
Inertial nonvacuum states viewed from the Rindler frame

Kinjalk Lochan* and T. Padmanabhan†

IUCAA, Post Bag 4, Ganeshkhind, Pune University Campus, Pune 411 007, India
(Received 2 December 2014; published 2 February 2015)

The appearance of the inertial vacuum state in Rindler frame has been extensively studied in the
literature, both from the point of view of quantum field theory developed using Rindler foliation and using
the response of an Unruh-Dewitt detector. In comparison, less attention has been devoted to the study of
inertial nonvacuum states when viewed from the Rindler frame. We provide a comprehensive study of this
issue in this paper. We first present a general formalism describing the characterization of arbitrary inertial
state (i) when described using an arbitrary foliation and (ii) using the response of an Unruh-DeWitt detector
moving along an arbitrary trajectory. This allows us to calculate the mean number of particles in an arbitrary
inertial state, when the QFT is described using an arbitrary foliation of spacetime or when the state is
probed by a detector moving along an arbitrary trajectory. We use this formalism to explicitly compute the
results for the Rindler frame and uniformly accelerated detectors. Any arbitrary inertial state will always
have a thermal component in the Rindler frame with additional contributions arising from the nonvacuum
nature. We classify the nature of the additional contributions in terms of functions characterizing the inertial
state. We establish that for all physically well-behaved normalizable inertial states, the correction terms
decrease rapidly with the energy of the Rindler mode so that the high frequency limit is dominated by the
thermal noise in any normalizable inertial state. However, inertial states which are not strictly normalizable
like, for example, the one-particle state with definite momentum, lead to a constant contribution at all
high frequencies in the Rindler frame. We show that a similar behavior arises in the response of the
Unruh-DeWitt detector as well. In the case of the detector response, we provide a physical interpretation for
the constant contribution at high frequencies in terms of total detection rate of comoving inertial detectors.
We also describe two different approaches for defining a transition rate for the Unruh-DeWitt detector,
when the two-point function lacks the time translation invariance, and discuss several features of different
definitions of transition rates. The implications are discussed.
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I. INTRODUCTION

Quantum field theory (QFT) in curved spacetime (or in
noninertial coordinates) has traditionally introduced new
conceptual features into the standard notions of QFT,
developed in the inertial coordinates in flat spacetime.
One of the key results is that neither the particle content of
the quantum states nor the structure of vacuum fluctuations
remains generally covariant [1]. Given a field in the
spacetime, the particle content of the field can be evaluated
only after introducing some mode functions into which the
field can be decomposed. Such a mode decomposition is
usually selected by the “positive frequency” criterion in a
particular (1þ 3) foliation of the spacetime. Generically,
different congruences of observers can be associated with
different (1þ 3) foliations of spacetime by, say, identifying
the normal vector to the spacelike surfaces with the four-
velocity of the congruence of observers. Every congruence
of observers will interpret the particle content of the field
in terms of modes which appear natural to her/him.
Consequently, we are led to different sets of mode functions

and creation/annihilation operators, related between differ-
ent sets, in general, by Bogoliubov transformations.
A vacuum state defined by one set of annihilation operators
will be—in general—perceived as a nonvacuum state when
interpreted using a different set of mode functions. A well-
known example is the vacuum state in Minkowski foliation
which appears as a thermal bath to uniformly accelerating
observers. Similarly the vacuum state of a geodesic
observer close to the horizon of the black holes will appear
as a thermal state to an asymptotic stationary observer, who
is an accelerating observer with respect to the in-falling
geodesic observer.
Another—and possibly more direct—probe of the

quantum field (closely related to mode functions and
foliations but not identical to it) is coded in its interac-
tion with particle detectors. A detector moving along a
specific trajectory and coupled to the field will respond in a
manner specific to the trajectory. Study of the response of
such detectors gives another characterization of the quan-
tum field. It is usual to study the response of detectors
linearly coupled to the quantum field, viz. the Unruh-
DeWitt detector [2]. Depending upon different trajectories
it takes, the detector will click at different rates. The
detector response depends essentially on the two-point
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(Wightman) function of the field evaluated along the
trajectory. That is, while the particle content depends on
the mode decomposition, the detector response is related to
the two-point function along its trajectory and—a priori—
there is no reason to expect the detector response to match
with the particle content of the field defined using foliation
dependent mode functions. In fact, they will notmatch with
each other in a generic case (see e.g. [3]). However, in
certain cases (e.g. detector on a Rindler trajectory with the
field being in the Minkowski vacuum), the number of
“clicks” the detector registers is directly related to the
number expectation value obtained by the mode functions
natural to the foliation. One important property of the
inertial vacuum state is that the two-point function, for all
those observers who move along trajectories which are
integral curves of timelike Killing fields, is time-translation
invariant. In those cases, the Unruh-DeWitt detector clicks
at a uniform rate and the particle content of the field is
proportional to the detector response.
In this paper, we extend the above analysis to the

situation in which the quantum field is in a nonvacuum
state. We develop a formalism to study both the particle
content and the detector response for the field in terms of a
single entity defined as an effective field. We first show that
all the information relevant to a particular foliation (used by
congruences of observers) or a detector in a particular
trajectory can be extracted from this effective field. Within
this setup, we investigate the cases in which the two-point
function (generically) lacks the property of time translation
invariance. For example, this happens when the state of the
field is not the inertial vacuum or, more specifically, when
the inertial state is not a momentum eigenstate for a
particular mode. We first develop a general setup for
evaluating interesting quantities like number expectation
value, detector transition probability, detection rates etc. in
the general context. Moreover, since the behavior of the
vacuum state is already well known in the literature we
focus our attention on the departures from the vacuum
response, when the field happens to be in a nonvacuum
state. We study the quantum field when it is not in vacuum
state in both the approaches, i.e. the particle content and the
detector response. In a nonvacuum state an Unruh-DeWitt
detector will click also in the inertial frame, thereby making
the identification of the genuine effects of noninertial
frames somewhat nontrivial; we take special care to isolate
this feature whenever applicable.
As a concrete demonstration of these ideas, we show that

an arbitrary inertial quantum state of Minkowski mode,
when studied from the Rindler frame, will give rise to a
thermal part plus additional corrections. We concentrate on
the additional corrections in detail using our formalism. We
establish that for any arbitrary state in the Minkowskian
frame, the corrections decay down rapidly with the energy
scale the Rindler observer uses to probe the field. In other
words, for any arbitrary state in the inertial frame, the state

of the field looks largely thermal when the observers probe
it at energy scales larger than the one characterizing the
Rindler frame, viz. a, i.e., Ω ≫ a. Therefore, the thermal
behavior as seen by Rindler observers persists for suffi-
ciently energetic probes.
We also characterize the decay profile of the corrections,

in terms of a suitably defined Minkowski distribution
function, which characterizes the particle content of the
state in the Minkowski frame. We show that a redshifted
version of the Minkowski distribution function determines
the corrections to the thermal spectrum. A similar trend is
shown by the Rindler detector as well. Interestingly,
although the two-point function is not time translation
invariant for the Rindler observer, the detector and the
number expectation value show a similar type of correc-
tions (if the detector is kept “on” for sufficiently large
duration).
This general formalism will be particularly useful while

dealing with the cases such as pair production from electric
field, particle production in an expanding Universe and so
on, when the initial state under evolution does not happen
to be the vacuum state. We will be dealing with those cases
in a subsequent work. Another important motivation for for
such a study is the possible extension for the black hole
when the collapse of matter to form a black hole occurs
with the field being in a nonvacuum state. Insights gained
here from the Rindler-Minkowski dictionary can be applied
to study black hole evaporation in a nonvacuum state, more
or less, in a straightforward manner. We will discuss the
spectral distortion of the black hole radiation elsewhere.
The study in this paper might also have some relevance

for the emergent gravity paradigm [4]. In this approach
gravity, as we understand it, is attributed with a thermo-
dynamic status using the thermodynamic nature of Killing
horizons since one can envisage horizons as observed by
local Rindler observers at each event. Therefore, character-
izing the nonvacuum state of the quantum field from the
perspective of the Rindler observer holds some importance
in this case as well.
We organize the manuscript in the following manner.

First in Sec. II, we set up the formalism for characterizing
the correction (with respect to the vacuum state) in the
number expectation values associated with the modes
corresponding to an arbitrary foliation. We show that all
the relevant information about the state and the trajectory is
captured in a hybrid effective field, using which we can
calculate the number expectation value for any trajectory.
Moreover, we can classify the detector response using this
effective field. In Sec. III, we use this formalism to classify
the number expectation value of arbitrary Minkowski states
when viewed by the Rindler observer. We show that the
correction over the vacuum part decays rapidly with
increasing energy of the probe. The rate of decay is closely
related to the distribution in terms of Minkowski modes.
Section IV deals with the Rindler detector response for a
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nonvacuum Minkowski state, where we discuss some
salient features of the transition rates. In Sec. V, we discuss
two different approaches for defining the transition rate and
note that the infinite time detector transition rate for one of
the approaches can be viewed as a Wigner function.
Similarly the finite time detector will also show a transition
rate which, for all finite energy states of Minkowski frame,
remains finite. We summarize our main points and discuss
their possible extension in Sec. VI.

II. FORMALISM

Throughout the paper we consider a massless, real scalar
field with minimal coupling. (However, the scheme and the
results developed here are general enough to include other
kinds of massive fields in a straightforward manner.) We
will keep the dimensions of spacetime unspecified in
general, but will go to the (1þ 1)-dimensional case for
explicit demonstrations for technical convenience. Similar
results are obtainable in (1þ 3) dimensions as well.
The equation of motion for a massless real scalar field

minimally coupled to gravity will be the Klein-Gordon
(KG) equation

□ϕ ¼ 0; ð1Þ

where the operator □ is written using covariant derivative
operator ▿μ compatible with the spacetime metric gμν.
There exists a covariant notion of inner product between
solutions of the KG equation, defined by

ðf; hÞ≡ i
Z

ddxjgj1=2g0νf�ðx; tÞ∂ν

↔
hðx; tÞ: ð2Þ

If the functions are well behaved asymptotically, this inner
product remains time invariant. Furthermore,

ðf; hÞ� ¼ ðh; fÞ ¼ −ðf�; h�Þ: ð3Þ

We next introduce a complete set of orthonormal modes
satisfying (1), and

ðuk; uk0 Þ ¼ δkk0 ; ðuk; u�k0 Þ ¼ 0; ðu�k; u�k0 Þ ¼ −δkk0 :

ð4Þ

Any solution to (1) can be expanded as a linear combina-
tion of such modes. Therefore, the field operator can be
written in terms of the mode functions ukðxÞ as

ϕ̂ðxÞ ¼
X
k

ðâkuk þ â†ku
�
kÞ; ð5Þ

with the usual creation/annihilation operators, associated
with these particular mode functions. The functions uk can
also be thought of as the mode functions for a particular
congruence of observers (not necessarily Minkowskian)

associated with a specific foliation of the spacetime. An
arbitrary single excitation state corresponding to modes uk
is defined by

jΨi ¼
X
k

F kâ
†
kj0iu; ð6Þ

where F k denotes the probability amplitude of the dis-
tribution, constrained by the normalization conditionP

kjF kj2 ¼ 1. For convenience we have considered this
single-excitation state1; however, similar analysis can be
done for a general multiply excited state, an example of
which we will discuss in a later section. In fact, a multiply
excited state can be viewed as a sum of direct product states
over various single excitation states, which allows for a
direct generalization. The two-point correlation function of
the field in this state is given by

C̄ðx; yÞ≡ hΨjϕ̂ðxÞϕ̂ðyÞjΨi ¼ uh0jϕ̂ðxÞϕ̂ðyÞj0iu
þ ΦeffðxÞΦ�

effðyÞ
þ Φ�

effðxÞΦeffðyÞ; ð7Þ

where we have defined an effective field corresponding to
this state by

ΦeffðxÞ ¼
X
k

F kukðxÞ: ð8Þ

We see that C̄ðx; yÞ has a vacuum part and a correction
term. Since we will be more interested in the corrections to
the vacuum contribution, when the inertial state does not
happen to be the vacuum corresponding to uk modes, it is
convenient to work with

Cðx; yÞ≡ C̄ðx; yÞ − uh0jϕ̂ðxÞϕ̂ðyÞj0iu
¼ ΦeffðxÞΦ�

effðyÞ þ Φ�
effðxÞΦeffðyÞ; ð9Þ

which may be called the effective correlation function.
From the effective correlation function we can obtain the
number expectation value in a particular mode by a simple
relation:

nl ¼ hâ†lâli ¼ −ðu�lðxÞ; ðulðyÞ; Cðx; yÞÞÞ; ð10Þ

where hÔi denotes the expectation value of the operator Ô
in an arbitrary state jΨi. Using the standard properties of
the correlation functions and the modes [viz. their satisfy-
ing (1) and vanishing sufficiently fast at large distances so
that the integrals are well defined] we can show that the

1We consider a well-defined state which is partially localized
in both position and the momentum space. The particle states in
the Fock basis will be the cases where F k ∝ δkk0 , which, of
course, will be non-normalizable in the continuum limit.
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expression (10) is time independent and counts the number
of particles in mode l. We can rewrite the above expression
in terms of the effective field (8) as

hâ†lâli ¼ jF lj2 ¼ jðulðyÞ;ΦeffðyÞÞj2: ð11Þ

Let us now consider what happens when we decide to
introduce another set of mode functions vk which could
be thought of as being associated with another foliation
and another congruence of observers. These modes vk
will be related to the original modes uk via Bogoliubov
transformation:

vj ¼
X
i

ðαjiui þ βjiu�i Þ: ð12Þ

The field operator, expressed in terms of these new modes,
will be

ϕ̂ðxÞ ¼
X
k

ðÂkvk þ Â†
kv

�
kÞ; ð13Þ

where Âk is the annihilation operator corresponding to
mode vk, which also can be written in terms of the
annihilation and creation operators of the modes uk as

Âk ¼
X
i

ðα�kiâi − β�kiâ
†
i Þ: ð14Þ

Clearly the number eigenstates of â†kâk are not the
eigenstates of the operator Â†

kÂk. One of the key quantities
we are interested in is the expectation value of this quantity
in our quantum state. We will now find several useful
expressions for the same.

(i) To begin with, the number expectation value in a
mode l (defined by using vk’s in (10) instead of
mode uk’s) can be written in terms of the correlation
function as

hÂ†
lÂli ¼ −ðv�lðxÞ; ðvlðyÞ; Cðx; yÞÞÞ: ð15Þ

The above expression relates the number expectation
value in a particular mode, associated with, say, the
choice of a specific foliation to the two-point
correlation function in any arbitrary state of the
field. In this approach we think of Cðx; yÞ as
fundamental and encoding information about the
original state. Obviously, Cðx; yÞ as well as the dot
products in this equation are covariant; so the
foliation dependence arises only through the choice
of the mode functions.

(ii) Using (9) we can again rewrite the above expression
as

hÂ†
lÂli ¼ −½ðvlðyÞ;Φ�

effðyÞÞðv�lðxÞ;ΦeffðxÞÞ
þ ðvlðyÞ;ΦeffðyÞÞðv�lðxÞ;Φ�

effðxÞÞ�: ð16Þ

Using the relations (3) and taking into account that
the spatial variables are summed over in (2), i.e. act
as dummy variables, we can write (16) as

hÂ†
lÂli ¼ ½jðvl;Φ�

effÞj2 þ jðvl;ΦeffÞj2�: ð17Þ

In this approach, the effective field Φeff encodes the
information about the state of the field. In a way, this
is a more fundamental description since Cðx; yÞ can
be expressed in terms of Φeff as shown in (9), but not
the other way around, as we shall soon see. Clearly,
the expression (17) reduces to (11) when the
modes v≡ u.

(iii) In terms of the Bogoliubov coefficients (12) we can
express the correction to the number expectation
value as

hÂ†
lÂli ¼

�����
X

i
βliF i

����
2

þ
����
X

i
α�liF i

����
2
�
: ð18Þ

As we shall see from the ensuing discussion, the
effective field Φeff will turn out to be a very useful
entity. Given the relations (3) we can also show that

ðΦeff ;ΦeffÞ ¼ 1; ðΦeff ;Φ�
effÞ ¼ 0;

ðΦ�
eff ;Φ

�
effÞ ¼ −1: ð19Þ

for physically normalizable states. Therefore,

ðΦeffðxÞ; Cðx; yÞÞ ¼ Φ�
effðyÞ;

ðvlðxÞ; Cðx; yÞÞ ¼
�X

i

α�liF i

�
Φ�

effðyÞ

−
�X

i

β�liF
�
i

�
ΦeffðyÞ: ð20Þ

In terms of this auxiliary field and the modes
corresponding to this field, we can in fact express
the quantum state itself as

jΨi ¼
X
k

ðuk;ΦeffÞâ†kj0iu: ð21Þ

Thus, the correction over the vacuum contribution is
completely characterized by an effective field Φeff
from which we can reconstruct the two-point func-
tion and the state uniquely. However, given a two-
point function we cannot uniquely fix the state.
Thus, the field Φeff contains some additional in-
formation. For an n-tuple excitation state, n such
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fields will be required to describe the state uniquely
(see Appendix A).

We will next discuss the response of the detectors in light
of this kind of effective correlation function. This will help
us to compare the results based on the foliation with the
detector response. A generalization of these ideas for an
arbitrary state is presented in Appendix A.

A. Detector response

In quantum field theory, an operational definition of a
particle is “something which a detector coupled with the
field detects.” Consider an Unruh-DeWitt detector, coupled

linearly to a scalar field ϕðxÞ, that moves on a world line
xμðτÞ (where τ is the proper time along the trajectory) and is
described by the interaction Lagrangian

Lint ¼ cm̂ðτÞϕ½xðτÞ�; ð22Þ

where c stands for the linear coupling constant, and m̂ðτÞ is
the time-dependent detector monopole operator. The prob-
ability of transition from state jΨu; E0i (the field is in the
state jΨiu, and the detector is in its ground state) to any
state in which the detector clicks is given, in first order
perturbation theory, by

P̄ ¼ jcj2
Z

∞

−∞

Z
∞

−∞
dτdτ0

X
E

eiðE−E0Þðτ−τ0ÞjhEjm̂ð0ÞjE0ij2uhΨjϕ½xðτ0Þ�ϕ½xðτÞ�jΨiu: ð23Þ

Thus, the detector response depends crucially on the two-point function of the field for the state. We will be interested in the
contributions over and above the vacuum contribution (e.g. the thermal part for Rindler observer [1]) and hence wewill drop
the contribution from vacuum state in our analysis. Also, for additional clarity we only consider a two-state detector. For a
given set of modes uk, we can define the effective field Φeff as in (8), using which the transition probability can be written as

P ¼ jcj2
Z

∞

−∞

Z
∞

−∞
dτdτ0eiðE−E0Þðτ−τ0ÞjhEjm̂ð0ÞjE0ij2½Φeffðx½τ�ÞΦ�

effðy½τ0�Þ þ Φ�
effðx½τ�ÞΦeffðy½τ0�Þ�; ð24Þ

which in fact is a sum of squared amplitude of Fourier transforms,

P ¼ jcj2jhEjm̂ð0ÞjE0ij2
�����

Z
∞

−∞
dτΦeffðτÞeiðE−E0Þτ

����
2

þ
����
Z

∞

−∞
dτΦ�

effðτÞeiðE−E0Þτ
����
2
�
; ð25Þ

of the effective field (and its complex conjugate) when viewed in terms of observer’s time. (We have subtracted out the
contribution from the vacuum state; we will not mention this fact specifically in the further analysis.)
A physically more realistic system will have the interaction (22) switched on only for a finite duration on the trajectory of

the detector, say from τ ¼ T0 till τ ¼ T. In that case, the transition probability expression will be modified to

P ¼ jcj2jhEjm̂ð0ÞjE0ij2
�����

Z
T

T0

dτΦeffðτÞeiðE−E0Þτ
����
2

þ
����
Z

T

T0

dτΦ�
effðτÞeiðE−E0Þτ

����
2
�
; ð26Þ

apart from a finite duration vacuum contribution. Using the new quantity Φeffðν;T0; TÞ defined by2

Φeffðν;T0; TÞ ¼
Z

T

T0

dνΦeffðτÞeiντ; ð27Þ

the expression (26) can be written as

P ¼ jcj2jhEjm̂ð0ÞjE0ij2½jΦeffððE − E0Þ;T0; TÞj2 þ jΦeffð−ðE − E0Þ;T0; TÞj2�: ð28Þ

It is useful to compare the above expressions with the standard result in time dependent perturbation theory of
nonrelativistic quantum mechanics. In that case, the probability of transition from a state m to a state n (eigenstates of
unperturbed Hamiltonian) by the action of a time dependent potential V̂ðtÞ is given by the textbook expression

jcj2 ¼
Z

T

T0

Z
T

T0

dtdt0eiωnmðt−t0ÞhnjV̂ðtÞjmihmjV̂ðt0Þjni ¼
����
Z

T

T0

dteiωnmthnjV̂ðtÞjmi
����
2

; ð29Þ

2Note that in T0 → −∞ and T → ∞ limit, Φeffðν;T0; TÞ is just the inverse Fourier transform of ΦeffðτÞ with respect to ν, which we
denote as F ν.
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which, in the spirit of (27) can be rewritten as

jcj2 ¼ jhnjV̂ðωnm;T0; TÞjmij2: ð30Þ

Therefore, structurally the expression (26) or (28) is similar
to a case of a nonrelativistic system with our effective field
m̂ΦeffðtÞ playing the role of a time dependent external

potential. In the relativistic theory, its complex conjugate
also makes a contribution which can be ultimately traced to
the fact that Schrödinger eigenfunctions have only positive
frequency evolution expð−iEtÞ while the KG modes have
both positive and negative frequency parts.
From this expression we can also calculate the total

transition rate as the derivative of (26) with respect to T:

R ¼ jcj2jhEjm̂ð0ÞjE0ij2
�
ΦeffðTÞeiΔET

Z
T

T0

dτΦ�
effðτÞe−iΔEτ þ Φ�

effðTÞeiΔET
Z

T

T0

dτΦeffðτÞe−iΔEτ þ c:c:

�
; ð31Þ

where ΔE ¼ E − E0. The exact τ dependence of Φeff is
known once the state and the modes corresponding to the
observer are specified. The excitation rate of the detector can
then be used to obtain an expression for the mean number
of particles present in the state [1]. As to be expected, this
will—in general—be different from the result obtained from
(18). However, it is possible that in some special cases these
two quantities match, even though the correlation function is
not invariant under time translation. In such cases, we can
define a time dependent transition rate.
We will now consider a specific demonstration of these

corrective terms for (i) the number expectation value, (ii) the
transition probability and (iii) the transition rate, in the case of
Minkowski and Rindler observers. These expressions are
extensively discussed in the literature for the Minkowski
vacuum state. But the corresponding results for the non-
vacuum states have attracted very little attention. (We could
find only [5] and [6] for instance, which are somewhat similar
in spirit to the current discussion and constitute special cases
of the general results presented here.) This will be the main
thrust of the discussion in the forthcoming sections. We will
concentrate on singly excited states; the generalization to n-
tuple excitation (as well as themost general superposed state)
is straightforward and is presented in the appendixes.

III. INERTIAL EXCITED STATES OBSERVED
IN RINDLER FRAME

A. Single excitation state

Since we define the state in terms of a Minkowski
foliation, we want the state to be well behaved with respect
to the symmetries in this context. Therefore, we will work
with normalized Lorentz invariant states, so that a single
excitation state in (1þ 3) dimensions can be written as

jΨi≡ j1i ¼
Z

d3k

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffi
2ωjkj

p fðkÞâ†ðkÞj0i; ð32Þ

where fðkÞ satisfies the normalization condition

Z
d3k
ð2πÞ3

1

2ωjkj
jfðkÞj2 ¼ 1: ð33Þ

This state j1i is clearly a superposition of one-particle
states in the Fock basis with the amplitude for the state to be
found to have a particle of momentum k being specified by
the function fðkÞ which completely specifies the state.
When the modes are labeled by a continuous index, we can
use (6) with the identification

F k →
fðkÞffiffiffiffiffiffiffiffiffiffi
2ωjkj

p : ð34Þ

The number expectation value for a particular mode
(labeled by the vector, say j), evaluated in this superposed
state, is given by

h1jâ†j âjj1i ¼
jfðjÞj2

ð2πÞ32ωj
: ð35Þ

Further, this state is an eigenstate of the total number
operator (which counts the total number of particles across
different modes)

N̂j1i ¼
Z

d3kâ†kâkj1i ¼ j1i: ð36Þ

The effective fieldΦeff for the Minkowskian modes is given
as

ΦeffðxÞ ¼
Z

d3k
ð2πÞ3

1

2ωjkj
fðkÞeik·x: ð37Þ

For technical convenience we will now switch to (1þ 1)
dimensions, with signature ð−;þÞ. Writing in terms of
frequency modes in (1þ 1) dimension ðt; xÞ, we get

j1i ¼
Z

∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p fðωÞâ†ðωÞj0i; ð38Þ

where

fðωÞâ†ðωÞ ¼ fðkxÞâ†ðkxÞ þ fð−kxÞâ†ð−kxÞ: ð39Þ

Thus the Minkowski modes correspond to the u modes
considered in Sec. II and the state will be first specified in
the Minkowski modes and then will be studied in terms of

KINJALK LOCHAN AND T. PADMANABHAN PHYSICAL REVIEW D 91, 044002 (2015)

044002-6



Rindler modes which serve as the v-modes. For (1þ 1)-
dimensional calculations we later on drop the subscript x
from kx while realizing that k is a continuous variable
taking value along the real line.
We first work with the state (32) or (38) but later go on to

see that our conclusions hold for generic multiple excitation
states and the corresponding superpositions thereof
(Appendixes B, C). The number expectation value for
the Rindler observer at frequency Ω in this state is given as

N̄Ω ¼ hΨjÂ†ðΩÞÂðΩÞjΨi: ð40Þ

It is a fairly easy exercise to show that the number
expectation value always has a thermal component just
as it would have been for the vacuum case. As usual, we
will subtract that part out and concentrate only upon the
distortions brought to the thermal spectrum by the non-
vacuum state. Using the continuum version of the expres-
sion (18), written in terms of Rindler modes, the correction
term can be expressed as

NΩ¼
�����
Z

∞

0

d ~ω0ffiffiffiffiffiffiffiffiffiffi
4π ~ω0p α�Ω ~ω0fð ~ω0Þ

����
2

þ
����
Z

∞

0

d ~ωffiffiffiffiffiffiffiffiffi
4π ~ω

p βΩ ~ωfð ~ωÞ
����
2
�
;

ð41Þ

where the expressions for the Bogoliubov coefficients for
the Rindler-Minkowski mode correspondence are given as

αΩω ¼ 1

2πa

ffiffiffiffi
Ω
ω

r
exp

�
πΩ
2a

�
exp

�
−
iΩ
a
log

ω

a

�
Γ
�
iΩ
a

�
; ð42Þ

βΩω ¼ −
1

2πa

ffiffiffiffi
Ω
ω

r
exp

�
−
πΩ
2a

�
exp

�
−
iΩ
a
log

ω

a

�
Γ
�
iΩ
a

�
:

ð43Þ

Similar expressions can be obtained for higher excited
states. In [5], the authors evaluate the particle content for a
wave-packet basis in the inertial frame using states in Fock
space, which will be a special construction of the general
excited state (discussed over the Appendixes B, C, D)
considered in this paper.
We can now evaluate each of the terms in the right-hand

side separately. Using the expressions in (43) we write

Z
∞

0

d ~ω0ffiffiffiffiffiffiffiffiffiffi
4π ~ω0p α�Ω ~ω0fð ~ω0Þ ¼ 1

2πa
exp

�
πΩ
2a

�
Γ
�
−
iΩ
a

� Z
∞

0

d ~ω0ffiffiffiffiffiffiffiffiffiffi
4π ~ω0p fð ~ω0Þ

ffiffiffiffiffi
Ω
~ω0

r
exp

�
iΩ
a
log

~ω0

a

�
: ð44Þ

Now, making a transformation log ~ω0
a ¼ −t, we get

Z
∞

0

d ~ω0ffiffiffiffiffi
~ω0p α�Ω ~ω0fð ~ω0Þ ¼

ffiffiffiffi
Ω

p

2πa
exp

�
πΩ
2a

�
Γ
�
−
iΩ
a

� Z
∞

−∞

dtffiffiffiffiffiffi
2π

p fðae−tÞ exp
�
−
iΩ
a
t

�
: ð45Þ

Thus, we realize that the Fourier transform of the function
fðae−tÞ= ffiffiffiffiffiffi

2π
p

gives the dependence on Ω=a for the
correction term of the number expectation value. We know
that, when viewed from the Rindler frame, the frequency of
the modes undergoes a redshift [7] which involves the
factor e−t. Our result in (45) shows that the relevant
expression is essentially a Fourier transform of a proba-
bility amplitude which is “redshifted.” It is interesting to see
that this feature is carried into a superposed state as well.
Further, the distribution fðωÞ gives the analytical proper-

ties of NΩ. We can verify, using the asymptotic form of the
Gamma function, that the prefactor in the above expression
has the behavior

ffiffiffiffi
Ω

p

2πa
exp

�
πΩ
2a

�
Γ
�
−
iΩ
a

�
→ constant ð46Þ

for large Ω=a. Therefore, if we wish the highest frequency
modes to be unperturbed by the selection of the inertial state

we will require the Fourier transform to be a decaying
function inΩ=a [that is, if we want to choose fðωÞ such that
the lower frequency modes are populated more effectively,
which in turn will ensure that the excitation occurs beyond
the length scale 1=a of the Rindler observer]. We are
interested in determining the condition for this behavior.
Let us call the function fðae−tÞ= ffiffiffiffiffiffi

2π
p

as a new function gðtÞ.
Then the normalizability of the state gives

Z
∞

−∞
jgðtÞj2dt < ∞; ð47Þ

showing that the function gðtÞ is square integrable over R.
Using the properties of the Fourier transform of a square
integrable function, we see that its Fourier transform must
also be decaying3 at large Ω=a faster than at least ðΩ=aÞ−1.

3The Fourier transform is a map from L2 to L2, which decay for
large argument values.
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In addition, if the function gðtÞ is also absolutely integrable
with its at least first n derivatives also being so, then

�
−i

Ω
a

�
n
Ffgg ¼

Z
∞

−∞
dtgðnÞe½−iΩ

a t�; ð48Þ

where Ffgg is the Fourier transform of g. By virtue of gðnÞ
being an L1 function, the right-hand side of (48) is bounded.
Thus jFfggj decays at least as fast as ðΩ=aÞ−n. For the other
term

Z
∞

0

d ~ωffiffiffiffiffiffiffiffiffi
4π ~ω

p βΩ ~ωfð ~ωÞ ð49Þ

in (41), we realize the above-mentioned criterion for g and
hence f is sufficient since the prefactor of the resultant
Fourier transform

ffiffiffiffi
Ω

p

2πa
exp

�
−
πΩ
2a

�
Γ
�
iΩ
a

�
→ 0 ð50Þ

is anyway decaying for large Ω=a and will require only g
being absolutely integrable or that the Fourier transform of g
exists, which is true for square integrable functions. Thus,
square integrable or physically meaningful states have a
decaying correction term to the number expectation value.
We discuss some specific examples below.

B. Example I. f ðωÞ ¼ C
ffiffiffiffiffiffiffiffiffi
4πω

p
δðω − ω0Þ

This case corresponds to the scenario where the state is a
1-particle state of definite frequency. The constant C has
the mass dimension 1=2 so as to make fðωÞ dimensionless
as required for (1þ 1)-dimensional spacetime. Such a state
will be useful in mapping the response of a definite
momentum state as well. A definite momentum state is
identified as a particle in the quantum field theory and has
been traditionally studied in detail for high energy collision
experiments. Thus we obtain the Rindler response to a
single particle of the scalar field ϕ. In this case

gðtÞ ¼ CðaetÞ1=2δðaet − aetðω0ÞÞ: ð51Þ

Since the Dirac delta function is nether square integrable
nor absolutely integrable in ð−∞;∞Þ we expect the
correction term not to be decaying asymptotically. One
can work out the expressions in (41) to verify that

NΩ ¼ jCj2
2πaω0

coth

�
πΩ
a

�
; ð52Þ

which saturates asymptotically. The effect of the non-
vacuum state can be felt even for the largest modes of
the Rindler observer in this case. This can be checked even
for the n-particle definite momentum states or their
superpositions.

This is an important and curious result. It tells us that a
one-particle state in Minkowski frame will lead to the
correction term (over and above the thermal contribution)
to the expectation value of the number operator. In
particular, this correction persists at all frequencies and
will dominate over the thermal component at high frequen-
cies. The correction term in this case keeps the memory of
the initial excitation in the inertial frame through ω0. The
exact profile of the correction depends on both the initial
excitation mode ω0 and the mode Ω at which the obser-
vation is made. (This result has significant implications for
the corresponding black hole scenario. We hope to study
the implications of this result for the black hole in a future
publication.)
However, we also note that the state considered here is

not a physical one in the sense that we cannot prepare
the state with arbitrary precision about the momentum.
In other words, such a state is not normalizable. For
physically realistic cases we need to consider only those
states which are square integrable. We discuss two such
examples below.

C. Example II. f ðωÞ ¼ Cω exp ½−αω�
This is a case where we decide to excite the modes and

the width and mean value of the excitation controlled by a
parameter α. In this case, the constant C has the mass
dimension −1 and we have

gðtÞ ¼ Caet exp ½−αaet�: ð53Þ

We see that this function is square integrable and all its
derivatives are absolutely integrable too; thus the corrected
number expectation value should decay very fast asymp-
totically. Indeed, the evaluation for (41) gives

NΩ ¼ jCj2
2aα2

Ω
a

cothðπΩa Þ
sinhðπΩa Þ

ð54Þ

which clearly decays down for large Ω=a. We realize that
the correction term is a monotonically decreasing function
in Ω with a pole at Ω ¼ 0. Therefore, the dominant
departures from thermality will be visible only towards
the zero energy modes, while the high energy probes in
Rindler frame will receive progressively diminishing cor-
rections. The information about the excitation in the inertial
modes is captured in the parameter α sitting in the
denominator as before.

D. Example III. f ðωÞ¼C
ffiffiffiffiffiffiffiffiffi
4πω

p
1ffiffiffiffiffiffiffi
2πσ2

p exp½− 1
2σ2

ðω−ω0Þ2�
This is a Gaussian distribution peaked about a specified

frequency. In this case, the constant C again has the mass
dimension 1=2. This distribution also dies down for large ω
and hence large k-modes. The function gðtÞ and all its
derivatives are absolutely integrable in this case as well.
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Thus the correction to the number expectation value
becomes

NΩ ¼ jCj2
8

ffiffiffi
2

p
π2aσ

coth

�
πΩ
a

�
× jZðΩ;ω0; a; σÞj2; ð55Þ

where

ZðΩ;ω0; a; σÞ

¼ Γ
�
aþ 2iΩ

4a

�
~F1
1

�
a − 2iΩ

4a
;
1

2
;−

ω2
0

2σ2

�

þ
ffiffiffi
2

p
ω0

σ
Γ
�
3aþ 2iΩ

4a

�
~F1
1

�
3a − 2iΩ

4a
;
3

2
;−

ω2
0

2σ2

�
:

ð56Þ

By appealing to the asymptotic properties of the Gamma
function and the confluent Kummer hypergeometric func-
tion ~F1

1ðz; n; bÞ we can verify that the correction term
indeed vanishes at large Ω=a. Further, exploiting the
properties of the Kummer hypergeometric functions for
low σ values, we can verify that the decaying part becomes
constant in the σ → 0 limit, leaving a cothðπΩa Þ dependence
in (55), as one would have expected. (If negative frequency
modes are also taken, the limit σ → 0 sends the Gaussian
distribution to a delta function.) We can also verify that
smaller and smaller values of σ will allow the correction to
be perceived at larger and larger Ω modes. The extreme
case is that of the delta function, when correction saturates
to a constant value for large Ω. In other words, the result
obtained in Example I above for a 1-particle state in the
Fock basis emerges as a sensible limiting case of a
physically realizable state when we make the state more
and more sharply defined in the momentum state.
Therefore, we see that for single excitation state, the

correction term has decaying profile in Ω=a by virtue of g
being an L2 function. Additionally, if the function g
happens to be an L1 function with at least some of its
derivatives also behaving the same way, the correction term
will fall correspondingly faster. We have seen some
distributions which defy that and have nonvanishing
correction at asymptotia. However those distributions are
also not L2. The correction term is the sum of two Fourier
transforms of the function g; we realize now that it is an
asymptotically dying profile, since it is the sum of

magnitudes of two square integrable functions. A very
similar exercise will establish corresponding results for an
n-particle as well as a general superposed state, which we
present in Appendixes B and C respectively.
We will now discuss the response of the Unruh-DeWitt

detector in a similar setting, where the inertial state is
arbitrary. In that case, the two-point function is not time
translation invariant anymore, as would have happened if
the observer were moving on a trajectory which is not the
integral curve of a timelike Killing field (even for the
vacuum state).

IV. DETECTOR RESPONSE FOR THE
NONVACUUM MINKOWSKIAN STATE

We have a precise understanding of the response of a
Rindler detector when the field happens to be in the vacuum
state of the Minkowski modes. In this case the two-point
correlation function happens to be time translation invari-
ant. So, the transition rate can just be viewed as the time
translation invariant integrand in the expression of tran-
sition probability (23). The vacuum part then contributes a
steady rate of excitation involving a thermal distribution in
the energy.
Our interest is in the cases where the initial state does not

happen to be the Minkowski vacuum for different trajec-
tories of the detector. In those cases we will require the two-
point correlation function hΨjϕ½xðτ0Þ�ϕ½xðτÞ�jΨi, for the
initial state jΨi.
Let us begin with a one-particle state of a definite

momentum in Minkowski frame with fðkÞ ¼
C

ffiffiffiffiffiffiffiffiffiffiffi
4πωk

p
δðk − k0Þ, where k0 > 0 viewed by Rindler

observers with the trajectory

xðτÞ ¼ a−1 cosh ðaτÞ
tðτÞ ¼ a−1 sinh ðaτÞ: ð57Þ

Using (37) and (57), we find that the effective field is

ΦeffðxÞ ¼
Cffiffiffiffiffiffiffiffiffi
2ωk0

p eik0·x ¼ Cffiffiffiffiffiffiffiffiffi
2ωk0

p ei
k0
a e

−aτ
: ð58Þ

Equations (26) and (57) now give us the correction for the
finite time transition probability:

P̄ ¼ jcj2jhEjm̂ð0ÞjE0ij2
4πωk0a

�����ζ
�
ΔE
a

;
k0
a

�����
2

þ
����ζ
�
ΔE
a

;−
k0
a

�����
2
�
; ð59Þ

with

ζ

�
ΔE
a

;
k0
a

�
¼ jCj2

�
eiΔETEi

�
1þ iΔE

a
; i
k0
a
e−T=a

�
− eiΔET0Ei

�
1þ iΔE

a
; i
k0
a
e−T0=a

��
; ð60Þ
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where Ei½n; x� is an exponential integral function of order n.
The corresponding transition rate is obtained by taking a
derivative of (59) with respect to T. An important point to
note is that both the finite time probability of transition and
the rate have now become T dependent. Further, the
correction part for the rate can (in principle) turn negative
for some particular choices of the parameters involved. If
the correction term is large then at some scales the total

transition rate (including the thermal part) can also turn
negative. (A plot of the transition rate confirms the
oscillatory feature.)
In those cases in which the correlation function depends

only on τ − τ0, another formal definition of the rate can be
given, which is often used in the literature. This is given
essentially by dropping one of the (infinite) time
integrations:

R̄ ¼ jcj2
Z

∞

−∞
dðτ − τ0ÞeiΔEðτ−τ0ÞjhEjm̂ð0ÞjE0ij2hΨjϕ½xðτ0Þ�ϕ½xðτÞ�jΨi: ð61Þ

In this case the expressions for the rate in (61) coincide with the derivative of (59). However, in generic cases where the two-
point function will not have the time translation invariance, transition rates obtained from these two different routes will be
different. We will discuss this aspect in more detail in the next section.
To obtain the expression for the rate in this manner, for the definite momentum state, we evaluate the probability once

again, in terms of the variables T ¼ ðτ þ τ0Þ=2 and s ¼ τ − τ0. The two-point function is

hk0jϕðxÞϕðyÞjk0i ¼ Mh0jϕðxÞϕðyÞj0iM þ jCj2
4πωk0

e−ik0·ðx−yÞ þ jCj2
4πωk0

eik0·ðx−yÞ: ð62Þ

In terms of the new variables, we have the expression:

e−ik0·ðx−yÞ ¼ eþi
k0
a e

−aTðe−as=2−eas=2Þ: ð63Þ

Using (62) and (63), we can write the transition probability as

P̄¼ jcj2jhEjm̂ð0ÞjE0ij2
Z

∞

−∞
dT

Z
∞

−∞
dse−iΔEs

�
Mh0jϕðxÞϕðyÞj0iM þ jCj2

4πωk0

eþi
k0
a e

−aTðe−as=2−eas=2Þ þ jCj2
4πωk0

e−i
k0
a e

−aTðe−as=2−eas=2Þ
�
:

ð64Þ

Henceforth, we will drop the prefactors jcj2jhEjm̂ð0ÞjE0ij2, in the sense that probability will be considered in its units.
Doing a variable transformation e−as=2 ¼ z, we obtain the correction over the usual vacuum thermal part to be

P ¼
Z

∞

−∞
dT

jCj2
4πωk0

�
2

a

Z
∞

0

dzz2i
ΔE
a −1

�
eþi

k0
a e

−aTðz−1
zÞ þ e−i

k0
a e

−aTðz−1
zÞ
��

; ð65Þ

¼ jCj2
aπωk0

Z
∞

−∞
dT

�
K2iΔEa

�
2
k0
a
e−aT

�
e−

π
aΔE þ K−2iΔEa

�
2
k0
a
e−aT

�
e
π
aΔE

�
; ð66Þ

¼ jCj2
4a2πωk0

��
e−

π
aΔE þ e

π
aΔE

�
Γ
�
−
iΔE
a

�
Γ
�
iΔE
a

��
¼ jCj2

2aΔEωk0

coth

�
πΔE
a

�
: ð67Þ

This correction term has a simple interpretation and
corresponds to the number expectation value in this
state obtained earlier in (52). (There is a factor π
discrepancy though which is discussed in Appendix D.)
In fact, this correspondence holds even for a general
single excitation state (and a most general state) as we
shall see later. It is also interesting to note that at

energies higher than the Rindler scale the correction
saturates to jCj2=2aΔEωk0 .
From the expression for the total probability for transition

in (66), we can identify a transition rate as being given by the
integrand of the integral occurring in (66). Adding the rate
contributedbythevacuumstate[whichisnot includedin(66),
which computes the corrections to thevacuumresult],weget
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R̄ ¼ 1

ΔE
1

e
2π
aΔE − 1

þ jCj2
aπωk0

�
K2iΔEa

�
2
k0
a
e−aT

�
e−

π
aΔE þ K−2iΔEa

�
2
k0
a
e−aT

�
e
π
aΔE

�
: ð68Þ

Clearly this transition rate is time dependent (i.e. depends
on T) and does not necessarily always remain positive
definite. (A plot of the rate illustrates the oscillatory nature.)
It will also become negative at various values of ΔE and T.
We will address the properties of the transition rate in more
detail in the next section.
Since the quantum state is not a vacuum state even an

inertial detector will also detect particles in this state. At
any given proper time τ, one can introduce an inertial
detector which is comoving with our accelerated detector,
in the sense that it will have the same velocity as the
noninertial detector at τ. Such a comoving inertial detector
at time τ will observe a transition rate:

Rinertial ¼
jCj2
2ωk0

δðΔE − k0γð1 − vÞÞ; ð69Þ

where γ is the Lorentz factor for the observer moving at the
velocity v ¼ tanh ðaτÞ and k0 > 0. (This expression can be
easily obtained from the detailed discussion on transition
rate presented in the next section.) The total transition
registered by a set of comoving inertial observers distrib-
uted along the trajectory of the Rindler observer is therefore
given by

Pinertial ¼
Z

∞

−∞
dτRinertial½vðτÞ� ¼

jCj2
2aΔEωk0

: ð70Þ

This is similar to the asymptotic limit of the expression for
NΩ in (52) obtained earlier. This is also the a → 0 limit of
(66) as also argued in [6] for inertial observers’
computation.

A. Normalizable states

We will next consider the detector response for a general
singly excited state which is normalizable (unlike the delta
function state considered earlier). The state (32) in 1þ 1
dimension becomes

j1iM ¼
Z

∞

−∞

dkffiffiffiffiffiffi
2π

p fðkÞffiffiffiffiffiffiffiffi
2ωk

p a†ðkÞj0iM: ð71Þ

As discussed previously, the effective field for this state is
given as

Φeff ¼
Z

∞

−∞

dk
2π

fðkÞ
2ωk

eik·x: ð72Þ

Now, if we use the Rindler coordinates (57), identify

�
k
a

�
−iΔEa ¼ e−i

ΔE
a logðkaÞ; ð73Þ

and make the transformation to a new variable logðkaÞ ¼ t,
all the integrals involved in the computation get converted
into the Fourier transforms of square integrable functions in
t, with respect to ΔE=a (see Appendix E). Therefore, the
correction, as observed by the Rindler detector, decays for
large ΔE=a. This behavior was earlier observed in the
number expectation value for a Rindler observer as well.
We note that, had the two-point correlation function been
time translation invariant in the detector’s coordinates, we
would have been able to define easily the probability of
transition as a function of number (density) expectation
value.
For computing the correction in the number expectation

value for the Rindler observer, we confined ourselves to
one of the Rindler wedges and used only the left-moving
modes. However, in general, there will be contributions
from both the left and right wedges as well as from the left-
moving and the right-moving modes. For the sake of
completeness, we show in Appendix E that taking into
account all of these terms does not change the result.
A very similar calculation will yield the same result for

arbitrary superposed states. Since the x dependence in the
transition amplitude is brought in only through the field
operators (in the correlation function) and is independent of
the state, the s- and T-integrals that are to be performed
remain the same. The only difference will be the intro-
duction of many âk’s and â†k0 ’s squeezed between the
Minkowskian vacuum state, in addition to the introduction
of many distribution functions fðkÞ’s as well. In a fashion
exactly as before (when we evaluated the number expect-
ation value), such terms will give a contribution like

CijfiðkÞfjðk0Þ ð74Þ

(see Appendix B), and using the s- and T-integrals we can
again show that the correction term is a superposition of
products of the Fourier transform of various square
integrable functions with respect to ΔE=a. Hence, exactly
as before, the detector sees a correction which decays for
large ΔE=a for any arbitrary but physical (normalizable)
state. These results have significant implications in their
own right. We see that sufficiently high energy probes
progressively forget about the distribution function in
inertial modes (or about the inertial state itself). These
observers find themselves in a thermal bath which does not
depend in any fashion on the details of the initial inertial
state, but one decided by the vacuum structure of the theory.

INERTIAL NONVACUUM STATES VIEWED FROM THE … PHYSICAL REVIEW D 91, 044002 (2015)

044002-11



This evidently will have significant implications for black
hole thermodynamics. For example, if a black hole is
formed by a collapsing field which is in a nonvacuum state,
any UV probe of radiations from such a black hole will only
reveal the thermal character at the Hawking temperature.
We will next consider the rate of transitions of the

detectors in detail in the next section. In this case we see
that the rate is time dependent and different definitions will
give rise to different expressions for the time dependent
transition rate. We will also note some important properties
of the transition rates.

V. RATE OF TRANSITION

As we discussed in the previous section, one way of
defining the transition rate from the probability of transition
is by using (61). If the two-point function of the field is time
translation invariant (which is the case for the vacuum
state), then rate (61) is constant and is independent
of T. However, in general time translation invariance will
not hold for arbitrary superposed states. Therefore we see
from (66) [and (E7)–(E12) in Appendix E], that the
transition rate defined by this procedure will become T
dependent.
There is an alternative way of defining the detector rate

which is frequently used in the literature. This is done by
keeping the detector “on” for a finite duration, say ð0; TÞ,
and defining the transition rate R as R ¼ dP=dT where
PðTÞ is the probability for transition. Such a definition,
used extensively in literature [8], shows some peculiar
features for different states [9] possibly due to the effect of
switching off at finite time sharply.
We will now analyze some properties of the rates defined

by these two procedures. We first discuss the “usual”
method of defining the rate as the integrand of the T-
integral and then discuss the second case.

A. Transition rate I

1. Transition rate as the Wigner function

From (E1) we see that the additional contribution (apart
form the standard vacuum term) to the correlation function
is given by

Cðx; yÞ ¼
Z

∞

−∞

dk
2π

Z
∞

−∞

dk0

2π

fðkÞ
2ωk

f�ðk0Þ
2ωk

0 e−ik·xþik0·y þ c:c:

ð75Þ

As discussed previously, we can rewrite the above terms
using x≡ x½τ� and y≡ y½τ� as

Cðτ; τ0Þ ¼ 2Re½ΦeffðτÞΦ�
effðτ0Þ�; ð76Þ

with

ΦeffðτÞ ¼
Z

∞

−∞

dk
2π

fðkÞ
2ωk

eik·x½τ� ¼
Z

∞

−∞

dk
2π

fðkÞ
jkj e−ijkjtðτÞþikxðτÞ:

ð77Þ

We can also rewrite ΦeffðτÞ in frequency modes with the
help of Fω as

ΦeffðτÞ ¼
Z

∞

−∞

dω
2π

Fωe−iωτ: ð78Þ

Therefore, the correction term (76) becomes

Z
∞

−∞

Z
∞

−∞

dω
2π

dω0

2π
FωF �

ω0e−iωτþiω0τ0 þ c:c: ð79Þ

From this correction term we can calculate the correction to
the transition rate over the standard thermal contribution.
The correction due to the first term is

Z
∞

−∞
dse−iΔEs

Z
∞

−∞

Z
∞

−∞

dω
2π

dω0

2π
FωF �

ω0e−iωðTþ
s
2
Þþiω0ðT−s

2
Þ ¼

Z
∞

−∞

Z
∞

−∞

dω
2π

dω0

2π
FωF �

ω02πδ

�
ωþ ω0

2
− ΔE

�
e−iðω−ω0ÞT

¼ 2

Z
∞

−∞

dω
2π

FωF �
2ΔE−ωe

−2iðω−ΔEÞT: ð80Þ

Making another transformation ~ω ¼ ω − ΔE, the above
term becomes

2

Z
∞

−∞

d ~ω
2π

F �
ΔE− ~ωe

−2i ~ωTFΔEþ ~ω ¼ WF ðΔE; TÞ; ð81Þ

where WF is the standard Wigner function (defined in the
time-frequency domain) corresponding to the function F .
It is easy to see that the second term will contribute the

same term as the correction. Therefore the net correction
term is twice the Wigner function of F .
The properties of the function F , which is the Fourier

counterpart of the effective field Φ, will evidently decide
the properties of the correction to the rate of the transition.
We know that the Wigner function is well defined and
bounded for square integrable functions. Thus, the behavior
of the correction will depend upon whether F is square
integrable or not. Further, the Wigner function is positive
definite only for Gaussian functions and in general it can

KINJALK LOCHAN AND T. PADMANABHAN PHYSICAL REVIEW D 91, 044002 (2015)

044002-12



take negative values. However, for the total transition rate to
turn negative we need the negative value of the Wigner
function to be larger in magnitude than the vacuum
transition rate part.
Therefore, unlike the vacuum state the transition rate for

a nonvacuum state remains nonconstant and oscillatory in
nature. Thus, in the cases where the total transition rate
becomes negative, there will be transitions occurring from
the excited state of the detector to the ground state. The
total number of particles in the excited state of the detector
can in principle go down in time too. Therefore, in principle
such states can give rise to deexcitations in the detector
as well. Such a scenario is also discussed in [5] for the
wave-packet basis description of the field.

2. Correction term for Minkowski detector

A detector at rest (or moving with uniform velocity) will
not click in the inertial vacuum sate. But if the field is in an
excited state (like the one-particle state we are studying), a
detector at rest can get excited by absorbing the quanta of
the field. It is useful to start our discussion by studying the
case of a uniform velocity detector, in order to delineate
these effects. For such a detector

tðτÞ ¼ vx0 þ γτ

xðτÞ ¼ x0 þ vγτ: ð82Þ

Therefore,

ΦeffðτÞ ¼
Z

∞

−∞

dk
2π

fðkÞ
2ωk

e−ik·xðτÞ

¼
Z

∞

−∞

dk
2π

fðkÞ
2jkj e

−ijkjtðτÞþikxðτÞ;

¼
Z

∞

−∞

dk
2π

fðkÞ
2jkj ðe

−ijkjvx0þikx0Þe−iðjkj−kvÞγtðτÞ: ð83Þ

Again, we can obtain the expression for F ,

F ðωÞ ¼
Z

∞

−∞
ΦeffðτÞeiωτdτ

¼
Z

∞

−∞

dk
2π

fðkÞ
2jkj ðe

−ijkjvx0þikx0Þ
Z

e−iðjkj−kvÞγtðτÞþiωτdτ

¼
Z

∞

−∞
dk

fðkÞ
2jkj ðe

−ijkjvx0þikx0Þδðω − ðjkj − kvÞγÞ:

ð84Þ

Writing the delta function in terms of its roots as

δðω − ðjkj − kvÞγÞ ¼
δð ω

ð1−vÞγ − kÞ
ð1 − vÞγ þ

δð ω
ð1þvÞγ þ kÞ
ð1þ vÞγ ; ð85Þ

we get the result:

F ðωÞ ¼
�
fðDωÞ
2πjωj e

−iωx0=γ þ fð−ωD Þ
2πjωj e

iωx0=γ

�
; ð86Þ

with

D ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ v
1 − v

r
; ð87Þ

being the Doppler shift factor. So, this expression has the
simple interpretation in terms of the Doppler shifted
frequency in the moving frame. For a trivial example we
consider the case for the rest frame, i.e. v ¼ 0, γ ¼ 1. In this
case, the expression (86) becomes

F ðωÞ ¼
�
fðωÞ
2πjωj e

−iωx0 þ fð−ωÞ
2πjωj e

iωx0

�
; ð88Þ

which just picks the contributions from both the positive
and negative frequency modes.
We note that for a physically realistic state fðkÞ= ffiffiffiffiffiffiffiffi

2jkjp
is

square integrable, but that does not guarantee the same for
F ðωÞ, which includes an additional ffiffiffiffi

ω
p

contribution in the
denominator making it divergent at small ω values.
Therefore, the Wigner function corresponding to F might
lack the nice feature of boundedness. Therefore, a very
large correction has the potential to supersede the thermal
part in the full transition rate. Hence, the transition rate
defined in the fashion discussed above has the potential to
turn negative even in the inertial frame. We have already
seen such a case for the Rindler observers too.

3. Correction term for the Rindler observer

For the Rindler observer the effective field is
given by

ΦeffðτÞ ¼
Z

∞

0

dk
2π

fðkÞ
2k

ei
k
ae

−aτ þ
Z

∞

0

dk
2π

fð−kÞ
2k

e−i
k
ae

aτ
:

ð89Þ

Therefore,

F ðωÞ ¼
Z

∞

0

dk
2π

fðkÞ
2k

Z
∞

−∞
dτei

k
ae

−aτþiωτ

þ
Z

∞

0

dk
2π

fð−kÞ
2k

Z
∞

−∞
dτei

k
ae

−aτþiωτ: ð90Þ

Using
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Z
∞

−∞
dτei

k
ae

−aτþiωτ ¼ 1

a

�
−i

k
a

�
iω=a

Γ
�
−i

ω

a

�
; ð91Þ

we obtain

F ðωÞ ¼ e
πω
2a

2πa

�
Γ
�
−i

ω

a

�
þ Γ

�
i
ω

a

��Z
∞

0

dk
2π

fðkÞ
2k

�
k
a

�
iω=a

:

ð92Þ

As before the integral is a Fourier transform of an L2

function. It is multiplied with a regular function which
decays for large values of ω. Thus the function F ðωÞ itself
is square integrable and the correction term, as seen by the
Rindler detector, remains finite. The total transition rate in
this case remains positive only as long as the magnitude of
the correction part is smaller than the standard vacuum
transition rate.

B. Transition rate II

As discussed earlier, there exists another method to
define the transition rate by obtaining the transition
probability up to some finite time and then taking the
time derivative. We will first obtain the relation between
these two approaches. For a simple demonstration, we will
consider quantum states in which only positive kmodes are
excited (only left-moving ones, say). [In that case only the
contribution from the first two terms in (E3) in Appendix E
will survive. In principle, all other terms can also be
considered within a similar setup.] In order to compare
the rates defined by the two procedures, we need to obtain
the expression for the rate in (31) in the late time limit. This
is because the second procedure to define the rate—using
the integrand of T integration—requires the limits of τ and
τ0 to run from ð−∞;∞Þ. The time dependent rate for such a
configuration, defined as the integrand of T, is given by

R1ðΔEÞjT→∞ ¼ 4e−πΔE=a

a

Z
dk
2π

Z
dk0

2π

fðkÞ
2ωk

f�ðk0Þ
2ωk

0

�
k
a

�
−iΔE=a

�
k0

a

�þiΔE=a
K−2iΔE=a

�
2

ffiffiffiffiffiffiffi
k
a
k0

a

r
e−aT

�
T→∞

; ð93Þ

while the expression for the rate defined formally in (31) is

R2ðΔEÞjT→∞ ¼ e−πΔE=2a

a

Z
dk
2π

Z
dk0

2π

fðkÞ
2ωk

f�ðk0Þ
2ωk

0

��
ke−aT

a

�−iΔE=a
Γ
�
i
ΔE
a

�
þ
�
k0e−aT

a

�
iΔE=a

Γ
�
−i

ΔE
a

��
T→∞

ð94Þ

clearly showing that the two approaches for defining the
transition rates do not agree when the correlation function
lacks the property of time translation invariance in τ. In fact
this is a purely algebraic result and it can be demonstrated
that, for an arbitrary function of two variables, the rates
defined by the two different procedures will result in two
different expressions. To see this consider

I1 ¼
Z Z

e−iΔEðt1−t2Þfðt1; t2Þdt1dt2; ð95Þ

and write the function fðt1; t2Þ in terms of the Fourier
modes

fðt1; t2Þ ¼
1

4π2

Z
∞

−∞

Z
∞

−∞
dκdξf̂ðκ; ξÞeiκt1þiξt2 ; ð96Þ

leading to

I1 ¼
1

4π2

Z
∞

−∞

Z
∞

−∞
dκdξ

�Z
dt1eiðκ−ΔEÞt1

Z
dt2eiðξþΔEÞt2

�
f̂ðκ; ξÞ: ð97Þ

Now if the t1, t2 integrals run from ð−∞;∞Þ, we simply get

I1 ¼ f̂ðΔE;−ΔEÞ: ð98Þ

If the integrals run from ð−T; TÞ we have

I1 ¼
1

4π2

Z
∞

−∞

Z
∞

−∞
dκdξ

�Z
T

−T
dt1eiðκ−ΔEÞt1

Z
T

−T
dt2eiðξþΔEÞt2

�
f̂ðκ; ξÞ: ð99Þ
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In this case the rate calculated with respect to T is

dI1
dT

¼ 1

4π2

�Z
∞

−∞

Z
∞

−∞
dκdξf̂ðκ; ξÞeiðκ−ΔEÞT

Z
T

−T
dt2eiðξþΔEÞt2 þ eiðξþΔEÞT

Z
T

−T
dt1eiðκ−ΔEÞt1

�
: ð100Þ

In the late time limit T → ∞, the expression for the rate becomes

lim
T→∞

dI1
dT

¼ lim
T→∞

�
e−iΔET

2π

Z
∞

−∞
dκf̂ðκ;−ΔEÞeiκT þ eiΔET

2π

Z
∞

−∞
dξf̂ðΔE; ξÞeiξT

�
: ð101Þ

We now change variables to T ¼ ðt1 þ t2Þ=2 and s ¼ t1 − t2 which run from T ∈ ð−T; TÞ and s ∈ ð−2T; 2TÞ; then the
rate, defined as dI1=dT , is given by

dI1
dT

¼ 1

4π2

Z
∞

−∞

Z
∞

−∞
dκdξf̂ðκ; ξÞeiðκþξÞT

Z
2T

−2T
dseið

κ−ξ
2
−ΔEÞs; ð102Þ

which for the late time limit becomes

lim
T →∞

dI1
dT

¼ lim
T →∞

�
e−2iΔET

π

Z
∞

−∞
dκf̂ðκ; κ − 2ΔEÞe−2iκT

�
:

ð103Þ

It is now clear, on comparing (101) and (103) that the two
approaches of defining the transition rate are different in
general. At the late time limit the two expressions can be
written in terms of a Fourier transform of a bivariate
function. In this light, we can consider the rates for the
Rindler observer. The Rindler trajectory discussed earlier
corresponds to

fðt1; t2Þ ¼ eið
k
ae

−at1−k0
ae

−at2 Þ; ð104Þ

for which we obtain the expressions for the rates at late times
as shown in (93) and (94), respectively. The transition rate
defined by either procedure remains real though not neces-
sarily positive definite. [The reality condition is also evident
from (31).] We see from (94) that even for finite time
operation of the detector (when it loses the nice correspon-
dence with theWigner function) the rate will be UV finite for
all physically normalized states. These are finite energy
inertial states in which fðkÞ falls fast enough at large k. So,
for the transition rate to turn negative, we require the
correction term to be negative and dominant over the vacuum
thermal part. It will be interesting to investigate some
relevant physical cases in which this happens, which we
aim to report in a subsequent publication.

VI. CONCLUSIONS

The key nontrivial result which we obtain on combining
the principles of general covariance and quantum theory is

that the particle content of a quantum state is not generally
covariant. While this result, a priori, has nothing to do with
gravity, it really acquires significance only in a curved
spacetime. This is because, in flat spacetime, there is
always a preferred foliation associated with inertial observ-
ers which can be used to define the particle content. Since
such a global inertial frame does not exist in an arbitrary
curved spacetime, one faces all sorts of difficulties in using
concepts wedded to the particle content of a quantum state
in a general curved spacetime.
Given this fact, it certainly makes sense to study the

corresponding situation in noninertial frames in flat space-
time itself. The classic example of this is the study of the
Rindler frame with a preferred foliation adapted for a
uniformly accelerated observer. Two key results which
arise from such a study are the following:
(a) The quantum field theory based on the Rindler

foliation of the flat spacetime interprets the inertial
vacuum state as a thermal state.

(b) An Unruh-DeWitt detector moving along a uniformly
accelerated trajectory will detect a thermal spectrum of
particles in the inertial vacuum. It is also well known
[3] that the correspondence between the results (a) and
(b) is a special feature of Rindler foliation and does not
extend to more general foliations.

While there is extensive literature on the particle content
of the inertial vacuum state, detailed discussion of the
particle content of inertial nonvacuum states when viewed
from the Rindler frame is sparse. The only literature in a
similar spirit that the authors could find was [5,6]. In this
paper, we analyze this situation, hopefully in a comprehen-
sive manner, both from the point of view of quantum field
theory and from that of detector response. Some of the earlier
results can be obtained as special limits of the case discussed
here. Our key new results can be summarized as follows.
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(i) We found it convenient to encode the information
about the inertial quantum state in terms of an
effective field Φeff which depends on a particular
choice of foliation and the quantum state. All
physical quantities—including the two-point corre-
lation functions of the field, the particle content of
the quantum state as perceived in any other foliation
and the response of the detector in any arbitrary
trajectory—can be expressed in terms of Φeff in a
rather simple and elegant manner.
We believe that this formalism will be useful in

analyzing a host of other phenomena involving
quantum field theory in curved spacetime. By using
the same formalism with “in” and “out” vacua or
even with vacuum states defined at two instances of
time, one can obtain similar and useful results in
contexts like particle production in an expanding
Universe, the Schwinger effect and black hole
evaporation. These avenues will be explored in a
future publication.

(ii) Having developed the formalism, we applied it to
study the particle content of inertial nonvacuum
states (and in particular, superposition of one-par-
ticle states) as viewed in the Rindler foliation. For
any state, the particle content has a thermal part
corresponding to the inertial vacuum state plus
additional contributions. Since the former is well
known in literature, we concentrated on the addi-
tional contributions throughout the paper. We found
that, when the inertial quantum state is normalizable,
the corrections to the thermal nature die down at
high frequencies as measured in the Rindler frame.
In other words, the high frequency sector of the
Rindler frame perceives dominantly a thermal spec-
trum in any normalizable inertial quantum state.
(This result has important implications in other
contexts like black hole evaporation which we hope
to return to in a future work.)

(iii) When the inertial quantum state is not normalizable,
the situation changes drastically. For example, if the
inertial state corresponds to a single particle ex-
citation with a definite momentum k such a state is
not normalizable according to our definition. When
perceived from the Rindler frame, the particle
content of such a state has a constant contribution
at all high frequencies. It is as though a single
particle with a definite frequency in the inertial
frame is uniformly spread over all high frequencies
in the Rindler frame. This result is curious and
surprising and deserves further study.

(iv) As we mentioned earlier, the particle content of a
quantum state, determined through quantum field
theory adapted to a particular foliation, may not
always agree with the one determined by detector
response. But since these two are known to coincide

for the vacuum state viewed from a Rindler frame,
we investigated the situation as regards to excited
states in the inertial frame. We find that the result
holds even in this context when the rate of transition
of the detector is defined in a sensible manner. We
stress that the validity of this result for excited states
is not obvious and hence this analysis is somewhat
nontrivial.

(v) We also clarified the notion of the rate of transition
of the detector when the Whitman function does not
possess time translation invariance. There are two
natural ways of defining the rate of transition in such
a context which have been used in the literature. We
showed by straightforward algebra that the result of
these two procedures, in general, must be different.
In view of this, we analyzed the rate of transition of a
detector in a general inertial state using both the
approaches. We found that there is a clear corre-
spondence between the asymptotic (i.e., high fre-
quency) properties of the detector transition rate and
those obtained from quantum field theory in Rindler
foliation.

As indicated earlier, there are several further avenues of
exploration which are suggested by our analysis. In
particular, the question of black hole formation when the
initial quantum state is not a vacuum state is of particular
interest. Our preliminary study shows that the results
obtained in this paper can be directly generalized to this
case, thereby allowing us to compute the correction to the
thermal spectrum in black hole evaporation. This has
important implications for the black hole information
paradox and will be addressed in a future publication.
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APPENDIX A: EFFECTIVE FIELDS
FOR A GENERAL STATE

A general state will be a superposed one for various
n-tuply excited states. A general n-tuple excited state will
be given as

jΨi ¼ 1ffiffiffiffiffi
n!

p
X

k1;…;kn

f1ðk1Þ…fnðknÞâ†k1…â†kn j0iu ðA1Þ

where f1;…fn are basis functions for an n-variable
function. For the field in u modes

ϕ ¼
X
k

ðâkuk þ â†ku
�
kÞ; ðA2Þ
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the two-point function correction term will be

Cðx; yÞ ¼ 1

n!

X
k1;…;kn

X
k0
1
;…;k0n

uh0jâk1…âkn
X
kk0

ðâkukðxÞ þ â†ku
�
kðxÞÞðâ0kuk0 ðyÞ þ â†k0u

�
k0 ðyÞÞâ†k1…â†kn j0iu

× f1ðk1Þ…fnðknÞf1�ðk01Þ…fn�ðk0nÞ − uh0j
X
k

ðâkukðxÞ þ â†ku
�
kðxÞÞ

X
k
0ðâ0kuk0 ðyÞ þ â†k0u

�
k0 ðyÞÞj0iu: ðA3Þ

The typical structure of nonvanishing terms will be of the form

∼
1

n!

X
k1;…;kn

X
k0
1
;…;k0n

δðk0 − k1Þδðk0 − k2Þδðk3 − k04Þ…δðkn − k01Þf1ðk1Þ…fnðknÞf1�ðk01Þ…fn�ðk0nÞ; ðA4Þ

which will have a contribution in (A3) of the type

∼
1

n!

X
k2;…;kn

X
k0
1
;k0

3
;:;k0n

f2ðk2Þ…fnðknÞf1�ðk01Þf3�ðk03Þ…fn�ðk0nÞδðk2 − k03Þ…δðkn − k01Þ
X
k1;k02

ðf1ðk1Þuk1ðxÞÞðf2�ðk02Þu�k0
2
ðyÞÞ:

ðA5Þ

Using the finiteness of the inner products of the states, we can write this term as proportional to Φ1ðxÞΦ�
2ðyÞ, where

Φi ¼
P

kf
i
kuk. Therefore, the effective correlation function is a sum of products of various Φ’s. And again, all the relevant

quantities can be evaluated using them. The full information about n different fiðkÞ is captured by as many Φi’s. A most
general state will be a superposition of different n-tuple states jni and the effective correlation function will have terms
squeezed between different jni. However, one can verify that the effective correlation function gets terms of the previous
kind only, with the addition of some newΦ fields. A demonstration for the Rindler case is presented in Appendixes B and C.

APPENDIX B: PARTICLE CONTENT FOR n-TUPLE STATE

The most general expression of the correction part is given as

NΩ ¼
Z

∞

0

d ~ω
Z

∞

0

d ~ω0½αΩ ~ωα
�
Ω ~ω0 hΨjâ†ð ~ωÞâð ~ω0ÞjΨi þ βΩ ~ωβ

�
Ω ~ω0 hΨjâ†ð ~ω0Þâð ~ωÞjΨi

− αΩ ~ωβ
�
Ω ~ω0 hΨjâ†ð ~ωÞâ†ð ~ω0ÞjΨi − βΩ ~ωα

�
Ω ~ω0 hΨjâð ~ωÞâð ~ω0ÞjΨi�: ðB1Þ

A typical n-tuply excited state in Minkowski can be given as

jΨi ¼
Z

∞

0

Yn
i¼1

dωiffiffiffiffiffiffiffiffiffiffi
2πωi

p Fðω1;…ωnÞâ†ðωiÞj0iM; ðB2Þ

with

Fðω1;…ωnÞ ¼
X

i1;i2…;in

ci1;i2…;infi1ðω1Þ…finðωnÞ; ðB3Þ

where fi1ðωÞ can be considered as basis functions in the function space. For the n-tuple state, we are left with finding the
expression for the first two terms in (B1), which ultimately boils down to finding hΨjâ†ð ~ωÞâð ~ω0ÞjΨi for the state given by
(B2). Thus we have

hΨjâ†ð ~ωÞâð ~ω0ÞjΨi

¼ 1

n!

�Y
i;j

Z Z
dωiffiffiffiffiffiffiffiffiffiffi
2πωi

p dω0
jffiffiffiffiffiffiffiffiffiffi

2πω0
j

q
�
Fðω1;…ωnÞF�ðω0

1;…ω0
nÞMh0j

�Y
m

âðω0
mÞ
�
â†ð ~ωÞâð ~ω0Þ

�Y
l

â†ðωlÞ
�
j0iM: ðB4Þ

Now, using the commutation rules we can write
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âð ~ω0Þâ†ðω1Þ…â†ðωnÞ ¼ δð ~ω0 − ω1Þâ†ðω2Þ…â†ðωnÞ þ δð ~ω0 − ω2Þâ†ðω1Þâ†ðω3Þ…â†ðωnÞ
þ……þ δð ~ω0 − ωnÞâ†ðω2Þ…â†ðωn−1Þ þ â†ðω1Þ…â†ðωnÞâð ~ω0Þ: ðB5Þ

Therefore,

Mh0jâðω0
nÞ…âðω0

1Þâ†ð ~ωÞâð ~ω0Þâ†ðω1Þ…â†ðωnÞj0iM
¼ δð ~ω0 − ω1Þδð ~ω − ω0

1ÞMh0jâðω0
nÞ…âðω0

2Þâ†ðω2Þ…â†ðωnÞj0iM
þ δð ~ω0 − ω1Þδð ~ω − ω0

2ÞMh0jâðω0
nÞ…âðω0

3Þâðω0
1Þâ†ðω2Þ…â†ðωnÞj0iM þ……

þ δð ~ω0 − ω2Þδð ~ω − ω0
1ÞMh0jâðω0

nÞ…âðω0
2Þâ†ðω1Þâ†ðω3Þ…â†ðωnÞj0iM þ……… ðB6Þ

In the above expression, in the right-hand side the terms squeezed between j0iM give rise to various delta functions
involving various ω and ω0. Therefore, in (B4) we use (B3) and realize that ultimately we obtain a term proportional to

X
ij

~cij
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ~ω2 ~ω0p fið ~ωÞf�jð ~ω0Þ; ðB7Þ

for some functions fi such that fiðωÞ=
ffiffiffiffiffiffi
2ω

p
is square integrable over ω ∈ ð0;∞�. All other fj’s in F, as shown in (B3), get

involved in inner products among themselves to give rise to some finite numbers. All this can be easily seen in an example
of a doubly excited state.
Let us have a state given by

Fðω1;ω2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ~ω2 ~ω0p ðf1ðω1Þf2ðω2Þ þ ~f1ðω1Þ ~f2ðω2ÞÞ; ðB8Þ

for simple demonstration, with all fiðωÞ=
ffiffiffiffiffiffi
2ω

p
, ~fiðωÞ=

ffiffiffiffiffiffi
2ω

p
being square integrable over ω ∈ ð0;∞�.

In this case,

Mh0jâðω0
2Þâðω0

1Þâ†ð ~ωÞâð ~ω0Þâ†ðω1Þâ†ðω2Þj0iM
¼ δð ~ω0 − ω1Þδð ~ω − ω0

1ÞMh0jâðω0
2Þâ†ðω2Þj0iM þ δð ~ω0 − ω2Þδð ~ω − ω0

1ÞMh0jâðω0
2Þâ†ðω1Þj0iM

þ δð ~ω0 − ω1Þδð ~ω − ω0
2ÞMh0jâðω0

1Þâ†ðω2Þj0iM þ δð ~ω0 − ω2Þδð ~ω − ω0
2ÞMh0jâðω0

1Þâ†ðω1Þj0iM; ðB9Þ

which is the analog of (B6) which was defined for the general case, which again using the commutation relations becomes
simple as

hΨjâ†ð ~ωÞâð ~ω0ÞjΨi ¼
Z

dω1dω2dω0
1dω

0
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ω12ω22ω
0
12ω

0
2

p Fðω1;ω2ÞF�ðω0
1;ω

0
2Þ × ½δð ~ω0 − ω1Þδð ~ω − ω0

1Þδðω2 − ω0
2Þ

þ δð ~ω0 − ω2Þδð ~ω − ω0
1Þδðω1 − ω0

2Þ þ δð ~ω0 − ω1Þδð ~ω − ω0
2Þδðω2 − ω0

1Þ
þ δð ~ω0 − ω2Þδð ~ω − ω0

2Þδðω1 − ω0
1Þ�: ðB10Þ

Therefore, we ultimately have

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~ω2 ~ω0p

Z
dω
2ω

½Fð ~ω0;ωÞF�ð ~ω;ωÞ þ Fðω; ~ω0ÞF�ð ~ω;ωÞ þ Fð ~ω0;ωÞF�ðω; ~ωÞ þ Fðω; ~ω0ÞF�ðω; ~ωÞ�: ðB11Þ

For further demonstration, we take one of the terms (say second) in the parentheses of the integrand. Calculations for all
other terms will be similar:
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Z
dω
2ω

Fðω; ~ω0ÞF�ð ~ω;ωÞ ¼ 1

2

Z
dω
2ω

½f1ðωÞf2ð ~ω0Þ þ ~f1ðωÞ ~f2ð ~ω0Þ�½f�1ð ~ωÞf�2ðωÞ þ ~f�1ð ~ωÞ ~f�2ðωÞ�;

¼ 1

2

�
f2ð ~ω0Þf�1ð ~ωÞ

Z
dω
2ω

f1ðωÞf�2ðωÞ þ f2ð ~ω0Þ ~f�1ð ~ωÞ
Z

dω
2ω

f1ðωÞ ~f�2ðωÞ
�

þ 1

2

�
~f2ð ~ω0Þf�1ð ~ωÞ

Z
dω
2ω

~f1ðωÞf�2ðωÞ þ ~f2ð ~ω0Þ ~f�1ð ~ωÞ
Z

dω
2ω

~f1ðωÞ ~f�2ðωÞ
�
: ðB12Þ

If we again do the transformation log ω
a ¼ t, we can easily

see that every integral in (B12) becomes an inner product
between different square integrable functions and is finite.
Similar contributions will come from all the terms in (B11).
Therefore, the expression in (B9) turns into one like (B7).
Now when we use the integrations of terms in (B4) with

α�Ω ~ωαΩ ~ω0 (or β�Ω ~ωβΩ ~ω0 ) for obtaining contributions in (B1),
we again obtain that the correction term is a sum of
(products of) Fourier transforms of various square inte-
grable functions, with respect to Ω=a, as previously seen in
(44) and (45). Evidently the correction terms decay down
for largeΩ=a, at least as fast as ðΩ=aÞ−1þϵ. Therefore, each
term in (B7) gives rise to the product of Fourier transforms
and is decaying. Thus, the decaying nature of the correction
terms is true for arbitrary n-tuple states too. Now, we can
generalize this for most general arbitrary states (super-
positions of various particle states). Evidently, the impor-
tant terms in that case will be the ones generating

correlations, i.e. the last two terms in (B1), which we deal
with next.

APPENDIX C: CORRELATION TERMS
IN A GENERAL SUPERPOSITION STATE

In general superposed states, there will be terms different
from those considered above, which are correlation terms
between an n-tuple and (n − 2)-tuple state, i.e.

hnjâ†ð ~ωÞâð ~ω0Þjn − 2i; ðC1Þ

where jni is a general n-tuple state considered in (B2). For
demonstration purposes we will consider a particular term
arising out of various components in superposition. Its
generic form will be

hnjâ†ð ~ωÞâ†ð ~ω0Þjn − 2i ∝
�Y

i;j

Z Z
dωiffiffiffiffiffiffiffiffiffiffi
2πωi

p dω0
jffiffiffiffiffiffiffiffiffiffi

2πω0
j

q
�
f�1ðω1Þ…f�nðωnÞ

× ~f1ðω0
1Þ… ~fn−2ðω0

n−2ÞMh0jâðωnÞ…âðω1Þâ†ð ~ωÞâ†ð ~ω0Þâ†ðω0
1Þ…â†ðω0

n−2Þj0iM: ðC2Þ

Again, shifting â†ð ~ωÞ and â†ð ~ω0Þ from left to right will give various delta functions involving ~ω and ~ω0 with various ωi’s.
Thus again we are left with terms proportional to

X
ij

~cij
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ~ω2 ~ω0p f�i ð ~ωÞf�jð ~ω0Þ: ðC3Þ

Therefore, yet again in (B1) we have Fourier transforms of two square integrable functions which are decaying in Ω=a.
Additionally since such terms are integrated with α�Ω ~ωβΩ ~ω0 , the Fourier transform is multiplied with

Ω
4π2a2

Γ
�
iΩ
a

�
Γ
�
−
iΩ
a

�
¼ 1

4πa
cosech

πΩ
a

: ðC4Þ

Therefore, such terms will decay even faster than the previously considered terms. Again, for clarity we will quickly go
through an example with a state

jΨi ¼ c0j0i þ c1

Z
dωffiffiffiffiffiffi
2ω

p fðωÞâ†ðωÞj0i þ c2

Z Z
dωffiffiffiffiffiffi
2ω

p dω0

2
ffiffiffiffiffi
ω0p f1ðωÞf2ðω0Þâ†ðωÞâ†ðω0Þj0i: ðC5Þ
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Since we already know the profiles of the first two terms in (B1), we will consider the correlation terms which are of type
hΨjâ†ð ~ωÞâ†ð ~ω0ÞjΨi and hΨjâð ~ωÞâð ~ω0ÞjΨi. Therefore, such a nonvanishing term will be

hΨjâ†ð ~ωÞâ†ð ~ω0ÞjΨi ¼ c0c�2

Z Z
dω1ffiffiffiffiffiffiffiffi
2ω1

p dω2ffiffiffiffiffiffiffiffi
2ω2

p f�1ðω1Þf�2ðω2Þh0jaðω1Þaðω2Þâ†ð ~ωÞâ†ð ~ω0Þj0i; ðC6Þ

¼ c0c�2

Z Z
dω1ffiffiffiffiffiffiffiffi
2ω1

p dω2ffiffiffiffiffiffiffiffi
2ω2

p f�1ðω1Þf�2ðω2Þ½δðω1 − ~ωÞδðω2 − ~ω0Þ þ δðω1 − ~ω0Þδðω2 − ~ωÞ�; ðC7Þ

¼ c0c�2
1ffiffiffiffiffiffiffiffiffiffiffi
4 ~ω ~ω0p ½f�1ð ~ωÞf�2ð ~ω0Þ þ f�1ð ~ω0Þf�2ð ~ωÞ�: ðC8Þ

In (B1), these terms get integrated over ~ω and ~ω0 with
α�Ω ~ωβΩ ~ω0 and as we discussed before will additionally
contribute a factor 1

4πa cosech
πΩ
a , apart from the Fourier

transforms of f�
1
ðωÞffiffiffiffi
2ω

p and f�
2
ðωÞffiffiffiffi
2ω

p , which are already decaying

functions for large Ω=a. A very similar analysis shows a
similar result for hΨjâð ~ωÞâð ~ω0ÞjΨi, which in fact will be
the complex conjugate of this term. Thus, we see that the
correlation terms decay even faster for large Ω=a. This can
also be generalized for other higher excitation states in a
similar fashion.
Now, we have generalized our result for all physically

meaningful, normalizable states. For such states, there will
always be a length scale below which the Rindler observer
will not detect any significant departure from the blackbody
profile. However, those observers having access to larger
and larger modes will observe progressively larger
corrections.

APPENDIX D: DETECTOR RESPONSE VERSUS
NUMBER EXPECTATION

We saw that for the one-particle state, the number
expectation correction for the left-moving modes corre-
sponds to the detector response up to a factor π. It is
important to note that this factor is always present between
the number expectation value and the detector response, if
the distribution is only among one set of modes (say left-
moving modes only). In vacuum response, there is in fact a
2π factor discrepancy, since in that case both the left- and
right-moving modes contribute to the detector response.
This factor is adjusted by the normalization of the ω
integral. Similarly, if the number expectation is calculated
for both the left- and right-moving modes (see Appendix E)
with the above-mentioned normalization, it will again
match with the detector response. Thus the correspondence
between (a) mean number of particles defined using the
Bogoliubov coefficients appropriate for the foliation and
(b) transition of detectors continues to hold even for the

one-particle (and also for general excited) states. We
quickly demonstrate these points for the vacuum response.
The first order transition probability for the vacuum state

will be given as

Pvac ¼
Z

∞

−∞

Z
∞

−∞
dτdτ0e−iΔEðτ−τ0Þ

Z
∞

−∞
dkukðτÞu�kðτ0Þ; ðD1Þ

with

ukðτÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
4πjkjp e−ijkjtðτÞþikxðτÞ; ðD2Þ

for the Rindler trajectory (57). We first evaluate the τ
integrals

Z
∞

−∞

Z
∞

−∞
dτdτ0e−iΔEðτ−τ0Þ

Z
∞

−∞
dkukðτÞu�kðτ0Þ

¼
Z

∞

−∞

Z
∞

−∞
dτdτ0

Z
∞

0

dk½ukðτÞu�kðτ0Þ þ u−kðτÞu�−kðτ0Þ�:

ðD3Þ

Using (D2) and (91) we get

Pvac ¼
Z

∞

0

dk
k

1

2ΔEa

�
1

e
2πΔE
a − 1

þ 1

e
2πΔE
a − 1

�
; ðD4Þ

where each term is a contribution of the left- and right-
moving modes respectively, while

Z
∞

0

dω
ω

jβΩωj2 ¼
Z

∞

0

dω
2πωa

1

e
2πΩ
a − 1

: ðD5Þ

Thus we see that if we concentrate only on the left-moving
mode in Rindler it differs from the corresponding one in the
detector response by a factor 1=π. However, the full
contribution coming from the left- and right-moving modes
makes the difference factor 1=2π which is compensated by
a 2πδð0Þ contribution from the ω integral. Similarly, in
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Appendix E, we will see that if the distribution for a general state is specified to be only among the left-moving modes, the
corresponding terms in the number expectation value and the detector response differ by 1=π. This discrepancy is basically
generated by the relation

Z
∞

−∞

Z
∞

−∞
dτdτ0e−iΩðτ−τ0ÞukðτÞu�kðτ0Þ ¼

π

Ω
jβΩωk

j2: ðD6Þ

APPENDIX E: DETECTOR RESPONSE FOR RINDLER TRAJECTORIES

The two-point function in the singly excited state is given as

h1MjϕðxÞϕðyÞj1Mi ¼
Z

dk
2π

e−ik·ðx−yÞ þ
Z

dk
2π

Z
dk0

2π

fðkÞ
2ωk

f�ðk0Þ
2ωk

0 e−ik·xþik0·y þ c:c: ðE1Þ

We can easily identify the first term as the standard vacuum contribution, which is a standard feature of the two-point
function. So for the detector too, there will always be a vacuum contribution which is the thermal part. Henceforth we will
concentrate on the correction terms only.
We first analyze the momentum integrals in the correction term:

Z
dk
2π

Z
dk0

2π

fðkÞ
2ωk

f�ðk0Þ
2ωk

0 e−ik·xþik0·y þ c:c: ¼
Z

dk
2π

Z
dk0

2π

fðkÞ
2ωk

f�ðk0Þ
2ωk

0 e−iðωkt−kxÞþiðωk
0t0−k0x0Þ þ c:c: ðE2Þ

For massless scalar field ωk ¼ jkj. Thus we can expand (E2) as

Z
∞

0

dk
4πk

Z
∞

0

dk0

4πk0
fðkÞf�ðk0Þe−i½kðt−xÞ−ik0ðt0−x0Þ� þ

Z
∞

0

dk
4πk

Z
∞

0

dk0

4πk0
f�ðkÞfðk0Þei½kðt−xÞ−k0ðt0−x0Þ�

þ
Z

∞

0

dk
4πk

Z
∞

0

dk0

4πk0
fðkÞf�ð−k0Þe−i½kðt−xÞ−ik0ðtþx0Þ� þ

Z
∞

0

dk
4πk

Z
∞

0

dk0

4πk0
f�ðkÞfð−k0Þe−i½kðt−xÞ−k0ðt0þx0Þ�

þ
Z

∞

0

dk
4πk

Z
∞

0

dk0

4πk0
fð−kÞf�ðk0Þe−i½kðtþxÞ−ik0ðt0−x0Þ� þ

Z
∞

0

dk
4πk

Z
∞

0

dk0

4πk0
f�ð−kÞfðk0Þei½kðtþxÞ−k0ðt0−x0Þ�

þ
Z

∞

0

dk
4πk

Z
∞

0

dk0

4πk0
fð−kÞf�ð−k0Þe−i½kðtþxÞ−ik0ðtþx0Þ� þ

Z
∞

0

dk
4πk

Z
∞

0

dk0

4πk0
f�ð−kÞfð−k0Þei½kðtþxÞ−k0ðt0þx0Þ�: ðE3Þ

Now we can evaluate the full correction term for the Rindler trajectory (57) and write the expression in T, s coordinates
(defined previously) as

P ¼
Z

dse−iΔEs½I1 þ I2 þ I3 þ I4 þ c:c:�; ðE4Þ

with

Z
dse−iΔEsI1 ≡

Z Z
dTdse−iΔEs

Z
∞

0

dk
4πk

Z
∞

0

dk0

4πk0
fðkÞf�ðk0Þe−i½kðt−xÞ−ik0ðt0−x0Þ�

¼
Z Z

dTdse−iΔEs
Z

∞

0

dk
2π

Z
∞

0

dk0

2π

fðkÞ
2k

f�ðk0Þ
2k0

eðþikae
−að2TþsÞ=2−ikae

−að2T−sÞ=2Þ: ðE5Þ

We first evaluate the s integral, again with making a transformation e−as=2 ¼ z:

Z
∞

−∞
dse−iΔEseþikae

−að2TþsÞ=2−ikae
−að2T−sÞ=2 ¼ 2

a

Z
∞

0

dzz
2iΔE
a −1e−i

k0
ae

−aT 1
zþikae

−aTz

¼ 4

a
e−

π
aΔE

�
k
a
e−aT

�
−iΔEa

�
k0

a
e−aT

�
iΔEa
K−2iΔEa

�
2

ffiffiffiffiffiffi
kk0

p

a
e−aT

�
: ðE6Þ
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Therefore, substituting (E6) in (E5), we get

Z
dse−iΔEsI1 ¼

Z
dT

Z
∞

0

dk
2π

Z
∞

0

dk0

2π

fðkÞ
2k

f�ðk0Þ
2k0

�
4

a
e−

π
aΔE

�
k
a
e−aT

�
−iΔEa

�
k0

a
e−aT

�
iΔEa
K−2iΔEa

�
2

ffiffiffiffiffiffi
kk0

p

a
e−aT

��

Z
dse−iΔEsI�1 ¼

Z
dT

Z
∞

0

dk
2π

Z
∞

0

dk0

2π

f�ðkÞ
2k

fðk0Þ
2k0

�
4

a
e
π
aΔE

�
k
a
e−aT

�
−iΔEa

�
k0

a
e−aT

�
iΔEa
K−2iΔEa

�
2

ffiffiffiffiffiffi
kk0

p

a
e−aT

��
: ðE7Þ

Similarly, we obtain

Z
dse−iΔEsI2 ≡

Z Z
dTdse−iΔEs

Z
∞

0

dk
4πk

Z
∞

0

dk0

4πk0
fðkÞf�ð−k0Þe−i½kðt−xÞ−ik0ðtþx0Þ�

¼
Z

dT
Z

∞

0

dk
2π

Z
∞

0

dk0

2π

fðkÞ
2k

f�ð−k0Þ
2k0

�
2

a
e−

π
aΔE

�
k
a
e−aT þ k0

a
eaT

�
−2iΔEa

Γ
�
2i
ΔE
a

��
; ðE8Þ

Z
dse−iΔEsI�2 ¼

Z
dT

Z
∞

0

dk
2π

Z
∞

0

dk0

2π

f�ðkÞ
2k

fð−k0Þ
2k0

�
2

a
e
π
aΔE

�
k
a
e−aT þ k0

a
eaT

�
−2iΔEa

Γ
�
2i
ΔE
a

��
: ðE9Þ

Also,

Z
dse−iΔEsI3 ≡

Z Z
dTdse−iΔEs

Z
∞

0

dk
4πk

Z
∞

0

dk0

4πk0
fð−kÞf�ðk0Þe−i½kðtþxÞ−ik0ðt0−x0Þ�

¼
Z

dT
Z

∞

0

dk
2π

Z
∞

0

dk0

2π
fð−kÞf�ðk0Þ

�
2

a
e−

π
aΔE

�
k
a
e−aT þ k0

a
eaT

�
−2iΔEa

Γ
�
−2i

ΔE
a

��
; ðE10Þ

Z
dse−iΔEsI�3 ¼

Z
dT

Z
∞

0

dk
2π

Z
∞

0

dk0

2π
f�ð−kÞfðk0Þ

�
2

a
e
π
aΔE

�
k
a
e−aT þ k0

a
eaT

�
−2iΔEa

Γ
�
−2i

ΔE
a

��
: ðE11Þ

And,

Z
dse−iΔEsI4 ≡

Z Z
dTdse−iΔEs

Z
∞

0

dk
4πk

Z
∞

0

dk0

4πk0
fð−kÞf�ð−k0Þe−i½kðtþxÞ−ik0ðtþx0Þ�

¼
Z

dT
Z

∞

0

dk
2π

Z
∞

0

dk0

2π
fð−kÞf�ð−k0Þ

�
4

a
e−

π
aΔE

�
k
a
e−aT

�
iΔEa
�
k0

a
e−aT

�
−iΔEa

K−2iΔEa

�
2

ffiffiffiffiffiffi
kk0

p

a
e−aT

��
;

Z
dse−iΔEsI�4 ¼

Z
dT

Z
∞

0

dk
2π

Z
∞

0

dk0

2π
f�ð−kÞfð−k0Þ

�
4

a
e
π
aΔE

�
k
a
e−aT

�
iΔEa
�
k0

a
e−aT

�
−iΔEa

K−2iΔEa

�
2

ffiffiffiffiffiffi
kk0

p

a
e−aT

��
: ðE12Þ

For evaluating the correction in probability we also need to perform the T-integrals. For that, we use the following
expressions

Z
∞

−∞
dTK−2iΔEa

�
2

ffiffiffiffiffiffi
kk0

p

a
e−aT

�
¼ 1

4a
Γ
�
i
ΔE
a

�
Γ
�
−i

ΔE
a

�
;

Z
∞

−∞
dT

�
k
a
e−aT þ k0

a
eaT

�
−2iΔEa ¼ 1

2a

�
k
a

�
−iΔEa

�
k0

a

�
−iΔEa Γ½i ΔEa �2

Γ½2i ΔEa �
: ðE13Þ

Using the relations (E13) in (E7)–(E12) we get the expression
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: ðE14Þ

Now, if we identify

�
k
a

�
−iΔEa ¼ e−i

ΔE
a logðkaÞ; ðE15Þ

and again make the transformation to a new variable logðkaÞ ¼ t, all the integrals get converted into the Fourier transforms of
square integrable functions in t, with respect to ΔE=a once again. Therefore, the correction profile, as observed by the
Rindler detector, has a decaying tendency for large ΔE=a.
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