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Stationary axisymmetric binary systems of unequal counterrotating Kerr-Newman sources with a
massless strut in between are studied. By means of the choice of a suitable parametrization, the axis
conditions and the absence of individual magnetic charges are fulfilled; thus, the entire metric reduces to a
six-parametric asymptotically flat exact solution. Later on, with the purpose to describe interacting black
holes, the analytic functional form of the horizon half-length parameter o, is obtained explicitly in terms of
physical Komar parameters: mass M, electric charge O, angular momentum J;, and coordinate distance
R, where the seven physical parameters satisfy a simple algebraic relation. Finally, in the limit of extreme
black holes, the full metric is derived in a closed analytical form, and a study on the absence or appearance

of naked singularities off the axis is presented.
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I. INTRODUCTION

In stationary axisymmetric spacetimes, the study of
binary systems composed by Reissner-Norstrom (RN)
sources [1,2] began to receive attention since the well-
known Weyl family of solutions was presented in 1917 [3];
it relates the masses M, and electric charges Q,, for
k = 1,2, through the relation M;Q, — M,Q; = 0. In the
context of black hole sources, a particular case of Weyl’s
family is the Majumdar-Papapetrou solution [4,5], which
describes two extreme black holes in equilibrium when the
charges are equal to the masses according to Q; = +M,,
regardless of the distance R between sources. Many years
later, Varzugin and Chystiakov studied intensively these
binary configurations in the black hole sector [6], and, after
solving the corresponding Riemann-Hilbert problem, they
found explicitly the formulas for the event horizons of
length 26, which are given by

o1 = M} — 0} + 20,

o = /M3~ 03— 200,

_ M0, -M,0,
R+M,+M,"

(1)

The above set of equations (1) is quite important to
understand better the physical and thermodynamical prop-
erties of such configurations, which were used in the years
following its discovery. For instance, by applying soliton
techniques the equilibrium problem without strut in
between the black holes is studied in Ref. [7], while the
interaction force associated with the strut and the full metric
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are derived in Ref. [8]. The strut prevents the sources from
falling onto each other; it represents a line source of
pressure computed through the conical singularity (angle’s
deficit) [9,10]. The counterpart of the aforementioned
charged solutions is the rotating case, which has been
extensively studied since the double-Kerr-NUT solution
was developed by Kramer and Neugebauer in 1980 [11],
but nowadays in the vacuum case there exist no analogous
formulas like those given by Egs. (1). It is worth mention-
ing that charged or rotating binary systems develop naked
singularities off the axis as singular surfaces (SS) [12,13] or
ring singularities (RS) [14], respectively, if at least one of
the masses results to be negative [15,16].

On the other hand, the electrovacuum sector seems to be
impossible to treat due to the technical difficulties provided
by the electromagnetic field into rotating systems.
Therefore, only equal cases have been studied after taking
into account the advantages of their symmetry properties in
which the axis conditions are automatically fulfilled. A first
study of a binary system of identical Kerr-Newman (KN)
sources [17] in equilibrium under their mutual electromag-
netic and gravitational interactions was given by Parker,
Rufinni, and Wilkins [18] through the Perjés-Israel-Wilson
method [19,20]. The sources are two thin disks lying on the
equatorial plane, whose charges are equal to their respec-
tive masses and contain opposite spin (a counterrotating
system), and both charges are equal in magnitude and sign.
Recently, a more general description of such a problem was
developed in Ref. [21], where the functional form of the
horizon half-length parameter ¢ is introduced in terms of
physical Komar parameters [22]. Furthermore, if the
charges have opposite sign, the solution represents a
counterrotating black dihole system [23,24], whose mag-
netic dipole moment is generated by the rotation of
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electrically charged black holes [25,26]. Additionally, it has
been shown that individual magnetic charges can be created
by the rotation of these diholes [26,27], and now the system
turns out to be dyonic [28], where the Smarr mass formula
[29] is generalized in order to include the contribution of
the magnetic charge into the mass [30].

Since, in balancing configurations (without the support-
ing strut) [14—16], the interpretation of such binary systems
as describing two black holes is spoiled, this motivates the
search on stationary configurations of interacting black
hole sources with a strut in between, with the purpose to use
this kind of solution and provide novel evidence on the
interactions and their mathematical properties, which may
be used to construct initial data in numerical simulations
like the momentary stationary data performed in Ref. [31]
for two extreme Kerr sources. The present paper aims at the
construction of a model for unequal counterrotating KN
black hole sources interacting by means of a massless strut,
in which the full metric and all its geometrical properties
are given in a more physical way through the derivation of
oy as a function of Komar’s physical parameters.

To accomplish our goal, first we solve analytically the
axis conditions in order to describe a binary system of
unequal counterrotating KN sources with a supporting
strut. We will use the same idea given in Ref. [25] to
eliminate the individual magnetic charges as well as the
total monopolar magnetic charge; thus, the Smarr formula
for the mass is ensured. Afterward, we will be able to derive
the nontrivial expressions for oy, kK = 1,2, which include
the rotation parameter and generalize the aforementioned
formulas given by Eq. (1). In fact, this paper deals with the
unequal case of the solutions already discussed in
Refs. [21,25], where now the seven physical parameters
satisfy an algebraic relation which might be understood as a
dynamic scenario between sources, since the physical
properties of one body are affected by the presence of
the other one. Later on, all the thermodynamical features of
the system will be determined in a concise explicit form.
The second objective pursued in this paper is the derivation
of the extreme limit case in a closed analytical form, by
means of Perjés’ representation [32]. We will prove that
the model saturates the inequality for interacting black
holes with struts discovered by Gabach Clement [33].
Additionally, a numerical study on ring singularities
off the axis is given. In the extreme double-Reissner-
Norstrom (DRN) sector an easy analytical proof is also
provided on the absence or appearance of singular surfaces
as a complement of the well-known positive mass theorem
[34,35].

II. THE ASYMPTOTICALLY
FLAT EXACT SOLUTION

Let us start the section by introducing the Ernst equa-
tions [36] as follows:
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(Re€ + |D2)AE = (VE + 2DVP)VE,
(Re€ + |B2)AD = (VE + 2BVD) VS, (2)

which describe stationary axisymmetric electrovacuum
spacetimes through the complex potentials £ = f — |®]?> +
iV and ® = —A, + iA;, where V and A are the gradient
and Laplace operators, respectively, defined in Weyl-
Papapetrou cylindrical coordinates (p, z). The electrovac-
uum exact solution of Eq. (2) describing a binary system
composed by KN sources can be obtained by means of the
Sibgatullin method (SM) [37,38], which is based on the
soliton theory and is helpful to construct the Ernst poten-
tials (€, ®) in the whole spacetime as well as the metric
functions f(p,z), w(p,z), and y(p,z) of the stationary
axisymmetric line element [39]

ds* = f7e¥ (dp? + d2?) + p*de?] — f(dt — wdy)?>.
(3)
In this approach, the Ernst potentials on the symmetry

axis £(p =0,z) ==e(z) and ®(p =0, z) == f(z) have the
following form:

2
e<
e(Z):1+ g —j’
= z2=p;

where {e;, f;.;} are complex constants which can be
related with Simon’s multipolar moments [40]. The
specific choice (4) of the axis data is motivated by two
facts: the mentioned relation of the parameters ¢, f;, and
f; with the multipolar terms and that the SM deals with
poles on the complex plane. Therefore, this specific
representation turns out to work very well in the frame-
work of the SM. With the purpose to describe a binary
system of KN sources, the explicit solution is worked out
after setting N = 2 in the last formulas of Sec. III in [38].
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FIG. 1. Location of two unequal KN sources on the symmetry
axis: (a) black hole configuration; (b) hyperextreme sources after
making o;, — ioy; (c) the extreme limit case o, = 0.
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Then, the two-body system is depicted by twelve alge-
braic parameters {a,,f;,p;}, for n=1,4 and j=1,2,
where «, define the location of the sources on the
symmetry axis (see Fig. 1). It should be pointed out that
SM provides a mathematical recipe to construct the Ernst
potentials and metric functions at whole spacetime, but
generally the solution is not asymptotically flat at spatial
infinity, due to the presence of NUT sources [41] and the
global monopolar magnetic charge. Hence, to eliminate
the gravitomagnetic monopole (NUT parameter) and
disconnect the region between sources, one needs to
solve the following axis conditions [27,42]:

Im{a_(g_ +5H_)] =0, Imfa, (g, + ;)] =0,
0o 2 2 I1+1 141
1
g. =1 (ax) )
0
0
0 1 1 1 1
1
by =1 (ax) J
€l
€
Ty tre vz v
a, = Ly Ero v v ’
My My My My
My My My My

M, = [e; +2f if ()] (@, = B;)7"
2

f(an) = Zfﬂ/jnv Vin = (an _ﬂj)_ly
j=1

en — 2Hi=1(ﬂ1_—0’n) _ - 2f1]_[_k
B =B B BB =B S h-B

2Hi:1(/52 —-a,) d 2f2fk
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The parameters «,, can be written in terms of the relative
distance R and the half-length o; of each rod as follows:

R R
a E‘l—ﬁl, ar 5—61,
R R
a3——§+62, a4——5—62, (6)

where o, can take real positive or pure imaginary values as
shown in Fig. 1. In order to solve the above set of algebraic
equations (5), one notes that the first Simon’s multipolar
terms [40] as the total mass M, total electric charge Q, and
total magnetic charge B can be calculated from the Ernst
potentials (4) on the symmetry axis, leading us to

Bi+Pr+pr+Pr=—2M, fi+f,=Q+iB. (7)

By choosing | + fl, = —M :=—-M and B:=0, one
may describe a two-body system of counterrotating KN
sources apart by a massless strut, where the upper con-
stituent is endowed with mass M, electric and magnetic
charge Q| and By, respectively, and angular momentum J,
while the lower one contains M,, Q,, B,, and J,,
respectively. The individual magnetic charges are equal
in magnitude but opposite in sign, i.e., By = =B, = Qp.
The angular momenta have opposite spin, and both bodies
are separated by the coordinate distance R. Moreover, if we
want to remove also the individual magnetic charges
(B, = 0), the following condition should be satisfied [30]:

Ay(p=0.z2=ay_1) —Aslp = 0.2 = ay) =0,

8
k=1,2, ®)

where A, is the electric potential computed from the real
part of ®. Therefore, the explicit solution of the axis

ey = = - — —. (5 conditions (5), together with an absence of magnetic
(ﬂZ_ﬁl)(ﬂZ_ﬁl)(ﬂZ_ﬂZ) k:]ﬂZ_ﬂk Charges Eq ®) is given by
|
o Qﬁl.2+q0+ib0 _—M:tvp+lQ+
fia==% , Pra= ;
P =P 2
R\ 40Qq (MR¥e,)F0p pé
R+ M2 —2A, +2(e -2 e =2(= 8. by=o—.
P + o + (61 M M q+ M(ZO o 2(10

5= \/ao(ﬁo[MQ(Ao —2¢)) + €} +4q2] - ).
B=2q,R—e0, P,=R—A,,

A0 = M2 - Qza

Ay = ﬁomo(Msz - 6%) - 2€2Qﬁ] + AoﬁZ,

€12 = 0% + "%- )
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After cumbersome calculations the Ernst potentials and metric functions which define a six-parametric asymptotically

flat exact solution assume the form

A+T
+ & X

B |AP =P + [
A=T" AT’

£= :
A-T

f=

_ Im[(A -G - 4]
AP = [T+ L

AP = TP + P
2560'%0'%05(2#1 Faraly

2y

A =doi0y(a, = MPB)(ri1y + r3rs) + 2MPB3 + (A, = €1 = Bo) (@ = M) (ry = 12) (r3 = 14)
+ 20165 (a, + M2B3) (ry + 12) (13 + 14) = 2ifoboy (ry + 12) (r3 = 14) = 02(ry = 12) (13 + 14)],
[ = (2/MR){02[20,M*(a,f; — a,)(ry + 1) + €, (r1 = 12)] = 61[20:M*(a 55 + @) (r3 + 14) + €_(r3 = 14)]},
X = (2/R){02[201R(a,Q — M*B;)(ry + 12) + &1 (r1 = 1) + 01 [20,R(a, @ + M?B5) (r3 + 14) + e_(r3 — 1)1},
G =220+ (1/R*){46102¢,(rry = r3r4) + 01k_(ry + 12)(r3 = r4) 4 02k (11 = 12) (13 + 14) = 2i(a, + &)
X 8R*(ry = 12)(r3 = 14)} + (2/MR) {0320\ Rv (ry + 15) + 0, (ry = 12)] + 0120, Rv_(r3 + 14) = 0_(r3 = 14)]},
T = (1/MR*){46,6,RIM?(a 1 ry — a_r3ry) +2¢,R(a, + i6R)] + c,R*[c (14 + ryr3) = c_ (1175 + rory)] + i6R?
X [(coR =2M>B)(ry = r3)(r3 = 14) + ¢,[(01 + 62) (1114 = ro13) = (01 = 63) (1173 = rars)|] = 01d_(ry + 13) (13 = 1)
+0yd (1 = 1) (r3 + ra)} + (1/R){02[20141 (11 + r2) + pi (r1 = 12)] + 01[2004_(r3 + 14) +p_(r3 — ra) ]}

€1 = Mz(avo - €2aoﬂtz)) + R(aoyo - aoMzﬂ%)R) - i(Mzﬂo:Fao)éR’
er = M2BBo(R* + €1) — a,(2q,R + A, Q) — i(fFOP,)R,

a, = Qﬁ+ 62/507
€y = 2((10 - Mzﬂtz))Rz + aon - M2ﬂ0ﬂ27

Ky = 2ao(Ao + MZ)Rz - €0R2 + [262(00 + Mzﬂ?) + ZMZQ% 0)R2 + Q(zﬁ + €2Q)(ao - G%Mzﬁo)]’

[

H

Uy = aoyo :l: M4ﬂ%lR + i(ao :t M2ﬁ0)5’

= ao[yoﬂo + MZR(Rz - 2160 - 261 ZFSZH + Mzﬂo [2616!0,60]3 - €2ﬂco _ﬂa(aa:':Mzﬁo)R3] + iﬂo(yo:FMzR)éR’
ay = aoQ - aoﬁﬂo:FCmE%R7

Co = 2A0q0 - €2QR7

He = @ [Q(R: + B, — 26, F6;) £ f £ 2636 + M2B(B(R? — 26, + 2¢1)F20B, (R + &) + 36,6

- l[(QR :I:4qo)ﬁ0:|:3Rﬂ]5R7
Ci =0y — Mzﬁ(%[R2 - (O-l + 0-2)2]’

where

I = \//)2+ (z=R/2F0)%

r34 = \/f’?2 + (z+ R/2F0,)%, (11)

and now the Ernst potentials on the symmetry axis given by
Eq. (4) reduce to

e(z):ﬁ, f(z):w’

e_ e_
M(A, — e = R*/2)Fv, 4=
— ==
2M 4"
Vy = €2R + 2QQO' (12)

e =2?FMz+

At this point, it is worth mentioning that the procedure to
eliminate the magnetic charges of the system was consid-
ered first in Ref. [25] for a binary system of identical
counterrotating KN black holes endowed with opposite
electric charges, i.e., stationary black diholes. This par-
ticular solution [25] has the advantage that naturally

Ay = a,(2q,RF30B,) + M*BL(20R*B, — 3e) + i(fF OB, )R,
ds = a,[M’R(2q, £ OR) + a,0] £ M?a,ff,(R* £ e;), (10)

I
satisfies the axis conditions, due to its symmetry properties.
Nevertheless, as was already mentioned in Ref. [26], a
more general procedure to determine new exact solutions
has to do with the choice of a suitable parametrization in
order to solve the axis conditions. In fact, the algebraic
equations (5) represent a generalization of the axis con-
ditions introduced in Ref. [43] for vacuum solutions.
With respect to the total angular momentum of the
system J, which can be obtained asymptotically from the
Ernst potentials on the symmetry axis Eq. (12), it reads

& (R = M2) +20q,R
2Ma,

J= s, (13)

which under the transformation ¢, —» —¢,, 7 > -2z, ¢, =
—q, changes its global sign as well as the metric function
o. This fact means that the metric function @ and the total
angular momentum J change their global signs if one
exchanges the physical properties and the position of the
constituents; i.e., Joy =-J and o(p,—z)1.2 =
—w(p, z). Therefore, the full metric describes a two-body
system of counterrotating KN sources. If O =0 and
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q, =0, Eq. (10) is reduced to the vacuum solution
presented in Ref. [43]. Moreover, in the absence of rotation
from Eq. (13) the following result is obtained:

€0R £ M\/(R* — A,) (A2 = 2¢,A, + €3)
q() = 2A ’
o

(14)

where now Eq. (10) defines a binary system of RN sources.
The case concerning black holes [7,8] is straightforwardly
obtained after using the Varzugin-Chystiakov parametriza-
tion [6], which is described by Egs. (1). However, the
reduced metric given by Eq. (14) can be useful also to
describe relativistic disks (hyperextreme sources) under the
transformation o, — ioy. In what follows in this paper, we
are interested only in the description of a two-body system
of unequal counterrotating KN black holes, by means of an
explicit derivation of the formulas for the two horizons o},
as a function of physical Komar parameters.

A. Physical representation for o,

As was already pointed out, o; defines the half-length
of the rod representing the kth black hole, whose
event horizon is defined as a null hypersurface
H,={ay <z<ay_,0<9p<2x,p—->0}. A starting
point for the physical representation is to use the well-
known Tomimatsu formulas [30]

1 1
M, =—— | oV¥_.dpdz, 0, = —/ wA’; dedz,
8x H, ’ 4z H, ’”
- LN VT d
Je=—-¢. 0 T Ay = (A3As) | dgpdz,

(15)

with A5 := A3 + wA4 and ¥ = Im(€). The magnetic poten-
tial A3 is obtained after taking the real part of Kinnersley’s
potential @, [44], whose expression is performed within the
framework of SM [38] and has the form

L Rl
CTRAM)2P (M) + 0p) — OkPyl” g

u_ (RA+M)Py (M + o) =20, P,
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A3 = Re(®,) = Re (—iEi_> = —zA, +Im (ﬁ)
(16)

The corresponding masses M, and electric charges Q;
are given, respectively, by

M 2Qq0R =+ 62(R2 B M2)
M1,2 :—Zl: > ) B N
27 2M(R*—M* + Q%)

0 _gi2qo(MR+M2— 0%) —;,0(R+ M)
) 2M(R> = M?* + Q)

. (17)

and it can be shown from Eqgs. (17) that M = M| 4+ M, and
0 = Q; + 0,. Additionally, the following relations arise:

1 1
940 = EQI(R - 2M2) _EQZ(R - 2M1)’
(18)

€, = 01 — O3,
where o and o, are the expressions of Eq. (1) for the
case of two electrostatic black hole horizons corresponding
to the DRN problem, given in Ref. [6]. Because of the fact
that there are no individual magnetic charges, the last term
which defines the angular momentum J; does not make any
contribution to the individual mass M; therefore, the Smarr
formula for the mass [29] is fulfilled:

KisS,
Mk = M—l—ZQka + @ka
4z
:6k+2gk',k+®£1Qk9 k: 1,2, (19)
where @ = —A]l — Q;AY is the electric potential mea-

sured over the black hole horizon Hy, Q; = 1/w"* is the
angular velocity, and @t is the metric function @ evaluated
at the horizon. Straightforward calculations lead us to the
following expressions for €, and ®#:

, k=1,2,
(R+M)2P (M + 0y) — QP

Py=[(R+ M) = M3|[(R+ M,)> = M3+ [(Q) — Q2)R + (M, — M,)Q]?,
Py =[0\(R+ M, — M) + M Q5][Q2(R — M, + My) + My0,] = MiM»0,0,,

Py = My[(R+ My)* = Mi] = Q1[Q2R — (M, = M») 0],
Py =2(M) — My)(M2Q, — M, Q,) + R(Q1R +2M,0,) — QO (03 — 635),

Py = Pri62),

Py = Pri162)- (20)

By placing these last expressions in the right-hand side of the Smarr mass formula Eq. (19), one obtains o, as a function
of the physical Komar parameters and the coordinate distance
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o — — 02420 JHR? = A)([(R+M,)* = M3][(R + M,)* = M| + [(Q1 = Qx)R + (M, — M) Q)
‘ b (R+ M)’ (M, [(R + M3)* = Mi] = Q1[Q2R — (M, = M3)Q])? ’
SR> = A)([(R+M,)* = M3][(R+ M,)* — Mi] + [(Q1 — Q)R + (M, — M>)QJ?)
=/ M? - 2 - , (21
” \/ 20 (R MP (MR + My~ ME] — 0a(Q1R + (M — M) Q) 2y
whereas the second equation of (18) implies the following relation between the seven physical parameters:
MMy (R + My + M) |1, + 7, + R( 2L 4 22 MMJ1 /s
MR+ My + 2)[]+ >t <M1+M2> Z(M%JFM%H
+ (M) = My)(Q) + 02)(Q1J2 = Q2J1) = Q10:2(J1 + J2)R = 0. (22)

For completeness, it can be shown that the total angular
momentum of the system defined by Eq. (13) accounts
exactly for the sum of the individual angular momenta, i.e.,

An interesting physical property of this kind of con-
figuration is the interaction force associated with the strut in
between the black holes [10], which can be calculated via
the formula [10,45]

MM, - (Q) — pu)(Qs + )
R*— (M + My)* + (01 + 0y)*

(24)

F=—(e-1)=

&=

where y is the value of the metric function y on the region
of the strut. One should observe that Eq. (24) shows no
explicit dependence of the angular momentum into this
force. Indeed, this formula was derived in Ref. [8], and it
|

[
corresponds to the DRN problem. Nonetheless, the con-
tribution of the angular momentum arises from Eq. (22),
which relates the seven physical parameters.

B. Physical and geometrical properties of the solution

The thermodynamical characteristics of the solution are
contained in the Smarr mass formula Eq. (19), in which the
surface gravity k; and area of the horizon S; of the kth
black hole are related to each other by means of ;. The
area of the horizon S|, is calculated via the formulas [30,46]

4 P
S =2k = —QRe ™ (25)
Ky

where yf« is the metric function y evaluated at the
corresponding horizon H;. The area of the horizons,
surface gravities, and angular velocities acquire the
final form

3 :477(R+M)2[2P11(M1 +61) — Q1 Py] :4HP%1KR+M)(M1 +01) = 010P + [/ (R=M, + My)(R* - A,)]?
Py PLI(R +0,)* = 03] ’
Ky = o1 Py _ a1PL[(R +0,)* — o3
(R+M)*[2P (M +01) = 01Pn]  PLIR+M)(M; +01) = 0101 + [J1(R = My + My)(R* — A,)]*
Q = Ji(R* - A,)P, _ Pii[(R+0,)* = o3]/i(R* - A,)
(R+M)*P 2P\ (M| +061) = Q1Py]  PLIR+M)(M +61) = Q10 + [J1(R =M + My)(R* = A,)*
Sy = Si(102), Ky = Ki(1o2)» Q) = Q162).

(26)

The above formulas (26) are expressed in two equivalent forms, where the left-hand side of S; and k; can be obtained
directly after combining Eq. (10) with Eq. (17), and without any previous knowledge of the explicit form of 6. The electric
and magnetic dipole moments expressed in physical parameters are reduced to
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1 1
90 :EQI(R_2M2) _§Q2(R_2M1),

_[OWI(R+M = M,)  OyJr(R—M, +M,)
b, = +
Py Py

2

< <7R A ) (27)

R+M,+ M,

and it follows that our solution derives the identical
cases already discussed in Refs. [21,25]. For instance,
the Bretén-Manko solution [21] is obtained after setting
M, =M,=m, QO =0, =gq, and J|; = —J, = j, where
the unique o reads

_ J(R? = 4m? — 4q%)
o= \/mz_q2_ [m(R+2m)_q2}2 (28)

Moreover, if M =M,=m, Q;=-0,=g¢q, and
J1 = —J, = J, the corresponding solution for stationary
black diholes [25] is given by

B 5 5 Fl(R+2m)* +4¢°]] R—2m
7= \/m - [q * [m(R +2m) + ¢*]* | R+ 2m’ (29)

In both cases, Eq. (22) is satisfied automatically. It
should be noticed that in the limit R — oo the strut in
between vanishes and formulas (21) reduce to

o = \/ M2 — Q2 — J3/M?; therefore, the uniqueness theo-
rem holds for the isolated KN black hole [46]. The

A-B F —il
_ATr e e, = 1
A+ B A+ B A+ B

B = 2M[MRXT', +20(q, + ib,)yT_],

N’ 2D
A= MRS, (x2 = y2)2 + A, (x* — 1)] + 4A,(¢% + b2)(1 -
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individual magnetic charges B; could be included after
applying a duality rotation, as was performed in Ref. [25]
for stationary black diholes.

On the other hand, magnetic charges of equal magnitude
but opposite sign could be included from the beginning of
the construction of the solution, in order to eliminate the
global monopolar magnetic charge of the system (B = 0).
As Tomimatsu proposed [30], this mechanism will include
contributions from the Dirac string to the electromagnetic
part of the individual angular momentum; thus, the Smarr
formula for the mass does not hold [26]. Naturally, this
violates the uniqueness theorem when sources are far away
from each other, due to the fact that in the limit R — oo one
should recover the horizon for one isolated KN black hole
joined to a monopolar magnetic charge [26]; i.e., the
isolated KN black hole has a monopole hair.

Turning now to our binary system, if R — \/M? — Q?,
the angular velocities stop, since both horizons are touching
each other. For such a situation, the interaction force given
by Eq. (24) tends its value to infinity, and the system
collapses and evolves as one single RN black hole [1,2] of
mass M and charge Q.

III. THE EXTREME LIMIT CASE AND SOME
GEOMETRICAL PROPERTIES

The extreme limit case arises as a four-parametric exact
solution after setting o, = 0 in Eq. (10). In that case, a
simple representation for the metric functions f, @, and y is
written down in terms of four basic polynomials y,,, ¢, 7,,
and 7,:

B D
- M4R8(x2 _ y2)4 ’

R(y* - 1)W

w=—" e

) + 2i8,M*R*(x* + y* — 2x%y?),
F =2M*[QRT; +2(q, + ib,)yT_].

[ = MR?Q{My[[, +2(MRx + A, —i5,)] +40(q,y* + ib,)}(1 — x*) + 2(q, + ib,) (MRx + A,)
x {M[T_ + 2(MRx + A, + i8,)] + 4Q(q, — ib,)y}(1 = y?),
Ty = (VA, = bFiv/B,)[VA, = b(x* = 1) £ iv/Bo (2 = y)] + b(x* = 1),

D=4+ (2= 1)( - )l

N=D+p,m, + (1 _yz)o-o‘[m
Ho = MZRZLHO(XZ - y2)2 + Ao(xz - 1)2] - Ao(q% + b%)(yz - 1)27

W= (XZ - 1)607[0 — HoTo>
6, = 4M’R>5,xy,

7, = (4/M){M*R(Mx[(Rx + M)(MRx + A,) — MB,y*] +20q,y[R(x*> — y*) + 2Mx])

+4(qs + b2)y[M(M? = 2A,)y +20A,(q,/B,)(1 + y*)]}.

VA M, —4(qk + bY)]
- - ,

_4A,(q5 + b3)

b:
Mzﬁ()

9

%,

To = 4MR50()C2 - 1)[M2y - 2Q(qo/ﬂ0)(Rx +M)]’

b= Ao(Mz:Bo - 4q12))
o TN MR LA, 2

(30)

044005-7



I. CABRERA-MUNGUIA

where (x,y) are prolate spheroidal coordinates defined as

x_r+—|—r_
20

R
re =[P+ (ta)?,  a=3, (31)

and thereby one gets a simple representation for the metric
functions which is analogous to the one proposed by Perjés
[32] in relation to the well-known Tomimatsu-Sato space-
times [47]. The above Eq. (30) shows also the Kinnersley
potential ®, [44] with the purpose to get straightforwardly
the magnetic potential A3. The individual angular momen-
tum J; is obtained whether the extremality condition is
achieved, whose expression yields from Eq. (21)

ry—r_

0P (R+ M)
T =t = /P (RZ_A )
PO(R - A())
where €| = —&, = € = £1. The masses M and charges Q;

are related by means of the second formula of Eq. (18), as
follows:

k=12 (32)

€ = M% — Q% + 2,LlQ1 — (M% - Q% - 2,MQ2> =0. (33)

On the other hand, Gabach Clement has recently discov-
ered [33] a geometrical inequality for black holes with
struts, which is given by

\/(821,) + (4203
Sk

1+4F > . k=12, (34)

and, therefore, it can be shown that the binary black hole
system saturates the aforementioned inequality; i.e., the
equality sign is reached in the extreme limit case previously

|
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defined by Eq. (30). In order to prove the equality into
the geometrical inequality between extreme black holes
with struts, we have that the area of the horizon is now
reduced to

5, = 47(R + M)*(2M Py — Qi Py)
Py ’

k=1,2. (35)

Since the interaction force JF does not show explicit
dependence of the angular momentum, the binary system
saturates the inequality, namely,

\/(8ﬂ]k)2 + (4703)?

VI+4F = S ,
k

IV. SINGULARITIES OFF THE AXIS
A. Ring singularities

According to the well-known positive mass theorem
[34], a regular solution which is free of singularities allows
only positive values for the total Arnowitt-Deser-Misner
(ADM) mass of the system [48]. However, the theorem is
not enough proof to provide regularity in the solution, since
a positive ADM mass given by the inequality M = M, +
M, > 0 can be ensured even if one of the masses is
negative. Therefore, one should add analytic conditions
that guarantee the regularity of the solution. In order to
analyze whether the solution Eq. (30) is regular outside the
axis, we need to look at the denominator of the Ernst
potentials, where a singular solution occurs if

for which

Fr=MR[(R* = A,)(x* =y*)* + A, (x* = )] +44,(q5 + b5)(1 = »*)
+ 2M{(M?Rx +20q,y)[(R* = A,)(x* = y?) + A, (x* = 1)] +208,b,y(1 = y*)} =0,
F; =28,M*R*(x* + y* = 2x*y?) + 4AMQR?b,y(x* — y*) + 2M (1 — y*)[5,(M*Rx — 2Qq,y) — 20A,b,y] = 0. (38)

Any solution of Eq. (38) represents a single point outside
the symmetry axis named ring singularity. However, due to
the high order polynomials of Eq. (38), it is not possible to
concrete an analytical study on the appearance or absence
of naked singularities; therefore, one must resort to
numerical analysis. With regard to Eq. (31), now the
cylindrical coordinates (p, z) are given by

p=ay/(=1)(1=y), z=axy, (39

|

and it shows that the region x> 1, |y| <1 defines
the values that Eq. (30) can take in the plane (x,y)
to develop RS. After assigning a wide range of numeri-
cal values for the parameters of the solution, the curves
depicted by Eq. (38) present no intersections in such a
region if both masses are positive. Furthermore, if at
least one of the masses is negative, an intersection
occurs in this region as a consequence of the presence
of a negative mass. Table I shows a set of numerical
values for the physical parameters of the solution,
Eq. (30).
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TABLE I. Numerical values for the extreme limit case of the
double-Kerr-Newman problem.

M, M, o 0, Jy J> R
1.5 1 1.4 0.46 -2.275 1.951 2.8
1 0.5 1.1 -0.35 0.886 -0.67 2.5
1 2 0.5 2.143 7.574 —7.789 1.5
1 -0.6 0.7 -0.1 0.306 0.855 2

-1 -1.1 0.1 —-0.191 —-0.148 0.179 2.4

It has been shown for identical constituents that the
presence of the electromagnetic field displaces the RS to
the right side of its corresponding stationary limit
surface (SLS) [26,27]. Nevertheless, in the unequal
case, the RS not only is displaced to the right side,
it also can move downward as shown in Fig. 2;
apparently, this is due to the difference between the
values of both electric charges. We mention also that if
one of the masses is negative, the system becomes
corotating (see Table I).

B. Singular surfaces

On the other hand, the easiest analytical proof on
the regularity of the solution can be performed in
the DRN sector, since the curves defined by Eq. (38)
are now reduced in two subfamilies [12]. The first one of
them is the Majumdar-Papapetrou (MP) solution [4,5],
whose masses and electric charges are related by Q; =
+M, and both charges have the same sign. The curves
given by Eq. (38) are reduced to the equation of the
hyperbola,

(a) (b)
1.5F 1.5 "
1.0 . 1.0
0.5 0.5
N 0.0 N 0.0
-0.5} 0.5
-1.0} . 1 Lo
-1.5kL s s s N 4 71'5: ‘. s s s ]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
o o
FIG. 2. (a) The SLS (f = 0) in the extreme limit case and their
corresponding RS for the values M; =-1, M, =-1.1,
0,=0.1, 0,=-0.191, J,=-0.148, J,=0.179, and

R=24. The RS are located at p=0.72, z=1.0 and
p=0.74, z=—1.07. (b) If one of the masses is negative, the
system becomes corotating, for M; = 1, M, = —-0.6, Q; = 0.7,
0, =-0.1, J, =0.306, J, =0.855, and R=2. The RS is
located at p = 0.23, z = —1.42.
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(@) (b)
g

)

~-4kh R R R R R
0.0 0.2 0.4 0.6 0.8 1.0
P

FIG. 3. (a) Crossing inside the region x > 1, |y| < 1, if one of
the masses is negative (in this case M| < 0), for the values a = 3,
M, = —1, and M, = 2. (b) Appearance of the corresponding SS
if M; <0 in the MP sector.

MM
- (112 20, (40)

M1+M2>2 < MI_M2>2
il B e Y (Pl B

which contains two asymptotes described by

M, - M,
20

(41)

M M
y=i(x+ Lt 2)+
2a

In this respect, the conditions x =1 and |y| <1 are
enough to prove that at least one asymptote is crossing
inside the region x > 1, |y| < 1; therefore, naked singu-
larities arise as SS. Let us suppose that the straight line with
positive slope crosses this region, but the other one with
negative slope does not (see Fig. 3), and then we get

M, - M,

M M
1+ L+ Mo + <1=M, <0,
2 2o
M M M, —M
(1) M s 0 @2)
2a 2a

Besides, if the electric charges have opposite sign, a
second electrostatic subfamily can be also obtained from
Eq. (30) where the charges and masses are related by
means of

2a + M,)? — M?
Ql—eMl\/(a+ 2) I

(2a — M,)* —M?¥

2 M,)? — M?
Q2 = _€M2 ( s 1)2 27 €= :tl’
(2(1—M1) —M2

(43)

and it follows that electric charges are greater than their
corresponding positive masses, according to |Q;| > M,

044005-9
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[12]. As was already proved in Ref. [12], it represents the
electrostatic analogue of the well-known Kerr-NUT space-
time [49] obtainable via Bonnor’s procedure of a complex
continuation of the parameters [50], whereby the subfamily
is called Bonnor’s solution (BS) [51]. In BS, Eq. (38)
reduces to

PHYSICAL REVIEW D 91, 044005 (2015)

which represents the geometric locus of two straight lines
intersecting at an angle of 6 = 2arctan D, where the
straight lines are given by

M, +M M, -M
y:iD<x+ 12+ 2) + 12 2. (45)
Fr=Fp a a
_ D2<x+M1 +M2>2_ <y_M1 —M2>2 0.
2a 2a Let us suppose now that the straight line with positive
42 — (M, — M,)? slope is not crossing inside the region (the one associated
D = 5 ! 2 5 (44) with M) while the other one does (see Fig. 4). Similarly to
4a” = (M + My) the MP case, we have
|
M1+M2 MI_M2 (2(1+M1)2—M%
D|1 >1= >1= M, >0,
* ( T >+ 2a (2a—M;)2 - M3 !
M1+M2 MI_M2 (2(1+M2>2—M%
-D|1 > -1 = <1=M,<0. 46
< 2a > 2a (2a— M,)? — M3 ’ (46)
|
Therefore, one concludes that SS appear as a  system of KN black hole sources separated by a

consequence of the presence of negative masses in the
solution even if the total ADM mass is positive. Finally, it
should be pointed out that the values for the individual
masses should fulfill the Smarr mass formula
My > 2QJ; + PHQ, > 0, in order to avoid the appear-
ance of naked singularities off the axis in the solutions
given by Egs. (10) and (30), in agreement with the positive
mass theorem [34,35].

V. CONCLUDING REMARKS

In this paper, we developed a six-parametric exact
solution which is used as a basis to describe a binary

(a) (b)

FIG. 4. (a) Crossing inside the region x > 1, |y| < I, due to
M, <0, for the values a =3, M; =2, and M, = —1. (b)
Emergence of the corresponding SS if M, < 0in Bonnor’s sector.

massless strut, in which the seven physical Komar
parameters are related by means of a simple algebraic
equation. This model generalizes the known DRN
problem [6-8] and the double-Kerr problem [43]. It
is worthwhile to stress the fact that the paper uses the
idea provided in Ref. [25] to remove first the individual
magnetic charges with the purpose of solving analyti-
cally the axis conditions given in Refs. [26,27]. Since
our model contains unequal constituents, we provide
also a physical parametrization for the two half-length
parameters o; associated with the black hole horizons
which characterize the solution in a more transparent
way. Using the advantages that provide the physical
parametrization, we show that our model saturates the
Gabach Clement inequality for interacting black holes
with struts [33]. The extreme limit case is also derived
by using Perjés’ representation, and, later on, we give a
numerical analysis on the presence of ring singularities
off the axis and their location depending on the values
of the electric charges. The numerical analysis reveals
that the ring singularity located outside the ergosurface
moves downward depending on the difference between
values of the electric charges. Furthermore, we give a
simple analytical proof in the DRN problem on the
conditions to avoid the appearance of singular surfaces,
which in our opinion can be used as a complement of
the well-known positive mass theorem [34,35].

It should be pointed out that the binary model could include
the magnetic charges (after their elimination), but it is not
trivial to derive in a simple manner the procedure (duality

044005-10
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rotation) which allows us to include individual magnetic
charges in the unequal charged case. For instance, as a
particular case, if the electric charges are equal in magnitude
but opposite in sign according to Q; = —Q, = Qp, the
|

PHYSICAL REVIEW D 91, 044005 (2015)

electric and magnetic dipole moments can be combined in
such a way that the electric charge Q enters in the solution by
means of the transformations Q; — Qp + iQp and Q% —
|02 + Q3] Then, the corresponding formulas for o are

. \/M% 103+ o+ ZICRE MY IR 0 M) + 4105+ G 1t~

[M((R+ M,)* = M3) + 0% + O3|R)

R+M,+ My

o W - [l + 31 HR £ —SENGR £ 0} 401+ GEIT =t~y

, 47
M((R+ M) = M3) 103 + G3 R A
where now Eq. (22) leads us to the following relation between the seven physical parameters:
Ji I Ji Ny 2 2
M\My(R+M, +M,)|Jy +Jy + R(—+— | =M M| —+—= || + |0 + Q3|(J; +J»)R = 0. (48)
M, M, M2 M3

Finally, we must emphasize that the magnetic charges Qp introduced in this particular model contain opposite signs and
are equal in magnitude, where now the new electric and magnetic dipole moments are given by

Ji(R+ M, —M,)

Jo(R—=M, + M,)

do = |:QE - QB<

Ji(R+M,; —M,)

_ R-—-M,—-M
MR T M2 — M3 1103 + OBR M2[<R+M1>2—M%]+|Q2E+Q%|RH( 1= M)

Jr(R—M| + M,)

o = [Qﬁ QE(M1[<R+M2>2 “MI 1102+ Q3R T MLI(R - My - M 1 |0+ Qémﬂ(R‘M‘ M) (49)

where Qp = 0 recovers the original electric and magnetic
dipole moments obtainable from Eq. (27) after setting
0, = -0, = Qf. We hope to accomplish some extensions
that include magnetic charges in the model under consid-
eration.
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