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We set up the construction of generic ðdþ 2Þ-dimensional metrics corresponding to ðdþ 1Þ-dimensional
fluids, representing holographically the hydrodynamic regimes of the putative dual theories. We give general
seed equilibrium metrics appropriate to generic bulk stress energy tensors and discuss the implications of
conformal rescalings of the hypersurface on which the fluid is defined. We then show how to obtain the
corresponding hydrodynamic metrics using a relativistic gradient expansion and discuss the integrability
conditions of the resulting equations. The stress energy tensors of the resulting fluids, both at and away from
equilibrium, satisfy a quadratic constraint. We interpret this constraint in terms of two possible equations
of state for the fluid and show that only one of the two equations is physical. We illustrate our discussions
with the example of the cutoff anti–de Sitter fluid, for which we find the precise interpretation in terms of
deformations of the UV conformal field theory. Finally we discuss the relation between the modern fluid/
gravity approach taken in this paper and the earlier membrane paradigm.
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I. INTRODUCTION

The holographic principle proposes an equivalence
between ðdþ 2Þ-dimensional gravitational theories and
ðdþ 1Þ-dimensional quantum field theories. A concrete
realization of holography in which the dictionary between
bulk and boundary data has been extensively developed is
the case of asymptotically locally anti–de Sitter spacetimes
(AdS) corresponding to conformal field theories (CFT).
However, if holography is the correct paradigm, holo-
graphic descriptions should exist for more general gravi-
tational theories with different asymptotics. Holography
has in recent times been pushed beyond AdS asymptotics,
particularly to nonrelativistic dualities such as Lifshitz
and Schrödinger, but constructing a holographic duality
for even asymptotically flat spacetimes has been a long-
standing challenge.
A generic feature of any quantum field theory is the

existence of a hydrodynamic description capturing the
long-wavelength behavior of the microscopic degrees of
freedom near to thermal equilibrium. If holography is
correct, such regimes have to be reproduced within the
context of the holographic duality. The fluid/gravity cor-
respondence [1] exactly realizes this scenario: nearby
gravitational solutions describing the hydrodynamic regime
have been explicitly constructed for AdS black-brane
solutions, which correspond to a conformal fluid at thermal
equilibrium. This framework was later extended to classes
of nonconformal fluids; see for example [2,3]. The authors

of [4] review the many other extensions of the fluid/gravity
relation.
An extension of fluid/gravity duality to vacuum Einstein

gravity has also been developed over the past few years.
In [5–7], the incompressible Navier-Stokes equations in
ðdþ 1Þ dimensions were shown to be dual to a ðdþ 2Þ-
dimensional Ricci-flat metric. This holographic duality for
Ricci-flat spacetime has attracted much interest and the
correspondence has been extended in several directions.
A systematic construction of the metric to all orders in the
hydrodynamic expansion was provided in [7]; this deter-
mines the corresponding specific corrections to the incom-
pressible Navier-Stokes equations. Subsequently in [8,9]
the fluid/gravity relation was reformulated in a manifestly
relativistic expansion. The thermal state corresponds to the
Rindler spacetime and near equilibrium solutions represent
the hydrodynamic behavior of a dual fluid living on a finite
cutoff timelike hypersurface Σc. In [10] relations among
the second order transport coefficients have been derived
and the authors of [11–13] studied higher derivative
corrections. Extensions to spherical horizon topologies
and to de Sitter have been studied in [14–17] while charged
fluids were explored in [18–20]. The role of Petrov
conditions has been explored in [15,21–24] and solution
generating symmetries were investigated in [25]. Other
related works include [26–30].
In this paper we give a general prescription for con-

structing hydrodynamic solutions associated with a
ðdþ 1Þ-dimensional timelike flat hypersurface Σc inside
a ðdþ 2Þ-dimensional bulk spacetime, which has a horizon
and is supported by a generic bulk stress tensor. Note that
this hypersurface does not necessarily need to be chosen to
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be near the horizon or near the (conformal) boundary of the
space-time. We begin in Sec. II by setting up an appropriate
form for a bulk metric dual to an equilibrium fluid and its
relation to the Bondi-Sachs form [31,32] as well as the
metric ansatz used in holographic numerical simulations
such as [33].
By construction, when the hypersurface Σc is flat, the

induced Brown-York stress energy tensor on this hyper-
surface takes a fluid form, and one can read off the defining
properties of the putative dual fluid. We highlight the fact
that, when the hypersurface is only conformally flat, as is
indeed the case for AdS/CFT, the holographic stress tensor
cannot be the Brown-York stress energy tensor but rather
should be conformal to the Brown-York stress energy
tensor. We also emphasize the implications of the fact that
fixing a Dirichlet Minkowski condition on Σc generically
leads to noncanonical normalizations of Killing vectors
both at asymptotic infinity and at the horizon.
As noted in [8,9], the fluid stress energy tensor satisfies a

quadratic constraint, which acts as an equation of state.
This implies that, for any given data for the bulk stress
energy tensor on Σc, there are two distinct bulk solutions.
For vanishing bulk stress energy tensor these correspond to
the Rindler fluid and the Taub fluid, respectively [8,9]. The
Taub fluid has strictly negative energy density and temper-
ature and is hence unphysical. In Sec. III we consider
various examples of bulk stress energy tensors, including
cosmological constant and gauge fields, and we discuss
the interpretations of the positive and negative signs in the
equation of state. Only one sign in the equation of state
gives rise to a physical fluid; the opposite sign is always
associated with a negative temperature and is therefore not
physical.
Using our examples, we observe that the existence of a

flat timelike hypersurface is (as one would expect) highly
nontrivial: in the absence of negative bulk curvature this
requirement forces us into scaling regions of black holes
with spherical horizon topologies. We also note that in the
presence of generic matter the Einstein equations no longer
form a nested hierarchy of decoupled equations, as they
do in the vacuum and cosmological constant cases; see
[31,32] and [33]. Since the equations do not decouple, even
equilibrium (stationary) solutions are hard to find.
In Sec. IV we begin a preliminary investigation of the

relation between the fluid stress energy tensor and the
renormalized holographic stress energy tensor, the latter
being defined in cases for which the holography duality is
under control, e.g. asymptotically AdS or Lifshitz space-
times. We use this perspective to understand why the fluid
stress energy tensor for conformally flat hypersurfaces
must be defined in terms of the conformally rescaled
Brown-York stress energy tensor.
In Sec. V we provide a general setup for hydrodynamics

by promoting the defining parameters of the equilibrium
bulk solutions to be position dependent. Working in a

relativistic gradient expansion, we work out the hydro-
dynamic equations of motion. We show that the conserva-
tion of the dual fluid is associated with the integrability of
the bulk equations and we derive a general expression for
the first order dissipative corrections to the fluid stress
energy tensor.
As an example of our formalism we revisit the case of

cutoff AdS.We compute the first order hydrodynamic metric
corresponding to a Dirichlet condition on the hypersurface
Σc. As this hypersurface is taken towards the conformal
boundary we recover the results of [1]. For a generic choice
of Σc, we work out the asymptotic expansion of the metric in
the neighborhood of the conformal boundary. This metric
remains asymptotically locally AdS but the background
metric for the dual CFT is no longer conformally flat. We
give the precise form for this background metric, up to first
order in derivatives, thereby identifying the precise defor-
mation of the dual CFT captured by the Dirichlet condition
in the bulk. Earlier discussions of the mixed nature of the
boundary condition at infinity can be found in [5,34,35]; see
also the related work [36]. Discussions of the hydrodynamic
behavior on a finite cutoff hypersurface Σc include [37,38];
see also [39,40].
The fluid/gravity duality is not the first time in which

the physics of fluids has been linked to that of gravity. The
membrane paradigm was introduced in [41–43] and the
authors postulate that any black hole horizon can be
thought of as a membrane exhibiting fluidlike behavior.
In particular it was shown that certain components of
Einstein equations could be recast in the form of dissipative
nonrelativistic Navier-Stokes equations. This fluid how-
ever has a negative bulk viscosity, a signal that this
membrane fluid is unphysical, and that the membrane
paradigm itself should perhaps only be considered as a
formal (if convenient) treatment of horizon dynamics.
A natural question is what is the relation between the

membrane paradigm and modern fluid/gravity approaches.
It was already noted in [44] that in fluid/gravity duality the
dynamics of the entire spacetime is encoded holographi-
cally by the fluid associated with the boundary of the
spacetime, while the membrane fluid is encoded on the
horizon; see also the related works [45–48]. An extension
of the membrane paradigm to hypersurfaces in the interior
of the spacetime has been studied in [49], and recent works
attempting to find connections between the membrane
paradigm and fluid/gravity by studying hydrodynamic
behavior on a finite cutoff hypersurface Σc include
[37,38], as well as [39,40].
In Sec. VI we discuss the relation between the fluid/

gravity approach and the membrane paradigm, by devel-
oping the work of [50]. The latter generalized the Damour
equations to the case of general hypersurfaces foliating
the bulk spacetime, with the hypersurfaces not necessarily
being null and not being assumed to be close to the
horizon. In particular, [50] constructed a generalized
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Damour-Navier-Stokes equation on codimension 1 time-
like hypersurfaces. We extend the work of [50] to other
components of the Einstein equations and then use this
setup to compare the membrane approach with the fluid/
gravity construction. We highlight the different identifica-
tions of both fluid parameters and the associated transport
coefficients in the two approaches. In Sec. VII we con-
clude, while the appendixes contain detailed derivations of
certain results used in the main text.

II. GENERIC FLUIDS IN EINSTEIN GRAVITY

A. The general seed metric ansatz

We are interested in studying the hydrodynamics of fluids
associated with a (dþ 1)-dimensional timelike flat hyper-
surface Σc foliating a ðdþ 2Þ-dimensional bulk spacetime.
We begin by considering a generic static solution; having
constructed static seed solutions one can always boost them
to obtain stationary solutions corresponding to fluids with
nonzero velocity. A convenient metric ansatz in Eddington-
Finklestein-type coordinates is of the form

ds2 ¼ 2dtdr − fðrÞdt2 þ gðrÞdxidxi; ð1Þ

with i ¼ 1;…d. On hypersurfaces Σc of constant r ¼ rc the
induced metric is therefore

ds2jΣc
¼ γabdxadxb ¼ −fðrcÞdt2 þ gðrcÞdxidxi; ð2Þ

where xa ¼ ðt; xiÞ. We assume that the hypersurface under
consideration has a nondegenerate metric, i.e. fðrcÞ,
gðrcÞ ≠ 0, and that there is a horizon at r ¼ rH ≠ rc where
fðrHÞ ¼ 0. Each hypersurface is a worldline of observers
with constant acceleration

a ¼ 1

2

f0ffiffiffi
f

p ; ð3Þ

where the prime denotes a radial derivative. The temperature
associated with the horizon is

T ¼ 1

4π
f0ðrHÞ: ð4Þ

After rescaling the coordinates t → t̄ ¼ ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
t and

xi → x̄i ¼ ffiffiffiffiffiffiffiffiffiffi
gðrcÞ

p
xi the induced metric on Σc can always

be written in a manifestly flat form; i.e. the metric is

ds2 ¼ 2dt̄drffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p −
fðrÞ
fðrcÞ

dt̄2 þ gðrÞ
gðrcÞ

dx̄idx̄i: ð5Þ

Boosting this metric results in

ds2 ¼ −
2ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p uadx̄adrþ
gðrÞ
gðrcÞ

dx̄adx̄a

þ
�
gðrÞ
gðrcÞ

−
fðrÞ
fðrcÞ

�
ðuadx̄aÞ2; ð6Þ

where the velocity is

ua ¼ γð1; viÞ; γ ¼ ð1 − viviÞ−1=2; ð7Þ

as usual. The boost manifestly preserves the induced metric
on Σc. Defining

GðrÞ≡ gðrÞ
gðrcÞ

; FðrÞ≡ fðrÞ
fðrcÞ

; λ≡ ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
; ð8Þ

such that GðrcÞ ¼ FðrcÞ ¼ 1, the metric can be written as

ds2 ¼ −
2

λ
uadx̄adrþ GðrÞdx̄adx̄a

þ ðGðrÞ − FðrÞÞðuadx̄aÞ2: ð9Þ

The latter is a generic form for the equilibrium metric; in
most of what follows we will work with the metric in this
form and we will drop the barred notation for the rescaled
coordinates. This is the most general seed equilibrium
metric, with the corresponding fluid parameters [see below,
(34) and (35)] being ðua;G0ðrcÞ; F0ðrcÞÞ where again the
primes denote radial derivatives. Depending on the bulk
stress energy tensor and matter present, the fluid may have
other parameters. For example, if there is a bulk gauge field
then the ansatz for the gauge field consistent with statio-
narity would be

A ¼ ðμðrÞ þ ðr − rcÞρðrÞÞuadxa: ð10Þ

Then one would regard μðrcÞ as a boundary condition,
characterizing the chemical potential in the field theory,
and ρðrcÞ as characterizing the charge density in the fluid.
Not all of the fluid parameters are independent, since they
are related by the Hamiltonian constraint, equivalent to
the equation of state for the fluid, as well as conservation
equations. For example, for a cosmological constant stress
energy tensor, the equation of state implies that only one
out of F0ðrcÞ and G0ðrcÞ is independent.
The original metric ansatz (1) is analogous to that used in

[33] and subsequent works, although in these papers gðrÞ
was rewritten as the square of a function, i.e. gðrÞ ¼ ΣðrÞ2.
By rescaling the radial coordinate one can rewrite the
metric in a static Bondi-Sachs [31,32] parametrization:

ds2 ¼ 2e2βðrbÞdtdrb − e2ϕðrbÞþ4βðrbÞdt2 þ r2bdx
idxi; ð11Þ

where rb is the new radial coordinate and fðrÞ≡
e2ϕðrbÞþ4βðrbÞ with e2βðrbÞ ¼ 2

ffiffiffi
g

p ð∂rgÞ−1. This form of the
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metric is particularly convenient for solving the vacuum
Einstein equations, as they form a nested hierarchy with the
equation for β solvable first, and then ϕmay be found using
the solution for β. In [33] the same nested hierarchy was
found in the case of pure cosmological constant: again gðrÞ
could first be determined, with fðrÞ then determined using
the solution for gðrÞ. We will recover the same structure
below but for a generic bulk stress energy tensor one cannot
in general analytically integrate the equation for gðrÞ even
in static equilibrium situations.
Let us return for a moment to the original coordinates

in (1). Clearly the induced metric on Σc given in (2) is
conformal to a flat metric in which the effective speed of
light is given by

c2l ¼
fðrcÞ
gðrcÞ

: ð12Þ

Near the horizon, fðrcÞ is small and therefore the effective
speed of light approaches zero. If one works with the
original coordinates, rather than the rescaled coordinates,
then the boost should preserve the induced metric on Σc.
This implies that the boost must use cl as the effective
speed of light, resulting in

ds2 ¼ −2
Ua

cl
dxadrþ gðrÞðdxidxi − c2l dt

2Þ

þ ðUadxaÞ2
�
gðrÞ − fðrÞ

c2l

�
ð13Þ

with

Ua ¼ γl

�
cl;

vi
cl

�
; γ2l ¼ ð1 − c−2l viviÞ−1: ð14Þ

Defining t̂ ¼ clt this boosted metric becomes

ds2 ¼ −2
Ûa

cl
dxadrþ gðrÞðdxidxi − dt̂2Þ

þ ðÛadxaÞ2
�
gðrÞ − fðrÞ

c2l

�
ð15Þ

with

Ûa ¼ γ̂lð1; v̂iÞ; γ̂2l ¼ ð1 − v̂iv̂iÞ−1; ð16Þ

and v̂i ¼ dxi=dt̂.
In equilibrium the three forms of the metric (9), (13)

and (15) differ from one another by trivial rescalings of
the coordinates. Once one goes beyond equilibrium into
the hydrodynamic regime, however, the three forms of the
metric are no longer equivalent. The reason is that the
metric functions fðrÞ and gðrÞ depend on the thermody-
namic quantities: the temperature, charge etc. In the

hydrodynamic regime the latter are promoted to be spatially
dependent, and therefore both the conformal factor of Σc
in (13) and the effective speed of the light cl on Σc become
spatially dependent. Using the coordinates of (15), the
effective speed of light on the hypersurface does not vary
along Σc but the conformal factor of the induced metric is
still (in general) becoming spatially dependent as one
extends the solution into the hydrodynamic regime. By
working with the coordinates (9) one ensures that the
induced metric on Σc remains flat. In other words, this
choice of coordinates is appropriate if one wants to impose
a fixed Dirichlet boundary condition on Σc.
It is useful to make one further rewriting of (9) to obtain

ds2 ¼ −
2

λ
uadxadrþ GðrÞhabdxadxb − FðrÞuaubdxadxb;

ð17Þ

where hab ¼ ηab þ uaub, with the inverse metric being

gð0Þrr¼ λ2F; gð0Þra¼ λua; gð0Þab¼hab

G
: ð18Þ

The Ricci tensor is then1

Rð0Þ
rr ¼ dG02

4G2
−
dG00

2G
;

λ−1Rð0Þ
ra ¼ ua

�
1

2
F00 þ dG0F0

4G

�
;

λ−2Rð0Þ
ab ¼ uaub

�
1

2
FF00 þ dG0FF0

4G

�

þ hab

�ð2− dÞ
4

G02F
G

−
1

2
F0G0 −

1

2
FG00

�
; ð19Þ

where in anticipation of extending to the hydrodynamic
regime the superscript denotes that we are working to
zeroth order in xa derivatives.
We assume that the metric satisfies Einstein’s equations

with a given stress energy tensor; i.e. the Einstein tensor
satisfies

Gμν ¼ T μν: ð20Þ

Throughout this paper we will use T to denote the bulk
stress energy tensor and reserve T to denote the stress
energy tensor associated with the fluid on Σc. Einstein’s
equations then read

1Our convention for the Riemann tensor is Rμ
ρνσ ¼ ∂νΓ

μ
ρσþ

Γμ
λνΓλ

ρσ − ðν↔σÞ. Details of the computation of the curvature at
leading and subleading order may be found in the Appendix.
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G00 ¼ 1

2

G02

G
−
2G
d

T ð0Þ
rr ;

F0G0 ¼ −
1

2
ðd − 1ÞFG

02

G
þ 4GF

d
T ð0Þ

rr þ 4G
dλ

T ð0Þ
ra ua;

F00 ¼ 2

dλ2G
T ð0Þ

ab h
ab þ 1

4
dðd − 1ÞFG

02

G2
þ

−
2

d
ðd − 1ÞFT ð0Þ

rr −
4ðd − 1Þ

dλ
T ð0Þ

ra ua; ð21Þ

where again the superscript denotes working to zeroth order
in xa derivatives. These equations are the ðrrÞ, ðraÞ on ua

and ðabÞ on hab projection of the Einstein equations,
respectively. Clearly there are constraints on the bulk stress
energy tensor such that the metric takes the required
stationary form and these are reflected in the final inde-
pendent Einstein equation, which implies

T ð0Þ
ar Fλþ T ð0Þ

ab u
b ¼ 0: ð22Þ

One can understand this latter constraint as follows. Taking
the static limit of the metric (9), a bulk stress energy tensor
compatible with the symmetries must be characterized by
three scalar functions as

T ð0Þ
μν dxμdxν

¼ T ð0Þrdr2 þ T ð0Þtdt
�
dt −

2

λF
dr

�
þ T ð0Þidxidxi;

¼
�
T ð0Þr −

T ð0Þt

λ2F2

�
dr2 þ T ð0Þtdt2s þ T ð0Þidxidxi;

ð23Þ

where ts is the Schwarzschild time, such that dts ¼
dt − dr=λF. Conservation of the bulk stress energy tensor
implies that only two out of these three functions are
independent. Under a boost the form of the stress energy
tensor becomes

T ð0Þ
μν dxμdxν ¼ T ð0Þrdr2 þ 2

λF
T ð0Þtdrdua

þ T ð0ÞtðuadxaÞ2 þ T ð0Þihabdxadxb: ð24Þ

Thus we recover the constraint (22) together with the fact
that

T ð0Þ
ab ¼ T ð0Þihab þ T ð0Þtuaub; ð25Þ

i.e. there are only two independent ðabÞ Einstein equations,
that projected onto hab and that projected onto uaub.
It is useful to write down the combination of the Einstein

equations which gives the Hamiltonian constraint in a
radial slicing of the spacetime as

K2 − KabKab ¼ dþ1Rþ 2Gμνnμnν; ð26Þ

where Kab is the extrinsic curvature on the timelike
hypersurfaces Σc, K ¼ Kabγ

ab is its trace, dþ1R is the
Ricci scalar of the timelike hypersurface Σc and nμ is the
unit normal vector to the hypersurfaces Σc. The latter is
given by

~n ¼ λ∂r þ ua∂a; n ¼ 1

λ
dr: ð27Þ

Since we are interested in the case in which the hypersur-
face Σc is intrinsically flat this constraint reduces to

K2 − KabKab ¼ 2λ−2T rr; ð28Þ

where we use FðrcÞ ¼ 1. It is straightforward to show that
this Hamiltonian constraint can be rewritten as a constraint
equation for the Brown-York stress energy tensor [51]
defined on Σc

Tab ¼ 2ðKγab − KabÞ ð29Þ

as

dTabTab − T2 ¼ −8dλ−2T rr: ð30Þ

This constraint effectively defines an equation of state for
the fluid. Since the equation is quadratic, one can always
find two possible solutions for given data for T rr on Σc. In
the following section we will interpret the two distinct
solutions for generic bulk stress energy tensors.
The ðarÞ components of the Einstein equations can be

expressed as the momentum constraint

DcKc
a −DaK ¼ T aσnσ; ð31Þ

where Da is the covariant derivative in the induced
geometry γab. Requiring that the Brown-York stress energy
tensor is conserved on Σc implies the constraint

T arλþ T abub ¼ 0; ð32Þ

which is indeed satisfied in our equilibrium configurations
due to (22); recall that FðrcÞ ¼ 1 by construction.
The Brown-York stress energy tensor on the generic

timelike hypersurface Σc can be explicitly expressed in the
perfect fluid form as

Tab ¼ phab þ ρuaub ð33Þ

where p is the pressure and ρ is the energy density, given by

p ¼ λððd − 1ÞG0ðrcÞ þ F0ðrcÞÞ; ð34Þ

ρ ¼ −dλG0ðrcÞ; ð35Þ
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i.e. the values of the gradients of the metric functions,
together with λ, characterize the pressure and energy
density of the fluid. There is an apparent redundancy in
these expressions, as the two thermodynamic quantities are
expressed in terms of three metric parameters. However,
recall that λ characterizes the rescaling of the time coor-
dinate on the hypersurface Σc, (8). By choosing the time
coordinate to be adapted to this hypersurface one can
always take λ ¼ 1 but then the time Killing vector at
asymptotic infinity will not have its usual normalization.
Therefore λ measures the relative normalization of the
Killing vector.
Now let us move to the interpretation of the fluid on Σc

and let the stress energy tensor of the fluid be denoted TF
ab.

A priori, this cannot be assumed to be precisely the Brown-
York stress energy tensor as any linear combination of the
latter with covariant tensors built from the intrinsic metric
γab on the hypersurface Σc and its curvature would also be
conserved. Given that the induced metric is intrinsically
flat, the following stress tensor

TF
ab ¼ C1Tab þ C2ηab ð36Þ

would be conserved for any values of the constants C1 and
C2. In the following section we will argue why C1 should
be precisely 1 in a holographic theory, when the induced
metric on Σc is the Minkowski metric. However, as in
previous works [6–8], C2 remains an ambiguity, which
shifts

p → pþ C2; ρ → ρ − C2 ð37Þ

but does not change the combination ðpþ ρÞ:

ðpþ ρÞ ¼ λðF0ðrcÞ −G0ðrcÞÞ: ð38Þ

The latter combination of course appears in the thermo-
dynamic relation

ðpþ ρÞ ¼ sT þ � � � ¼ λF0ðrHÞðGðrHÞÞd=2 þ � � � ð39Þ

where the ellipses denote additional contributions from
charges etc. and we use

s ¼ 4πðGðrHÞÞd=2; T ¼ λ
F0ðrHÞ
4π

: ð40Þ

Therefore C2 does not lead to any ambiguity in the
thermodynamic relations.
To understand the role of the prefactor C1 one should

consider the effect of a conformal transformation on the
hypersurface metric: if one scales γab → Ω2γab, this is
equivalent to a rescaling of the coordinates as xa → Ωxa.
Under such a rescaling, it is easy to see that

p → Ω−2p; ρ → Ω−2ρ; s → Ω−ds; T → Ω−1T:

ð41Þ

The implication of these scaling relations is as follows.
If the thermodynamic relation is satisfied when the induced
metric on Σc is Minkowski, with T being the horizon
temperature, then the thermodynamic relation is not sat-
isfied for any nontrivial conformal factor Ω unless an
appropriate prefactor C1 is included. For the thermody-
namic relation to be satisfied, one needs to relate the fluid
stress energy tensor TF

ab to the Brown-York stress energy
tensor Tab as

TF
ab ¼ Ω1−dTab þ � � � ; ð42Þ

where the ellipses denote terms built from the induced
metric and, in the general case for which the induced metric
is not flat, its curvature. As noted above, this tensor is
also conserved, provided that the conformal factor Ω is
independent of the coordinates on the hypersurface. This
expression closely resembles the expression for the renor-
malized stress energy tensor in AdS/CFT and indeed we
will discuss the relationship between the two tensors later.
Finally let us reconsider the alternative forms of the

equilibrium metrics (13) and (15) in the context of this
discussion. The background metric for the fluid is the
induced metric on Σc, namely

ds2 ¼ gðrcÞðdxidxi − c2l dt
2Þ≡ γabdxadxb; ð43Þ

which is only conformally flat. With this form of the metric
the entropy density and temperature are given by

s ¼ 4πðgðrHÞÞd=2 ≡ 4πðGðrHÞÞd=2ðgðrcÞÞd=2;

T ¼ 1

4πcl
f0ðrHÞ≡ 1

4π
F0ðrHÞðgðrcÞÞ1=2: ð44Þ

The Brown-York tensor associated with a hypersurface Σc
in the metric in (13) is

Tabdxadxb ¼ λ

�
ðd − 1Þ g

0ðrcÞ
gðrcÞ

þ f0ðrcÞ
fðrcÞ

�

× gðrcÞðdxidxi − c2l dt
2 þUaUbdxadxbÞ

− λd
g0ðrcÞ
gðrcÞ

ðUaUbdxadxbÞ; ð45Þ

which can be rewritten as

Tab ¼ pðγab þ gðrcÞUaUbÞ þ ρgðrcÞUaUb; ð46Þ

where the quantities p and ρ are as given in (34)–(35).
However, these are not the physical pressure and energy
density of the fluid: appropriate conformal factors of gðrcÞ
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must be included in the latter according to the prescription
(42) for the thermodynamic relation to be satisfied.
In equilibrium the choice of coordinate system is merely

one of computational convenience but away from equilib-
rium different choices really correspond to distinct boun-
dary conditions on the hypersurface Σc. For example, it is
only sensible to keep the induced metric on Σc fixed as (43)
when one extends to the hydrodynamic regime if the
conformal factor gðrcÞ is independent of the fluid param-
eters, as well as the speed of light c2l . If the conformal factor
depends on the fluid parameters then implicitly the back-
ground metric on Σc is only flat to leading order in the
hydrodynamic expansion. Moreover the fluid stress energy
tensor defined in (42) would also only be conserved to
leading order in gradients. In practice, as we discuss in the
next section, for many bulk stress energy tensors one can
immediately integrate the equations of motion to obtain
gðrÞ ¼ r2, which is independent of the fluid parameters.

III. EXAMPLES OF FLUIDS

In this section we consider examples of fluids with
various bulk stress energy tensors. In particular, we explore
the interpretation of the two solutions for the equation of
state (30).

A. Negative cosmological constant

Our first example is the case in which the bulk stress
energy tensor is a negative cosmological constant, namely
T μν ¼ −Λgμν. In this case the Hamiltonian constraint (30)
can be written in terms of the metric (1) as

dτ0ðf0 þ ðd − 1Þfτ0Þ þ 2Λ ¼ 0; ð47Þ

where e2τðrÞ ¼ gðrÞ. This gives two possible equations of
state for the fluid

ρ ¼ −
pd

ðd − 1Þ �
1

ðd − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2p2 þ 8dðd − 1ÞΛ

q
; ð48Þ

from which we then obtain two possible geometries for
two distinct dual fluids. Notice that in the limit Λ → 0 we
recover the two already known results, namely the Rindler
equation of state ρ ¼ 0 (see e.g. [8]) and the Taub
geometry2 equation of state ρ ¼ − 2d

d−1p (see [9]).
The general solution to the ðrrÞ Einstein equation is

gðrÞ ¼ ðc1rþ c2Þ2 with c1 ≠ 0: ð49Þ
Here c1 and c2 denote integration constants. The special
case c1 ¼ 0 and gðrÞ constant is not compatible with the

other equations of motion unless Λ ¼ 0. Let us set c1 ¼ 1
L,

rescale the r coordinate r̄
L ¼ r

L þ c2 and use the same
symbol for the radial coordinate r̄ → r. The remaining
Einstein equations provide a solution for fðrÞ which reads

fðrÞ ¼ −
2

dðdþ 1ÞΛr
2 þ c3

rd−1
: ð50Þ

Consider first the case c3 ≠ 0. Inserting into (50) the

value of the cosmological constant Λ ¼ − dðdþ1Þ
2L2 relevant to

the maximally symmetric spacetime with negative curva-
ture, the static metric (1) represents a “naked-brane” or a
black-brane geometry depending on the sign of c3; i.e. the
metric is

ds2 ¼ −
r2

L2

�
1þ c3L2

rdþ1

�
dt2 þ r2

L2
dxidxi þ 2dtdr: ð51Þ

Note that in the limit Λ → 0 the Taub geometry with a
positive or negative gtt (depending on the sign of c3) is
recovered; the limit is obtained by scaling xi=L → xi

with L → ∞ and ðt; rÞ finite. The case with c3 > 0 is
the well-known unphysical negative mass black brane, with
naked singularity at r ¼ 0, and we shall not consider it
further here. Conversely setting c3L2 ¼ −rdþ1

H , the result-
ing geometry is that of a (positive mass) AdS black brane in
ingoing Eddington-Finkelstein coordinates:

ds2 ¼ −
r2

L2
hðrÞdt2 þ r2

L2
dxidxi þ 2dtdr;

hðrÞ ¼
�
1 −

�
rH
r

�
dþ1

�
: ð52Þ

The dual fluid living on a generic timelike hypersurface
Σc of constant rc satisfies the equation of state (48) with a
positive sign. Boosting and then rescaling to bring the
metric into the form (9) with

GðrÞ¼ r2

r2c
; FðrÞ¼ r2

r2c

hðrÞ
hc

; λ¼ rc
L

ffiffiffiffiffi
hc

p
; ð53Þ

its thermodynamic properties can be obtained immediately
from (34)–(35):

ρ ¼ −
2d
L

h1=2c ; ð54Þ

p ¼ 1

Lh1=2c

ð2dhc þ rch0ðrcÞÞ; ð55Þ

where here and in what follows we use the shorthand
notation hc ≡ hðrcÞ. Notice that in the near horizon limit
rc → rH the pressure and energy density behave as

2The Taub geometry is a vacuum, homogeneous but aniso-
tropic solution of Einstein gravity first found in four bulk
spacetime dimensions in [52]. There is a curvature singularity
at r ¼ 0 which is timelike and naked.
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ρ → Oðrc − rHÞ12; ð56Þ

p →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ 1Þ

p ffiffiffiffiffiffi
rH

p
L

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rc − rH

p þOðrc − rHÞ12 ð57Þ

and thus have the same behavior as the corresponding
thermodynamic quantities of the Rindler fluid3 (see [8]),
provided that the constant k is identified with the surface
gravity of the black brane as

k ¼ ðdþ 1Þ
2L2

rH: ð58Þ

The energy density (54) is negative, but as already
mentioned one can use the ambiguity in the definition of
the Brown-York stress energy tensor (36) in order to shift
the energy density to a positive value. Moreover, the
thermodynamic relation

ðρþ pÞ ¼ dþ 1

Lh1=2c

rdþ1
H

rdþ1
c

ð59Þ

is independent of this ambiguity. The Hawking temperature
computed from the metric (9) with the time coordinate
rescaled is

TH ¼ ðdþ 1Þ
4πrcL

rHffiffiffiffiffi
hc

p : ð60Þ

The entropy density of the horizon, again expressed in
terms of the rescaled coordinates, is

s ¼ 4π
rdH
rdc

; ð61Þ

and thus the thermodynamic relation (59) is indeed
satisfied. The c3 → 0 limit gives the AdS vacuum metric
expressed in ingoing coordinates

ds2 ¼ −
r2

L2
dt2 þ r2

L2
dxidxi þ 2dtdr; ð62Þ

with the energy density and the pressure being

ρ ¼ −
2d
L

; p ¼ 2d
L

; ð63Þ

where again these are evaluated in coordinates in which the
induced metric on the hypersurface is Minkowski. These

values may be viewed as the boundary limit ðrc → ∞Þ and
the vacuum AdS limit (rH → 0) of the thermodynamic
quantities found in (54)–(55).
The arbitrariness in the definition of the fluid stress

energy tensor (36) can be used to redefine the pressure of
the dual fluid in order to obtain a vanishing renormalized
ideal stress energy tensor TF

ab for the vacuum, choosing
C2 ¼ −2d=L. The combination ðρþ pÞ ¼ 0 is invariant
and reflects the fact that the AdS spacetime metric (62) has
a trivial horizon geometry and thus one cannot associate to
it a nonzero entropy. One could however define an Unruh
temperature for the observers on timelike hypersurfaces
which is nonvanishing but fixed:

T ¼ 1

2πL
: ð64Þ

The thermodynamic relation ðpþ ρÞ ¼ Ts is trivially
satisfied in this limit since the entropy density s is zero.
Before turning to the other independent solution of the

Hamiltonian constraint, we should note the following.
Suppose we instead choose the induced metric on Σc to
be the conformally rescaled metric

ds2 ¼ r2c
L2

ð−dt̄02 þ dx̄0idx̄0iÞ; ð65Þ

in terms of which coordinates

s ¼ 4π
rdH
Ld ; TH ¼ ðdþ 1Þ

4πL2

rHffiffiffiffiffi
hc

p : ð66Þ

In order for the thermodynamic relation to be satisfied,
then as anticipated we need to use (42) to define the energy
density and pressure; they are rescaled by a factor of
rdþ1
c =Ldþ1 relative to (54) and (55).
The effective temperature clearly diverges as Σc

approaches the horizon but this divergence evidently arises
only from the time coordinate rescaling. In other words, in
rescaling time so that the induced metric on Σc is flat, the
effective energy density, pressure and temperature diverge
as the hypersurface approaches the horizon. If one worked
instead with the coordinate t the temperature and energy
density would remain finite but the induced metric (the
background metric for the fluid) would as expected become
null in this limit.
Finally let us turn to the interpretation of the equation of

state with a negative sign. To understand this it is useful to
rewrite the equation of state in the form

�
1 −

1

d

�
ρþ p ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − 8

ðd − 1Þ
d

λ−2T rr

r
; ð67Þ

which reduces to the equation given in (48) in the case
T rr ¼ −λ2Λ. The solution given above solves this equation

3After restoring the dimensionful parameter k, the flat space-
time metric in Rindler coordinates is written ds2 ¼ −ðkrÞ2dt̂2 þ
dxidxi þ dr2 and in ingoing Rindler coordinates is ds2 ¼
−2krdt2 þ dxidxi þ 2dtdr. It is straightforward to show that
the thermodynamic quantities of the dual fluid living on a generic
timelike hypersurface Σc of constant r ¼ rc are pR ¼ ffiffiffiffiffi

2k
p

1ffiffiffi
rc

p ,
ρR ¼ 0.
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with a positive sign. A corresponding solution for the
equation of state with a negative sign is obtained by taking

ρ → −ρ; p → −p; ð68Þ
whenever T rr ≠ 0. (When T rr ¼ 0, i.e. vacuum solutions,
the equations of state degenerate. The positive sign above
gives ρ ¼ 0 while the negative sign gives the Taub equation
of state.) Now the switch in signs in the energy density and
pressure can be achieved by switching the direction of the
normal to the hypersurfaces, i.e.

nμ → −nμ; ð69Þ
which corresponds to changing the sign of the extrinsic
curvature of the hypersurface. Physically, however, the
negative sign solution gives a negative value for ðρþ pÞ
and therefore the thermodynamic relation ðρþ pÞ ¼ sT
could only be satisfied by a negative temperature.
Therefore the second equation of state never gives physi-
cally meaningful solutions.

B. Positive cosmological constant

We now turn to the case in which the bulk stress energy
tensor is a positive cosmological constant. The spacetime
metric (1) solving Einstein equations with positive

cosmological constant Λ ¼ dðdþ1Þ
2l2 corresponding to

c3 ≥ 0 in (50) is

ds2 ¼ fðrÞdt2 þ r2

l2
dxidxi þ 2dtdr; ð70Þ

with

fðrÞ ¼ r2

l2

�
1 −

�
rH
r

�
dþ1

�
: ð71Þ

This metric is related to the AdSdþ2-black brane (52)
through a Wick rotation of the time coordinate t (i.e. going
to Euclidean AdS-type coordinates), of the radial coordinate
r and of the AdS radius L:

t → −it; r → ir; l2 → −L2: ð72Þ
The induced metric on hypersurfaces of constant r is
positive definite and the unit normal vector is now time-
like4:

n ¼ −
1ffiffiffi
f

p dr: ð74Þ

The metric (70) is a de Sitter brane in the so-called
inflationary patch; de Sitter is not static so one could
not expect the ansatz to produce a spacetime foliated
by timelike hypersurfaces. The existence of the analytic
continuation to AdS guaranteed that one could describe
de Sitter in this ansatz, with the analytic continuations
indicated above.
One can write down the Brown-York tensor on the

hypersurface, but it cannot be interpreted as a perfect fluid
stress energy tensor since the hypersurface is spacelike. By
construction it can of course be interpreted as the analytic
continuation of such a fluid stress energy tensor. Note that
the metric (70) can be written in the more familiar planar
dS coordinates after performing the following change of
variables

dt ¼ dy −
dr2

hðrÞ ; r2 ¼ l4

τ2
; ð75Þ

the resulting metric being

ds2 ¼ l2

τ2

�
hðτÞdy2 þ dxidxi −

dτ2

hðτÞ
�
; ð76Þ

with

hðτÞ ¼ 1 −
�

τ

τH

�
dþ1

: ð77Þ

This is the dSdþ2-“S brane” metric5 in planar coordinates
after identifying l with the dS radius and τ being the dS
(inflationary) time coordinate.

C. Fluids for which T rr ¼ 0

Certain matter bulk stress energy tensors compatible
with the static ansatz (1) will in addition satisfy T rr ¼ 0.
The significance is that if T rr vanishes, then one can
immediately integrate the ðrrÞ Einstein equation to obtain

gðrÞ ¼ ðc1rþ c2Þ2: ð78Þ

This integrability is, as mentioned earlier, related to the
nested hierarchy found in the Bondi-Sachs [31,32] para-
metrization for vacuum spacetimes; similarly the case of
negative cosmological constant also satisfies this property.
As discussed above, vanishing c1 is generically only
consistent with the other Einstein equations when the bulk
stress energy tensor is zero. Integrating the ðarÞ Einstein

4The unit normal vector is defined as

n ¼ 1ffiffiffiffiffiffiffiffiffiffi�grr
p dr; ð73Þ

with a plus sign if it is spacelike or a minus sign if it is timelike.
Moreover, there is always an arbitrariness in the redefinition
nμ → −nμ depending on the direction of the vector. As in the
previous case we choose the overall sign so that the hypersurface
has positive extrinsic curvature.

5Referring to this as a brane, while common in the literature, is
somewhat of a misnomer since τ ¼ τH is a coordinate singularity
rather than a brane horizon.
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equations one obtains the solution for fðrÞ in terms of the
bulk stress tensor component T tr

fðrÞ ¼ c3
ðrþ c2=c1Þd−1

þ 2

d
ðrþ c2=c1Þ1−d

Z
r
dr0T r0tðr0 þ c2=c1Þd:

ð79Þ

In the case where c1 ¼ 0 the remaining Einstein equations
imply f00 ¼ 0. When c1 is nonzero one can absorb both
constants into a redefinition of the origin and scale of the
radial coordinate, ðc1rþ c2Þ → r, and hence

fðrÞ ¼ c3
rd−1

þ 2

drd−1

Z
r
dr0T r0tðr0Þd: ð80Þ

The class of stress energy tensors for which T rr ¼ 0
includes for example gauge fields. Noting that a vector
field stress energy tensor is expressed in terms of the field
strength Fμν as

T ðFÞμν ¼ 2

�
FμρFν

ρ −
1

4
FρσFρσgμν

�

þm2

�
AμAν −

1

2
AρAρgμν

�
; ð81Þ

then the metric ansatz together with the antisymmetry of
Fμν forces the ðrrÞ components in the first line to vanish.
The second line involves the mass parameter of the vector
field and the vector potential Aμ; the ðrrÞ components
vanish if m2 ¼ 0 (i.e. it is a gauge field) or Ar ¼ 0.
However the latter is generically not implied by the
symmetries of the equilibrium static solution, which permit
a nonzero FtrðrÞ as the massive vector field equation is

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
Fμ
νÞ ¼ m2Aν; ð82Þ

and the ðrÞ component of the left-hand side is therefore
generically nonzero. The exception is when m2 ¼ 0:
then Ar is still nonzero in a gauge which is regular at
the horizon i.e.

A ¼ aðrÞ
�
dt −

dr
fðrÞ

�
¼ aðrÞdts ð83Þ

(with ts again the Schwarzschild time) but Ar does not
appear in the stress energy tensor. Note that in the specific
case of four spacetime dimensions a constant field strength
in the two spatial directions is also consistent with the
required symmetries; this case is relevant for discussing
gravity duals to magnetohydrodynamics [19,20].

Consider the case in which the bulk stress energy tensor
consists of a cosmological constant and a gauge field. The
gauge field equation gives

Ftr ¼
q
rd

; ð84Þ

with the conserved charge being proportional to q and the
general solution for fðrÞ hence becomes

fðrÞ ¼ c3
rd−1

−
2

dðdþ 1ÞΛr
2 þ 2q2

dðd − 1Þr2ðd−1Þ : ð85Þ

For negative cosmological constant we therefore recover
AdS charged branes, as expected.
For Λ ¼ 0 the solution with c3 > 0 describes what might

be called a charged Taub fluid: the metric is not asymp-
totically flat and has a naked singularity at r ¼ 0. For
c3 < 0 fðrÞ is positive for 0 < r < rH and negative for
r > rH where fðrHÞ ¼ 0. In the inner region hypersurfaces
of constant r are timelike, but there is a naked singularity
and the region is bounded by a horizon. In the outer region
hypersurfaces of constant r are spacelike, and both t and r
are null coordinates as r → ∞.
One can understand the relationship of the latter solution

to the regions inside a Reissner-Nordstrom black hole as
follows. Consider four-dimensional black holes (the gen-
eralization to d > 2 being straightforward). Start from the
metric in ingoing coordinates

ds2¼−
�
1−

2M
R

þQ2

R2

�
dv2þ2dvdRþR2dΩ2

2: ð86Þ

Now zoom into the neighborhood of a point on the two-
sphere, which without loss of generality can be chosen to
be the north pole, by letting θ ¼ ϵx with ϵ ≪ 1 i.e.

dθ2 þ sin2θdϕ2 ≈ ϵ2ðdx2 þ x2dϕ2Þ: ð87Þ

In addition scale the radial coordinate such that r ¼ ϵR
remains finite and the time coordinate such that t ¼ v=ϵ
stays fixed, and also hold fixed

2m≡ 2Mϵ3; q≡Qϵ2: ð88Þ

Under such rescalings one can see immediately using

R� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
ð89Þ

that the outer horizon at Rþ is pushed to infinity (in the r
coordinate) while the inner horizon at R− remains at a finite
value of r. The resulting metric is
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ds2 ¼ −
�
q2

r2
−
2m
r

�
dt2 þ 2dtdrþ r2ðdx2 þ x2dϕ2Þ;

ð90Þ

which is the d ¼ 2 case of the metric given above. As
discussed above this metric covers the region between an
outer horizon, an inner horizon and the singularity.
For positive cosmological constant, the solution with

c3 > 0 describes a charged solution with a singularity at
r ¼ 0 and a horizon at a finite value of r ¼ rH, as discussed
in the previous section. The hypersurfaces of constant r
are only timelike in the region r < rH. The solution with
c3 ≤ 0 is more interesting: while the behavior of fðrÞ at
very small r and very large r is unchanged, the function can
pass through zero more than once in the intermediate
region, corresponding to inner and outer horizons.

D. Fluids for which T rr ≠ 0

Many common matter Lagrangians induce stress energy
tensors which are compatible with the static ansatz (1)
but do not satisfy T rr ¼ 0. In such cases the ðrrÞ Einstein
equation does not decouple and one cannot in general
immediately solve for gðrÞ (and hence the other defining
functions); the Einstein and matter field equations remain
coupled.
To illustrate this point it is useful to consider a class of

Lagrangians which have recently received considerable
attention in the context of AdS/CMT: (neutral) scalars
coupled to vector fields, so-called Einstein-Maxwell-
dilaton models. If we express the matter action for a single
such scalar ϕ coupled to a vector field Aμ as

Sm ¼ −
Z

ddþ2x
ffiffiffiffiffiffi
−g

p �
1

2
ð∂ϕÞ2 þ VðϕÞ

þ 1

4
eαϕF2 þ 1

2
eβϕm2A2

�
; ð91Þ

with the scalar potential and the parameters ðα; β; m2Þ
defining the model, then the equations of motion are known
to admit Lifshitz, hyperscaling violating Lifshitz solutions
and other charged dilatonic black holes for various choices
of these parameters. The matter stress energy tensor is

T μν ¼
1

2
ð∂μϕÞð∂νϕÞ −

1

4
ð∂ϕÞ2gμν − 1

2
VðϕÞgμν

þ 1

2
eαϕ

�
FμρFν

ρ −
1

4
FρσFρσgμν

�

þ 1

2
m2eβϕ

�
AμAν −

1

2
AρAρgμν

�
; ð92Þ

and the matter field equations are

□ϕ ¼ V 0ðϕÞ þ 1

4
αeαϕF2 þ 1

2
βm2eβϕA2;

∇μðeαϕFμνÞ ¼ 2m2eβϕAν; ð93Þ

with ∇μ the covariant derivative. Consistency with the
static, spatially homogeneous ansatz requires6

ϕ ¼ ϕðrÞ; A ¼ aðrÞ
�
dt −

dr
fðrÞ

�
ð94Þ

but then T rr ≠ 0 whenever ϕðrÞ ≠ 0 and/or m2aðrÞ ≠ 0.
The metric plus matter is characterized by four functions
but the equations of motion are coupled and nonlinear so
they cannot be solved analytically in general. For example,
in the case of the pure massive vector (no scalar field) an
exact solution at zero temperature with Lifshitz scaling
symmetry is known (see e.g. [53]), but corresponding finite
temperature blackened solutions have only been found
numerically (see for example [54–57]). The zero temper-
ature Lifshitz solution can be written in our coordinate
system as

fðrÞ ¼ r2

z2
; gðrÞ ¼

�
r
z

�
2=z

;

aðrÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
z − 1

p

z2
r; m2 ¼ d2

2z2
: ð95Þ

In this case the ðrrÞ Einstein equation can be integrated to
give an analytic solution for the function gðrÞ, but the latter
is no longer given by gðrÞ ∝ r2. The usual form of the
Lifshitz metric, i.e.

ds2 ¼ dρ2

ρ2
þ
�
−
dτ2

ρ2z
þ dxidxi

ρ2

�
; ð96Þ

is obtained by the redefinitions

r ¼ zρ−z; dτ ¼
�
dt −

dρ
ρ

�
: ð97Þ

IV. RENORMALIZED VERSUS FLUID STRESS
ENERGY TENSORS

In this section we will explore the relationship between
the fluid stress energy tensor which we have defined and
the renormalized holographic stress energy tensor [58–60].
We begin with a brief discussion of holographic renorm-
alization for asymptotically locally AdS spacetimes; see
[61] for a review. Asymptotically one can always express
such spacetimes in Fefferman-Graham coordinates as

6A magnetic flux for a gauge field is again possible only in
four spacetime dimensions.
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ds2 ¼ L2

�
dρ2

ρ2
þ 1

ρ2
gabðρ; xÞdxadxb

�
ð98Þ

where the metric gab admits an expansion

gabðρ; xÞ ¼ gð0Þabðρ; xÞ þ � � � þ gðdþ1Þabðρ; xÞρdþ1 þ � � �
ð99Þ

The ellipses denote terms which are subleading as ρ → 0;
the form of the expansion depends on the details of the bulk
stress energy tensor but in the case of pure cosmological
constant ðgð0Þ; gðdþ1ÞÞ are the non-normalizable and nor-
malizable modes, respectively.
Using the defining relation of AdS/CFT [62,63], the

expectation value of the dual CFT stress energy tensor is
defined as

hTCFT
ab i ¼ −

2ffiffiffiffiffiffiffiffiffiffi−gð0Þ
p δSren

δgabð0Þ
; ð100Þ

where we work in Lorentzian signature and Sren denotes the
renormalized bulk action, in which counterterms have been
added to remove the volume divergences. Algorithmically
one expresses this in terms of the induced metric γab on a
hypersurface of constant ρ ¼ ρc and the subtracted bulk
action Ssub as

hTCFT
ab i ¼ − lim

ρc→0

�
Ld−1

ρd−1c

2ffiffiffiffiffiffi−γp δSsub
δγab

�
; ð101Þ

where the renormalized action is defined as

Sren ¼ lim
ρc→0

Ssub; ð102Þ

with the subtracted action being the bare regulated action
plus counterterms which remove volume divergent terms.
In the specific case of pure cosmological constant the dual
stress energy tensor can be expressed as

hTCFT
ab i ¼ lim

ρc→0

��
L
ρc

�
d−1

Tγ
ab

�
¼ ðdþ 1Þ

L
gðdþ1Þab þ � � � ;

ð103Þ

where following [60] (and setting 16πGN ¼ 1)

Tγ
ab ¼ TBY

ab þ Tct
ab;

TBY
ab ¼ 2ðKγab − KabÞ;

Tct
ab ¼ −

2d
L

γab þ � � � ; ð104Þ

TBY
ab being the Brown-York tensor and the ellipses in the

last expression denote contributions due to additional
counterterms which vanish when the metric γ is flat.

Restricting to this case, in which the corresponding
boundary metric gð0Þ is flat, the renormalized CFT stress
energy tensor is

hTCFT
ab i ¼ ðdþ 1Þ

L
gðdþ1Þab: ð105Þ

One can trivially rewrite (103) as

hTCFT
ab i ¼ limΩ→∞½Ωd−1ðTBY

ab þ C2γab þ � � �Þ� ð106Þ

where the induced metric on the hypersurface of constant
radius is Ω2γab and C2 ¼ −2d=L. As anticipated, this is
very closely related to the expression used for the fluid
stress energy tensor but the CFT stress energy tensor is
defined using different hypersurfaces. Starting from the
generic fluid metric in ingoing coordinates (9) one can
define Schwarzschild coordinates xas such that

dxa ¼ dxas þ
uadr
λFðrÞ ; ð107Þ

so that

ds2 ¼ dr2

λ2FðrÞ þ GðrÞηabdxasdxbs

þ ðGðrÞ − FðrÞÞuaubdxasdxbs : ð108Þ

By defining

L2
dρ2

ρ2
≡ dr2

λ2FðrÞ ; ð109Þ

the metric can be brought into Fefferman-Graham form.
For example, in the AdS black brane (52), by performing

the following change of radial coordinates

r ¼ L2

ρ

�
1þ 1

4

�
rHρ
L2

�
dþ1

� 2
dþ1

; ð110Þ

with inverse transformation

ρ ¼ L2

r

�
2

1þ ffiffiffiffiffiffiffiffiffi
hðrÞp

� 2
dþ1

; ð111Þ

the black-brane metric can be written uniquely in the
Fefferman-Graham form requiring the boundary to be at
ρ ¼ 0 and the Dirichlet condition for the representative of
the conformal structure at the boundary gð0Þab ¼ ηab. The
transformed metric is
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ds2 ¼ L2

ρ2
dρ2 þ L2

ρ2
gfgðρÞηabdxasdxbs

þ L2

ρ2
ðgfgðρÞ − ffgðρÞÞðuadxas Þ2;

ffgðρÞ ¼
�
1þ 1

4

�
rHρ
L2

�
dþ1

�2ð1−dÞ
ðdþ1Þ

�
1 −

1

4

�
rHρ
L2

�
dþ1

�
2

;

gfgðρÞ ¼
�
1þ 1

4

�
rHρ
L2

�
dþ1

� 4
dþ1

: ð112Þ

Notice that the coordinate transformation is singular at the
horizon ρH ¼ 2

2
dþ1L2=rH. A hypersurface of constant rc is

mapped to a radial hypersurface ρðrcÞ. The coordinates are
chosen such that the induced metric on a radial hypersur-
face as ρ → 0 approaches ηabL2=ρ2.
Expanding the metric (112) around ρ ¼ 0 one can extract

the holographic CFT stress energy tensor using (105),
which is indeed that of a conformal ideal fluid in ðdþ 1Þ
spacetime dimensions:

hTCFT
ab i ¼ ð4πÞdþ1Ld

ðdþ 1Þdþ1
Tdþ1ðhab þ duaubÞ; ð113Þ

where hab ¼ ηab þ uaub. The energy density ρe, the
pressure p and the temperature T of the dual fluid are

ρe¼
d
L

�
rH
L

�
dþ1

; p¼ 1

L

�
rH
L

�
dþ1

; T¼ðdþ1ÞrH
4πL2

;

ð114Þ

with the temperature being the Hawking temperature.

A. Cutoff stress energy tensor

To compare with the discussion in previous sections we
now define the stress energy tensor of a dual fluid living on
a generic timelike hypersurface Σc by taking the expression
(103) on a finite radial coordinate ρc without taking the
limit towards the boundary. In other words, one defines

hTF
abiΣc

¼
��

L
ρðrcÞ

�
d−1

Tγ
ab

�
Σc

: ð115Þ

Since the induced metric on this hypersurface is no longer
conformally flat, one needs to rescale the xas coordinates
as in the previous section. The stress energy tensor takes
the form of an ideal fluid with energy density ρF and
pressure pF:

ρF ¼ d
L

�
rH
L

�
dþ1

�
1þ A

4

�
−1
;

pF ¼ 1

L

�
rH
L

�
dþ1 ð1þ d A

4
Þ

ð1 − A2

16
Þ ; ð116Þ

where A ¼ ðρcrH=L2Þdþ1. In the limit rc → ∞ (A → 0)
one recovers the values given above (114) and the stress
energy tensor is traceless on the boundary as it should be.
Using the relationship (111) between r and ρ coordinates,7

(116) can be immediately rewritten as

ρF ¼ 2d
L

�
L

ρðrcÞ
�

dþ1

ð1 − h1=2c Þ;

pF ¼ 1

L

�
L

ρðrcÞ
�

dþ1
�
2dðh1=2c − 1Þ þ rch0ðrcÞ

h1=2c

�
; ð117Þ

where

hc ¼
�
1 −

rdþ1
H

rdþ1
c

�
; ð118Þ

which agree with (54) and (55) after taking into account the
inclusion of the counterterm and the conformal factor (in
Fefferman-Graham coordinates) which gives

ρF ¼
�

L
ρðrcÞ

�
dþ1

�
ρþ 2d

L

�
; ð119Þ

pF ¼
�

L
ρðrcÞ

�
dþ1

�
p −

2d
L

�
: ð120Þ

The usual conformal fluid pressure and energy density
(114) can be now obtained after pushing the cutoff towards
the boundary rc → ∞.
The agreement between the expressions follows from

the form of the coordinate transformations (107) and (109):
restricted to a surface of constant r the ingoing and
Schwarzschild coordinates coincide. When one extends
the solutions into the hydrodynamic regime, however, the
corresponding coordinate transformations will be of the
form

dxa − uaðxÞ dr
λðxÞFðr; xÞ þ � � � ¼ dxas ;

L
dρ
ρ

¼ −
dr

λðxÞFðr; xÞ þ � � � ; ð121Þ

where the ellipses are subleading terms in the hydro-
dynamic expansion. As we will see in the following
section, hypersurfaces of constant ρ no longer coincide
with hypersurfaces of constant r in the hydrodynamic
regime.

7Notice that the relation (111) is the same as the relation one
obtains starting from (52) in rescaled coordinates (9) with (53)
due to the cancellation of factors in the denominator of the right-
hand side of (109).
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B. Interpretation and dual field theory

In this section we turn to the interpretation in terms of
renormalization group flow of the putative dual field theory.
Let us step back from the specific examples to the generic
metric ansatz (1) in which the induced metric γðrcÞ on Σc is
given in (2). The spacetime Penrose diagram is illustrated
in Fig. 1.
In the putative fluid/gravity correspondence, the back-

ground metric for the fluid (and hence for the field theory)
is γðrcÞ. Viewing rc as an energy scale, it is manifest that
this metric runs with the energy scale. In field theory
language, suppose the field theory has couplings gaðΛÞ
which run with the energy scale Λ via their beta functions

βga ¼
∂gaðΛÞ
∂ lnΛ ; ð122Þ

then it is usual to characterize the couplings in terms of a
reference (cutoff) energy scale Λo such that gaðΛoÞ≡ gao. In
the case at hand, the induced metric for the fluid effectively
provides background couplings for the putative dual theory.
The boundary condition on Σc imposes

γðrcÞab ¼ Ω2ηab; ð123Þ

i.e. at this “energy” scale the metric is conformally flat.
Having fixed the metric at this reference point, the metric at
a different energy scale is generically not conformally flat
since the time and space components “run” differently. Just
as in field theory, however, the choice of reference point is
arbitrary: one can change rc → rc0.

One can only provide a fluid/gravity interpretation if
the fluid stress energy tensor is conserved8 and satisfies a
thermodynamic relation with the temperature and entropy
density. As many authors have pointed out, the Brown-
York stress energy tensor defined in (29) is a natural
candidate for the fluid energy momentum tensor as it is
conserved. One has to be careful here, though, since a fluid
stress energy tensor defined as

TF
ab ¼ C1ðrcÞTBY

ab þ C2ðrcÞηab ð124Þ

will be conserved for any choice of ðC1ðrcÞ; C2ðrcÞÞ. The
function C2ðrcÞ drops out of the combination ðρþ pÞ
appearing in the thermodynamic relation but C1ðrcÞ is not
restricted by conservation. We argued previously that
C1ðrcÞ must scale homogeneously under a conformal
rescaling of the induced metric so that the thermodynamic
relation is satisfied for any choice of the conformal factor:
C1ðrcÞ → Ω1−dC1ðrcÞ as ηab → Ω2ηab.
Clearly the thermodynamic relation is only satisfied for

a specific choice of C1ðrcÞ (for fixed induced metric ηab).
The choice of C1ðrcÞ defines the holographic dictionary
for the fluid. For Ω ¼ 1 the choice of C1ðrcÞ which is
consistent with the thermodynamic relation is precisely
C1ðrcÞ ¼ 1, in both the Rindler and the AdS cases. We will
now show why this must be the case in any putative
holographic correspondences (in which the bulk spacetime
is describable by Einstein gravity with matter) satisfying a
GKPW-type dictionary [62,63], i.e. a duality between the
on-shell bulk action with “boundary condition” γðrcÞ and
the dual generating functional W½γðrcÞ�. We do not need to
assume a negative cosmological constant or indeed any
specific form for the bulk stress energy tensor.
The proof makes use of a Hamiltonian description of the

bulk dynamics, following the same approach as in the
Hamiltonian method of holographic renormalization [64].
One difference relative to the latter is that we will work
with a finite cutoff and we will not need to look in detail
at the renormalization. A second difference relative to
Hamiltonian holographic renormalization is that we do not
consider generic bulk solutions with given asymptotics;
instead we restrict to the hydrodynamic regime in which
the bulk solution is near to an equilibrium solution with
horizon.
Let us consider a ðdþ 2Þ-dimensional manifold which

can be radially foliated by hypersurfaces Σr of constant r.
The metric can then be decomposed as

ds2 ¼ ðN2 þ NaNaÞdr2 þ 2Nadxadrþ γabdxadxb;

ð125Þ

FIG. 1 (color online). The spacetime has past and future
horizons H− and Hþ respectively. The dual fluid lives on a
timelike surface Σc. Lines of constant t and constant r in the
Eddington-Finkelstein coordinate system are shown.

8Strictly speaking the fluid stress energy tensor should satisfy
an appropriate conservation equation but is not always conserved.
The generalization to cases in which it is not conserved because
of e.g. sources for currents is straightforward.
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withN the shift andNa the lapse. This metric reduces to the
form used in the previous sections upon fixing the gauge
such that ðN2 þ NaNaÞ ¼ 0, which is always possible
since Na is timelike; comparing with the (9), one sees that

Na ¼ −
ua
λ
; γab ¼ GðrÞηab þ ðGðrÞ − FðrÞÞuaub:

ð126Þ

However, one cannot fix this gauge before deriving
the constraint equations. The action for Einstein gravity
coupled to an arbitrary matter Lagrangian Lm (which may
include a cosmological constant) can be written as

S ¼ −
1

2k2ðdþ2Þ

Z
ddþ2x

ffiffiffiffiffiffi
−γ

p
NðR̂þ K2 − KabKab − LmÞ

ð127Þ

where R̂ is the curvature of the metric γab and Kab is the
extrinsic curvature of the hypersurface Σr. Note that in this
rewriting of the bulk Einstein-Hilbert action one obtains a
boundary term which precisely cancels the Gibbons-
Hawking term; the variational problem for this action is
well defined for given boundary data γab. The canonical
momentum conjugate to γab is

πab ¼ δL
δð∂rγ

abÞ ¼ −
ffiffiffiffiffiffi−γp

2k2ðdþ2Þ
ðKγab − KabÞ ð128Þ

where the Lagrangian L is defined via S ¼ R
drL. Note

that the momenta conjugate to the shift and lapse vanish,
implying that the equations of motion are constraints. The
crucial next step is to use the Hamilton-Jacobi formalism of
mechanics to express the momenta on any given hyper-
surface as variations of the on-shell action with respect to
the induced values of the fields on this surface, namely

πabðrcÞ ¼
δSonshell
δγabðrcÞ

: ð129Þ

Note that rc is arbitrary, with the relation holding for any rc
provided that the radial coordinate is well defined. If a
GKPW dictionary of the form given in [62,63] holds, then
the on-shell action acts as the generating functional for
background metric γab and the corresponding stress energy
tensor is defined as

Tab ¼ −
2ffiffiffiffiffiffi−γp δSonshell

δγabðrcÞ
: ð130Þ

Using the Hamilton-Jacobi relation this quantity becomes
the Brown-York tensor, with constant prefactor

Tab ¼ 1

k2ðdþ2Þ
ðKγab − KabÞ: ð131Þ

Therefore the identification of the on-shell action with the
generating functional of the dual theory in a background
metric γab is equivalent to the stress energy tensor of the
dual theory being the Brown-York tensor.
The only assumption so far is the existence of a radial

foliation. If one further insists that such a foliation is by
timelike hypersurfaces then it would be valid outside a
horizon but clearly not applicable inside a horizon.
Moreover, while the variational problem is well defined
for the action (127) given the metric on the bounding
hypersurface, the variational problem would be equally
well posed if one added to the action boundary terms
SB½γ� depending only on quantities intrinsic to the induced
geometry. The corresponding stress energy tensor would
then become

Tab → Tab −
2ffiffiffiffiffiffi−γp δSB½γ�

δγab
: ð132Þ

The boundary terms are uniquely determined in AdS/CFT
when one takes the conformal class of the metric to be fixed
as one takes the boundary to infinity and these terms are
equivalent to the counterterms needed to obtain finite
renormalized quantities. At finite rc there is no natural
way to fix the ambiguity with a generic bulk solution but, as
we saw earlier, if we restrict to the hydrodynamic regime
with the induced metric being flat, the ambiguity does not
affect the thermodynamic relation. If the boundary metric
for the dual theory is ~γab ¼ Ω2γab then

T ~γ
ab ≡ −

2ffiffiffiffiffiffi
−~γ

p δSonshell
δ~γabðrcÞ

¼ Ω1−dTγ
ab; ð133Þ

in accordance with the relation noted earlier.

V. HYDRODYNAMICS AND NEAR
EQUILIBRIUM SOLUTIONS

In this section we will promote general seed equilibrium
solutions to hydrodynamic solutions by allowing the fluid
properties to become slowly varying. Following the dis-
cussion earlier, we consider the form (9) of the seed metric
which we rewrite below for convenience:

ds2 ¼ −
2

λ
uadxadrþ GðrÞdxadxa

þ ðGðrÞ − FðrÞÞðuadxaÞ2; ð134Þ

in which GðrcÞ ¼ FðrcÞ ¼ 1, while FðrHÞ ¼ 0 at the
horizon H.
In equilibrium one can always find a shifting and

subsequent rescaling of the radial coordinate to set
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λ ¼ 1. The flat spacetime metric in static Rindler coor-
dinates can for example be written in the form (134) with
λ ¼ 1 as

ds2 ¼ 2drdt − ð1þ pðr − rcÞÞdt2 þ dxidxi: ð135Þ

The identification of the pressure and energy density of
the dual fluid to the Rindler geometry of [8] follows from
(34)–(35) straightforwardly: the pressure is indeed the
parameter p while the energy density is zero.
Scaling λ to one is generically not compatible with

imposing that the induced metric on the cutoff hypersurface
is Minkowski, however, and wewill find it more convenient
to retain a generic λ in what follows. For example, for
the AdS black-brane geometry (52) the seed metric is
conveniently expressed after rescaling of the field theory
coordinates as

ds2 ¼ 2dtdrffiffiffiffiffi
hc

p
rc=L

−
r2hðrÞ
r2chc

dt2 þ r2

r2c
dxidxi; ð136Þ

in which we again define hc ¼ hðrcÞ.

A. General hydrodynamic equations

In order to move to the hydrodynamic regime, one needs
to promote the thermodynamic parameters to become
slowly varying functions; see [1]. This can be achieved
by writing

ds2 ¼ −2λðxÞ−1uaðxÞdxadrþ ðGðr; xÞÞηab
þ ðGðr; xÞ − Fðr; xÞÞuaðxÞubðxÞÞdxadxb; ð137Þ

such that

∂aubðxÞ ∼OðϵÞ; ∂λ ∼OðϵÞ;
∂aFðr; xÞ ∼OðϵÞ; ∂aGðr; xÞ ∼OðϵÞ; ð138Þ

with ϵ small. The inverse metric is given by

grr ¼ λðxÞ2Fðr; xÞ; gra ¼ λðxÞuaðxÞ;
gab ¼ ðGðr; xÞÞ−1ðηab þ uaubÞ≡ ðGðr; xÞÞ−1hab: ð139Þ

By construction this generalization preserves the induced
metric on Σc and satisfies the Einstein plus matter equations
to leading order in ϵ with the fluid parameters as given
above. To any order n ≥ 1 one will need to correct the

metric by terms gðnÞμν such that the Einstein equations are still
satisfied. Conservation of the Brown-York stress tensor on
Σc to leading order in gradients implies

ðpþ ρÞDaua ¼ −Dρ;

ðpþ ρÞac ¼ −D⊥
c p; ð140Þ

where D⊥
a ≡ hba∂b, D≡ ua∂a and the acceleration

ac ¼ Duc. Note that the Rindler fluid had the property
that the equilibrium energy density vanishes, and thus the
fluid was incompressible to leading order, but this property
is not in general satisfied.
Supposing that one weights derivatives such that ∂r ∼ 1

and ∂a ∼ ϵ, if one adds a piece gðnÞμν to the metric at order ϵn

then one can compute the associated change in the Ricci

tensor at order ϵn to be δRðnÞ
μν . This is computed using the

usual linearized formula

δRðnÞ
μν ¼ 1

2
ð∇λ∇μg

ðnÞ
νλ þ∇λ∇νg

ðnÞ
μλ þ

−∇λ∇λg
ðnÞ
μν −∇μ∇νtrðgðnÞÞÞ; ð141Þ

with ∇ evaluated using the leading order metric given
above. Note that, since one needs to retain terms in the
covariant derivative at order ϵ0, only radial derivatives need
to be retained.
Order by order we must require the additional terms in

the metric to be such that the Einstein equations are

satisfied. Defining R̂ðnÞ
μν as the part of the Ricci tensor

corresponding to gðn−1Þ due to ∂a derivatives and δRðnÞ
μν

being the part of the Ricci tensor related to radial deriv-
atives ∂r of gðnÞ, the Einstein equations at order n are

R̂ðnÞ
μν þ δRðnÞ

μν −
1

2

Xn
k¼0

gðkÞμν R̂ðn−kÞ −
1

2
gð0Þμν δRðnÞ ¼ T ðnÞ

μν ;

ð142Þ

where the Ricci scalar at each order is given by

R̂ðnÞ þ δRðnÞ ¼
Xn
k¼0

R̂ðkÞ
αβ g

ðn−kÞαβ þ δRðnÞ
αβ g

ð0Þαβ; ð143Þ

and the inverse metric up to order k is defined in the way
to assure that the trace of the metric is always the same
trðgÞ ¼ dþ 2; for example at first order it is

gð1Þμν ¼ −gð0Þμρgð0Þνσgð1Þρσ : ð144Þ

Conditions (142) can be then rewritten in a more compact
way as

R̂ðnÞ
μν þ δRðnÞ

μν ¼ T̄ ðnÞ
μν ;

T̄ ðnÞ
μν ¼ T ðnÞ

μν −
1

d

Xn
k¼0

gðkÞμν T ðn−kÞ; ð145Þ

with
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T ðnÞ ¼
Xn
k¼0

T ðkÞ
αβ g

ðn−kÞαβ: ð146Þ

Imposing the natural gauge choice gðnÞrμ ¼ 0 for n ≥ 1 we
obtain the following for the perturbations of the Ricci
tensor induced by the addition of gðnÞ:

δRðnÞ
rr ¼−

1

2
hab∂2

r

�
1

G
gðnÞab

�
−
1

2

G0

G
hab∂r

�
1

G
gðnÞab

�
;

λ−1δRðnÞ
ra ¼ 1

2Gd=2 u
b∂rðGd=2∂rg

ðnÞ
ab Þþ

1

4
F0uahcd∂r

�
1

G
gðnÞcd

�

−
1

2Gd=2 u
chda∂r

�
G0

G
Gd=2gðnÞcd

�
;

λ−2δRðnÞ
ab ¼−

1

4
FðG0hab −F0uaubÞhcd∂r

�
1

G
gðnÞcd

�

−
1

2Gd=2 ∂rðGd=2F∂rg
ðnÞ
ab Þþ

G0F
G

hcða∂rg
ðnÞ
cbÞ

þF0G0

G
uðahcbÞu

dgðnÞcd −F0uðauc∂rg
ðnÞ
cbÞ

−
1

2

FG02

G2
hcðah

d
bÞg

ðnÞ
cd −

1

2

G02

G
habucudg

ðnÞ
cd

þ 1

2Gd=2 u
cud∂rðGd=2ðG0hab −F0uaubÞgðnÞcd Þ;

ð147Þ

where primes denote radial derivatives. Moreover we find

λ−2δRðnÞ ¼−
1

2

F

Gd=2∂r

�
Gd=2∂r

�
1

G
gðnÞcd h

cd

��

−
1

2
F0∂r

�
1

G
gðnÞcd h

cd

�
þG0F
2G2

∂rg
ðnÞ
cd h

cd

−
1

2Gd=2þ1
∂rðGd=2F∂rg

ðnÞ
cd h

cdÞ

þ 1

Gd=2∂rðGd=2∂rg
ðnÞ
cd u

cudÞ

þ d

2Gd=2þ1
∂rðGd=2G0gðnÞcd u

cudÞ−d
2

G02

G2
gðnÞcd u

cud;

ð148Þ

where we defined

δRðnÞ ¼ gð0ÞabδRðnÞ
ab : ð149Þ

Notice that

λ−2δRðnÞ
aμ nμjΣc

¼uaucudg
ðnÞ
cd jΣc

�
d
4
F0ðrcÞG0ðrcÞþF″ðrcÞ

�

−hcaudg
ðnÞ
cd jΣc

�
G00ðrcÞþ

ðd−2Þ
4

G0ðrcÞ2þ
1

2
F0ðrcÞG0ðrcÞ

�
;

ð150Þ

which is identically zero when we impose the required
Dirichlet boundary conditions on the hypersurface Σc, i.e.

gðnÞab jΣc
¼ 0 with n ≥ 1.

The Einstein equations can be used to solve for the
different components of the metric perturbations, which at
each gradient order can be decomposed in terms of a basis
of linearly independent scalars, vectors and traceless
symmetric tensors:

gðnÞab ¼ αðnÞuaub þ 2uðaβ
ðnÞ
bÞ þ ~γðnÞab þ 1

d
γðnÞhab ð151Þ

with

uaβðnÞa ¼ ua ~γðnÞab ¼ ~γðnÞab h
ab ¼ 0: ð152Þ

Using (145) it is easy to show that the following
equations must be satisfied:

1

2
∂2
r

�
1

G
γðnÞ

�
þ 1

2

G0

G
∂r

�
1

G
γðnÞ

�
þ T̄ ðnÞ

rr ¼ 0; ð153Þ

λ

2
∂2
rβ

ðnÞ
a þ λ

4
ðd−2ÞG

0

G
∂rβ

ðnÞ
a −λ

�
1

4
ðd−2ÞG

02

G2
þ1

2

G00

G

�
βðnÞa þ

−ðR̂ðnÞ
rb − T̄ ðnÞ

rb Þhba¼0; ð154Þ

d
2
λ2

1

Gd=2∂rðGd=2G0αðnÞÞ−d
2
λ2
G02

G
αðnÞþ

−
λ2

2Gd=2∂rðGd=2F∂rγ
ðnÞÞþλ2

G0F
G

∂rγ
ðnÞ−

λ2

2

FG02

G2
γðnÞþ

−
d
4
λ2FG0∂r

�
1

G
γðnÞ

�
þðR̂ðnÞ

ab − T̄ ðnÞ
ab Þhab ¼ 0; ð155Þ

λ2

2
F∂2

r ~γ
ðnÞ
ab þ λ2

�
1

4
ðd − 4ÞFG

0

G
þ 1

2
F0
�
∂r ~γ

ðnÞ
ab

þ λ2

2

FG02

G2
~γðnÞab − R̂ðnÞ

cd h
c
ahdb þ

1

d
R̂ðnÞ
cd h

cdhab

þ
�
T̄ ðnÞ

cd h
c
ahdb −

1

d
T̄ ðnÞ

cd h
cdhab

�
¼ 0: ð156Þ
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These equations are, respectively, the ðrrÞ equation, the hab
projection of the ðraÞ equation, the hab trace of the ðabÞ
equation and the projection ðhcahdb − 1=dhcdhabÞ of the
ðabÞ equation. Additional, linearly dependent, equations
may be obtained from other projections of the Einstein
equations. For example, projecting the ðraÞ components of
the Einstein equations onto ua one obtains an additional
equation for αðnÞ

1

2
λ∂2

rα
ðnÞ þ λ

dG0

4G
∂rα

ðnÞ −
λ

4
F0∂r

�
γðnÞ

G

�

þ ðR̂ðnÞ
ra − T̄ ðnÞ

ra Þua ¼ 0: ð157Þ

Since this equation is second order it is more convenient to
use the first order equation (155). Similarly one can obtain
an additional equation for βðnÞ from the projection hcbu

a of
the ðabÞ components of the Einstein equations.
The Bianchi identities at order n are

ð∇μGμνÞðnÞ ¼
Xn
k¼0

∇ðn−kÞ
μ GðkÞμν ¼ 0: ð158Þ

Using the Einstein equations at each order and the con-
servation of the bulk stress energy tensor at order n,
ð∇μT μνÞðnÞ ¼ 0, the following identity holds:

∇ð0Þ
μ GðnÞμν ¼ ∇ð0Þ

μ T ðnÞμν; ð159Þ

or equivalently

∇ð0Þ
μ RðnÞμν ¼ ∇ð0Þ

μ T̄ ðnÞμν: ð160Þ

The independent ðrÞ and ðaÞ components of (160) are

1

2
λ4FF0ðRðnÞ

rr − T̄ ðnÞ
rr Þ þ λ3F0ðRðnÞ

ra − T̄ ðnÞ
ra Þuaþ

−
1

2
λ2
FG0

G2
ðRðnÞ

ab − T̄ ðnÞ
ab Þhab

þ λ2F

Gd=2 ∂rðGd=2ðλ2FðRðnÞ
rr − T̄ ðnÞ

rr Þ þ 2λðRðnÞ
ra − T̄ ðnÞ

ra ÞuaÞÞ

þ λ2
1

Gd=2 ∂rðGd=2ðRðnÞ
ab − T̄ ðnÞ

ab ÞuaubÞ ¼ 0;

1

Gd=2 ∂rðGd=2ðλFðRðnÞ
ar − T̄ ðnÞ

ar Þ þ ðRðnÞ
ab − T̄ ðnÞ

ab ÞubÞÞ ¼ 0:

ð161Þ

From (148) and using the leading order equations of motion
(21) one can show that the following expressions are
identically satisfied:

λFδRðnÞ
ar ua þ δRðnÞ

ab u
aub

¼
�
−
1

d
T ð0Þ þ λT ð0Þ

re ue
�
gðnÞab u

aub;

λFδRðnÞ
ar hac þ δRðnÞ

ab u
bhac

¼
�
−
1

d
T ð0Þ þ 1

d
1

G
T ð0Þ

ef h
ef

�
gðnÞab u

bhac: ð162Þ

Using

λFT̄ ðnÞ
ar þ T̄ ðnÞ

ab u
b ¼ λFT ðnÞ

ar þ T ðnÞ
ab u

bþ

−
1

d
T ð0ÞgðnÞab u

b −
1

d

Xn−1
k¼1

gðkÞab u
bT ðn−kÞ ð163Þ

Eq. (161) can be brought into the form:

∂r

�
Gd=2

�
λFðR̂ðnÞ

ar − T ðnÞ
ar Þ þ ðR̂ðnÞ

ab − T ðnÞ
ab Þub

þ λT ð0Þ
re ueg

ðnÞ
ab u

b þ 1

d

Xn−1
k¼1

gðkÞab u
bT ðn−kÞ

��
ua ¼ 0;

∂r

�
Gd=2

�
λFðR̂ðnÞ

ar − T ðnÞ
ar Þ þ ðR̂ðnÞ

ab − T ðnÞ
ab Þub

þ 1

dG
T ð0Þ

ef h
efgðnÞab u

b þ 1

d

Xn−1
k¼1

gðkÞab u
bT ðn−kÞ

��
hac ¼ 0:

ð164Þ

Integrating these conditions and evaluating them on Σc
gives

ðλðR̂ðnÞ
ar − T ðnÞ

ar Þ þ ðR̂ðnÞ
ab − T ðnÞ

ab ÞubÞjΣc
¼ fðnÞa ðxÞjΣc

;

ð165Þ

where fðnÞa ðxÞ arises as an integration constant.
The Gauss-Codazzi equations on Σc at order n are given

by

∇bTðnÞBY
ab jΣc

¼ −2RðnÞ
aμ nμjΣc

¼ −2ðR̂ðnÞ
aμ þ δRðnÞ

aμ ÞjΣc
nμ

¼ −2ðλR̂ðnÞ
ar þ R̂ðnÞ

ab u
bÞjΣc

¼ −2nμT ðnÞ
aμ − 2fðnÞa ðxÞjΣc

: ð166Þ

As discussed around (32), conservation of the fluid stress
tensor requires that T aμnμ vanishes to all orders, which in
turn requires that T ðnÞ

aμ nμ ¼ 0 to all orders n since nμ does
not change due to the required Dirichlet boundary con-
ditions. If the fluid is not conserved then T ðnÞ

aμ nμ ≠ 0
characterizes this nonconservation. In both cases the
integration constant arising from integrating the Bianchi
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identities is therefore zero for the fluid stress energy tensor
to satisfy the required conservation equation.
The extrinsic curvature at order n is given by

KðnÞ
ab ¼ 1

2
ðLngabÞjðnÞΣc

¼ K̂ðnÞ
ab þ δKðnÞ

ab ; ð167Þ

where again we divide it into two contributions: K̂ðnÞ
ab

corresponding to contributions at order n coming from
spacetime derivatives ∂a of gðn−1Þ and δKðnÞ

ab coming from
radial derivatives of gðnÞ. Let us introduce the following
notation for the velocity derivatives:

θ ¼ ∂cuc; aa ¼ Dua; ð168Þ

Kab ¼ hcðah
d
bÞ∂cud; σab ¼ Kab −

1

d
θhab; ð169Þ

where as defined earlier, D ¼ uc∇c. We obtain

K̂ð1Þ
ab ¼ σab þ

1

d
θhab − uðaabÞ − uða∂bÞ ln λ; ð170Þ

K̂ðnÞ
ab ¼ 1

2
Dgðn−1Þab jΣc

with n > 1; ð171Þ

where we have used the Dirichlet boundary condition and
the expression for the normal vector (27), and

δKðnÞ
ab ¼ 1

2
λ∂rg

ðnÞ
ab jΣc

¼ 1

2
λ

�
αðnÞ0 ðrcÞuaub þ 2βðnÞ

0

ða ðrcÞubÞ

þ ~γðnÞ
0

ab ðrcÞ þ
1

d
γðnÞ0 ðrcÞhab

�
: ð172Þ

The Brown-York stress energy tensor can also be split as

TBYðnÞ
ab ¼ T̂BYðnÞ

ab þ δTBYðnÞ
ab ; ð173Þ

where again

T̂BYðnÞ
ab ¼ 2ðK̂ðnÞηab − K̂ðnÞ

ab Þ; ð174Þ

with

K̂ðnÞ ¼ K̂ðnÞ
ab η

ab; ð175Þ

is the contribution coming from the ðn − 1Þth order metric,
and

δTBYðnÞ
ab ¼ 2ðδKðnÞ

ab ηab − δKðnÞ
ab Þ; ð176Þ

with

δKðnÞ ¼ δKðnÞ
ab η

ab; ð177Þ

is the contribution coming from the correction of the metric
at order n. The last part can be worked out formally giving

λ−1δTBYðnÞ
ab ¼

�
−uaubγðnÞ0ðrcÞ − 2βðnÞ0ða ðrcÞubÞ

þ hab

�
−αðnÞ0ðrcÞ þ

ðd − 1Þ
d

γðnÞ0ðrcÞ
�

− ~γðnÞ0ab ðrcÞ
�
: ð178Þ

We will work in Landau gauge for the fluid stress tensor

TFðnÞ
ab ua ¼ 0; n ≥ 1: ð179Þ

Imposing this condition on the fluid stress energy tensor
given in (124) gives two additional constraints order by
order n ≥ 1 on the Brown-York stress energy tensor

λγðnÞ0ðrcÞ − T̂BYðnÞ
ab uaub ¼ 0;

λβðnÞ0c ðrcÞ þ T̂BYðnÞ
ab uahbc ¼ 0; ð180Þ

which follow from the two independent projections of the
condition above (179), and we used the fact that C1ðrcÞ ¼
1 for a flat metric on Σc and that C2ðrcÞ results only in a
redefinition of the pressure and energy density.

B. General first order hydrodynamics

The Ricci tensor contribution coming from the seed
metric is

R̂ð1Þ
rr ¼ 0;

R̂ð1Þ
ra ¼ ua

�
G0

2G
∂cuc þ

d
2G

DG0 −
dG0

4G2
DG

�

þ d
4

G0

G
aa − ðd − 1Þ 1

2G
D⊥

a G0

þ ðd − 1Þ G0

2G2
D⊥

a G −
1

4
d
G0

G
D⊥

a ln λ;

λ−1R̂ð1Þ
ab ¼ uaub

�
1

2
F0∂cuc −

dG0

4G
DF

þ dF0

4G
DG −

1

2
d
G0F
G

D ln λ

�

þ hab

�
−
1

2
G0∂cuc −DG0 −

ðd − 2Þ
2

G0

G
DG

�

þ uðaabÞ

�
F0 þ ðd − 2Þ

2

G0F
G

�

þ uðaD⊥
bÞF

0 þ ðd − 2Þ
2

G0

G
uðaD⊥

bÞF −
d
2
G0Kab

þ uðaD⊥
bÞ ln λ

�
F0 þ 1

2
ðd − 2ÞG

0F
G

�
: ð181Þ
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Recalling that

GðrcÞ ¼ FðrcÞ ¼ 1; DGðrcÞ ¼ DFðrcÞ ¼ 0; ð182Þ

the momentum constraint Rð1Þ
aμ nμjΣc

¼ðR̂ð1Þ
aμ þδRð1Þ

aμ ÞnμjΣc
¼

0 evaluates into the ideal fluid equations of motion (140).
The Brown-York stress energy tensor contribution (174)

arising from the seed metric (134) is given by

T̂BYð1Þ
ab ¼ −2θuaub þ 2hab

�ðd − 1Þ
d

θ −D ln λ

�
þ

− 2σab þ 2uðaabÞ þ 2uðaD⊥
bÞ ln λ; ð183Þ

and the Landau gauge condition (180) becomes

λγð1Þ0ðrcÞ ¼ −2θ;

λβð1Þ0a ðrcÞ ¼ aa þD⊥
a ln λ: ð184Þ

Hence the complete contribution to the Brown-York stress
energy tensor (173) at first order in Landau gauge is
given by

TBYð1Þ
ab ¼ −habð2D ln λþ λαð1Þ0ðrcÞÞ − 2σab − λ~γð1Þ0ab ðrcÞ:

ð185Þ

Note that this result holds generally, regardless of the
structure of the bulk stress energy tensor.
Consider first the case in which there is no matter. Then

to first order in gradients there is only one independent
scalar which may be chosen to be θ; there is only one vector
orthogonal to ua, which we may choose as aa; the only
symmetric traceless tensor orthogonal to ua is σab. The
other scalars (Dρ, D lnp) can be eliminated using the
equation of state and the fluid equations, while the other
vector D⊥

a lnp can similarly be eliminated. Hence the
dissipative part of the fluid stress energy tensor can be
written as

TFð1Þ
ab ¼ −2ηðrcÞσab − ξðrcÞθhab; ð186Þ

to first order in gradients, where

ηðrcÞσab ¼
�
1

2
λhachbd ~γcdð1Þ0ðrcÞ þ σab

�
; ð187Þ

ξðrcÞθ ¼ λαð1Þ0ðrcÞ þ 2D ln λ; ð188Þ

define the shear viscosity ηðrcÞ and the bulk viscosity ξðrcÞ
at the hypersurface Σc.
Notice that the shear over entropy ratio

ηðrcÞ
sðrcÞ

σab ¼
1
2
λhachbd ~γcdð1Þ0ðrcÞ þ σab

4πGðrHÞd=2
; ð189Þ

where we used (40), satisfies the universal value η=s ¼
1=4π only if

1

2
λhachbd ~γcdð1Þ0ðrcÞ þ σab ¼ GðrHÞd=2σab: ð190Þ

C. The cutoff AdS fluid, revisited

We will now consider the case of a negative cosmologi-
cal constant, expanding around the asymptotically AdS
black-brane geometry (52). The first step is to write the
latter in the required form (134) through (53). One
computes the hydrodynamic solution by promoting rH
and ua to be slowly varying rHðxÞ, uaðxÞ. Since G is
independent of both quantities DG ¼ D⊥G ¼ 0, which
considerably simplifies the formulas given above.
The bulk stress energy tensor is

T μν ¼ −Λgμν: ð191Þ

The condition for the Brown-York stress energy tensor (and
hence the fluid stress energy tensor) to be conserved is
identically satisfied at zeroth order since T ð0Þ

μν nμ ¼ 0.
Conservation at higher orders is guaranteed by the
Dirichlet condition for the metric on Σc.
The reduced bulk stress energy tensor is

T̄ ð1Þ
μν ¼ 2

d
Λgð1Þμν ð192Þ

which leads to

T̄ ð1Þ
rr ¼ 0; T̄ ð1Þ

ab h
ab ¼ 2

d
Λγð1Þ;

T̄ ð1Þ
ra hab ¼ 0; T̄ ð1Þ

ab h
a
chbd −

1

d
T̄ ð1Þ

ab h
abhcd ¼

2

d
Λ~γð1Þcd : ð193Þ

Using the conservation of the stress energy tensor (140) it is
possible to trade derivatives of the horizon radius rH with
derivatives of the fluid velocities

∂arH
rH

¼
�
1

d
θua − δðrcÞaa

�
; ð194Þ

where

δðrcÞ ¼
2ð1 − ðrH=rcÞdþ1Þ

2þ ðd − 1ÞðrH=rcÞdþ1
¼ 2hc

2hc þ ðdþ 1Þð1 − hcÞ
;

ð195Þ

notice that when rc → ∞ we have δðrcÞ → 1 and one
recovers the usual relation for conformal fluids (231).
Equations (153)–(157) are
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∂2
r

�
r2c
r2
γð1Þ

�
þ 2

r
∂r

�
r2c
r2
γð1Þ

�
¼ 0; ð196Þ

dhc
r
L2

αð1Þ0 þhc
dðd− 1Þ

L2
αð1Þ þ

�ðdþ 1Þ
L2

þðd− 2Þ
L2

h

�
γð1Þ

−
r
L2

�
ðd−1Þhþ 1

2
rh0

�
γð1Þ0þ

−
1

2

r2

L2
hγð1Þ00 − 2d

r
rcL

ffiffiffiffiffi
hc

p
θ¼ 0; ð197Þ

βð1Þ00a þ ðd − 2Þ
r

βð1Þ0a − 2
ðd − 1Þ

r2
βð1Þa þ

−
d
r

L
rc

ffiffiffiffiffi
hc

p δðrcÞaa ¼ 0; ð198Þ

∂r

�
rdþ2hðrÞ∂r

�
~γð1Þab

L2

r2

��
þ 2d

ffiffiffiffiffi
hc

p L3rd−1

rc
σab ¼ 0:

ð199Þ

The Landau gauge condition (184) on the stress tensor
gives the following equations:

γð1Þ0ðrcÞ þ
2L

rc
ffiffiffiffiffi
hc

p θ ¼ 0; ð200Þ

βð1Þ0a ðrcÞ ¼
2L

rc
ffiffiffiffiffi
hc

p
�
hc þ ðdþ 1Þð1 − hcÞ
2hc þ ðdþ 1Þð1 − hcÞ

�
aa: ð201Þ

Solutions to Eqs. (196)–(199) with Dirichlet boundary

conditions γðnÞðrcÞ ¼ αðnÞðrcÞ ¼ βðnÞa ðrcÞ ¼ ~γðnÞab ðrcÞ ¼ 0

are given by

γð1Þ ¼ 2L
rc

ffiffiffiffiffi
hc

p r

�
1 −

r
rc

�
θ; ð202Þ

αð1Þ ¼ L

dh3=2c

r
rc

�
−ðdþ 1Þ

�
1 −

rdc
rd

�
þ ðd − 1Þh

þ
�
2 − ðdþ 1Þ r

d
c

rd

�
hc

�
θ; ð203Þ

βð1Þa ¼ −
LδðrcÞ
r2ch

3=2
c

r

�
r

�
rdþ1
c

rdþ1
− 1

�
þ rc

�
1 −

rdc
rd

�
hc

�
aa;

ð204Þ

~γð1Þab ¼ 2L
rcrH

ffiffiffiffiffi
hc

p
r2
�
kðrÞ − kðrcÞ þ

1

ðdþ 1Þ log h=hc
�
σab;

ð205Þ

where

kðrÞ ¼ rH
r 2F1

�
1;

1

dþ 1
; 1þ 1

dþ 1
;
rdþ1
H

rdþ1

�
; ð206Þ

see Appendix A for details of the derivation. The fluid
stress energy tensor (186) at first order is

TFð1Þ
ab ¼ −2ηðrcÞσab − ξðrcÞθhab; ð207Þ

with shear and bulk viscosity given by

ηðrcÞσab ¼
�
1

2

rc
L

ffiffiffiffiffi
hc

p
γð1Þ0ab ðrcÞ þ σab

�
¼ rdH

rdc
σab; ð208Þ

ξðrcÞ ¼
ðdþ 1Þ

d
ð1 − hcÞ

hc
þ rc

L

ffiffiffiffiffi
hc

p
αð1Þ0ðrcÞ ¼ 0: ð209Þ

Hence, although the fluid is non conformal due to non-
conformal equation of state (48) giving a nonzero trace for
the stress energy tensor, the bulk viscosity is vanishing.
Given the entropy density sðrcÞ ¼ 4πrdH=r

d
c the universal

shear over entropy ratio bound is recovered at each
hypersurface Σc:

ηðrcÞ
sðrcÞ

¼ 1

4π
; ð210Þ

confirming the results found previously for the nonrelativ-
istic fluid dual to a finite cutoff hypersurface in AdS gravity
[39] and the relativistic version of it [37]; see also [38].
Alternative derivations using renormalization group (RG)
flows can be found in [5,26,29]; see also [49] for a
derivation using linear response theory.

D. Relation to the conformal fluid

The finite cutoff solution can be connected to the usual
AdS/CFT results if we first redefine the field theory
coordinates

ya ¼ L
rc
xa ð211Þ

in order to have a conformally flat metric on the boundary.
The leading order metric now reads

ds2 ¼ −2
uaffiffiffiffiffi
hc

p dyadrþ r2

L2
ðhab − h=hcuaubÞdyadyb;

ð212Þ
so that as rc → ∞ we have hc → 1 and the metric is the
usual black-brane metric. The rescaling acts on the deriv-
atives ∂x

a ¼ L
rc
∂y
a with ua unchanged; hence we have

θx ¼ L
rc
θy; axa ¼

L
rc
aya; σxab ¼

L
rc
σyab; ð213Þ
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and the perturbations (202)–(205) in the rescaled coordi-
nates where we take into account dxadxb → r2c=L2dyadyb

now read

γyð1Þ ¼ 2ffiffiffiffiffi
hc

p r

�
1 −

r
rc

�
θy; ð214Þ

αyð1Þ ¼ 1

dh3=2c

r

�
−ðdþ 1Þ

�
1 −

rdc
rd

�
þ ðd − 1Þh

þ
�
2 − ðdþ 1Þ r

d
c

rd

�
hc

�
θy; ð215Þ

βyð1Þa ¼ −
δðrcÞ
rch

3=2
c

r

�
r

�
rdþ1
c

rdþ1
− 1

�
þ rc

�
1 −

rdc
rd

�
hc

�
aya;

ð216Þ

~γyð1Þab ¼ 2

rH

ffiffiffiffiffi
hc

p
r2
�
kðrÞ − kðrcÞ þ

1

ðdþ 1Þ log h=hc
�
σyab:

ð217Þ

The limit rc → ∞ gives now

γyð1Þ → 2rθy; ð218Þ

αyð1Þ →
r
d
ðd − 1Þðh − 1Þθy ð219Þ

βyð1Þa → −raya; ð220Þ

~γyð1Þab → 2
r2

rH

�
kðrÞ − kð∞Þ þ 1

ðdþ 1Þ logh
�
σyab

¼ 2
r2

rH
Fðr=rHÞσyab; ð221Þ

where asymptotically FðxÞ ∼ 1
x −

1
ðdþ1Þ

1
xdþ1. Notice that the

first order perturbation of the AdS black-brane metric is
given in [1] as

dsð1Þ2 ¼ 2
r2

rH
Fðr=rHÞσabdyadyb þ

2

d
rθyuaubdyadybþ

− 2rayðaubÞdy
adyb: ð222Þ

Relative to the metric perturbation given above the coef-
ficients in the vector and tensor sector agree but those in the
scalar sector do not. However, the two metrics are con-
nected by the following diffeomorphism: consider a shift of
the radial coordinate r such that

r → r −
1

d
θy: ð223Þ

Working to first order in gradients this results in a shift

δγyð1Þ ¼ −2rθy; δαyð1Þ ¼ rθy

d
ð2 − ðd − 1Þðh − 1ÞÞ;

ð224Þ
thereby bringing the metric into the form given in [1].
The shear and bulk viscosity of the dual theory on the

boundary can be obtained directly from (208)–(209)
according to the prescription (133) by9

ηCFTσyab ¼ lim
rc→∞

rd−1c ηðrcÞrcσyab ¼ rdHσ
y
ab;

ξCFT ¼ lim
rc→∞

rd−1c ξðrcÞ ¼ 0: ð225Þ

Hence, the stress energy tensor at finite cutoff reproduces
the usual AdS/CFT results as the cutoff is taken to the
boundary.
The same result can be obtained directly from the metric

perturbation at infinity (218)–(221) and using the usual
AdS/CFT prescription (106). Since the metric on the
boundary is (conformally) flat the dual fluid stress energy
tensor is

hTCFT
ab i ¼ lim

R→∞
Rd−1ðTBY

ab − 2dγabÞ; ð226Þ

where the Brown-York stress energy tensor is given by

TBYð0Þ
ab ¼ 2ðKð0Þγð0Þab − Kð0Þ

ab Þ;
TBYð1Þ
ab ¼ 2ðKð0Þγð1Þab þ Kð1Þγð0Þab − Kð1Þ

ab Þ; ð227Þ

and the extrinsic curvature is computed at a finite cutoff
surface ΣR giving

Kð0Þ
ab ¼ 1

2
nrð0Þ∂rg

ð0Þ
ab jR;

Kð1Þ
ab ¼ 1

2
nrð0Þ∂rg

ð1Þ
ab jR þ 1

2
nrð1Þ∂rg

ð0Þ
ab jR

þ 1

2
ncð0Þ∂cg

ð0Þ
ab jR þ gðaμ∂ð0Þ

bÞ n
μð0ÞjR;

Kð0Þ ¼ Kð0Þ
ab γ

abð0Þ;

Kð1Þ ¼ Kð1Þ
ab γ

abð0Þ þ Kð0Þ
ab γ

abð1Þ: ð228Þ
The induced metric on the hypersurface ΣR is generically
nonflat since

γð0Þab ¼ R2ðhab − hðRÞuaubÞ;

γð1Þab ¼ ðd − 1Þ
d

ðhðRÞ − 1ÞRθyuaub − 2RayðaubÞ

þ 2
R2

rH
FðR=rHÞσyab þ

2

d
Rθyhab;

γabð1Þ ¼ −γacð0Þγbdð0Þγð1Þcd ; ð229Þ

9We take L ¼ 1 for notational simplicity.
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giving nontrivial contributions to the normal vector up to
and including order 1

~nð0Þ ¼ R
ffiffiffiffiffiffiffiffiffiffi
hðRÞ

p ∂r þ
1

R
ffiffiffiffiffiffiffiffiffiffi
hðRÞp ua∂a;

~nð1Þ ¼ −
1

2

ðd− 1Þ
d

hðRÞ− 1ffiffiffiffiffiffiffiffiffiffi
hðRÞp θy∂r

þ 1

R2
ffiffiffiffiffiffiffiffiffiffi
hðRÞp

�
1

2

ðd− 1Þ
d

ðhðRÞ− 1Þ
hðRÞ θyua − aðyÞa

�
∂a:

ð230Þ

Considering everything together and using the leading
order equations of motion to relate derivatives of the
horizon radius rH to derivatives of ua

∂arH
rH

¼ 1

d
θyua − aa; ð231Þ

we obtain the fluid stress energy tensor dual to a black-
brane metric in AdS spacetime:

hTCFT
ab i ¼ phab þ ρuaub − 2ησab − 2ξθyhab; ð232Þ

with

p ¼ rdþ1
H ; ρ ¼ drdþ1

H ; η ¼ rdH; ξ ¼ 0:

ð233Þ

E. UV field theory interpretation

The Dirichlet boundary condition on a finite cutoff
hypersurface Σc necessarily leads to a non-Dirichlet boun-
dary condition at the boundary. The aim of this section is to
explore the interpretation of the fluid on the cutoff surface
as a state in a deformation of the ultraviolet conformal field
theory on the boundary. The strategy is to look at the
solution (214)–(217) near the spacetime boundary by
sending r → ∞, changing to Fefferman-Graham coordi-
nates. Using the standard AdS/CFT dictionary one can
thereby show how the original UV CFT has been deformed.
The black-brane metric in Eddington-Finkelstein coor-

dinates up to order 1 in the hydrodynamic expansion is

ds2 ¼ −2
uaffiffiffiffiffi
hc

p dyadrþGabðy; rÞdyadyb;

Gð0Þ
ab ðy; rÞ ¼ r2ðhab − h=hcuaubÞ;

Gð1Þ
ab ðy; rÞ ¼ αð1Þ

1

d
θuaub þ 2βð1ÞaðaubÞ

þ ~γð1Þσab þ γð1Þ
1

d
θhab; ð234Þ

where the coefficients inGð1Þ
ab are given by (214)–(217) with

the obvious notational redefinition

αð1Þ → αð1Þ
1

d
θ; βð1Þa → βð1Þaa; ~γð1Þab → ~γð1Þσab;

ð235Þ

and we have again set L ¼ 1 for convenience. This metric
can be rewritten in the Fefferman-Graham form

ds2 ¼ dρ2

ρ2
þ 1

ρ2
gðz; ρÞabdzadzb; ð236Þ

by requiring the following transformation equations to be
satisfied order by order for the variables ρðr; yÞ, zaðr; yÞ
and the metric gabðρ; zÞ:

ð∂rρÞ2 þ gabðz; ρÞ∂rza∂rzb ¼ 0;

ð∂rρÞð∂aρÞ þ gcdðz; ρÞ∂rzc∂azd ¼ −
uaffiffiffiffiffi
hc

p ρ2;

ð∂aρÞð∂bρÞ þ gcdðz; ρÞ∂azc∂bzd ¼ ρ2Gabðy; rÞ: ð237Þ

At order zero the change of variables to bring the metric
(234) into Fefferman-Graham form (236) with

gðz; ρÞð0Þab ¼ AðρÞ
�
hab −

hðrðρÞÞ
hc

uaub

�
;

AðρÞ ¼
�
1þ 1

4
ðrHρÞdþ1

� 4
dþ1

; ð238Þ

is

rð0ÞðρÞ ¼ 1

ρ

ffiffiffiffiffiffiffiffiffiffi
AðρÞ

p
; yð0Þaðz; ρÞ ¼ za − kðrðρÞÞua;

ð239Þ

with

kðrÞ ¼
ffiffiffiffiffi
hc

p
r 2F1

�
1;

1

dþ 1
; 1þ 1

dþ 1
;
rdþ1
H

rdþ1

�
;

∂rkðrÞ ¼ −
ffiffiffiffiffi
hc

p
r2hðrÞ : ð240Þ

The inverse transformation is given by

ρ ¼ 1

r

�
2

1þ ffiffiffiffiffiffiffiffiffi
hðrÞp

� 2
dþ1 ¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðρðrÞÞ

p
;

zaðy; rÞ ¼ ya þ kðrÞua: ð241Þ

At first order we can solve Eq. (237) using the following
ansatz:
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ρðy; rÞ ¼ ρð0Þðy; rÞ þ ρð1Þðy; rÞ;
zaðy; rÞ ¼ zð0Þaðy; rÞ þ zð1Þaðy; rÞ

¼ zð0Þaðy; rÞ þ 1

d
θðyÞlðrÞuaðyÞ þmðrÞaaðyÞ;

gabðz; ρÞ ¼ gð0Þab ðz; ρÞ þ gð1Þab ðz; ρÞ: ð242Þ

The zeroth order metric (238) is both dependent on the
Fefferman-Graham coordinates ðz; ρÞ and implicitly de-
pendent on the Eddington-Finkelstein coordinate y through
the dependence on rHðyÞ:

gðz; ρÞð0Þab ¼ Aðy; ρÞ
�
habðzÞ −

hðy; rðρÞÞ
hcðyÞ

uaðzÞubðzÞ
�
:

ð243Þ

The velocities and the metric can be Taylor expanded as
follows:

uaðzÞ ¼ uaðyÞ þ kaaðyÞ;
gabðz; ρÞð0Þ ¼ gð0Þab ðy; rÞ þ ucðyÞkðrÞ∂cgabðy; rÞ

þ ð∂rρ
ð0ÞÞ−1ρð1Þðy; rÞ∂rg

ð0Þ
ab ðy; rÞ

¼ AðρðrÞÞ
�
hab −

h
hc

uaub

�

þ 2kðrÞAðρðrÞÞ
�
1 −

h
hc

�
aðaubÞ þ…;

ð244Þ

where the last term in the metric can be ignored since we
are ultimately interested in gabðy; ρÞ,10 and we will have to
perform the inverse transformation.
We use (194) and the following derivatives:

∂rzaðy; rÞ ¼ k0ðr; yÞua þ l0ðrÞ 1
d
θua þm0ðrÞaa;

∂czaðy; rÞ ¼ δac þ ∂ckðy; rÞua þ kðy; rÞ∂cua;

∂ckðy; rÞ ¼
�
−kðy; rÞ þ

ffiffiffiffiffi
hc

p
rh

þ

−
1

2
ðdþ 1Þ ð1 − hcÞ

hc
kðy; rÞ

� ∂crH
rH

;

∂rρ
ð0Þðy; rÞ ¼ −

1

r2
ffiffiffi
h

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðy; ρðrÞÞ

p
;

∂cρ
ð0Þðy; rÞ ¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðy; ρðrÞÞ

p ð1 − ffiffiffi
h

p Þffiffiffi
h

p ∂crH
rH

; ð245Þ

where primes denote as usual derivatives with respect to the
radial coordinate. After some manipulations the trans-
formation to Fefferman-Graham form (242) is given by

l0ðrÞ ¼ 1

r

ffiffiffiffiffi
hc
h

r
k0 þ k0k − 2k0

1

r

ffiffiffiffiffi
hc

p
h

þ 1

2
k0kðdþ 1Þ ð1 − hcÞ

hc
þ 1

r2
k0
hc
h
αð1Þ;

m0ðrÞ ¼ 1

r
k0
ð1 − ffiffiffiffiffi

hc
p Þffiffiffiffiffi
hc

p δðrcÞ þ
1

r2
k0βð1Þ þ kk0; ð246Þ

and after redefining

ρð1Þðy; rÞ ¼ 1

r

ffiffiffiffi
A

p
Xð1Þðy; rÞ 1

d
θ ð247Þ

we have

Xð1Þ0ðy; rÞ ¼ k0
�
1

2r

ffiffiffiffiffi
hc
h

r
αð1Þ −

ð1 − ffiffiffi
h

p Þffiffiffi
h

p
�
; ð248Þ

which gives

Xð1Þðy; rÞ ¼ kþ 1

r
ffiffiffiffiffiffiffiffi
hch

p
�
rdcr

rdþ1
H

ð1 − hcÞ − 1

�
: ð249Þ

The black-brane metric up to order 1 in Fefferman-Graham
coordinates can be parametrized by

gð1Þab ðy; ρÞ ¼ ϕðy; rðρÞÞ 1
d
θuaub þ ψðy; rðρÞÞ 1

d
θhab

þ Γðy; rðρÞÞσab þ 2Σðy; rðρÞÞaðaubÞ; ð250Þ

with

ϕðy; rÞ ¼ 2Ak
h
hc

− 2
A
r

1ffiffiffiffiffi
hc

p þ Akh
ð1 − hcÞ

h2c
ðdþ 1Þ

þ 1

r2
Aαð1Þ − 2AXð1Þ h

hc
;

ψðy; rÞ ¼ −2Akþ 1

r2
Aγð1Þ þ 2AXð1Þ;

Σðy; rÞ ¼ þAk
h
hc

ð1 − δðrcÞÞ þ
1

r
Affiffiffiffiffi
hc

p δðrcÞþ

−
1

2
Akh

ð1 − hcÞ
h2c

ðdþ 1ÞδðrcÞ þ
1

r2
Aβð1Þ;

Γðy; rÞ ¼ −2Akþ A
r2

~γð1Þ: ð251Þ

Notice that all the above expressions reduce to the
expressions given earlier in [2] using the shifts (224)
and then sending rc → ∞.

10The hydrodynamic expansion has been performed in
transverse coordinates y and not in the Schwarzschild-type
coordinates z.
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Using the zeroth order expression (239) into (251), using
(214)–(217) and expanding the metric near the boundary of
the spacetime, we can read off the leading radial term in the
boundary metric

gð0Þab ðyÞ ¼ ηab þ ð1 − 1=hcÞuaubþ

−
2

rch
3=2
c

1

d
θuaub þ

δðrcÞ
rch

3=2
c

aðaubÞþ

− 2

�
kðrcÞ þ

1

ðdþ 1Þ
ffiffiffiffiffi
hc

p
rH

ln hc

�
σab þ � � � ;

ð252Þ
where the ellipses denote terms with higher powers of
derivatives. Notice that after sending rc → ∞ the flat metric
on the boundary is restored.
The precise interpretation of the fluid on the cutoff

hypersurface in terms of the dual CFT can now be given
using (252). The metric gð0Þab characterizes the background
metric for the dual CFT or, equivalently, the source for the
CFT stress energy tensor. Whenever rc is finite and hence
hc ≠ 1, the metric gð0Þab is not flat. Imposing a Dirichlet
boundary condition on the finite cutoff surface Σc therefore
translates into making a specific deformation of the original
UV CFT: a nonflat background metric for the field theory
fluid. Hence in terms of the UV CFT the fluid lives in a
dynamical background metric, namely a metric which
depends on the fluid velocity and temperature; a similar
interpretation was given in [37].
Note that this deformation in the background metric

appears to arise already at zeroth order in the hydrodynamic
expansion. This was to be expected because, as discussed
around (9) and (35), we started from a seed metric in which
the time Killing vector is normalized to 1 at the cutoff
hypersurface which implies that its norm at infinity is not
canonical. One can therefore rescale the coordinates so that
the zeroth order term in (252) is flat; this is achieved by
rescaling the direction parallel to the velocity by a factor offfiffiffiffiffi
hc

p
but leaving the directions perpendicular to the velocity

unchanged. In terms of these rescaled coordinates, the
background metric for the dual theory then becomes

gð0Þab ¼ ηab −
2

rch
1=2
c

1

d
θuaub þ

δðrcÞ
rchc

aðaubÞþ

− 2

�
kðrcÞ þ

1

ðdþ 1Þ
ffiffiffiffiffi
hc

p
rH

ln hc

�
σab þ � � � ; ð253Þ

where the ellipses denote terms with higher powers of
derivatives.

VI. CONNECTION TO THE MEMBRANE
PARADIGM

Consider the limit in which the cutoff hypersurface Σc
approaches the horizon rc → rH. In the example of a

negative cosmological constant considered above the dual
fluid has in this limit, as one would expect, the same
properties of the Rindler fluid found in [8]. In particular we
can show this by taking the rc → rH limit of the fluid stress
energy tensor, giving

ηðrHÞ ¼ 1; ð254Þ
with the usual shear over entropy universal bound being
satisfied as s ¼ 1=4π, and the bulk viscosity term
vanishing.
In earlier literature another fluid has been associated to a

hypersurface close to the horizon, namely the stretched
horizon, within the so-called membrane paradigm [41–43].
The latter is an interpretation of the dynamics of a horizon in
terms of a dissipative membrane fluid endowed with specific
transport properties. However the two approaches are quite
different even though both fluids are associated with a
hypersurface close to a horizon. On the one hand, within the
fluid/gravity duality approach, we have constructed a
hydrodynamic solution using a derivative expansion. For
consistency, Gauss-Codazzi equations representing the con-
servation of the Brown-York stress tensor have to be
satisfied. We have seen in (133) that (up to appropriate
conformal factors) the Brown-York stress tensor can be
given a holographic interpretation as the stress energy tensor
of the dual fluid associated with the finite cutoff hypersur-
face. The stress energy tensor has to be conserved at
arbitrarily high order in the derivative expansion and there-
fore encodes all the transport coefficients.
On the other hand the membrane paradigm approach

does not employ any derivative expansion around an
equilibrium solution. Instead the membrane fluid equations
are derived by reshuffling the Einstein equations and giving
an ad hoc interpretation of them in terms of nonrelativistic
dissipative Navier-Stokes equations.
In order to understand better the differences between the

two approaches we will explore the membrane paradigm
point of view in this section and derive the Damour-Navier-
Stokes equation together with additional evolution equa-
tions for geometrical quantities defined on a d-dimensional
spacelike foliation of a (dþ 1)-dimensional hypersurface
embedded in a (dþ 2)-dimensional bulk spacetime. We
will follow closely the approach of [50] by considering the
case of a general hypersurface foliating the bulk spacetime,
with the hypersurface not necessarily null and not neces-
sarily close to the horizon; we then take the near horizon
limit at the end.

A. Spacelike foliation of a generic hypersurface H

Consider a generic (dþ 1)-dimensional spacelike, time-
like or null11 hypersurface H and further foliate it by

11In this formalism the hypersurface is general; however for
our purposes we will later restrict it to be timelike.
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d-dimensional closed, i.e. compact without boundary,
spacelike hypersurfaces Sτ so that H ¼ ⋃τ∈RSτ. This means
that the metric q induced by the spacetime metric g onto Sτ
is positive definite and in components can be expressed

qαβ ¼ gαβ þ lαkβ þ kαlβ; ð255Þ

where ðl; kÞ is a pair of null vectors normal to Sτ satisfying

l · l ¼ 0; k · k ¼ 0; l · k ¼ −eσ; ð256Þ

where σ is a positive number. It is possible to define a
unique pair ðl; kÞ by requiring

h ¼ l − Ck; l · k ¼ −1; ð257Þ

where h is the evolution vector tangent toH and orthogonal
to Sτ at any point in H with the property

Lhτ ¼ hμ∂μτ ¼ 1; h · h ¼ 2C: ð258Þ

Lh can be viewed as the evolution operator along Σc: given
an infinitesimal displacement described by the parameter
δτ, each point of Sτ is displaced into Sτþδτ by the vector δτh,
and Sτ are then hypersurfaces Lie dragged by the evolution
vector h. The character of h gives the character of the
hypersurface H; in particular if C < 0, then H and h are
timelike.
The vectors ðl; kÞ are collinear to the pair ð~l; ~kÞ asso-

ciated to the dual-null foliation formalism [65]

l ¼ A~l; k ¼ B~k; ð259Þ

where ð~l; ~kÞ can be defined as the null normal vectors to
two families12 of null hypersurfaces generated by outgoing
and ingoing light rays orthogonally from Sτ:

~l ¼ −du; ~k ¼ −dv; ð260Þ

with u and v being parameters defining the dual-null
foliations.
A natural additional vector that can be constructed out of

ðl; kÞ is

m ¼ lþ Ck; m ·m ¼ −2C; m · h ¼ 0: ð261Þ

Notice that if h is timelike,m is necessarily spacelike and it
defines the normal vector to the hypersurface H, which,
together with h spans the orthogonal space to Sτ.
Given a generic tensor T on the bulk spacetime, one can

canonically define another tensor of the same covariance
type q�T using the projector

ðq�TÞα1…αm
β1…βn

≔ qα1μ1…qαmμmq
ν1
β1
…qνnβnT

μ1…μm
ν1…νn : ð262Þ

A tensorial field T for which q�T ¼ T is said to be tangent
to the surface Sτ. For any such tangent tensorial fields T
we can define the covariant derivative on the spacelike
surfaces Sτ

DT ¼ q�∇T; ð263Þ

where clearly ∇ is the covariant derivative on the (dþ 2)-
dimensional bulk spacetime.

B. Extrinsic geometry of the spacelike surface Sτ
Given a vector field v orthogonal to the spacelike surface

Sτ, the deformation tensor along this field is defined as

ΘðvÞ ≔ q�ð∇vÞ; ΘðvÞ
αβ ¼ qναq

μ
β∇νvμ; ð264Þ

measuring the variation of the metric in Sτ when the surface
Sτ is displaced along v. The deformation tensor is sym-
metric and can be decomposed into a traceless symmetric
shear tensor and a trace part

σðvÞαβ ≔ ΘðvÞ
αβ −

1

d
θðvÞqαβ; θðvÞ ≔ qμνΘðvÞ

μν ; ð265Þ

the latter measuring the change of the area element in Sτ
when displaced by v.
The variation of the normal fields to Sτ with respect to

each other is instead contained in the normal fundamental
forms, which for the pair ðl; kÞ can be written as

ΩðlÞ ≔
1

k · l
k · ∇ql; ΩðlÞ

α ¼ 1

kρlρ
kμqνα∇νlμ; ð266Þ

ΩðkÞ ≔
1

k · l
l ·∇qk; ΩðkÞ

α ¼ 1

kρlρ
lμqνα∇νkμ; ð267Þ

with the important relation13

ΩðkÞ ¼ −ΩðlÞ þDσ: ð268Þ

The extrinsic curvature can be defined out of the shape
tensors along k and l as follows:

Kα
βγ ¼ kαΘðlÞ

βγ þ lαΘðkÞ
βγ : ð269Þ

The extrinsic curvature together with the normal funda-
mental forms are the sufficient quantities to describe the
extrinsic geometry of the spacelike surfaces Sτ.

12These two families can be uniquely defined if the hyper-
surface H is spacelike or timelike, but there is an arbitrariness in
the case H is null.

13For completeness we have reported the general equation;
however since we will always use the definition (257), we can set
σ ¼ 0.
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C. Kinematics of the spacelike surfaces Sτ
Covariant derivatives of the normal vectors l and k can be

decomposed using quantities defined on the spacelike
surfaces Sτ after using the projector (255):

∇αlβ ¼ ΘðlÞ
αβ þΩðlÞ

α lβ − lα∇klβ − νðlÞkαlβ; ð270Þ

∇αkβ ¼ ΘðkÞ
αβ −ΩðlÞ

α kβ − kα∇lkβ − νðkÞlαkβ; ð271Þ

where we have used Eqs. (259)–(260) to derive

∇ll ¼ νðlÞl; νðlÞ ≔ Ll lnA; ð272Þ

∇kk ¼ νðkÞk; νðkÞ ≔ Lk lnB: ð273Þ

Combining (270)–(271) and using the definitions (257) and
(261) we can derive the covariant derivatives for m and h

∇αmβ ¼ ΘðmÞ
αβ þ ΩðlÞ

α hβ − lα∇klβ − νðlÞkαlβ

þ ð∇αCÞkβ − Ckα∇lkβ − CνðkÞlαkβ; ð274Þ

∇αhβ ¼ ΘðhÞ
αβ þ ΩðlÞ

α mβ − lα∇klβ − νðlÞkαlβþ
− ð∇αCÞkβ þ Ckα∇lkβ þ CνðkÞlαkβ; ð275Þ

where we used

ΘðmÞ ¼ ΘðlÞ þ CΘðkÞ; ΘðhÞ ¼ ΘðlÞ − CΘðkÞ; ð276Þ
which follow straightforwardly from definition (264).

D. Dynamics of the spacelike surfaces Sτ
Having derived the expressions for the first derivatives of

the vector fields m and h, we can now manipulate the
second order derivatives using the Ricci identity, which for
a generic vector field v is written as

Rγ
ρμνvρ ¼ ð∇μ∇ν −∇ν∇μÞvγ; ð277Þ

to derive evolution equations along m and h for the
quantities defined on the spacelike hypersurfaces Sτ.
Moreover, requiring the metric to be a solution of
Einstein equations one can always trade the Ricci tensor
for the trace subtracted bulk stress tensor

Rμν ¼ T̄ μν; ð278Þ
where we have used the same notation as in the earlier
sections. There are as many equations as there are many
independent ways to project the Einstein equations along
m, h and q. Some of the equations are listed below
for illustration and we refer to Appendix B for details of
their derivation. Projection along q and m results in the
generalized Damour-Navier-Stokes equation as obtained
previously in [50]:

q�LhΩ
ðlÞ
α þ θðlÞΩðlÞ

α

¼ −Dμσ
ðmÞμ
α þ ðd − 1Þ

d
Dαθ

ðmÞ

þDαðνðlÞ þ CνðkÞÞ − θðkÞDαCþ q�T̄ μαmμ; ð279Þ

which describes the evolution of the normal fundamental
tensor ΩðlÞ

α along the vector field h. Other equations can be
considered; e.g. the evolution equation for θðmÞ alongm can
be obtained by projecting twice along m,

∇mθ
ðmÞ þ∇mðνðlÞ þ CνðkÞÞ þ ΘðmÞ

αβ ΘðmÞαβþ
−∇lνðlÞ − νðlÞθðlÞ − 2CΩðlÞαDα lnA − ðθðkÞ þ νðkÞÞ∇mCþ
− C∇αð∇klα þ∇lkαÞ þ 4CΩðlÞαΩðlÞ

α − 2CνðlÞνðkÞþ
− C2νðkÞθðkÞ − C2∇kνðkÞ þ T̄ μνmμmν ¼ 0; ð280Þ

or the evolution equation of θðmÞ along h by projecting
along h and m,

Lhθ
ðmÞ þ LhðνðlÞ þ CνðkÞÞ þ ΘðhÞ

αβ ΘðmÞαβþ
−∇lνðlÞ − νðlÞθðlÞ − ðθðkÞ þ νðkÞÞLhC

þ C∇αð∇klα −∇lkαÞ þ CνðkÞθðkÞ

þ C2∇kνðkÞ þ T̄ μνmμhν ¼ 0: ð281Þ

An example of a tensorial equation is the evolution
equation of the shape tensor ΘðmÞ

αβ which is

q�LhΘ
ðmÞ
αβ ¼ ΘðmÞ

αμ ΘðhÞμ
β þ νðlÞΘ

ðlÞ
αβ þ CΩαDβ lnA

þ ΘðkÞ
αβLhC − C∇μð∇klν −∇lkνÞqμαqνβþ

− C2νðkÞΘ
ðkÞ
αβ þ hνRρμνσmμqσαq

ρ
β: ð282Þ

E. The null limit

The equations derived above are valid for a generic
hypersurface H. The limit in which the hypersurface H is
null can be achieved by sending

C → 0; m → l; h → l: ð283Þ

In this limit the null vector field l plays the double role of the
tangent and the normal to the null hypersurface H. In this
way the system of equations derived above becomes degen-
erate and reproduces the usual equations for the dynamics of
null hypersurfaces; see e.g. [66]. Equation (279) becomes the
Damour-Navier-Stokes equation

q�LlΩ
ðlÞ
α þ θðlÞΩðlÞ

α ¼ −Dμσ
ðlÞμ
α þ ðd − 1Þ

d
Dαθ

ðlÞ

þDανðlÞ þ q�T̄ μαlμ; ð284Þ
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while Eqs. (280)–(281) become the so-called null
Raychaudhuri equation

∇lθ
ðlÞ þ ΘðlÞ

αβΘðlÞαβ − νðlÞθðlÞ þ T̄ μνlμlν ¼ 0; ð285Þ

and the tensorial equation (282) becomes the tidal force
equation for ΘðlÞ

αβ

q�LlΘ
ðlÞ
αβ ¼ ΘðlÞ

αμΘðlÞμ
β þ νðlÞΘ

ðlÞ
αβ þ q�ðlνRβμναlμÞ: ð286Þ

The essence of the gravitational membrane paradigm is to
reinterpret Eq. (284) formally in terms of a nonrelativistic
dissipative Navier-Stokes equation

LlPα þ θPα ¼ −∂αpþ 2ηDβσ
ðlÞβ
α þ ξ∂αθ − fα ð287Þ

upon the identification

Pα ¼ −ΩðlÞ
α ; νðlÞ ¼ p; η ¼ 1=2;

ξ ¼ −ðd − 1Þ=d; q�T̄ μαlμ ¼ fα; ð288Þ

Pα being the momentum surface density, p the fluid
pressure, η and ξ the shear and bulk viscosity associated
respectively with the shear tensor σðlÞαβ and the expansion rate
θðlÞ, and fα an external force surface density. Notice that the
membrane fluid does not appear to be physical since it has a
negative bulk viscosity.

F. Relation to the holographic fluid

This putative membrane fluid is not directly related to the
near horizon Rindler fluid discussed in previous sections
obtained from a holographic prospective, and here we
depart from the interpretation given in [38]. Let us
summarize the differences between the two setups. In
the membrane approach we consider a generic timelike
hypersurface for which we can take a null limit and we do
not need to input specific information about the horizon
nature of the null hypersurface. In the holographic
approach we consider a timelike hypersurface outside a
horizon; we fix the metric on this hypersurface.
In the membrane approach we work in a manifestly

nonrelativistic formulation, in that we consider the (dþ 1)-
dimensional hypersurfaces to be foliated by spacelike
d-dimensional hypersurfaces. The normal vectors to these
spacelike hypersurfaces play an important role: it is their
variation with respect to each other (a normal fundamental
form) which is interpreted as the momentum density of the
membrane fluid. Moreover, the shear and expansion of
the spacelike surfaces along normal vectors is interpreted as
the shear and expansion of the membrane fluid.
In the fluid/gravity approach, we can work either in

relativistic or nonrelativistic formulations. In the earlier
sections of this paper we have used the relativistic approach
as this is computationally more efficient but one could

equally work with nonrelativistic expansions as in [6,7].
The holographic fluid properties are captured by the
induced metric on the (dþ 1)-dimensional timelike hyper-
surface, which acts as the background metric for the fluid,
and by the extrinsic curvature of the hypersurface, which
encodes the pressure, energy density and velocity of
the fluid.
The putative membrane fluid is generally dissipative and

the shear and bulk viscosity take universal values. Note
however that if the chosen spacetime metric is what we
have called a zeroth order equilibrium metric the shear
tensor and the expansion rate of the horizon would vanish,
so the dissipative terms would disappear.
In the holographic interpretation of fluid/gravity duality

the zeroth order gravity solution represents a thermody-
namic equilibrated state in which the behavior is non-
dissipative. In order to get dissipative behavior at all it is
necessary to perturb the thermodynamic solutions around
equilibrium. This means that the existence of a family of
solutions close to equilibrium thermodynamic solutions is
an essential requirement to obtain hydrodynamic behavior.
The shear and bulk viscosity depend on the system under
consideration although η=s takes the well-known universal
value of 1=4π in Einstein gravity.
In the fluid/gravity approach the Navier-Stokes equa-

tions (together with specific corrections) arise from work-
ing out the Einstein equations in a gradient expansion. All
components of the Einstein equations are needed to work
out the fluid equations. In the membrane paradigm only a
specific projection of the Einstein equations is used to
obtain the membrane fluid equations: remaining equations
such as the tidal force equation do not have a natural
interpretation in terms of fluid quantities.

VII. CONCLUSIONS

In this paper we have presented a construction of
generic (dþ 2)-dimensional near equilibrium metrics
corresponding to the hydrodynamic regime of putative
(dþ 1)-dimensional holographic fluids associated with
timelike hypersurfaces foliating a general (i.e. general bulk
stress energy tensor) bulk spacetime. Using the method of
Hamiltonian holographic renormalization we gave a pre-
scription for the fluid stress energy tensor in the case of
(conformally) flat Dirichlet boundary conditions on these
timelike hypersurfaces. Our prescription is consistent with
standard holographic results in the limit where the timelike
hypersurface is taken to the conformal boundary.
The resulting stress tensor is proportional to the Brown-

York stress tensor of the corresponding hypersurface plus
certain boundary terms. These boundary terms are in
principle uniquely defined when the hypersurfaces are
taken to the asymptotic boundary and represent the
necessary counterterms to ensure the on-shell action to
be finite. On a finite cutoff the above-mentioned boundary
terms cannot be fixed uniquely but we have shown that in
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the hydrodynamic regime they only provide a redefinition
of the thermodynamic quantities without affecting the
thermodynamic relation or hydrodynamics.
Another source of boundary terms is the part of the

spacetime between the finite cutoff and the boundary at
infinity. In the spirit of Wilsonian holographic renormal-
ization [34,35] (see also [36]), this part of the geometry is
dual to the contribution of high energy degrees of freedom
which can be integrated out, giving rise to a boundary
effective action. In this paper we are taking a hard cutoff
point of view along with e.g. [37,38]; namely we consider
only the part of the geometry between the horizon and the
cutoff itself, ignoring everything else beyond it. It would be
interesting to see how in the hydrodynamic regime our
results can be matched to the local contributions coming
from the so-called UV part of spacetime.
Relative to earlier works (see for example [37,38]) we

have clarified a number of subtleties. In particular, we have
emphasized the fact that different coordinate systems give
physically distinct fluids on timelike hypersurfaces
obtained at any given radial cutoff. At leading order in
the hydrodynamic expansions we can simply perform
coordinate transformations and relate the pressures and
energy densities but the hydrodynamic expansions are
taken about different hypersurfaces and in particular with
respect to different dual field theory spacetime coordinates;
hence out of equilibrium we are dealing with physically
different fluids. In the case of pure AdS gravity this subtlety
does not arise with a flat or conformally flat Dirichlet
boundary condition on the finite cutoff due to the fact that
the conformal factor does not depend on the field theory
coordinates but the issues discussed here would be relevant
for dealing with hydrodynamics for cases such as AdS
R-charged black holes (obtained as decoupling limits of
rotating D3-branes).14

One of the conclusions of [37,38] was that the fluid
changes from a relativistic to nonrelativistic fluid as the
radial coordinate decreases. Here we found that the near
horizon description is the Rindler fluid of [7,8], which
indeed can be viewed as a nonrelativistic fluid.
After discussing classes of spacetimes with a general

bulk stress tensor at thermodynamic equilibrium, we
concentrated on the specific case of Einstein gravity in
AdS and verified the consistency of our prescription for the
fluid stress tensor with standard holographic results when
the timelike hypersurface is taken to the conformal boun-
dary of AdS. Having at our disposal the holographic
dictionary at conformal infinity we gave a precise inter-
pretation of the fluid on the cutoff hypersurface in terms of
a specific deformation of the UV CFT. The resulting UV
fluid can be thought of as living in a nonflat background,
depending on the fluid velocity and temperature.

Finally, we have also explored the near horizon limit of
the cutoff AdS fluid, which up to first order in a gradient
expansion is effectively a Rindler fluid. We have empha-
sized the differences with the membrane fluid discussed
earlier in the literature departing also from the interpreta-
tion of the membrane paradigm given in [38]. In particular
we have showed how through the holographic-type con-
struction one can obtain fluid equations up to arbitrary
order in a gradient expansion in contrast to the membrane
fluid which is only a suitable rewriting of certain compo-
nents of Einstein equations into a fluidlike fashion. Of
course one could easily use explicitly the form of the
horizon metric and some derivative expansion of it in the
membrane fluid equations, but this would be equivalent to
taking the holographic point of view and would for
example spoil the original structure of the membrane fluid
equation.
Recently an interesting connection between asymptoti-

cally flat spacetimes and asymptotically AdS black holes
has emerged [68,69]: it has been shown that asymptotically
AdS black holes compactified on tori correspond to certain
asymptotically flat Schwarzschild black branes and the
holographic dictionary for the stress energy tensor has been
derived through generalized dimensional reduction. It
would be interesting to see how our construction would
fit into this framework, and also how our construction can
be applied to blackfolds [70,71] which interpolate between
asymptotically AdS and asymptotically flat regions.
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APPENDIX A: DETAILS OF THE
HYDRODYNAMIC EXPANSION

The zeroth order metric is

ds2 ¼ −
2

λ
uadxadrþ ðGhab − FuaubÞdxadxb: ðA1Þ

The inverse metric is

gð0Þrr ¼ λ2F; gð0Þra ¼ λua; gð0Þab ¼ hab

G
: ðA2Þ14See the recent work [67].
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The zeroth order Christoffel symbols are

Γð0Þr
rr ¼ 0; Γð0Þa

rr ¼ 0; Γð0Þr
ra ¼ 1

2
λF0ua;

Γð0Þr
ab ¼ −

1

2
λ2FðG0hab − F0uaubÞ;

Γð0Þa
rb ¼ 1

2

G0

G
hab; Γð0Þc

ab ¼ −
1

2
λucðG0hab − F0uaubÞ;

ðA3Þ

with useful contractions being

Γð0Þμ
μr ¼ 1

Gd=2 ∂rGd=2; Γð0Þμ
μa ¼ 0: ðA4Þ

After promoting the parameters to depend on x, the metric
(A1) is not a solution of the Einstein’s equations. However
adding corrections gðnÞ one can construct a solution order
by order. The usual gauge choice is gðnÞrr ¼ gðnÞra ¼ 0 so that
the lines at constant xa are bulk radial null geodesics and
the metric keeps the Eddington-Finkelstein form to all
orders, which is useful in order to avoid coordinate
singularities at the horizon.
The variations of the Christoffel symbols can be com-

puted formally to all orders using

δΓðnÞρ
μν ¼ 1

2
gð0Þρλð∇̄μg

ðnÞ
λν þ ∇̄νg

ðnÞ
λμ − ∇̄λg

ðnÞ
μν Þ; ðA5Þ

where ∇̄μ is the covariant derivative with respect to the
background zeroth order metric. Hence using (A3) we can
compute

δΓðnÞμ
rr ¼ 0;

δΓðnÞr
ra ¼ 1

2
λuc∂rg

ðnÞ
ca −

1

2
λ
G0

G
uchdag

ðnÞ
cd ;

δΓðnÞr
ab ¼ − 1

2
λ2F∂rg

ðnÞ
ab þ 1

2
λ2ðG0hab − F0uaubÞucudgðnÞcd ;

δΓðnÞa
rb ¼ 1

2

1

G
hac∂rg

ðnÞ
cb −

1

2

G0

G2
hachdbg

ðnÞ
cd ;

δΓðnÞc
ab ¼ −

1

2
λuc∂rg

ðnÞ
ab þ 1

2

λ

G
ðG0hab − F0uaubÞhceufgðnÞef ;

ðA6Þ

and the useful contractions

δΓðnÞρ
ρr ¼ 1

2
∂r

�
1

G
hcdgðnÞcd

�
; δΓðnÞρ

ρa ¼ 0: ðA7Þ

The variations of the Ricci tensor to all orders can be
computed using

δRðnÞ
μν ¼ −∇̄μδΓ

ðnÞρ
ρν þ ∇̄ρδΓ

ðnÞρ
μν ; ðA8Þ

which gives (147).
The Christoffel symbols up to first order obtained from

the seed metric (A1) with parameters depending on x are

Γð1Þμ
rr ¼ 0;

Γð1Þr
ra ¼ 1

2
λuaF0 þ 1

2
aa −

1

2
D⊥

a ln λ;

Γð1Þr
ab ¼ −

1

2
λ2FðG0hab − F0uaubÞ − λKabGþ uðaabÞλF

þ uðaλD⊥
bÞF −

1

2
λuaubDFþ

−
1

2
λhabDGþ λFuða∂bÞ ln λ;

Γð1Þa
rb ¼ G0

2G
hab þ

1

Gλ
Ωa

b þ
1

2Gλ
aaub −

1

2λG
ubD⊥a ln λ;

Γð1Þc
ab ¼ −ucKab þ ucuðaabÞ −

1

2
λucðG0hab − F0uaubÞþ

−
ðG − FÞ

G
ð2uðaΩc

bÞ þ acuaubÞ þ
1

G
hcða∂bÞGþ

−
1

2G
habD⊥cGþ 1

2G
uaubD⊥cF þ ucuða∂bÞ ln λ;

ðA9Þ

and useful contractions

Γð1Þρ
ρr ¼ 1

Gd=2 ∂rGd=2;

Γð1Þρ
ρa ¼ 1

Gd=2 ∂aGd=2 þ uaD ln λ −D⊥
a ln λ: ðA10Þ

The Ricci tensor components are shown in (181).
The general solution to Eqs. (196)–(199) is

γð1Þ ¼ ðγ0rþ γ1r2Þθ;

βð1Þa ¼ r

�
β0rþ

β1
rd

−
L

rc
ffiffiffiffiffi
hc

p δðrcÞ
�
aa;

αð1Þ ¼ α0
rd−1

θ þ L

dh3=2c

r
rc
ððd − 1Þðh − 1Þ þ 2ðhc − 1ÞÞθ;

~γð1Þab ¼ 1

2

L
ffiffiffiffiffi
hc

p
rcrH

r2ð4kðrÞ þ ~γ0 þ ~γ1 ln hðrÞÞσab; ðA11Þ

where kðrÞ is given by (206) and γ0, γ1, β0, β1, α0, ~γ0 and ~γ1
are integration constants. Dirichlet boundary conditions fix
some of them to
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γ1 ¼ −
γ0
rc
;

β1 ¼ rdc

�
−rcβ0 þ

L
rc

ffiffiffiffiffi
hc

p δðrcÞ
�
;

α0 ¼ −
ðdþ 1Þ

d
Lrd−1c

h3=2c

ðhc − 1Þ;

~γ0 ¼ −4kðrcÞ − ~γ1 ln hc; ðA12Þ

Landau gauge conditions (200)–(201) fix the other inte-
gration constants to

γ0¼
2L

rc
ffiffiffiffiffi
hc

p ;

β0¼−
Lðdhcð2þðd−1ÞδðrcÞÞ−ðdþ1Þð2þdδðrcÞÞÞ

2ðdþ1Þr2ch3=2c

δðrcÞ;

ðA13Þ

and requiring regularity on the horizon rH gives

~γ1 ¼
4

dþ 1
; ðA14Þ

leading to the solutions (202)–(205).

APPENDIX B: DETAILS ON THE 2þ 1þ 1
FOLIATION OF THE SPACETIME

Knowing (258), (259) and (260) it is possible to show the
following identities:

DαB ¼ 0; DαðC=AÞ ¼ 0 on H: ðB1Þ
These can then be used to derive the useful relations

qνα∇klν ¼ −ΩðlÞ
α þDα lnA; qνα∇lkν ¼ ΩðlÞ

α : ðB2Þ

Let us first consider

ð∇β∇α −∇α∇βÞmβ

¼ ∇βΘ
ðmÞβ
α þ hβ∇βΩ

ðlÞ
α þ ΩðlÞ

α θðhÞ þΩðlÞ
α νðlÞþ

− CνðkÞΩ
ðlÞ
α þ ΘðhÞβ

α ΩðlÞ
β − ΘðlÞβ

α Dβ lnA

þmαΩðlÞβΩðlÞ
β − lαΩðlÞβDβ lnA − lα∇βð∇klβÞ

þmανðlÞνðkÞ − kαLlνðlÞ − νðlÞ∇lkα − ν2ðlÞkαþ
− νðlÞkαθðlÞ þ ðθðkÞ þ νðkÞÞ∇αC − Ckα∇βð∇lkβÞþ
− νðkÞlαLkC − ClαLkνðkÞ − CνðkÞ∇klα − Cν2ðkÞlαþ
− CνðkÞθðkÞlα −∇αθ

ðmÞ −∇αðνðlÞ þ CνðkÞÞþ
− ΘðkÞβ

α DβCþ νðkÞlα∇kC; ðB3Þ

where we repeatedly used (274). By further projecting on q,
using (B2)–(B1) and the relations

qνα∇μΘ
ðmÞμ
ν ¼ DμΘ

ðmÞμ
α þ ΘðmÞμ

α Dμ lnA; ðB4Þ

qναLhΩ
ðlÞ
ν ¼ qναhμ∇μΩ

ðlÞ
ν þ ΘðhÞμ

α ΩðlÞ
μ ; ðB5Þ

as well as Einstein equations (278) we get the generalized
Damour-Navier-Stokes equation (279). Equations (280)–
(281) can be derived similarly.
To derive Eq. (282) we consider

hρ∇ρ∇μmνq
μ
αqνβ ¼ hρðRνσρμmσ þ∇μ∇ρmνÞqμαqνβ; ðB6Þ

and repeatedly make use of (274)–(275), (B2) and

qμαqνβLhΘ
ðmÞ
μν ¼ qμαqνβ∇hΘ

ðmÞ
μν þ ΘðmÞ

αρ ΘðhÞρ
β þ ΘðmÞ

βρ ΘðhÞρ
α :

ðB7Þ
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