers of
curvature, immediately one undesired feature arises that is
the nonuniqueness of the maximally symmetric vacuum.
Since asymptotic structures of spacetimes with different
cosmological constants are not the same, their energy
properties are not comparable. Therefore, there is no
way to choose one vacuum over the other if there is more
than one viable vacuum. Hence, it would be highly
desirable to have a theory with a unique vacuum.

To see that four dimensional BI theories are somewhat
special, let us start with the following n dimensional
generic action:

2
I:K_}/ d"x [\/—det(gﬂ,, +7Au) = (rAg + 1)/ —detg|,
3)
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where k is the modified Newton’s constant which in four
dimensions reads « = 16zG, G is the Newton’s constant,
and y is a dimensionful BI parameter with mass dimension
—2 in four dimensions. To stick to the idea of obtaining
minimal theories, we will find the simplest two tensor A,
which does not have derivatives of the Riemann tensor and
which has as small powers and contractions of the Riemann
tensor as possible. The most naive approach would be to
take A,, = G,, + g, R, similar to the 2 + 1 dimensional
case. As shown in Appendix A, upon small curvature
expansion, this theory will generate quadratic terms which
have massless spin-2, massive spin-0 and massive spin-2
modes, the last one being a ghost even around flat

|
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spacetime.2 Hence, this too optimistic guess does not lead
to a perturbatively viable theory. In the small curvature
expansion (|yA,,| < 1) of the action (3), either quadratic
terms must be eliminated or they must appear in the benign
Gauss-Bonnet combination to get rid of the massive modes;
therefore, in four dimensions and beyond, to build viable
Bl-gravity theories, one has to take A, to be up to at least
quadratic order in the curvature, which of course leads to
an eight order theory in the curvature under the square root
when the determinant is explicitly written in terms of the
traces.

Upon inspection, one can see that the most general two-
tensor up to and including quadratic order can be written as

Ay =Ry + BS, +7(a1Cppy CL" + a3C, s R + a3R,,RD + a48,,S))

* %gﬂv(blcpa/lycpdy + bZRpaRpg + bSSpaSpg)v (4)

where S, =R, — % guR 1s the traceless-Ricci tensor and
Caup 1s the Weyl tensor, and 3, a;, and b; are dimensionless
constants. Observe that there is no R, S$" cross term
because of the following relation:

, 1 1o o 1 - o
R,S, ==-R,R)+=S Sﬁ—ggﬂy(RmRﬂ —8,,57).

72 Hp 2 THP
(5)

Hp

Suppose g,, is a maximally symmetric vacuum of the
theory and we would like to study excitations (h,,) about
this vacuum. If this vacuum is flat, then our task is easy
since all we need is to expand the action up to quadratic
order in the curvature, then expand the resultant action up
to O(h2,) and check the propagating modes in the theory.
But, if this vacuum is an (A)dS space, then in principle all
the terms in the curvature expansion contribute to the free
theory [that is the vacuum and the O(h%,) theory], and
hence one has a highly complicated task. Therefore, in
building viable BI actions for gravity the main hurdle is to
satisfy the tree-level unitarity around nonflat maximally
symmetric backgrounds, but, fortunately, we have built the
necessary formalism to carry out this task in [10]. (The
Ph.D thesis [24] of one of the authors is devoted to these
issues and expounds upon many of the discussions in the
published papers.)

It was shown in these works (and we shall give another
argument in this paper) that in four dimensions no terms
beyond O(A?2,) expansion around A, = 0 contribute to the
free theory, namely the vacuum and the excitations.

2Neveﬂheless, it is remarkable that instead of the square root
Lagrangian, if one considers a different power in n dimensions
[det (g +7G)]"/"=1) then one has a massive gravity theory
without the nonlinear Boulware-Deser ghost [22,23].

Therefore, to study the excitations of (3) about its max-
imally symmetric vacua in four dimensions, all one needs
to study is the following theory:

1
] = —

1
= —A, A", (6)
Ky

1
d4x,/—g[A -2y A +ZA2 — 54w

with A = A, and note that this is a fourth order theory in
the curvature. For generic even n dimensions, one needs to

expand up to O(A,%z), and for odd dimensions, all the
powers contribute. In four dimensions, because of the
identity

c

1
Hpo Cz/pM = Z G Capgﬂ Capaﬂ , (7)

we can also eliminate a; or b,; without loss of generality,
we choose a; = 0. Note that instead of this basis (namely
the Weyl, Ricci and traceless-Ricci tensors), one can use the
Riemann and Ricci tensors and the scalar curvature, which
we do in Appendix B for the purpose of comparison. There,
we also give formulas relating one basis to the other. The
A, tensor with these seven dimensionless parameters looks
cumbersome, but in what follows unitarity of theory with
only massless spin-2 excitations about the (A)dS vacua will
eliminate three (or four depending on the theory) of these
parameters and in addition, conforming to the notion of
minimality, will lead to a theory without free dimensionless
parameters. Note that we do not count the dimensionful BI
parameter y which can be constrained by experiments: As
long as yR is small, any y is viable in our analysis. Hence, it
should be considered as a new dimensionful parameter. Of
course, not to introduce a new dimensionful parameter, one
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can choose y = « since they are of the same dimensions.’
(Observe that, since xk = 47:1,”5, with £, being the Planck
length, the condition kR < 1 is satisfied as long as we are
far away from the Planck regime: R <« L,%%.)

The layout of the paper is as follows: In Sec. II, we recall
that the “free theory” of BI gravity should be the same as
the free theory of Einstein—Gauss-Bonnet (EGB) theory
that describes unitary massless spin-2 excitations around
flat and (A)dS spaces. In Sec. III, we give details of finding
the maximally symmetric vacua of generic gravity theories,
including the BI gravity, with the help of equivalent linear
actions (ELAs) which circumvent the complicated task of
deriving the field equations. In that section, we also derive
the equivalent quadratic curvature action (EQCA) that has
the same free theory, including the vacuum of the original
generic gravity, specifically the BI theory. In Sec. IV, we
determine the vacua of the BI gravity. In Sec. V, we impose
that the BI gravity describes unitary massless spin-2
gravitons around its flat background. In Sec. VI, we study
the unitarity of the BI theory around its unique viable (A)dS
vacuum and impose the condition that only the massless
spin-2 particle is allowed. In the appendixes, we give
details of the computations relevant to the results in the text.

II. CONSTRUCTING THE BORN-INFELD ACTION

The most general quadratic theory in n dimensions that
describes only massless spin-2 excitations around its flat or
(A)dS vacuum is the EGB theory with the Lagrangian

1
LZ;(R—ZAO‘FYZGB)’ (8)
where the GB combination is given as

XGB = R}H/IJGR - 4RﬂDRﬂU + Rz. (9)

HUpc
In four dimensions, the GB part is a total derivative, and
hence does not contribute to the field equations and plays
no role in the particle spectrum or the vacuum of the theory.
But as we shall see here, it plays a major role in
constructing Bl-type actions: Namely, we will see that at
the quadratic level BI gravity reduces to the EGB theory
instead of the Einstein’s theory even though classically they
are equivalent. In some sense, the dimensionful parameter y
in front of the GB term plays the role of the BI parameter.

It is clear that flat space is a vacuum for Ay = 0, and
if Ay # 0 (A)dS is the vacuum with A = A,. In the basis
discussed in the Introduction, we can recast the EGB action
as

*In Born-Infeld electrodynamics, one necessarily introduces a
dimensionful BI parameter, but in BI gravity one can simply
recycle Newton’s constant and no new parameter is introduced.
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1
;C—;|:R—2A0+7(Cﬂp C/Aupo’ 3

2 v 8 v
2o S0, )|
(10)

where we have used the four dimensional identity

C*°Cpppy = R*™R,, 0 — 2R* R, + %R% (11)
It is not difficult to see that (10) describes only massless
spin-2 excitations in flat and AdS vacua. There are many
ways to show this but because this is almost common
knowledge let us briefly sketch the proof without going into
further details: Linearization of the field equations derived
from (10) about its (A)dS vacuum yields

1
;g;w = O’ (12)

where gm, is the linearized Einstein tensor, which in the

transverse-traceless  gauge for perturbations h,, =
G — Gy Teads

1 1 /(= 2A

Kg” v 2K < 3 ) m (13)

Despite the appearance of a masslike term, Eq. (13),
together with the transversality and the tracelessness
conditions, describes a massless spin-2 excitation. This
can be easily seen if one writes the AdS metric in its
conformal to flat coordinates g,, = anlw with Q =
(1 =3 Apx?)~" where x* = 5, x*x* which reduces (13) to
the massless wave equation in flat space 82hw =0 [25].
For this massless spin-2 excitation to be unitary, there is
only one condition that is the positivity of the Newton’s
constant, ¥ > 0; namely, gravity is attractive or, similarly,
the massless spin-2 field has a positive kinetic energy as
seen from the action (in the mostly positive signature
convention)

2A
/ d*xv/=g { h””( ;))h,,,,—i-h””TW}.

(14)

If one requires a generic gravity theory of the form
L = ,/=gf (R)s), namely with a Lagrangian density built
from arbitrary powers of the Riemann tensor and its
contractions but not its derivatives to propagate only unitary
massless spin-2 excitations, it should have the same propa-
gator structure as the EGB theory (or equivalently the
cosmological Einstein’s theory). It appears to be a highly
cumbersome task to find the propagator of a generic gravity
theory or a Bl-type gravity theory in constant curvature
backgrounds because, in principle, infinitely many terms
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contribute to the propagator. Fortunately, there is a highly
useful shortcut which works by constructing an equivalent
quadratic curvature action that has the same propagator
structure and the vacua as the generic theory under study. We
work this out in the next section.

III. EQUIVALENT LINEAR ACTION
AND EQUIVALENT QUADRATIC
CURVATURE ACTION

The first step in finding the particle spectrum of a given
gravity theory about its maximally symmetric vacuum is to
show that the theory in fact admits such a vacuum, and if it
does admit such a solution, one must find the effective
cosmological constant of the vacuum. The most direct way
to find the maximally symmetric vacuum is to derive the

|

I = /d”x,/—gf(g“ﬂ,R"Upg,VpR/‘,,pa,...,Vplvpz...vme”,/pg),

for which we ask if it admits a maximally symmetric
vacuum, and if it does, what is the effective cosmological
constant? Here we work in generic n dimensions. At this
stage, itis clear that the derivative terms will not contribute to
the maximally symmetric vacuum since they will yield
covariant derivatives of the metric tensor at the level of the
field equations which vanish by metric compatibility. There-
fore, for notational simplicity let us denote the action as

1= [ axy=ar ). (16)
where we have also gotten rid of the inverse metric without
loss of generality and taken the independent variable to be
RZ;} which could stand for the Riemann tensor, or if once
contracted to the Ricci tensor, and if twice contracted to the
scalar curvature. For example, the Einstein-Hilbert action in
this language reads [ d"x,/=gé: 5e5) R To find the field
equations for the maximally symmetrlc spacetime, one
varies the action as

ot = [ (sv=as ) + V=g oRs). (1)

/)
Needless to say, this procedure will not yield the full
equations of the most general theory (15) but only the part
relevant for the maximally symmetric spacetime. On the
other hand, if f does not depend on the derivatives of the
Riemann tensor, as will be the case in this work, it will yield
the full equations. We can write the variation of the Riemann
tensor as

*Of course one can work in the basis introduced in the
Introduction, but here we work with the Riemann tensor, as this
basis is more common in many other applications.
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field equations first and then solve these equations. But, for
the determinantal actions of the form that we study in this
work or for higher derivative theories with many powers of
curvature, finding the field equations is by itself a difficult
task. As a demonstration of the complication, the reader
could check the field equations of the action we study in
this work in Appendix F.

In this section, we shall give a method to find the
maximally symmetric vacuum or vacua of a given theory
which circumvents the procedure of deriving the field
equations. The method involves constructing an ELA that
has the same vacuum or vacua as the original action, and it
is so powerful that it pays to lay out some details here.

Consider a generic action of the form*

(15)

, 1
5R%o’ = 5 (gapvavy - gaavpvy>5gﬂa

URAS ngpvmsgw

1
2 pa aég/m 2 pa (159(11/’ (18)
which was obtained from
OR ), = VpéFffg - VaéF,’f,,. (19)

In calculating the derivative in (17), one may try to

()R‘"‘
symmetrize itin such a way that it satlsﬁes the symmetries of
the Riemann tensor. However, this is not required since at the

end, it is multiplied with SR, which kills the parts of 2

dR“”
that do not obey the symmetries of the Riemann tensor
Then, inserting the variation of the Riemann tensor (18) into
the varied action (17) leads to a bunch of terms

1
51 = / d'x (—Egﬂyﬁf(RZ(@)ég”“)

1 0
+ _/ d'x v _g—f/ﬂ/ (gapvdvv - ngpvy)égﬂ“
2 6R/m-

| of
—_— n —q— Ho_ iz Qv
3 / d"x\/=g IR (9ap Vo V¥ = 9us VY, VH) 09
1 0
_E/dnx\/_gaRfu ( po aéglm Rpa”a(sgm/)' (20)
po

After integration by parts and dropping the boundary terms,
one arrives at the field equations
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1

of
5

gup vll v()’ - gurrv/1 v/))

Of p a2 _Of o

: (
) Ao v T apiw tpo
2 \ORY; Y ORy, K

For the maximally symmetric spacetimes, the first line of the
field equations just yields zero. Therefore, the relevant part
of the field equations that determines the effective cosmo-
logical constant is the second line

or - or1 _
7 R 4 — R 4 + Rag —o.
|:8R5;1;:| Rﬁff, ro v |:8Rf;l(/;:| R‘;f, PO u g/wf( p )

(22)

where the barred quantities are evaluated at the maximally
symmetric value of the Riemann tensor given as

2A

= e

(it —oks).  (23)

Equation (22) is the vacuum field equation, and the
information on the functional form of the Lagrangian enters
the field equation through only two background-evaluated
quantities

0 _
P !
RO

24
o (24)

Therefore, Eq. (22) tells us that if these two quantities are the
same for any given two gravity theories, then those two
gravity theories have the same maximally symmetric vacua;
namely their effective cosmological constants are equal.
Then, for a theory defined by a given f(R};), one can
determine the vacua of the theory by performing a first order
Taylor series expansion around a yet to be determined
maximally symmetric background as

_ )
1= / d"x, /_—g{ SR + [8R];”
P

[

| re-re)
R
23

which from now on will be called an equivalent linearized
action (ELA). At the risk of being a little pedantic, let us
reiterate the above observation: Considered as another
generic gravity theory, Eq. (25) has the same vacua as
(16). As aresult, to get the effective cosmological constant of
the vacuum (or vacua) of the most general gravity theory, all
one needs to do is a first order Taylor series expansion of the
generic theory in the Riemann tensor and construct the
equivalent linear action.

ORIE 2
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of
ORY

1

(gw)vivo' - gﬂﬁvﬂvﬂ)

Furthermore, let us show that (25) reduces to a cosmo-
logical FEinstein-Hilbert action. Let us define { which
satisfies

af UU
{Wﬁ] R;:iRpa =k

Here, the term [0f /OR)] R is made up of the Kronecker

(26)

deltas such as §,67, and it should satisfy the symmetries of
the Riemann tensor, so antisymmetrizing &,57 yields
52’ 53].5 Considering this together with (26) yields the
background-evaluated first derivative of f(R.;) as

of

{] = o057 (27)
Rﬁf,

ORM:

Using these, one can recast the equivalent linear action (25)
in a more explicit form such that it becomes the usual
cosmological Einstein-Hilbert action as

1
Igia = Kl/d"x\/ —g(R - 2A0,1)v (28)

where the subindex / denotes the equivalent linear action
values. The effective Newton’s constant and the effective
“bare” cosmological constant are

nA
n—2

Aoy

K;

¢, (29)

1-
=5 f+
where we have used R =224 and defined f = f(R}5).
Then, the field equation for the maximally symmetric
background is simply A = Ay; which yields A = ’54—22 f.
Note that this is definitely the field equation that one gets
after putting (23) and (27) in (22).

This construction implies that the maximally symmetric
vacua of a generic gravity theory can also be found by
expanding the original action in the metric perturbation A,
up to the first order O(h,,) and taking the variation with
respect to hy,.

Once the vacuum of the theory is established, one can
move on to discuss the particle spectrum around this

°Note that the total antisymmetrization in the up indices
implies the total antisymmetrization in the down indices, that

is, /67 = 5757
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vacuum by expanding the action up to O(hﬁy) in the metric
perturbation. Directly expanding the action in powers of
h,, is a highly complicated task, but again, fortunately, a
similar method to the one described above exists [26]. The
method amounts to finding an EQCA that has the same
degrees of freedom around the same vacua as the original
theory. EQCA can be found by expanding the action in
Taylor series up to quadratic order in the Riemann tensor as
we show below. Here we shall assume that the action does
not depend on the derivatives of the Riemann tensor.

For an action that does not depend on the derivatives of
the Riemann tensor, the field equations are (21). To analyze

the spectrum of the (R}, ) theory, that is, the excitations
around a given background one needs the linearized field
equations from which one can identify the excitations by
decoupling the linearized field equations into a set of
individual wave equations for each excitation. As we
discussed above, one way to obtain this linearized field
equation is to expand the action in 4, up to second order

|

of _ 0*f
<gy,,v1v{, aRM) — [8R’798R’” VY
po/ L atORpol Rt

T er
vﬂ(rgﬂ L gl/[) |:aRpa:| R" VA(FGA)L’

_ | or
~ 9up aR(M o

where the subindex L means that the quantity is expanded
up to O(h,,). The linearization of the other terms in (21)
follows from these terms upon symmetrization and anti-
symmetrization. Notice that the information on the func-
tional form of the Lagrangian enters the linearized field
equations through the following three background-
evaluated quantities:

F(R).

[ & (33)

Jo Lo
aRZgaRPG R;tl’ aR%ﬁ Rgﬁ’

Therefore, if these three quantities are the same for any two
given gravity theories, then those two theories have the
same spectrum around the same vacua. Then, for a theory
defined by a given f(R), one can determine the spectrum
of the theory through the quadratic gravity defined by the
up-to-second-order Taylor series expansion of f (RZZ)
around the maximally symmetric background as

v 8f v RV
/ dnx\/ { (R’:tl/i) |:8Riv:| B (R;l"’ - R;lw)
pod RO
1 62f _ —
2 {W} (R~ R e - R%)}’ (34)
arURpod g

l ( a‘r)L + gy/) |:8
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and perform variation with respect to 4,,. On the other
hand, naturally, one can also directly linearize the field
equations (21). To obtain the linearized field equations, one
needs the following two linearized tensors:

9 RGN, = (RE) + [ 0| (R, G0

R -

and

of Pf _
(2 ~[20] wmnns
8R po L BRmaR po RM

of
+ [aRpj RM( o)L

(31)

and

af :| vﬁ Fga)L
R Rwl

pa

(32)

|
which from now on will be called the equivalent quadratic
curvature action (EQCA). Note that this action not only has
the same spectrum but also has the same vacua as the
original f(R}y;) theory.

Now, let us further recast (34) in the form of a quadratic
gravity theory. To do this, first let us define the quadratic
curvature parameters a, f, and y as

1 |: azf :| Rr/é‘ R;M
" ﬂ atf\po
2 [ORIORM: |

= aR® + BRLR] + y(RIGR!T — ARLRT + R?).  (35)
Since the background-evaluated second order derivative of

f(RY ) just involves Kronecker deltas and obeys the
symmetrles of the Riemann tensors RZ,, and Rpg, one has

2
]~ aafalsts
aRm’aR/m R‘”
+ B8 058185 — o7 00000 67)

+ 1278985005, (36)

where the last term, clearly, should have the totally
antisymmetric form since the Gauss-Bonnet combination
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is the quadratic Lovelock term.’ Using these together with
(26), one can put (34) in a more explicit form as a quadratic
gravity theory F[27]:

IEQCA:/d Xy/— [ (R— 2A0)+0‘R2 ﬁR?ng+7)(GB:|’

(37)
where the effective Newton’s constant is given as
1 4A (n—=2)(n-3)
—={- —F————, (38
== g 202 )

and the effective “bare” cosmological constant reads

nA
-2

>§1| =

= AR +

2A%n (n=2)(n-13)
(n_z)z[na+ﬁ+y—(n_l) ] (39)

The maximally symmetric solution of (37) satisfies [28]

(n=4) (n=3)n-4)],,
<n—2>2”<n—1><n—2>}A =0

¢

A=A,
7 + [(na—i—ﬁ)

(40)

which certainly is the same vacuum equation as that

PHYSICAL REVIEW D 91, 044007 (2015)

(28). We made the equivalence between the linearized field
equations of the f(R};) theory and (37) more explicit in
Appendix D.

A. ELA and EQCA construction
for Born-Infeld gravity
The above discussion was for generic f (R’;Z) theories; let

us now focus on the Bl-type theories. To calculate the
EQCA, one basically needs (A)dS background calculated

values for the matrix function \/det (5] + yAY) and its first
and second derivatives. (Note that we are pulling out a
factor of \/—detg so that we can work with the Kronecker

delta &, whose variation is zero.) First, the background
value of \/det (&) + yAY) is given as

det (8, + yA?) = (1 + a)3, (41)

where @ is defined via yA) = ad). Then, by using
detN =exp (Tr(InN)), the first and second order

differentials of +/det (5@’ —l—yA,’j) can be, respectively,

expressed as

Oy/det (& + yAL) = g \Jdet (& + yAL)BIOAT  (42)

of the f (R’:/;) theory and its equivalent linearized version  and
|
0P/ det (8 + yAL) = T /det (8 + yAL) {Bﬁ&zAﬁ ~ yBYBy(0A) DA + 1 (BﬁaA;)ﬂ : (43)

where B represents the inverse of the matrix (8} + yA?)
and for the differential of B we use 9B = —yB(0A)B. Note
that one may not be able to find the explicit form of the B
matrix for a given A matrix, and in fact, even for the simple
case of A,, = R, itis not possible to find the explicit form
of B. However, this is not needed since just the (A)dS
background value of the B matrix is required to calculate
the background values for the first and second derivatives

of y/det (8, + yA?). One can calculate it as

B} = (1+a)'s,. (44)
Note that the matrix (/ + A) becomes singular for a = —1,

so we assume that @ # —1. In the absence of the specific
definition for the A tensor, there is no need to further study

6 ..
More explicitly, the
can be written as §)/02E RV R
1y ohly 1 S
€abcd(%[}x 6/;5 5’4: 55[41 - 4!(%\1{4 5% 51/: 5’;3\ .

Lovelock Lagrangian density

401 fo s
= 4ZGB where 51./[‘1./721/:1/44 =

|
the background values of (42) and (43) by employing (41)
and (44).

To find the EQCA for a specific BI gravity theory, one
needs to find @ and calculate the first and second derivatives
of the A tensor with respect to the Riemann tensor, R/,
Then, the formulas (41)—(44) are enough to work out the
EQCA for the BI gravity theory.

1. Even-dimensional EQCA and ELA

In order to calculate the EQCA and ELA of BI gravity,
one needs to calculate the following three (A)dS back-
ground-evaluated quantities as explicitly seen from (34):

Jdet (& + yab), [w Jaet Mm,,—)} ,

o
R

det (&) + yA’j)] . (45)
R™

po

[aRliaR;tﬁ
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Using (41)—(44) and yA) = ad), the (A)dS-evaluated value of the Lagrangian can be calculated as

\/det (8 4+ yAD) = (1 + a)3,

and its first derivative reads

0 3 B
v Az/ =
[8R;}f, det (&) + 7 )]

and finally its second derivative boils down to

2
o\ Jdet(&! + A/"] ~T1+a)
[aRz‘,’aRzﬁ (60 +rAy) e 2

(n=4)

}/2

Here, a difference between the odd and even dimensional
cases arises: It is important to notice that only finite integer
powers of a appear in these expansions for even dimensions.
But, for odd dimensions, infinite powers of a appear. This
observation is crucial, because the same second order
expansion in curvature around an (A)dS background can
be obtained by first performing an infinite order expansion in
A, “around A,, =0, and then carrying out the second
order expansion in curvature by using this infinite order
series in A,,. A priori, all orders in A,, contribute to the
second order expansion in curvature in (A)dS backgrounds;
however, as we just observed for even dimensions, only a
finite number of terms in the A, expansion contribute to the

EQCA. More specifically for even n dimensions expansion
up to O(A,%D) is necessary and sufficient. In four dimensions,
we need to expand up to O(A;,, ), as given in (I). On the other
hand, one needs all the powers of A, for odd dimensions.

Voo, e [ OA
E(l—i-a) p 5y[5‘Rﬁ”Lm’

ree

(46)

— - [ DAL
AD)B: | ==
) 7{81%,&;] R

(47)

po.

2 47 2 - OAS r
a)"T s [789‘4’( A] —y—(l+a)(_2®5’§5§{ ge} [—&42]
ORY:ORG, R 2 ORGz) R LOR)s Ry

(48)

po

PA%] [aAg]
ST
OR, e LORG:] e

one first needs the (A)dS background-evaluated value of
the O(Aﬁ,/) Lagrangian which can be calculated by putting
YA = ad) in (49) as

[\/det(é/,f +yAf)}O(A2) —14+2a+2@-a =(1+a)

(50)

which is an exact expression represented by a finite number
of terms in the A,, expansion, and it matches (46) when
n = 4. Moving on to the first and second derivatives (49),
one gets, respectively,

2
Since there are nontrivial cancellations, it pays to make — ——_ |, /det (§* + yA? _7 OAX LAY OAY
. . s . . ) ( vt ”) 2 Av p v
this observation more explicit in four dimensions. To aRpo‘ 0(A%) 28Rpo’ 4 aRpG
construct the EQCA of the O(A2,) which is P 0AS .
, ) 27" oRY, G
B B _ /4 /4 v Y
[ det (5 + yAy)] oo = 15 AL T ALAL =T AL,
(49) and
|
p
P aaepal)] L DA P OM py 0% pO% oM g ok 04
ORIOR: ow)  29RMORY 4 P ORNORY 2" “ORNORY 4 ORI ORY, 2 ORI ORY

(52)
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These derivatives can be evaluated for the (A)dS background, respectively, as

[i [ det (5,/5 + yA’f)}

ORY,

{6—2[ det(5ﬁ+yAﬂ)} ] —Z(1+a)[
ORI OR:: 04| g 2

po

which matches (47) and (48), respectively, when n = 4.
Hence, we have achieved our goal of showing that in four
dimensions, to get the vacuum and the spectrum of a
determinantal BI gravity theory, one needs to expand only
up to O(A2,) around A, = 0. It is a remarkable fact about
this determinantal action that at every order O(Ag}"),
contributions of the various terms to the EQCA cancel
among each other; that is, they do not contribute to the free
theory around the maximally symmetric background.
Moreover, this cancellation works in such a way that
0(y"), O(y") and O(p) terms cancel among each other.
This fact also means that when A, is at most quadratic in
curvature as in (4), one can also get the same result by
performing a Taylor series expansion in small curvature,
that is, around R, = 0, up to O(R*) in four dimension;
hence, we end up with a quartic gravity theory. This also
immediately leads to the fact that a priori there will be four
possible maximally symmetric vacua of the theory which
we study next.

IV. DETERMINING THE VACUA
OF THE BI THEORY

Let us find the maximally symmetric vacua (generically
there will be four different vacua in four dimensions as
noted above) of our theory,

KL —% [ det (82 + yAL) — (Ao + 1)}, (55)

with A, as (4), and we have defined a dimensionless
cosmological parameter 1y = yA, which we shall use from
now on. We resort to the equivalent linear action formalism
described above which in this basis follows from the zeroth
and the first order Taylor series expansion of the action (55),

B — oL "
kLerA Ty [ det (9 + yAg) = (Ao + 1)} * [W] R%Caﬁ

ap
oLy o (oLl . ..
* [855] I‘g%SD * |:6R’Ij:| Ry, (Rv Ru)‘

(56)

0P AL
OR™COR

[ R
0) g 2 |ORS| o OR [ 27 [ORS: | o

OAX
-’ +a)5f[ ﬁ} :
2 R

O’ 3)

f
|+ % [ e ..~ v c
polpn 4 ORY o LORG [ e 2 LORY] e LOR?G | e

(54)

po.

|

Note that the background values C‘Z/”, and S¥ are zero, and
R, is given in (23) with n =4 and R = A§,. The
background values of the Lagrangian density and its first
order derivatives are calculated in Appendix E, and using
these results, the equivalent linearized action of the BI theory
given in (3) becomes

(57)

The Newton’s constant and the cosmological constant, upon
using the computations in Appendix E, turn out to be

= (I +a)[l + 24(az + by)],

z =

a=A+2(ay+b,),

Aog =Kki(1+ 29— (1 +a)?) + 24, (58)
where we assumed 1/k; is not zero; otherwise the theory
would not reproduce Einstein’s gravity. Then, since the
vacua of the equivalent linear theory is determined by
A= o (59)
one arrives at the quartic equation that gives the four possible
maximally symmetric vacua
A+ —2+2=0, (60)
where we have defined ¢ = a3 + b,. Let us not depict the
solutions in their general form since they are not needed, but
let us note some specific points. If ¢ = 0, then we have a
unique vacuum with 4 = 4. If ¢ # 0, then there are real and
complex solutions depending on the values of ¢ and 4. It is
possible to have four real solutions if 0 < ¢ < }1 and if a
complicated condition on 4, is satisfied. As an example,
let us take c=4 and Ay=3; then we have
A=(-6,-2(1% \/5)2) But, as we shall see later on,
unitarity will demand that ¢ =1 and 4 < 1, and the non-

4
vanishing of the effective Newton’s constant demands that
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A # —=2. These conditions are satisfied if 15 < % and

Agp # —1. One can compute the discriminant to be A =
5k (14 29)?(—11 + 164y) which is always negative in the
allowed region. This says that there are two real and two
complex-conjugate roots. One of the real roots does not
satisfy the 4 < 1 condition, but the other one always satisfies

this condition. Therefore, we have a unique viable vacuum.

V. UNITARITY AROUND FLAT BACKGROUNDS

First, let us start with the flat space 4 = 0 for which we
must take the bare cosmological parameter to be 4y = 0.
From (60) we see that flat space is the vacuum of the theory
but it is not the only vacuum since the equation reduces to

MR +ci*—1) =0, (61)

with at least one more real solution with a nonzero 1 with
the exception that ¢ = 0. For example, for ¢ = zlp whose
relevance will appear below, one has 4~ 1.679.

Let us focus on the flat vacuum. In this case our job is not
complicated at all: All we need to do is expand (3) up to
O(R?) and demand that it matches either with the Einstein-
Hilbert action or with the Einstein—-Gauss-Bonnet action.

The determinant [det (1 + M)]'/? can be expanded up to
O(M*) as

1 1 1
[det (1 +M)]V2 =1+ ST +2 (TrM)? — ZTr(MZ)

8
RN | R
+  Tr(M) = TeMTe(M?)
1
—(TrM)? 2
|
4

pr = Rﬂl/ +ﬂsﬂl/ +4

It is important to understand that the BI gravity defined
with this A,, describes a massless, unitary spin-2 graviton
about its flat vacuum in all finite orders in the curvature
expansion as well as the full theory, namely in the infinite
order in the curvature expansion. This is because in flat
backgrounds, only terms up to quadratic in curvature
contribute to the propagator of the theory. However,
this theory does not have quadratic terms, and when
expanded in curvature it symbolically  reads
L=R+R+ ...

Let us also note that if we require the uniqueness of the
vacuum, namely that the flat space is the unique vacuum,
then one cannot reduce the theory to Einstein’s gravity
since a unique vacuum condition is achieved with ¢ = 0 but

Einsteinian reduction is achieved with ¢ = — % as seen from

PHYSICAL REVIEW D 91, 044007 (2015)

where TrM = ¢**M,,,. Using this expression, the O(R?)
expansion of (3) yields the quadratic Lagrangian

1
KﬁO(RZ) =R+ ]/blCjﬂl[m}bcwpw1 + ]/(Cl3 + b2 + E) RMPRMP

pe+2) 2)> 5,5, (63)

2
Here, note that a, does not appear in the O(R?) expansion,
so unitarity constraints around the flat background do not
put any condition on the C,,,,R’ term. As already noted,
there are two unitary theories that (63) can reduce to: the
Einstein theory and the EGB theory, which need separate
attention even though they are classically equivalent in four
dimensions. Let us start with the reduction to Einstein’s
theory.

A. Reduction to the Einstein theory
We will compare (63) with

kL =R, (64)
which yields the elimination of three parameters,

1 2
=———b,, a4:M+l—b3,

b —0 a
! ’ 3 2 2

leaving a theory with four dimensionless parameters that
can be built from

1 i )
gﬂv(bZR/)ana + b3S/m-Spa) +vy |:a2CM/JuaRpa - <§ + b2>RﬂﬂR{’ + (M +1- b3> Sﬂ/)S5:| .

2
(66)

|
the second equation of (65), hence the contradiction.
Therefore, the theory (66) has two vacua, one with A =
0 and the other with 4~ 2.594. Of course, to have a
consistent theory we must check its unitarity about the
second vacuum. As we shall see in the next section, ¢ = —%
is excluded. Before that discussion, let us consider some
specific theories by taking the undetermined dimensionless
parameters to be zero.

Unitarity about its flat vacuum does not constrain this
theory any further: Let us use the notion of minimality and
fix the undetermined parameters. There could be many
ways to define minimal theories here: For example, if we
set f=a, =a3 =a, =0 we arrive at a unitary theory
around its flat background with the action
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_Ky

2 2
I== d4x{ \/— det [g;w + YR, + 7%gﬂ,,R,,pG"/’] — /- detg}, (67)

which was already given in [1]. Another option is choosing f = b, = b3 = a, = 0 which yields another theory

2 2 1
I=— d4x{\/— det [gﬂ,, + ¥Ry —i—% (GW,GQ7 _89””R2>] _ \/—detg}. (68)

_Ky

Of course, with four free parameters there are many other options, but in any case the most general theory that has a unitary
massless spin-2 excitation around its flat vacuum is constructed with (66).

B. Reduction to the Einstein—-Gauss-Bonnet theory

The next possible option is to try to reduce (63) to the EGB theory which has the same spectrum, field equations, etc., in
four dimensions with Einstein’s gravity. We will compare (63) with (10) for 4, = 0 which yields the following relations
between the parameters:

2 1 2
a3 =7by —by =, 614:'M

8
= : — by = by + 1, (69)

2 3

eliminating two of them and yielding the following A, tensor with five parameters:

; 2 1 BP+2) 8
Ay =R, +BS,., + y(azcﬂpr” + <§b1 — by — 5) R,,RU + <7( 5 ) _ gb1 — by + 1> S,,pS‘Z)
y 0. L o
+ 1 9 (D1C 53, CP7M + by R, RP” + b3S,,5"°). (70)

This defines the most general theory that has a massless unitary graviton about its flat vacuum. Unlike the previous case, we
can further require that the flat vacuum is the unique vacuum, that is, ¢ = 0; then we arrive at the relations

3 +2
a3:_b2’ blz_ a4:%_

by —1, 71
47 3 ( )

which reduces the general A,, tensor to

A/w = R/w + ﬂS/w + y(“ZCﬂpvaRPG + QSR;tpRé) + Cl4SM,S'§)

y 3
+ Z g;w Z Cpﬂ/ly

2
CPoir — asR R + (ﬂ(ﬂ;) —a, - 1> S,,,,S””] _ (72)

Hence, the unitarity and the unique vacuum conditions give us a four parameter theory. By judiciously choosing some of
these parameters to vanish, we can define various minimal theories. The first choice can be to set f = a, = b, = b3 =0
yielding

3y 3y o
A;u/ = R/u/ + Eg;w)(GB + gg;wRa/)G P’ — yRﬂpG/V) (73)

Another minimal theory option is obtained after setting f = a, = a3 = a4 = 0 yielding an A, in terms of the Ricci tensor
and the metric tensor multiplied with specific quadratic terms as

r (3 -
A/w = R;w + gg/w <§ZGB + Rp(er ) ’ (74)

where we have made use of the GB identity. The second option leads to the action
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which should be considered as an exact theory for all values of the curvature: At any order in the curvature expansion the flat
vacuum is the unique vacuum solution and the theory describes a unitary massless graviton. Now, let us see in small
curvature expansion what kind of theory we get up to O(R?). For this purpose we use (62) and get from (75) the following
effective theory:

K

1 3y
I=- / d*xy/— det {R +3 L + (9RRWRWP + 16RZRLRY — 42RR,,R™ + 8R3)}. (76)

The Gauss-Bonnet term does not contribute to the field equations. In case it is not apparent that this theory has a unique
vacuum and a unitary massless spin-2 excitation from our construction above, let us show this here in a different way. In fact,
these can be seen either from the field equations or from the equivalent quadratic curvature action that the flat space is the
unique vacuum. Let us follow the second path and find the vacuum and the excitations for this BI-generated cubic curvature
modification of Einstein’s theory. Unitarity and the particle spectrum of all cubic curvature gravity theories based on the
Riemann tensor and its contractions were studied in [29]. The most general cubic curvature gravity is defined with the action as

i .
1= [ @ =R =200 + aR? & BRR,, + rrn + F(RED), (77)

where F(R},,) represents the eight possible cubic curvature terms with no derivatives,

F(R) = clegR;;QR + c,R%R "/’R”" + c3RURGR + c4,RR)GR0]
+ csRURGRYG + coRURLRY + c7RRURY + cgR?. (78)

The EQCA of (77) was calculated in [29] as
I= /d4x\/ —9[ (R=2A¢) + aR? + BR2, + (R, — 4R2, + R?) | (79)

with effective parameters

1 1 A2
===l +4cy +6(cs3 +4cy) +9(cs + co + deq + 16¢3)],
K « 3k
~ K 2A K
Ro="Ag+22 (1—5),
K 3 K
- a A
a=2 3_[3C1 6¢y — 8¢y + ¢5 + 3(—c5 4 2¢7 + 12¢3)],
K K
. ﬁ A
p= - i[ 9cy + 24c¢y + 16¢3 + 5¢5 + 3(16¢4 + 3¢ + 4¢7)],
- _v A
7=t 20+ (e +4e)) (80)

Comparing (77) with (76), one obtains the following parameters for the EQCA from (80):

1 1 ~ A ~ A . 3y
==-, Ay =0, a=——1y =72, — A 81
z = 0 a=- p=57 7 =1 (+4y) (81)
which give the equivalent quadratic curvature action of (76),
1 4 3 r?A )
I:; d*x\/—detg R+Z}’)(GB +T(3)(GB +2RﬂDR’w—R ) . (82)
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Here, we still have to find A which corresponds to the
maximally symmetric vacuum. There are two ways to do
this: One can either derive the field equations of the cubic
theory (82) and get the vacuum from those equations, or
one can find the field equations of the equivalent quadratic
theory (82) instead. Of course the second method is easier,
and in fact these field equations were given in [30]; hence,
there is no need to repeat them here. Inserting R,,,, =
%(g,wgap — 9upYsy) to the field equations, one finds that
A = 0. Therefore, flat space is the unique vacuum. In fact,
more importantly, A = 0 also kills the ghost term (R, R*")
in the action. As expected (76) has a unitary massless spin-
2 excitation just like its exact “mother” (75). Happily, this
state of affairs is intact for any O(R’) truncation of the exact
theory: That is, at any order the vacuum is uniquely flat and
the theory has a massless unitary graviton.

VI. UNITARITY AROUND (A)DS BACKGROUNDS

Let us now study the unitarity of the BI gravity around its
(A)dS background. It is important to establish what we
mean by the tree-level unitarity of the BI theory in (A)dS

|

PHYSICAL REVIEW D 91, 044007 (2015)

backgrounds: As we noted in the Introduction, we require
that the theory is tree-level unitary at any finite order in the
curvature expansion and at infinite order in the curvature
expansion which is the full theory. Namely, the full theory
or any truncated version of the theory, for example the
linear Einstein theory, quadratic gravity or, in general,
O(R') theory, should be unitary. Note that this condition on
unitarity is stronger than the unitarity condition in string
theory generated effective gravity models. For example, the
full string theory is unitary, yet O(R?) effective theory is
nonunitary for bosonic string theory [31] as shown in [29].
In (A)dS backgrounds, unlike the flat space case, infinitely
many terms contribute to the propagator and to the free
theory, i.e., the vacuum etc. Therefore, as explained above,
we need the equivalent quadratic curvature theory of

KL :% [ det (&) + yAD) — (g + 1)}, (83)

which upon use of (34) in the Weyl-traceless-Ricci—Ricci
(CSR) basis reads as

2 0 w [0£] g [P£] o
"EEQCA_y[V et (3 +7AL) = (3o )] + [ac””} Mcﬁ [asths OR” RM(R” 2

where the bracketed and barred quantities denote the
maximally symmetric background values for the corre-
sponding expressions. Note again that C’,; = 0 and Sy =0.
The terms up to quadratic order are just the ELA given in
(57), so we just need the quadratic contributions which are
again given in Appendix E. By using these results, the
equivalent quadratic curvature action of (3) can be com-
pactly written as

1 2~
KﬁEQCA - % (R - ;20 + ap Cﬁ;Cﬁg + azRZRél + C(gSZSff) s

(85)

where the effective Newton’s constant and the effective
“bare” cosmological constant are given as

=1+a-2A2+1)2, (86)

A —

do = kKA1 +a)2ic+1)—a+a)+ 4] + 4. (87)

1 1[ 0°C 1[ 0°C -
- CUCl + = | cgmea | SiSG+ - | sornaa|  (RE— RY)(RG — RS
3 [acg;cgf] ” CopClic +3 [as’;as;; w72 {8R’J(9Rg] ,.w( )(R; = k)
L wer [ OL . _ L _
y PR =R + | moeee | SE(RZ = RY), 4
[acﬂvasrl] RMbCaﬂSG |:8C/waRi7:| R“”C ( 9) + |:8S’,58R;:| RwS ( p /3> (8 )

[
and the quadratic curvature parameters read as

ay =ybik(1 + a), (88)

AT
az—ﬂ[lc(1+a)(2/16+1)—l}, (89)
@ = 21/1 /(1 + a)(2A(aq + by) — 1) — A2asd + f + 1))
1] (90)

Here, a represents the combination
a=A+2c. (91)

Note that in the 4 — 0 limit, the equivalent quadratic action
of the full theory (85) reduces to the second order of the full
theory in small curvature expansion (63) as expected.
Let us list the conditions that our full theory should
satisfy:
(1) It should reduce to the cosmological Einstein or
Einstein—Gauss-Bonnet theory at the lowest order.
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(2) It should describe unitary massless spin-2 excita-
tions at any finite order in the curvature expansion
and infinite order in the curvature expansion. We
have shown that if the theory is unitary at O(R*) it is
unitary at any order of the form O(R**') including
i — oo. Therefore, together with the first condition,
once exact unitarity of the theory is checked, all that
is required is to check the unitarity at O(R?).

A. Reduction to cosmological Einstein theory

To reduce (85) to Einstein’s theory one should set
a; = a, = a3z = 0. These conditions together with the
condition that the theory is unitary at O(R?), which are

1 2
b1:0’ a3:———b2, a4:[}7(ﬂ+ )+1—b3,
2 2
(92)
lead to the following relation:
O0=«k(l+a)(-1+1)—1, (93)

which is obtained from @, = 0, and

o=t (22 1) ]

fea(lemyesn] o

which is obtained from a; = 0. Note that for ¢ = — 5, Land
a take the forms

(94)

1 3/12 2
—=1-B 4+ a=2A1——.
p A+ 2 a==2a > (95)
With these results, the @, = 0 condition becomes
AA=2)=0, (96)

which is consistent only if 4, = 2 or 4o = 0, namely A = 4,
We have studied the 4 = 0 case before. For the other case,
that is, 4 = 2, the theory is not unitary since k = —1 as
follows from (95). This means that we cannot reduce our
theory to the cosmological Einstein theory.

B. Reduction to Einstein—-Gauss-Bonnet theory

The next possible option is to try to reduce it to the EGB
theory. Unitarity of the theory at O(R?) yields

2 1 +2) 8
613:§b1—b2—§, 614:%—5171—1734'1,
(97)

and using (86) and (87), one gets the effective Newton’s
constant and the effective “bare” cosmological constant as
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= 1+a—,1<2z<§b, —%) + 1)2,
2o :fc{/l(l + a) <2/1<§b1 —%) + 1) —a(2+a) +/10}

+ A (99)

(98)

A =

In addition, the quadratic curvature parameters of EQCA
also become

ay = yblk‘.(l + C_Z),

@ :2% {fc(l +Zz)<2/1(§b1 —%) +1> —1], (101)
g o))
(

- 22azd+ p+1 )>+1} (102)

(100)

Here, a represents the combination
(103)

To reduce our theory to the EGB theory, we must impose
two conditions:
) - 2 as - 8
(04] - 3 ’ a - 3 ’

which, respectively, lead to the following two equations:

;[ (04 )<2ﬂ<§b] _%) +1) _1} =2ybR(1 + @),

(104)
(025 1) 1)
- 22azA+ B+ 1)2> + 1]
= —8yb,k(1 + a). (105)

Simplification of (104) yields

<b1 -%) <b1 —%)4 - —g (bl —g) (106)

Note that it is immediately clear that b, ;é Here, the
discussion bifurcates: Either b, ;é or by = 9 We have to
study both cases.
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C. Case 1: by # 3
Then, from (106), one gets

(107)

and inserting this in (103) leads to a = 0 which also gives
= =1 — J; therefore, one has the constraint 1 < 1 for the
un1tar1ty of the theory. From (107) 4 < 1 yields |b;| > 3
Note that, this condition on b; also guarantees that A # 1
Now, let us look at the second constraint (105) which
simplifies to
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Since we are studying the A # 0 case, this equation is
satisfied when either az; = 0 or a4 + f + 1 = 0. We must
consider these subclasses separately.

1. Case la: a3z =0
Using (69) b, can be determined as

2 3
b2_§<bl —Z>

Making use of (107) one obtains b, = —%. Since b, = c in
this case the vacuum equation (60) leads to 4 = 4. Then we
have the following A, tensor:

(109)

., (PB£2) 4 )
A/w = R;w + ﬂS;w + 4 <a2cﬂ/)u0Rp + <g +—- b? Sy/)S/

2 Jo

y 3 3 'PO. 1 [} o
+Zg,,,,<<4 7 >CPWC AV—%RMRP + b3S,,8" ) (110)
|
2. Case 1b: azA+f+1=0 which leads to
Together with (107) one has
2 3 2 3
az—g(ﬂﬂ)(bl—z)- (111) c—§<b1—z>. (113)
Then from (69) b, can be determined as
2 3 - —3_3 s
by = — 3ﬁ<b1 _4>’ (112) zroilf%)l)lthieﬁ:slziilead to 2 =2, by =3=2 by = £ and
3 o y g
|
o p+1 pP+2) 4
Ay =Ry +BS, + 7| a2C, R R,,R + PP +2) +——b3—1]S,,5
Ao 2 Ao
y 3 3 0. ﬂ loa (o}
+ 7 ( <4 57 )C,,,WC/’ 4 TORpﬁRP + b3S,,5” ) (114)
Note that, since 4y appears in the inverse power there is no 1 N2
Ao — 0 limit for (110) and (114). Therefore, we will not —=(1-2) <1 + _> . (116)
study these theories anymore even though they describe K 2

unitary massless spin-2 excitations at all orders in the
curvature expansion about their (A)dS vacuum. Let us
study the second case.

D. Case 2: b; =3

In this case, A is not determined from (106). This choice
reduces (97) and (98) to

1 pB+2)

a3:*—b2, ag = )

—2— b3,
4 3

(115)

Again, positivity of the Newton’s constant leads to 4 < 1,
and we demand that 4 # —2, so that the Newton’s constant
does not vanish. The vacuum equation (60) boils down to

Ao
et At =0.

" (117)

The solutions of this equation were discussed in Sec. IV;
hence, we do not repeat them here, but just note that there is
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a unique viable solution with 4 < 1 as long as 4 < Note
also that for 4 # —2, one must have 1y # —1. The second
condition (105) gives

(A+2)(f+1) =+ 2azi+p+1). (118

N[ =

We must study both signs separately.
Let us consider the minus sign case which yields

G+ 4)(p+1)

I (119)

ay = —

Since we would like to have a smooth 4 — 0 limit, we must
have f = —1 and a3 = 0. Then, the theory is

(oo

9 1
+ gg;w (8 Cpo‘iycpﬂy + ZRpngU + bBSpaspG> s

A,=R,—-S

1%

-

v v

(120)

which will also appear as a subcase below.
Let us consider the final case, choosing the plus sign in
(118), which leads to a3 = /%. The A, tensor reads

Zl’)l 614 + b3

(B+1)
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p+1
Ay =Ry +PBS,+7 <a2CWWR + TR Rl

+ <ﬁ—(ﬂ ; 2 _,5_ b3> S,,,,S’J)

r (9 oy P - -
+ 5 9 <§ C sy CP7H — 3 RoaR"7 4 35,087 >
(121)

where a,, b and f are arbitrary real parameters.

Let us summarize the properties of this theory:

(1) With a given 4 < 16, it has a unique viable max-
imally symmetric vacuum with a cosmological
parameter 4 < 1, and an effective Newton’s constant

= (1= 2)(1+4>.

(2) It describes a unitary massless spin-2 excitation
around this vacuum for any value of 1, < 16 Linclud-
ing Ay = 0, except 1o = —1, which yields 4 = -2,
and so it is ruled out by the requirement of a nonzero
effective Newton’s constant. This statement means
that the theory has the same propagator structure as
Einstein’s gravity in (A)dS and flat backgrounds.

(3) It provides an infinite order unitary extension of
Einstein’s gravity.

All these features are quite attractive but we still have to
show that the theory is also healthy at the truncated orders
O(R?) and O(R?). At O(R?) since the theory is equivalent
to the Einstein-Gauss-Bonnet theory it is unitary as long as
k is positive. Let us now check the O(R?) theory.
Expanding the Lagrangian density built with (121) up to
O(R?), we arrive at

KEO(RS =R - 2A0 + ]/( 3 4

+}/<2b1+b2+(13+b3+(14—

+r 2b RR,, R —

upvo

(B+1)?

1
Z\R?
+8)

) R;lew + 7b1)(GB

},2 (/} + I)GZR;WRIMW)RJ/)

B+ Da, b2+b3 -2b  (3f+4ay  (B+2)as (B+1)° ’
( 1 1 + R )RRWR”
(__m+wm_@_w+n (ﬁ+))R3
16 6 24
rpB+1) (—a2 —ay—a, + (1 >RWR;RP”. (122)

The question is if one takes this theory as the full theory
what kind of excitations will it have? We can answer this
question with the methods we have employed several times
in this work. Namely we can construct an equivalent
quadratic action that has the same vacuum and excitations

as this theory. Using the above cubic curvature parameters
in (80) yields the EQCA parameters for (122) as

[1=32(as + by)). (123)

A —
A=
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~ K 2 K
Jo="1+2(1-5), 124
0= 0o+ 3 ( K) (124)
~ 2bl ay + b’; (ﬁ + 1)2 1 l]/ 3b2 3bg 3(ﬁ + 2)61’; 3614
=y : - 2 St BTl o M A i 12
Ka y< 3 i T tg) Tty by + ER 5 1) (125)
= (B+1)
K=y 2b1+b2+a3+b3+a4—T + Ay (2by + by — (28 + 1)az + by + ay), (126)

For this theory to describe unitary massless spin-2 excita-
tions we must set @ = 0 = f. These conditions are auto-

Therefore, with these constraints coming from the uni-
tarity of the theory at O(R?), we can now summarize the

matically satisfied because of the conditions (104) and (105)
of the full unitary theory. We only need to show that the
effective Newton’s constant remains positive. Thus we have

properties of the theory (121) as follows: It describes a
unitary massless spin-2 excitation about its unique viable
vacuum (with — % < A < 1) at every order in the curvature

expansion inc]uding the infinite order expansion as long as

(128)  x>0,- \/- < g < 1t for arbitrary real §, a, and by. What

1/ 32
~(1-2-) >o.
L-%)-

which is satisfied only if — \/- <A< \/- The upper bound is

is fascinating is that no new condition arises at any O(R**)
expansion. Namely, at every such order, contributions to the
effective parameters vanish among each other; therefore, for
example, the effective Newton’s constant or the vacuum
equation does not receive any corrections from the terms of
the O(R**") theory. This is the first known theory in four
dimensions which is unitary at every order in the curvature
expansion in its (A)dS vacuum.

Having three arbitrary parameters at our disposal, we can
define various minimal theories out of which one is

weaker than 4 < 1 but a lower bound is introduced. Thus,
unitarity of our theory at O(R?) is achieved if — \/% <A<l

Of course now the vacuum equation should allow such a
solution. Here the vacuum equation at this order is

B =4l 444 =0, (129)

and if — 3 \/— <Ay <3 \/- then there is such a real 1. Observe particularly interesting: For f=—1, a =0 and
that the upper bound is larger than 11 Hence the condition by = 2, one has the BI action
on 4g is — 3\/_</10<
2 4 14 9y? 1
I= d*x$ g [-det| g + = guR + 5 9w | xas —<R* ) | — (Ao + 1)y/—detg g, (130)
Ky 4 32 9
which actually can be recast as
I = 2 d*x\/—det 1+~ R+92 1R2 ’ (Ao+1) (131)
—de - = - )
Ky g 47 T3 \fee Ty 0
or more explicitly
I—l/d“x\/ det gq R — 2A —R3+9—2 +—3 o ——R? +&'3 ¢ (132)
T 03" 3y M T R gse M aar g5 ke ¢

where we dropped the boundary term. The important point here is that as an O(R*) theory, this describes massless unitary
excitations about its (A)dS vacuum, but it also describes massless unitary excitations at order O(R') for i < 4, when
expanded in small curvature.
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VII. CONCLUSION AND FURTHER DISCUSSIONS

Using physical requirements such as the existence of a
unique viable maximally symmetric vacuum with a zero or
a nonzero curvature, unitary massless spin-2 excitations
about this vacuum at tree level, and the reduction to the
cosmological FEinstein theory for weak field gravity, we
have constructed Born-Infeld gravity actions with the
metric being the only independent variable following the
route of [1]. To the best of our knowledge, the theory we
have constructed is the only known theory in four dimen-
sions that is unitary at every order in the curvature
expansion about its (A)dS vacuum.

One interesting observation is that the four dimensional
Gauss-Bonnet term, being a total derivative, which has no
classical effect, plays an important role in the construction
of the actions: Namely, at the lowest order BI gravity
reduces to the Einstein-Gauss-Bonnet theory and not to its
classically equivalent partner, the Einstein’s theory. In
addition to the above-mentioned physical requirements,
we have also employed the notion of minimality which is
essentially constructing determinantal actions that are as
simple as possible and that do not involve many powers of
curvature and derivatives of curvature. This leads to a
quadratic theory inside the determinant. In the most general
form, the set of such theories has three dimensionless and
one dimensionful parameter which is the BI parameter that
comes from the coefficient of the Gauss-Bonnet term. To
further restrict the viable BI theories, one must turn to their
phenomenological applications. By construction, the
theory matches Einstein’s gravity for small curvature;
hence, deviations from the results of Einstein’s theory
should be expected at the strong gravity regime.

In this work, we have concentrated on pure gravity and
have not worried about matter couplings which can either
be done by the usual way of assuming a | d4x\/—_g¢‘”TW
type interaction in the action or in the nonminimal way by
inserting matter fields into the determinant. As an example
of the latter case, one can couple Maxwell theory by simply
taking A, - A, + aF,,, with F,, being the field strength
tensor. Conformally invariant versions of the actions can
also be found following [32,33].

We shall study cosmological and black-hole-type sol-
utions in a separate work, but here with the tools in our
hands, we can find some exact solutions of the BI gravity
(121). These solutions are the AdS-wave solutions of the
cosmological Einstein’s theory [34-36]. These solutions
not only solve the exact cosmological Einstein’s theory, but
also its linearized version. These solutions remain intact in
the BI gravity (121), and the only thing that one needs to
change is the effective cosmological constant which can be
found from the vacuum equation (117). This comes from
the fact that the equivalent quadratic curvature action of a
theory determines the linearized field equations which in
turn determine the properties of its AdS-wave solutions
[34,36], and here we have shown that for BI gravity this
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action is the Einstein—Gauss-Bonnet action whose linear-
ized field equations are the same as the Einstein’s theory.
The same fact gives a way to construct the conserved
charges of the BI theory which we now show.

A. Conserved charges in the BI gravity

The conserved charges of a given f (RZ;) theory can be
written in terms of the conserved charges of cosmological
Einstein’s gravity as was shown in [27]. This follows from
the linearized field equations of the generic f(R};) theory
given in Appendix D and the charge construction in
[28,30]. Without going into further details, let us recall
the expression in [27]:

- 1 4An 4A
0 = (=
0;(¢) = <1?+n—2a+n—2

4/(\1’511—_1 ;(),/En__zj-) 7) Q%instein (E) ) ( 1 33)

p

where & is the background Killing vector which for energy
reads & = (-1,0,0,0). Q¥ . is the Abbott-Deser
charge for asymptotically (A)dS spacetimes in cosmologi-
cal Einstein’s gravity [37]. For the viable BI gravity theory
given in (121), a =0, =0, and n =4; hence, the
conserved charges of asymptotically (A)dS spacetimes read

(134)

04® = (1-2(1+5) Bl

For example, for an asymptotically rotating (A)dS-
Schwarzschild black hole,” the energy and the angular
momentum read

E=(1 —l)(l—i—;)zm, J= (1—/1)<l+/21>2ma,

where m is the mass parameter and a is the rotation
parameter. It is also clear that the black hole has a positive
mass when the graviton has a positive kinetic energy, that
is, A < 1.
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"By construction, this solution asymptotically exists in BI
gravity since at large distances cosmological Einstein’s theory is
dominant.
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APPENDIX A: NAIVE BI GRAVITY For n =3 and f = 0 one gets the BINMG action which
describes a unitary massive spin-2 graviton, but for any
other dimension there is a massive spin-2 ghost due to the
R, R" term [40].

Let us consider the following BI-gravity action:

2
] = — K—y dn_x |:\/— det (gﬂl’ + ]/G;w + },ﬂgﬂDR)

- \/—detg]. (A1)

Expanding to the O(R?) yields

APPENDIX B: CONVERSIONS BETWEEN
CSR BASIS AND RRR BASIS

W W 6n4 12 In this appendi)'(, we d'isc'uss the conve.rsions between the
‘CO(RZ) _ { R+ 4 < R, R™ — Rz)} Wey!—traceless—R1001—R1001 (CSR) basis and Riemann—
2k 8 Ricci—curvature-scalar (RRR) basis.
The A, tensor written in the CSR basis, which is

- B {R + yﬁRz]. (A2)

4

o o 0 0
Aﬂl/ = Rm/ +ﬂS/,w + ]/(CIICW,,MCL + aZCﬂppﬂRp + a3Rﬂ/)R€/ + a4Sﬂ/)S€/) + 4

glll’(blcﬂ(fﬂ}’cpdy + DaR )R + b3S/m—S/m)y
(B1)
can be converted to the RRR basis, which is

. ﬂ o o o 0, opT
A/w = (1 +ﬁ)Rﬂl/ _Zg;wR + Clgﬂsz + CZRR/w + C3g/praRp + C4R /lRIJG + CSR/mva ’+ C6g/4vaa/17Rp &4 + C7R/4 ’ Rvo'prv

(B2)
by using §,, = R,, — }1 guwR and the definition of the Weyl tensor in four dimensions,
R
C/muﬁ = R,uauﬂ - gﬂ[uRﬁ]a + ga[uR/}],u + ggy[ugﬁ]aﬂ (B3)
in place. Then, the coefficients in (B2) become
~ Y 2 1 Y
ﬂ:/)], Cl:&(—801+8az+3a4+4b1—3b3), Cr=V7 a1—§a2—§a4 s C3 21(201—2(12—2b1+b2+b3),
4
cs=y(=2a1+ary+as+as), cs=y(-2a,+ay), co= th c7=ya. (B4)
Sometimes the inverse transformation is also needed; therefore, we shall give it here:
~ c 1 1 c 2¢ 1 des  2c
p =P, a = ay =—(cs5 +2¢7), as=—(2c+ s+ 2 +5 ), ay=-(-20,-—2-=1),
y y y 3 3 y 3 3
4 1 2 8 1 4 16
blzﬁ, b2:— 16C1+2C2+4C3+£+—C6 b3:— —16C1—2C2+ﬁ+j+26'7 . (BS)
14 14 3 3 Y 3 3

In the RRR basis, the EQCA takes the form
2 LA 4
ﬁEQCA:_2A0+_<2+]_>llA3+{1_11A2__I%A3}R
3 Y 9
1 Ly 1, -~ , 1(y 2 )
+; (4ci+cy) 1+7A—|—§A +§(y(ﬁ+1)+2le) +3 S+—A) R

1 [ 1, - 1 [
s { terrecten (14t 302 <500+ 1)+2800 4 e o) (147A+ 107 ) Ry (B0
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where the coefficients read
ll = 48C1 + 1202 + 12C3 + 3C4 + 3C5 + 8C6 + 2C7,
(B7)

(6(,’2 + 3C4 + Cs + 2C7). (BS)

(USRI

l2:

APPENDIX C: AN EXAMPLE ON EQCA
CONSTRUCTION

The unitarity discussions using the EQCA construction
involve various Taylor series expansions of functions
depending on tensor quantities which sometimes compli-
cate the inherent physical meaning. To understand the basic
idea of the EQCA and the relation between various
expansions, it may be worth considering analogue expan-
sions for a function with a single scalar variable. First,
remember that the EQCA of a gravity theory is given with
the second order Taylor series expansion of the Lagrangian
in the curvature around the maximally symmetric back-
ground, RY, which is either already determined by using
the ELA of the theory or will be determined by using the
EQCA of the theory. Then, for a function f(x), the
analogue of EQCA is the following second order Taylor
series expansion around x = X:

Fraealx) = F3) + £ =) + 3 f(0) (e = 3

(C1)
which can be recast in the form
Fraea(¥) = F() = FDF + 5 /(D)%
FE) - S @RS @R (C2)

2

Here, note that in the gravitational setting, the O(x) term
represents the Einstein-Hilbert piece and its coefficient is
the effective Newton’s constant of the theory whose
positivity puts a constraint on the theory. The O(1) term
determines the effective “bare” cosmological constant
while the O(x?) term is the quadratic curvature term.

In addition to this EQCA expansion, we also discussed
the small curvature expansion of a gravitational theory
which corresponds to the Taylor series expansion of f(x)
around x = 0 as

o f(n)
f(x):Zf '(O)x". (C3)
n=0

n:

Note that unless £ (0) is zero, each order in (C3) will
contribute to EQCA as
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3 2
(ﬂk“A:(““§+%)”+”%“”
-1
P (c4)

This result implies that to see the contributions to the
EQCA of a gravity theory coming from the O(R') terms in
the small curvature expansion of the theory, one needs to
look at the A"~? terms at the quadratic curvature level, the
A= terms in the effective Newton’s constant part £, and A’

terms in the effective bare cosmological part %

Another implication of this result is that once the EQCA
analogue of f(x) is found, there is no need to calculate the
EQCA analogue of any finite order truncation of (C3)
separately. One just needs to have O(x), O(¥'!), and
O(x'72) expansions of O(1), O(x), and O(x?) terms in
(C2), respectively, around x = 0. For example, let us write
the O(x*) truncation of (C3):

1 1
Fo(x) = £(0) + £/(0)x + 5 f"(0)x + £ f"(0)+°,
whose EQCA analogue expansion is

1

fx3—EQCA(x) = f(0) + gf///(0)3_53

+r-3roe)s

FS00) + O (CS)
Up to O(x?) expansion of the O(1) term in (C2), that is,
f(x) = f'(x)x + 1 f”(x)x?, around X = 0 gives the first line
of (C5). Then, up to O(¥?) expansion of the O(x) term in
(C2), that is, f'(x)—f"(x)x, around X =0 gives the
coefficient of x in (C5). Finally, up to O(X) expansion
of the O(x?) term in (C2), that is, § f”'(X), around X = 0
gives the coefficient of x? in (C5).

The same approach can be used in the gravitational
setting. For example, the EQCA of the BI theory defined by
(121) can be obtained by using (85) as

do B 3. 22
Lroca = 224+ (1422 +R1=-(1+2
rrech y+y<+8>+( m’5>

9 A\ 2
+§7 l+§ XYGB-

Then, the EQCA of the O(R?) expansion of the BI theory
defined by (121) can be obtained by taking up to % order in

(Co)

the cosmological constant term, up to A*> order in the
effective Newton’s constant term, and up to A order in the
quadratic curvature parameters in (C6) as
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o A ( 3 )
kLroca_or) = —2—+—+R[1-222
EQCA-O(R?) y y 4

9
+§7<1 + A)xca. (C7)
which can also be obtained by using the EQCA result for
kLo(gs) given in (122). In addition, the vacuum equation

for O(R?) truncation can be calculated from (C7) as

d-%
A=l =) /1——13—0 C8
(1 3 /12) 0 ( )
which can again be obtained from the vacuum equation of
the whole theory which is
/13

A=lg——(4+2) =0,

16 (C9)

by eliminating the highest power coming from the O(R*)
truncation.

APPENDIX D: LINEARIZATION OF THE
FIELD EQUATIONS OF f(Rl))

In this appendix, we carry out the linearization of the
field equations of an f(R};) theory, which is a gravity
theory whose Lagrangian is constructed from the contrac-
tions of the Riemann tensor but not its derivatives, and we
show that these linearized field equations are the same as
those of a quadratic curvature gravity theory with redefined
parameters. First, note that the field equations of an f (R’;Z)

theory are
1 ; " of
3 6V Vo = 00V'Y,) o
1 of
) (9o V'V = 946 V'V,) OR™
po
1/ of h of ; 1 Y
=0. (D1)

In Sec. II1, we showed that the (A)dS spacetime solutions of
this theory satisfy

_2€Ruu + guuf(RZg) =0,

where ¢ is defined in (26) as [d—f] Rbe =(R. Let us

(D2)

R g
linearize (D1) in the metric perturbation h,, = g,, — g,
where g,, is the (A)dS background solving (D2). Starting
with the last term in (D1), which becomes

v N ¢/
[g/wf(Rl;ﬁ)]L = h;wf(RI(lx[f) + g/u/ |:8R];ﬁ (D3)
po

} (RD),.
RY
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and using the equation defining ¢, one finds

af :| lp <o)
— ={64 6, D4
[ o] =% (D4)
As discussed in Sec. III, one gets
[gyyf(RZ;>]L = h;wf(Rzg) + g/wz:RL- (DS)

Moving to the first term in the third line of (D1), one has the
linearization

of Of _
(20e) ~[20] o
OR)s L GR(,,(?R,,,, R

0
+[ f ] (Ryo")), -
aRpg RM

(Do)

Here, remember that | o ]

——<—1 has the following form as
ORIOREE £

we discussed in Sec. III:

62 A oT) ) O
[710} = 2a8.°57 8157
8R{,,8R R
a slp sl oo r slp slaf oo
+ﬁ(5 ) 5[”5/1] 87,6051, 5/”)
+ 1278555055, (D7)
Using this result together with (D4) and Rp,, =

(8,84 — 555),), one has

2
(n=1)(n-2)
af ) B 4A nA _
(aRzﬁRf’” ) B (“ -2 <n— D 2))’“""
8A(n — 2A

+ < (n—=1)( ) 'Bn - 1>
2A
X < g;wRL n— 2 u) —CR;%

Now, let us linearize the first term in (D1), gw,VlV

o BR”"
and to do this, first note that the linearization of the metric
compatibility, V,g,, = 0, yields

Vh, = T%), 95 + (T5,),; Guo- (D8)

Then, for a two-tensor A,, with the background value
A,, = ag,,, the linearization of V,A,, yields

(vuAvp)L = vﬂAlep - El[(rZU)Lgap + (FZP)LQUG]’ (D9)

and with (D8), one has
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(V,A,), =V,AL —avV,h,. (D10)  which boils down to

Next, let us consider the linearization of (V,V,A,,), :

- _ _ N v L ~\
(vavﬂAbp) v /tA - (Fff/»[,v/lAup - (FﬁD)LvﬂA/{p (v v AW)) =V (v AW) avﬂhw)' (D]Z)
- (Fﬁ'p)L ﬂAu/l - va((rftu)LA/lp)
- va((rﬁp)LAwl)» (D11) Finally, we have
|
), 09 (o), e 00 (),
A vZi v R vk v 43,599, (e , D13
(gp 8R% . gpg}L p 8Rgf; . gpg}L Y/ ( )L 8Rp0' Rwl ( )

where the second term represents

a ﬁ — af - ﬂ _ (1 af _ a af

and using (D4), one has

of )
o, () —o. D15
re), (GR% y (D15)
On the other hand, ( ()R‘“) takes the following form by using (D7):
a_f‘ azf 0 T 0 T O
( aRM) = [ SRR A(RZ'Z L =2a8/ )R, + 2ﬁ5g”5'b)5j1 (RY), + 278/ 5)R, 555'[/)5;] (RY), + 27685 (R1Y) .
po/ [, ar PO R"

(D16)

Using these results, one arrives at
of Y
<gypv/1va W) = a(gﬂyvlvﬁRL - vvv/ARL) + 5 [gvpvlv/l(Rllj)L - gzxpvlvﬂ (Ril))L - vuva(Rﬂ)L + gﬂyvlva(Rl)L]
po/ L
+ Y[gyyvlvﬂRL - ng/lv”v(r(Rz)L + zngivﬂ (Rﬁ)L + Zgy/)vlvﬂ(RZZ)L]
—y[V,V,R, =2V, V,(R}), + 25, V*V,(RS),]. (D17)
Let us recap the definitions of the linearized Ricci tensor (Rf); and linearized Ricci scalar:

2A

(R = (9" Rua), = TRl = —— 1 R = (RY)y, (D18)
and the linearized Einstein tensor:
1_ 2A
G =Ry, — Eg/wRL - mhﬂw (D19)

which satisfies the linearized Bianchi identity Wgﬁb = (. With these two background tensors and R;, one has

0, - - = - - = 1o = -
(gw,V‘V,, 6TJ;1> = a(gWDRL — V,,VURL) +'§ Dgﬁ,, — gpr*V,,(RQ’) EV VR, + gWDRL}
pa/ L

= 4A = vZAw Y vZAw ey
+7y {—ZDRﬁD R— Oy, +25,,V*V,(RY), + 2ngﬂv{,(RLQ)L} , (D20)
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where g,,V*V,(R’), can be calculated as

2nA

3,V'V,(R)), = (n=1)n=2)

gﬁy
GuRL. (D21)

Finally, the last term in (D20) requires the linearized
form of
V+V, R = OR), — VFV,R, (D22)

which can be obtained from the once-contracted Bianchi
identity

VDRﬂmjﬂ - V”Raﬁ - VaR”ﬂ, (D23)
and the linearization yields
VAV, (Ri), = O(RE), — V'V (RY) .- (D24)

Then, putting the pieces together, one arrives at the desired
expression

(1,79,20)
ORY/ |
200 4 = = = =
= (—Zﬂ) (g/wDRL - vﬂvuRL) + g Dgﬁu

p 2nA A
2 ((n— D=9t

Now, let us start collecting terms in the linearization of
the field equations (D1). Note that the linearization of the
other three terms in the first line of (D1) yields the same

contribution as (g,,V*V, a?éc‘) . In addition, the lineariza-
po L

tion of the first two terms in the second line of (D1) gives

the same contribution. As a result, the linearized field

equations become

1 gWRL> . (D25)

B 20 4Am=3) .
{C P=Dn-2) y(n—l)(n—zﬂg’”
+ (2a+ ) (G.0R, = V,V,R,) + pOGE, (D26)
4A 2A )
(s Pty e
=y Bf (Ry%) — nz—fz} =0. (D27)

The last line vanishes because of the background
equation (D2). The final equation can be recast in the
form of the linearized field equations coming from the
quadratic gravity theory

PHYSICAL REVIEW D 91, 044007 (2015)

L= (R—2A) +aR® + BR.RS +yxgs,  (D28)

A —

given in [28] as

1 4Ana  4Ap  4Ay(n—4)(n-3)
{E+n—2+n—1 (n=2)(n-1) }gﬁb

- s = 2A
+ (Za + ﬂ) (gﬂvD - vﬂvu + mg/w> RL
- 2A
+p <Dgﬁp - mg/wRL>
=0. (D29)
To match (D27) and (D29), one must have

(n=2)(n-

%=2C—n4—i\2[(na+ﬁ)+7 1) 3>]- (D30)

In addition, we have to require that both theories have the
same vacua, which determines A, as

(R + 2
B 2A%n - (n—=2)(n-13)
e (e P+ P o

which follows from the vacuum field equation of (D28),

A=A n—4 n=3)n-4
To—i-AZ [(na—hﬁ) ((n—2)>2 7En— 1§EH—2H -

(D32)
and (D2).

APPENDIX E: TERMS IN ELA AND EQCA

In order to calculate ELA and EQCA for the BI gravity
theory defined by the Lagrangian density

2
E(CﬁZ,R’JvR’J)I;[ det (36 + yAs) — (Ao + 1)]. (EI)

one needs to calculate the background values of £, and its
first and second order derivatives. To find the background
value of L, one needs the background value of A” which
can be found as

yAS = Sha = 5,A[1 + A(as + by)]. (E2)

In calculating the first order derivatives of (E1), we use

A(y/det (8 + yAL)) = g \/det (8! + yAl)BSOAL,  (E3)
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where B is defined as Bj(5); + yAj;) = &} with the back-
ground value BS = (1 +a)~'85. Thus, we just need the
derivatives of A2 which can be found as

aAﬁ a/j PP ca bl af S ca
90" rai(Coudy + Cuudy) + 5 Ci 0o + ya Ru535,
af
(E4)
AL b
a5p = P0u0l - vau(Sul + Sis%) + 7—235;5:;, (E5)
(9Ap D 0 cy be v
aRM = 5”5/ + }/dzc(;ﬂ + }/03( 5[) + R/5 ) + TRM&);,
(E6)
and their background values are
AL }
= 2a,80528, (E7)
AU vO50u>
),
OAL
S| o (58)
v RtiZ
0AL b
[ R } = 5U8) 424 <a35,€57, + fé;éﬁ) . (E9)
v Rﬁz

Using these results, one can calculate the linear order terms
in ELA and EQCA. However, prior to any calculation, it is
clear that the Weyl term

(’M Y ) N OAY Y

ap af

(E10)

and the traceless-Ricci term

e Y e 0AL
AP\BC u Ell
[asj o det (& +74%) {asy] ” S (E1L)

yield zero as they involve traces of C,; and Sy. The unique

contribution comes from the Ricci term

oL _
{6R5] o R R
p

—_ [9A? _
det (& + yA?)Bg BR”] (R —RY), (E12)
Ry,

which becomes
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L’?—Ié‘} R (ko —R)
= (yR — 4,1)%( a)[l +2A(as + by)].  (E13)
Adding the background value of L,
Z:%[(l +a)?— (A + 1)), (E14)

to this result yields the ELA given in (57).
The second order derivatives of £ can be calculated by
using

82< det (&) + yA’,j))

ot o) o a0,

(BIOAT)> } (E15)

+r
2

where the second order derivatives of AL are needed.
First, the second derivative of Af with respect to the
Weyl tensor is

= ya,625,5.53 5,
R";

0PAL
Lacﬂ”acﬁf]
wsoc (a3 + 5. (El6
+7/617 051/ aléo’ M+?5ﬂ50' ’ ( )

where the result does not have the symmetries of the Weyl
tensor on the left-hand side. However, note that the result
becomes symmetric accordingly when it is multiplied with

Ca/}C in finding the final contribution to the expression

o,
aChoCY,

Then, the other derivatives can be calculated as

1Y
R/J

azAg 0 S
[W} . = ya25g5u565pﬂ’
2 4P
[ai%} = rau(oxolth + si0hal) + 72 ool
vERpl R
(E18)
GZAP }’b2
|:8Rll0Ra:| =7raj (5g5ﬁ5ﬁ + 5ﬁ5p> + _6;55&07
AR,

(E19)
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It is clear that the remaining ones are just zero:

D?A; O?A;
AV el = Hopa (E20)
0C,;084 dS,0Rj

Using these results in (E15) let us compute the second order contributions to the EQCA term by term. First, the Weyl square

term takes the form
_ [0AS] - [0AL
-1heg] Bilacz],
w | loctle " loc),,

1 [ PL ] c g 82A”
— == vl — \/det S+ yAl)
4 a/)’ P
2 acaﬂ CZT '7
OAL ] [ OAS ] } 0
- crcr, E21
|:8Cﬂ R"” o C)ﬂ i ap™~ it ( )

R/Ab (Zﬂ lT

which then yields

1 0*L w0 L
2

3 | oo em|  CarCir = S72(1+a)(ay + b)) ChoCly. (E22)
afp =~ it R’”

Then, the term involving the square of the traceless-Ricci tensor has the form

2 2 AP ¢ P 4 ¢
| s ] [ w0 Im[] [] ey
R ): Rb, RY, R™

28S"8S" 08,08% 0S% sy oA 85]
(E23)
yielding
Lok S"S" = {——ﬁz —(1+4+a)(ay + b3)] NAYS (E24)
2081082 aS§ :
Moving to the Ricci square term which has the form
! 33;5% (82 = RE) (R - Rp) = 5 [ae 0 + 120){ By [822;‘,?} g Bﬂ . o .
+1B; [gﬁﬂ B Bﬂ R } (R — RY) (RS — R). (E25)
we obtain
1 oL H _ PHY(Ppa _ pa) — 21//4 21/#/1 7 2
2 9RORS (RY — RY)(R — Rj) = —(yR -2 - ﬂRﬂR ﬂsﬂs > 5[2(1+a)(as + ba) + (24(as + by) +1)°]
},2((2a3/1+ 1)2_i(] +a)(as +b2))SZS’,f, (E26)
after using
R? = 4(RYR) — S4.SV). (E27)

Then, the first two cross terms yield zero as
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PL —(_[ &AL OA: OAL
sl = det(6’3+yA£‘){B { } vB? { ] B; { }
8 aS” ﬁ a (lﬁ aS}? R;u, aS” RI“’ aca/} R,w/

aﬁ
DAL, DAL
Be Be CI“/ SW’
+2 ”[80;;] R [85] } apo

L

HY QI
acros; o =0

and

oL P AL A% 0AG
aCI(;ZGR’i Caﬁ( Ré}) det (5” + J/A ){ |:a (1/}8an| i - B |:8R’7:| RW,B |:8C :|R’“’

aff
+L B"[ S| B C“(R} - RY).
2 P acﬂ R;w 3R R;;l,; ﬂ 0 0

afp
0*L Y -
0C,,0R) CuplRy = Ry) = 0.
Lastly, the nonzero cross term is
*PL _ o [ 024G OA: OAL
V(R% — R%) = y/det (8 + yAL)] BS —yB? B¢
ostorg > Ri ~ Kj) =/ det (3 -y ){ ’ [65’561%”} L?R“} ” [8&} .
s AR AR R}
Y - [OAL ] _ [oAS
+—Bg{ Bg| | pSU(RE—RY),
2 oSy R ORj R
o*L . 1
aS”aR S"(R" R;) = —Eyzﬂ(l + 22a3)S,Sy,

after using
RLSy = S4S).

Adding all these second order contributions to the ELA yields the EQCA given in (85).

APPENDIX F: FIELD EQUATIONS

In this appendix we will derive the field equations by minimizing the action

2
I—K—y/d“x[\/—det(gﬂ,,—kyA”y)—(/10+1)\/—detg},

where we work in the Riemann—Ricci—curvature-scalar curvature basis:

(E28)

(E29)

(E30)

(E31)

(E32)

(E33)

(E34)

ﬁ lea o opT
= (ﬂ + ])R;w - ngwR + clg;sz + CZRRMD + C3g;wR(27/) + C4R ,MRI./O' + CSRﬂHD/)R P+ C6g;w apaﬂ + C7R Rwr/n:

One can eliminate cg or ¢ in favor of the other, but we will keep it this way.
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The variation of the action is

81 = sz d4x\/Tetg{ (—% gaﬂ(‘igaﬁ) [ det (8, + yAY) — (Ao + 1)] + [5\ [det (8, + yA,”,)} } (F3)

The first term is already in the desired form. On the other hand, the second term can be analyzed by using (42), that is,

5y /det (&, + yAL) ==\ /det (& + yA%) BGoAL, (F4)

where B = (6 + yA)~!. For notational convenience, let us define Ef =15 \/det (8, + yA;,)Bj. Then, after considering the

variations of the curvature terms in 5A%, a lengthy computation yields the field equations as

1
5% [ det (8 + yAL) — (4o + 1)]
1 1
Ny RSy (é‘gR,m V.Vl + 50 +3 gaﬂvﬂvygﬂv) _ g (ERus = VY€ + gupE)

+ Cq (25RRaﬁ - ZVQVﬁ(gR) + 2gaﬁD(gR)) + Cz(glszZRap + g;RR(w)

1 1
+ CH —Vavﬁ(é”,fRZ) + gaﬁD(glljR;l:) - VMVﬁ(ggR) + ED(E(I/}R) + EV#VA(&”R)Q(,[;

+ C3(_2vnv/3(gRZ) + D(gRa/i) + v/)vﬁ(gRo—ﬂ)gaﬂ + 28R(1/)R/’;)

+ Cy (g/,jRaﬂRU/j + S’éR””RﬂJ) V Vﬂ(g(wR ) V Vﬁ gﬂRDa)

(
1 1
C(EpRY ) + Evﬂvo'(gllij’)gaﬂ + Evav (E"R,) gaﬂ:|

1 1
+ ¢ [25”R,fv R vavl(ngg) 5 ViV ERyp) + 5 VoV (EaR)

~V,V(ELRY ) + (5”R,mvﬂ) + Zv,,vy (ELR, rvﬂ)gaﬂ]
+ 266 [gRaﬂarRﬁﬂM + v/lvr (SRAaTﬂ) + vﬂvl(gR[iﬂai)]

R/}/)ua)+2vﬂvﬂ((€l‘;Rﬂﬂ 7 —|—€MR Am —S ﬂleﬁ ) =0, (FS)

apuoc

+ ¢y [—SQDR/;(,/,TR””/” + & (R/;M,TRO,’“/” + 2R

where & = g, . ¢ contribution:
For the sake of comparison with the equivalent linear A2
action technique, let us find the maximally symmetric 2ER 4o R5™F = 3 €0qp- (F7)

vacuum using the field equations. Note that ég‘ = éé}j with

e =75(1+a). In the calculations below, all the tensor ¢ contribution:
quantities are evaluated at their background values.

¢7 contribution: Zgl”lRﬂwﬂR“" =20%2G,p. (F8)
- gasz[)’(r/JrRD”/)T + glljRﬂ/}/)TRD(lﬂT + gﬂRuﬁaer; ! Cy contribution:
2
+g R Rver :ﬂég (F6) H v H po > - 25—
uopa 3 af- gyRa’uR i + E4R pRﬂzr = ZeRgﬂRa =2A €Gap- (F9)

044007-28



BORN-INFELD GRAVITY WITH A MASSLESS GRAVITON ...

¢3 contribution:

8eR,,R); = 8A%eg,p. (F10)

¢, contribution:
EVR, Ry + EGRRyy, = 2eRR .5 = 8M%eg,s.  (F11)

¢, contribution:
2ERR 5 = 32M*27,y. (F12)

PHYSICAL REVIEW D 91, 044007 (2015)

Using the conversion relations between the bases (B4) and

yAL = 8ha = hA[1 + Aas + b,)], (F13)
and after defining ¢ = a3 + by,
é:g(1+/1+c/12), (F14)
one arrives at
A+ e =2+2=0, (F15)

which is the same as the one found with ELA. Here a is
defined in (58).
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