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Towards a general fluid/gravity correspondence
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We set up the construction of generic (d + 2)-dimensional metrics corresponding to (d + 1)-dimensional
fluids, representing holographically the hydrodynamic regimes of the putative dual theories. We give general
seed equilibrium metrics appropriate to generic bulk stress energy tensors and discuss the implications of
conformal rescalings of the hypersurface on which the fluid is defined. We then show how to obtain the
corresponding hydrodynamic metrics using a relativistic gradient expansion and discuss the integrability
conditions of the resulting equations. The stress energy tensors of the resulting fluids, both at and away from
equilibrium, satisfy a quadratic constraint. We interpret this constraint in terms of two possible equations
of state for the fluid and show that only one of the two equations is physical. We illustrate our discussions
with the example of the cutoff anti—de Sitter fluid, for which we find the precise interpretation in terms of
deformations of the UV conformal field theory. Finally we discuss the relation between the modern fluid/

gravity approach taken in this paper and the earlier membrane paradigm.
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I. INTRODUCTION

The holographic principle proposes an equivalence
between (d + 2)-dimensional gravitational theories and
(d + 1)-dimensional quantum field theories. A concrete
realization of holography in which the dictionary between
bulk and boundary data has been extensively developed is
the case of asymptotically locally anti—de Sitter spacetimes
(AdS) corresponding to conformal field theories (CFT).
However, if holography is the correct paradigm, holo-
graphic descriptions should exist for more general gravi-
tational theories with different asymptotics. Holography
has in recent times been pushed beyond AdS asymptotics,
particularly to nonrelativistic dualities such as Lifshitz
and Schrodinger, but constructing a holographic duality
for even asymptotically flat spacetimes has been a long-
standing challenge.

A generic feature of any quantum field theory is the
existence of a hydrodynamic description capturing the
long-wavelength behavior of the microscopic degrees of
freedom near to thermal equilibrium. If holography is
correct, such regimes have to be reproduced within the
context of the holographic duality. The fluid/gravity cor-
respondence [1] exactly realizes this scenario: nearby
gravitational solutions describing the hydrodynamic regime
have been explicitly constructed for AdS black-brane
solutions, which correspond to a conformal fluid at thermal
equilibrium. This framework was later extended to classes
of nonconformal fluids; see for example [2,3]. The authors
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of [4] review the many other extensions of the fluid/gravity
relation.

An extension of fluid/gravity duality to vacuum Einstein
gravity has also been developed over the past few years.
In [5-7], the incompressible Navier-Stokes equations in
(d + 1) dimensions were shown to be dual to a (d + 2)-
dimensional Ricci-flat metric. This holographic duality for
Ricci-flat spacetime has attracted much interest and the
correspondence has been extended in several directions.
A systematic construction of the metric to all orders in the
hydrodynamic expansion was provided in [7]; this deter-
mines the corresponding specific corrections to the incom-
pressible Navier-Stokes equations. Subsequently in [8,9]
the fluid/gravity relation was reformulated in a manifestly
relativistic expansion. The thermal state corresponds to the
Rindler spacetime and near equilibrium solutions represent
the hydrodynamic behavior of a dual fluid living on a finite
cutoff timelike hypersurface X.. In [10] relations among
the second order transport coefficients have been derived
and the authors of [11-13] studied higher derivative
corrections. Extensions to spherical horizon topologies
and to de Sitter have been studied in [14—17] while charged
fluids were explored in [18-20]. The role of Petrov
conditions has been explored in [15,21-24] and solution
generating symmetries were investigated in [25]. Other
related works include [26-30].

In this paper we give a general prescription for con-
structing hydrodynamic solutions associated with a
(d + 1)-dimensional timelike flat hypersurface X. inside
a (d + 2)-dimensional bulk spacetime, which has a horizon
and is supported by a generic bulk stress tensor. Note that
this hypersurface does not necessarily need to be chosen to
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be near the horizon or near the (conformal) boundary of the
space-time. We begin in Sec. II by setting up an appropriate
form for a bulk metric dual to an equilibrium fluid and its
relation to the Bondi-Sachs form [31,32] as well as the
metric ansatz used in holographic numerical simulations
such as [33].

By construction, when the hypersurface X, is flat, the
induced Brown-York stress energy tensor on this hyper-
surface takes a fluid form, and one can read off the defining
properties of the putative dual fluid. We highlight the fact
that, when the hypersurface is only conformally flat, as is
indeed the case for AdS/CFT, the holographic stress tensor
cannot be the Brown-York stress energy tensor but rather
should be conformal to the Brown-York stress energy
tensor. We also emphasize the implications of the fact that
fixing a Dirichlet Minkowski condition on X generically
leads to noncanonical normalizations of Killing vectors
both at asymptotic infinity and at the horizon.

As noted in [8,9], the fluid stress energy tensor satisfies a
quadratic constraint, which acts as an equation of state.
This implies that, for any given data for the bulk stress
energy tensor on X, there are two distinct bulk solutions.
For vanishing bulk stress energy tensor these correspond to
the Rindler fluid and the Taub fluid, respectively [8,9]. The
Taub fluid has strictly negative energy density and temper-
ature and is hence unphysical. In Sec. III we consider
various examples of bulk stress energy tensors, including
cosmological constant and gauge fields, and we discuss
the interpretations of the positive and negative signs in the
equation of state. Only one sign in the equation of state
gives rise to a physical fluid; the opposite sign is always
associated with a negative temperature and is therefore not
physical.

Using our examples, we observe that the existence of a
flat timelike hypersurface is (as one would expect) highly
nontrivial: in the absence of negative bulk curvature this
requirement forces us into scaling regions of black holes
with spherical horizon topologies. We also note that in the
presence of generic matter the Einstein equations no longer
form a nested hierarchy of decoupled equations, as they
do in the vacuum and cosmological constant cases; see
[31,32] and [33]. Since the equations do not decouple, even
equilibrium (stationary) solutions are hard to find.

In Sec. IV we begin a preliminary investigation of the
relation between the fluid stress energy tensor and the
renormalized holographic stress energy tensor, the latter
being defined in cases for which the holography duality is
under control, e.g. asymptotically AdS or Lifshitz space-
times. We use this perspective to understand why the fluid
stress energy tensor for conformally flat hypersurfaces
must be defined in terms of the conformally rescaled
Brown-York stress energy tensor.

In Sec. V we provide a general setup for hydrodynamics
by promoting the defining parameters of the equilibrium
bulk solutions to be position dependent. Working in a
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relativistic gradient expansion, we work out the hydro-
dynamic equations of motion. We show that the conserva-
tion of the dual fluid is associated with the integrability of
the bulk equations and we derive a general expression for
the first order dissipative corrections to the fluid stress
energy tensor.

As an example of our formalism we revisit the case of
cutoff AdS. We compute the first order hydrodynamic metric
corresponding to a Dirichlet condition on the hypersurface
2.. As this hypersurface is taken towards the conformal
boundary we recover the results of [1]. For a generic choice
of 2., we work out the asymptotic expansion of the metric in
the neighborhood of the conformal boundary. This metric
remains asymptotically locally AdS but the background
metric for the dual CFT is no longer conformally flat. We
give the precise form for this background metric, up to first
order in derivatives, thereby identifying the precise defor-
mation of the dual CFT captured by the Dirichlet condition
in the bulk. Earlier discussions of the mixed nature of the
boundary condition at infinity can be found in [5,34,35]; see
also the related work [36]. Discussions of the hydrodynamic
behavior on a finite cutoff hypersurface X. include [37,38];
see also [39,40].

The fluid/gravity duality is not the first time in which
the physics of fluids has been linked to that of gravity. The
membrane paradigm was introduced in [41-43] and the
authors postulate that any black hole horizon can be
thought of as a membrane exhibiting fluidlike behavior.
In particular it was shown that certain components of
Einstein equations could be recast in the form of dissipative
nonrelativistic Navier-Stokes equations. This fluid how-
ever has a negative bulk viscosity, a signal that this
membrane fluid is unphysical, and that the membrane
paradigm itself should perhaps only be considered as a
formal (if convenient) treatment of horizon dynamics.

A natural question is what is the relation between the
membrane paradigm and modern fluid/gravity approaches.
It was already noted in [44] that in fluid/gravity duality the
dynamics of the entire spacetime is encoded holographi-
cally by the fluid associated with the boundary of the
spacetime, while the membrane fluid is encoded on the
horizon; see also the related works [45-48]. An extension
of the membrane paradigm to hypersurfaces in the interior
of the spacetime has been studied in [49], and recent works
attempting to find connections between the membrane
paradigm and fluid/gravity by studying hydrodynamic
behavior on a finite cutoff hypersurface X, include
[37,38], as well as [39,40].

In Sec. VI we discuss the relation between the fluid/
gravity approach and the membrane paradigm, by devel-
oping the work of [50]. The latter generalized the Damour
equations to the case of general hypersurfaces foliating
the bulk spacetime, with the hypersurfaces not necessarily
being null and not being assumed to be close to the
horizon. In particular, [50] constructed a generalized
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Damour-Navier-Stokes equation on codimension 1 time-
like hypersurfaces. We extend the work of [50] to other
components of the Einstein equations and then use this
setup to compare the membrane approach with the fluid/
gravity construction. We highlight the different identifica-
tions of both fluid parameters and the associated transport
coefficients in the two approaches. In Sec. VII we con-
clude, while the appendixes contain detailed derivations of
certain results used in the main text.

II. GENERIC FLUIDS IN EINSTEIN GRAVITY

A. The general seed metric ansatz

We are interested in studying the hydrodynamics of fluids
associated with a (d + 1)-dimensional timelike flat hyper-
surface X, foliating a (d + 2)-dimensional bulk spacetime.
We begin by considering a generic static solution; having
constructed static seed solutions one can always boost them
to obtain stationary solutions corresponding to fluids with
nonzero velocity. A convenient metric ansatz in Eddington-
Finklestein-type coordinates is of the form

ds® = 2dtdr — f(r)di® + g(r)dxidx;, (1)

with i = 1, ...d. On hypersurfaces X of constant r = r the
induced metric is therefore

dS2|EF = Yabdxadxb = _f(rc>dt2 + g(rc)dxidxia (2)

where x% = (1, x"). We assume that the hypersurface under
consideration has a nondegenerate metric, i.e. f(r.),
g(r.) # 0, and that there is a horizon at r = ry # r, where
f(ry) = 0. Each hypersurface is a worldline of observers
with constant acceleration

_1r
a_z\/f’ (3)

where the prime denotes a radial derivative. The temperature
associated with the horizon is

1

T = Ef/(rH)' (4)

After rescaling the coordinates ¢ — 7= +/f(r.)t and

x' = x! = \/g(r.)x' the induced metric on X, can always
be written in a manifestly flat form; i.e. the metric is

2didr _ f(r) dr + g(r) d)_Cid)_Ci- (5)

VI(re) Sre) 9(re)

Boosting this metric results in

ds? =
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2 cadr 4+ 90 o gz
ds? = — i u,dx dr+g(rc) dx,dx
)0 ]
(55~ ) e )
where the velocity is
ut=y(Lo), y=(1-v)2 (7)

as usual. The boost manifestly preserves the induced metric
on XZ.. Defining

f(r)
f(re)

such that G(r.) = F(r.) = 1, the metric can be written as

F(r)=

; A=

ds* = — % u,dx*dr + G(r)dx,dx"
+(G(r) = F(r)) (u,dx)*. ©)

The latter is a generic form for the equilibrium metric; in
most of what follows we will work with the metric in this
form and we will drop the barred notation for the rescaled
coordinates. This is the most general seed equilibrium
metric, with the corresponding fluid parameters [see below,
(34) and (35)] being (u,,G'(r.), F'(r.)) where again the
primes denote radial derivatives. Depending on the bulk
stress energy tensor and matter present, the fluid may have
other parameters. For example, if there is a bulk gauge field
then the ansatz for the gauge field consistent with statio-
narity would be

A= (u(r) + (r=re)p(r))uqdx”. (10)

Then one would regard u(r.) as a boundary condition,
characterizing the chemical potential in the field theory,
and p(r,) as characterizing the charge density in the fluid.
Not all of the fluid parameters are independent, since they
are related by the Hamiltonian constraint, equivalent to
the equation of state for the fluid, as well as conservation
equations. For example, for a cosmological constant stress
energy tensor, the equation of state implies that only one
out of F'(r.) and G'(r,) is independent.

The original metric ansatz (1) is analogous to that used in
[33] and subsequent works, although in these papers g(r)
was rewritten as the square of a function, i.e. g(r) = X(r)>.
By rescaling the radial coordinate one can rewrite the
metric in a static Bondi-Sachs [31,32] parametrization:

ds? = 22 dtdr), — 1)) @2 4 rldxidx;, (11)

where r, is the new radial coordinate and f(r)=
2+ with €X0) =2, /5(D,g)~". This form of the
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metric is particularly convenient for solving the vacuum
Einstein equations, as they form a nested hierarchy with the
equation for S solvable first, and then ¢ may be found using
the solution for f. In [33] the same nested hierarchy was
found in the case of pure cosmological constant: again g(r)
could first be determined, with f(r) then determined using
the solution for g(r). We will recover the same structure
below but for a generic bulk stress energy tensor one cannot
in general analytically integrate the equation for g(r) even
in static equilibrium situations.

Let us return for a moment to the original coordinates
in (1). Clearly the induced metric on X. given in (2) is
conformal to a flat metric in which the effective speed of
light is given by

2 = f(rc)
Pl

. (12)

Near the horizon, f(r.) is small and therefore the effective
speed of light approaches zero. If one works with the
original coordinates, rather than the rescaled coordinates,
then the boost should preserve the induced metric on X..
This implies that the boost must use ¢; as the effective
speed of light, resulting in

ds* = —Z%dx“dr + g(r)(dx'dx; — cidr?)
I
+ e (ol - 1) (13

with

V; _ i\—
U“:}/l<cl’c_,>; }’12:<1_512”ﬂ}) L (14)

Defining 7 = ¢,t this boosted metric becomes

A

U .
ds* = =2—"dxdr + g(r)(dx'dx; — di*)
¢

; <0udxa>2<g<r> —2) (15)
with
ﬁa =7,(1,9;); 7712 =(1-29;)7!, (16)

and 9; = dx'/di.

In equilibrium the three forms of the metric (9), (13)
and (15) differ from one another by trivial rescalings of
the coordinates. Once one goes beyond equilibrium into
the hydrodynamic regime, however, the three forms of the
metric are no longer equivalent. The reason is that the
metric functions f(r) and g(r) depend on the thermody-
namic quantities: the temperature, charge etc. In the
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hydrodynamic regime the latter are promoted to be spatially
dependent, and therefore both the conformal factor of Z.
in (13) and the effective speed of the light ¢; on X. become
spatially dependent. Using the coordinates of (15), the
effective speed of light on the hypersurface does not vary
along X, but the conformal factor of the induced metric is
still (in general) becoming spatially dependent as one
extends the solution into the hydrodynamic regime. By
working with the coordinates (9) one ensures that the
induced metric on X, remains flat. In other words, this
choice of coordinates is appropriate if one wants to impose
a fixed Dirichlet boundary condition on X..

It is useful to make one further rewriting of (9) to obtain

2
ds®> = — 7 uadx®dr + G(r)hgpdx®dx® — F(r)u,u,dx*dx”,
(17)

where h,, = n,, + u,u,, with the inverse metric being

gOr —2F;  gOra_ gy, g(0)ab :h_:_ (18)
The Ricci tensor is then'
RO _ dG"” 3 dGg”
T 4G 267
IR = u, (; F'+ dif) :
ﬂ_zREg,) = u,u, (% FF" + di/gF/)
+ I <(2 ; 9) GgF —%F’G’ —%FG”), (19)

where in anticipation of extending to the hydrodynamic
regime the superscript denotes that we are working to
zeroth order in x“ derivatives.

We assume that the metric satisfies Einstein’s equations
with a given stress energy tensor; i.e. the Einstein tensor
satisfies

G =T, (20)

uv

Throughout this paper we will use 7 to denote the bulk
stress energy tensor and reserve T to denote the stress
energy tensor associated with the fluid on X.. Einstein’s
equations then read

1 . . .
Our convention for the Riemann tensor is Rﬁ,,,, = 8,,1%;—!—

r ’/{UFf,G — (v<>0). Details of the computation of the curvature at

leading and subleading order may be found in the Appendix.
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1G2? 2G
G”:____Tg'r>5
2G4
1 FG? 4GF 5 4G
FIG = —(d—1 O Oy
sld=N) =+~ T
2 o, ] FG"
F//:dlZGTabhb_FZd(d_l)F—i_

2 4(d -1
~2(d~ NFTY - %T&?u“, (21)
where again the superscript denotes working to zeroth order
in x* derivatives. These equations are the (rr), (ra) on u®
and (ab) on h? projection of the Einstein equations,
respectively. Clearly there are constraints on the bulk stress
energy tensor such that the metric takes the required
stationary form and these are reflected in the final inde-
pendent Einstein equation, which implies

TOFA+TOub = 0. (22)
One can understand this latter constraint as follows. Taking
the static limit of the metric (9), a bulk stress energy tensor

compatible with the symmetries must be characterized by
three scalar functions as

T,(,(i)dx"dx”
2 o
=TOrgp2 4 7O1gy (dt - dr> + TOidxidx;;

701 .
= <T<0)’ - ,12F2) dr? + T + Tidxidx;,

(23)

where 7, is the Schwarzschild time, such that dt, =
dt — dr/AF. Conservation of the bulk stress energy tensor
implies that only two out of these three functions are
independent. Under a boost the form of the stress energy
tensor becomes

2
T,(,?/)dx”dx” =T Orgy? —l—/l—FT(O)’drdu“

+ TO (u,dx®)? + TOih, dxdx.  (24)

Thus we recover the constraint (22) together with the fact
that

T = 7R, + TOyu,,; (25)

i.e. there are only two independent (ab) Einstein equations,
that projected onto £, and that projected onto u®u®.

It is useful to write down the combination of the Einstein
equations which gives the Hamiltonian constraint in a
radial slicing of the spacetime as

PHYSICAL REVIEW D 91, 044001 (2015)
K? — K, K =4 'R +2G,, n*n, (26)

where K,, is the extrinsic curvature on the timelike
hypersurfaces X., K = K,y is its trace, “*'R is the
Ricci scalar of the timelike hypersurface X, and n” is the
unit normal vector to the hypersurfaces X.. The latter is
given by

1
n= Edr. (27)

n=20,+ u'dy,;
Since we are interested in the case in which the hypersur-
face Z. is intrinsically flat this constraint reduces to

K? — KK, = 24727, (28)

where we use F(r.) = 1. It is straightforward to show that
this Hamiltonian constraint can be rewritten as a constraint
equation for the Brown-York stress energy tensor [51]
defined on X,

Tab = 2([{]/017 - Kab) (29)
as
dT , T — T2 — —8dA=2T"". (30)

This constraint effectively defines an equation of state for
the fluid. Since the equation is quadratic, one can always
find two possible solutions for given data for 7' on Z.. In
the following section we will interpret the two distinct
solutions for generic bulk stress energy tensors.

The (ar) components of the Einstein equations can be
expressed as the momentum constraint

DK —D,K =T ,,n°, (31)

where D, is the covariant derivative in the induced
geometry y,,. Requiring that the Brown-York stress energy
tensor is conserved on X, implies the constraint

T h+ Ty’ =0, (32)

which is indeed satisfied in our equilibrium configurations
due to (22); recall that F(r.) = 1 by construction.

The Brown-York stress energy tensor on the generic
timelike hypersurface X, can be explicitly expressed in the
perfect fluid form as

Ty = phab + pugup (33)
where p is the pressure and p is the energy density, given by
p=M(d=1)G(rc) + F'(rc)), (34)

p = —diG'(r.); (35)
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i.e. the values of the gradients of the metric functions,
together with A, characterize the pressure and energy
density of the fluid. There is an apparent redundancy in
these expressions, as the two thermodynamic quantities are
expressed in terms of three metric parameters. However,
recall that A characterizes the rescaling of the time coor-
dinate on the hypersurface X, (8). By choosing the time
coordinate to be adapted to this hypersurface one can
always take A =1 but then the time Killing vector at
asymptotic infinity will not have its usual normalization.
Therefore 4 measures the relative normalization of the
Killing vector.

Now let us move to the interpretation of the fluid on X,
and let the stress energy tensor of the fluid be denoted T, .
A priori, this cannot be assumed to be precisely the Brown-
York stress energy tensor as any linear combination of the
latter with covariant tensors built from the intrinsic metric
Y5 On the hypersurface . and its curvature would also be
conserved. Given that the induced metric is intrinsically
flat, the following stress tensor

Th, = CiTa + Conap (36)
would be conserved for any values of the constants C; and
C,. In the following section we will argue why C; should
be precisely 1 in a holographic theory, when the induced
metric on X, is the Minkowski metric. However, as in

previous works [6-8], C, remains an ambiguity, which
shifts

p=p+C,  pop-GC (37)
but does not change the combination (p + p):

(p+p) = AF(r)) =G'(r.)). (38)

The latter combination of course appears in the thermo-
dynamic relation

(p+p) =T+ =AF (ry)(G(ry) > + -+ (39)

where the ellipses denote additional contributions from
charges etc. and we use

s =4n(G(ry))?

(40)

Therefore C, does not lead to any ambiguity in the
thermodynamic relations.

To understand the role of the prefactor C; one should
consider the effect of a conformal transformation on the
hypersurface metric: if one scales y,, — Q%y,,, this is
equivalent to a rescaling of the coordinates as x% — Qx*“.
Under such a rescaling, it is easy to see that
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T—Q'T.
(41)

p = Q7%p; p = Q2ps = Q4s;

The implication of these scaling relations is as follows.
If the thermodynamic relation is satisfied when the induced
metric on X. is Minkowski, with 7 being the horizon
temperature, then the thermodynamic relation is not sat-
isfied for any nontrivial conformal factor € unless an
appropriate prefactor C; is included. For the thermody-
namic relation to be satisfied, one needs to relate the fluid
stress energy tensor Tfh to the Brown-York stress energy
tensor T, as

T, =0Ty @)

where the ellipses denote terms built from the induced
metric and, in the general case for which the induced metric
is not flat, its curvature. As noted above, this tensor is
also conserved, provided that the conformal factor Q is
independent of the coordinates on the hypersurface. This
expression closely resembles the expression for the renor-
malized stress energy tensor in AdS/CFT and indeed we
will discuss the relationship between the two tensors later.

Finally let us reconsider the alternative forms of the
equilibrium metrics (13) and (15) in the context of this
discussion. The background metric for the fluid is the
induced metric on X., namely

ds* = g(r.)(dx'dx' — c3d*) =y, dx*dx®, (43)

which is only conformally flat. With this form of the metric
the entropy density and temperature are given by

s = 4n(g(ry))? = 4n(G(ry)) " (g(ro)) "

T—%le/(rl_]) EiF’(rH)(g(rc))l/z‘ (44)

The Brown-York tensor associated with a hypersurface X,
in the metric in (13) is

adyb — glre)  Flre)
T pdx*dx? = i((d— 1) o) + f('”c))
x g(r.)(dx'dx; — c}di* + U, Updx*dx")
g'(re)
g(re)

which can be rewritten as

—Ad (U, Updx*dx"), (45)

Tab = p(yab + g(rC)Uan) +pg(rc>Uanv (46)

where the quantities p and p are as given in (34)—(35).
However, these are not the physical pressure and energy
density of the fluid: appropriate conformal factors of g(r,)
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must be included in the latter according to the prescription
(42) for the thermodynamic relation to be satisfied.

In equilibrium the choice of coordinate system is merely
one of computational convenience but away from equilib-
rium different choices really correspond to distinct boun-
dary conditions on the hypersurface X.. For example, it is
only sensible to keep the induced metric on Z, fixed as (43)
when one extends to the hydrodynamic regime if the
conformal factor g(r.) is independent of the fluid param-
eters, as well as the speed of light c%. If the conformal factor
depends on the fluid parameters then implicitly the back-
ground metric on X. is only flat to leading order in the
hydrodynamic expansion. Moreover the fluid stress energy
tensor defined in (42) would also only be conserved to
leading order in gradients. In practice, as we discuss in the
next section, for many bulk stress energy tensors one can
immediately integrate the equations of motion to obtain
g(r) = r?, which is independent of the fluid parameters.

III. EXAMPLES OF FLUIDS

In this section we consider examples of fluids with
various bulk stress energy tensors. In particular, we explore
the interpretation of the two solutions for the equation of
state (30).

A. Negative cosmological constant

Our first example is the case in which the bulk stress
energy tensor is a negative cosmological constant, namely
T ,, = —Ag,,. In this case the Hamiltonian constraint (30)
can be written in terms of the metric (1) as

d7(f"+ (d—1)f7') +2A =0, (47)

where ¢%*") = g(r). This gives two possible equations of
state for the fluid

-t Ve sl = A )

p:

from which we then obtain two possible geometries for
two distinct dual fluids. Notice that in the limit A — 0 we
recover the two already known results, namely the Rindler
equation of state p =0 (see e.g. [8]) and the Taub
geometry2 equation of state p = —% p (see [9]).
The general solution to the (rr) Einstein equation is
g(r) = (e;r +¢y)* with ¢ #0. (49)
Here ¢; and ¢, denote integration constants. The special
case ¢; = 0 and g(r) constant is not compatible with the

*The Taub geometry is a vacuum, homogeneous but aniso-
tropic solution of Einstein gravity first found in four bulk
spacetime dimensions in [52]. There is a curvature singularity
at r = 0 which is timelike and naked.
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other equations of motion unless A = 0. Let us set ¢; = %,
rescale the r coordinate ; =7+ ¢, and use the same
symbol for the radial coordinate 7 — r. The remaining
Einstein equations provide a solution for f(r) which reads

A3 (50)

f(r):_—d(d+1) -1

Consider first the case c3 # 0. Inserting into (50) the

value of the cosmological constant A = — d(zd L+21)

the maximally symmetric spacetime with negative curva-
ture, the static metric (1) represents a “naked-brane” or a
black-brane geometry depending on the sign of c;; i.e. the
metric is

relevant to

2 L2 2 )
ds? = _% (1 Cfm )dﬂ + %dx’dxi + 2dtdr. (51)
r

Note that in the limit A — O the Taub geometry with a
positive or negative g,, (depending on the sign of c3) is
recovered; the limit is obtained by scaling x'/L — x'
with L — oo and (z,r) finite. The case with ¢3 > 0 is
the well-known unphysical negative mass black brane, with
naked singularity at r = 0, and we shall not consider it
further here. Conversely setting ¢;L? = —ri,“, the result-
ing geometry is that of a (positive mass) AdS black brane in

ingoing Eddington-Finkelstein coordinates:

2
~ " n(ryas + % dxidx; + 2dtdr,

h(r) = (1 - (%”)M) (52)

The dual fluid living on a generic timelike hypersurface
2. of constant r, satisfies the equation of state (48) with a
positive sign. Boosting and then rescaling to bring the
metric into the form (9) with

G="C0 F=SD st ()

its thermodynamic properties can be obtained immediately
from (34)—(35):

2d 1)
= -=Zp, 54
p I (54)
——1 2dh 4 55
piLhi/z( etk (r)), (55)

where here and in what follows we use the shorthand
notation h. = h(r.). Notice that in the near horizon limit
r. — ry the pressure and energy density behave as
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p = O(re=ry), (56)

(d+1

Vet O = (57

and thus have the same behavior as the corresponding
thermodynamic quantities of the Rindler fluid® (see [8]),
provided that the constant & is identified with the surface
gravity of the black brane as

(d+1)

k pr—
212

ry. (58)
The energy density (54) is negative, but as already
mentioned one can use the ambiguity in the definition of
the Brown-York stress energy tensor (36) in order to shift
the energy density to a positive value. Moreover, the
thermodynamic relation

b+ )= (59)

is independent of this ambiguity. The Hawking temperature
computed from the metric (9) with the time coordinate
rescaled is

(d+1)

Ty =
" 4rr.L

(60)

:
53
[

The entropy density of the horizon, again expressed in
terms of the rescaled coordinates, is

d
,
s =4 ZI,

(61)
and thus the thermodynamic relation (59) is indeed
satisfied. The ¢; — O limit gives the AdS vacuum metric
expressed in ingoing coordinates

2 2

ds® = —thz —zdxidxi +2didr,  (62)

with the energy density and the pressure being

p=—— p=— (63)

where again these are evaluated in coordinates in which the
induced metric on the hypersurface is Minkowski. These

3 After restoring the dimensionful parameter k, the flat space-
time metric in Rindler coordinates is written ds®> = —(kr)>di*> +
dx'dx’ +dr* and in ingoing Rindler coordinates is ds> =
—2krdt?> + dx'dx' 4 2dtdr. 1t is straightforward to show that
the thermodynamic quantities of the dual fluid living on a generic
timelike hypersurface . of constant r = r. are pp = V2k \/1_
Pr =0.
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values may be viewed as the boundary limit (r. — o0) and
the vacuum AdS limit (ry — 0) of the thermodynamic
quantities found in (54)—(55).

The arbitrariness in the definition of the fluid stress
energy tensor (36) can be used to redefine the pressure of
the dual fluid in order to obtain a vanishing renormalized
ideal stress energy tensor 7%, for the vacuum, choosing
C, = —2d/L. The combination (p + p) =0 is invariant
and reflects the fact that the AdS spacetime metric (62) has
a trivial horizon geometry and thus one cannot associate to
it a nonzero entropy. One could however define an Unruh
temperature for the observers on timelike hypersurfaces
which is nonvanishing but fixed:

1

=L (64)
The thermodynamic relation (p +p) = Ts is trivially
satisfied in this limit since the entropy density s is zero.

Before turning to the other independent solution of the
Hamiltonian constraint, we should note the following.
Suppose we instead choose the induced metric on X, to
be the conformally rescaled metric

2

ds* = I S (=di”? + dx''dx)), (65)

in terms of which coordinates

d d+1
s—aglt, p,@ED T (66)

4zL? \/h,

In order for the thermodynamic relation to be satisfied,
then as anticipated we need to use (42) to define the energy
density and pressure; they are rescaled by a factor of
rd+1/ L4+ relative to (54) and (55).

The effective temperature clearly diverges as X,
approaches the horizon but this divergence evidently arises
only from the time coordinate rescaling. In other words, in
rescaling time so that the induced metric on X, is flat, the
effective energy density, pressure and temperature diverge
as the hypersurface approaches the horizon. If one worked
instead with the coordinate ¢ the temperature and energy
density would remain finite but the induced metric (the
background metric for the fluid) would as expected become
null in this limit.

Finally let us turn to the interpretation of the equation of
state with a negative sign. To understand this it is useful to
rewrite the equation of state in the form

1 (d-1
1—— =4/ p? -8
< d>p+p \/P 8 —

VT, (67)

which reduces to the equation given in (48) in the case
T = —)*A. The solution given above solves this equation
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with a positive sign. A corresponding solution for the
equation of state with a negative sign is obtained by taking

p—=-p.  pP—-P, (68)
whenever 7" # 0. (When 7" = 0, i.e. vacuum solutions,
the equations of state degenerate. The positive sign above
gives p = 0 while the negative sign gives the Taub equation
of state.) Now the switch in signs in the energy density and
pressure can be achieved by switching the direction of the
normal to the hypersurfaces, i.e.

nt — —nt, (69)

which corresponds to changing the sign of the extrinsic
curvature of the hypersurface. Physically, however, the
negative sign solution gives a negative value for (p + p)
and therefore the thermodynamic relation (p + p) = sT
could only be satisfied by a negative temperature.
Therefore the second equation of state never gives physi-
cally meaningful solutions.

B. Positive cosmological constant

We now turn to the case in which the bulk stress energy
tensor is a positive cosmological constant. The spacetime
metric (1) solving FEinstein equations with positive

cosmological constant A = d‘g’;” corresponding  to
c3 > 01n (50) is
ko
ds* = f(r)dr* + l—2dx’dx’ + 2dtdr, (70)

with

=5 (1-(2)") )

This metric is related to the AdS, ,-black brane (52)
through a Wick rotation of the time coordinate ¢ (i.e. going
to Euclidean AdS-type coordinates), of the radial coordinate
r and of the AdS radius L:

t = —it; r—ir; R (72)
The induced metric on hypersurfaces of constant r is
positive definite and the unit normal vector is now time-
like*:

“The unit normal vector is defined as
1
/:tgrr
with a plus sign if it is spacelike or a minus sign if it is timelike.
Moreover, there is always an arbitrariness in the redefinition
n, — —n, depending on the direction of the vector. As in the
previous case we choose the overall sign so that the hypersurface
has positive extrinsic curvature.

E:

dr, (73)

PHYSICAL REVIEW D 91, 044001 (2015)

1
n= —\/—]_Cdr. (74)

The metric (70) is a de Sitter brane in the so-called
inflationary patch; de Sitter is not static so one could
not expect the ansatz to produce a spacetime foliated
by timelike hypersurfaces. The existence of the analytic
continuation to AdS guaranteed that one could describe
de Sitter in this ansatz, with the analytic continuations
indicated above.

One can write down the Brown-York tensor on the
hypersurface, but it cannot be interpreted as a perfect fluid
stress energy tensor since the hypersurface is spacelike. By
construction it can of course be interpreted as the analytic
continuation of such a fluid stress energy tensor. Note that
the metric (70) can be written in the more familiar planar
dS coordinates after performing the following change of
variables

dr? A
dt =dy — — 2= 75
Y h(r)’ d %’ (75)

the resulting metric being

ds* = L (h(f)dy2 +dxidx’ — d_r2> (76)
72 h(z))’

with

h(z) =1 - <i> - (77)

TH

This is the dS;,,-“S brane” metric’ in planar coordinates
after identifying / with the dS radius and 7 being the dS
(inflationary) time coordinate.

C. Fluids for which 7,, =0

Certain matter bulk stress energy tensors compatible
with the static ansatz (1) will in addition satisfy 7 ,,. = 0.
The significance is that if 7 ,. vanishes, then one can
immediately integrate the (rr) Einstein equation to obtain

g(r) = (crr + )™ (78)

This integrability is, as mentioned earlier, related to the
nested hierarchy found in the Bondi-Sachs [31,32] para-
metrization for vacuum spacetimes; similarly the case of
negative cosmological constant also satisfies this property.
As discussed above, vanishing c¢; is generically only
consistent with the other Einstein equations when the bulk
stress energy tensor is zero. Integrating the (ar) Einstein

5Referﬂ'ng to this as a brane, while common in the literature, is
somewhat of a misnomer since 7 = 7 is a coordinate singularity
rather than a brane horizon.
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equations one obtains the solution for f(r) in terms of the
bulk stress tensor component 7,

C3
(r+cy/c))™!

2 r
—l—c—l,(r—l—cz/cl)"d/ dr'T (¥ + cy/c))".

(79)

f(r) =

In the case where ¢; = 0 the remaining Einstein equations
imply f” = 0. When ¢, is nonzero one can absorb both
constants into a redefinition of the origin and scale of the
radial coordinate, (c¢,r + ¢,) — r, and hence

C3

2 r
f(r) = W—FW/ dr’T,/,(r’)d. (80)

The class of stress energy tensors for which 7, =0
includes for example gauge fields. Noting that a vector
field stress energy tensor is expressed in terms of the field
strength F,, as

1
T(F)W = 2<FWF,/’ _ZFP Fp(,g,w>
2(A,A 1A”A 81
+m " I/_E /)gﬂl/ ’ ( )

then the metric ansatz together with the antisymmetry of
F,, forces the (rr) components in the first line to vanish.
The second line involves the mass parameter of the vector
field and the vector potential A,; the (rr) components
vanish if m> =0 (ie. it is a gauge field) or A, = 0.
However the latter is generically not implied by the
symmetries of the equilibrium static solution, which permit
a nonzero F,.(r) as the massive vector field equation is

T A
\/_—ga;t(\/—gFl/) Aw (82)

and the (r) component of the left-hand side is therefore
generically nonzero. The exception is when m? = 0:
then A, is still nonzero in a gauge which is regular at
the horizon i.e.

A=a(r) <dt - d—;> = a(r)ds (83)

(with ¢, again the Schwarzschild time) but A, does not
appear in the stress energy tensor. Note that in the specific
case of four spacetime dimensions a constant field strength
in the two spatial directions is also consistent with the
required symmetries; this case is relevant for discussing
gravity duals to magnetohydrodynamics [19,20].

PHYSICAL REVIEW D 91, 044001 (2015)

Consider the case in which the bulk stress energy tensor
consists of a cosmological constant and a gauge field. The
gauge field equation gives

q
F, =", 84
=2 (34)

with the conserved charge being proportional to ¢ and the
general solution for f(r) hence becomes

62 L 2
f(r)*rd—l d<d+1)Ar +d(d_1)r2(d—l)'

(85)
For negative cosmological constant we therefore recover
AdS charged branes, as expected.

For A = 0 the solution with c; > 0 describes what might
be called a charged Taub fluid: the metric is not asymp-
totically flat and has a naked singularity at r = 0. For
c3 <0 f(r) is positive for 0 < r < ry and negative for
r > ry where f(ry) = 0. In the inner region hypersurfaces
of constant r are timelike, but there is a naked singularity
and the region is bounded by a horizon. In the outer region
hypersurfaces of constant r are spacelike, and both 7 and r
are null coordinates as r — oo.

One can understand the relationship of the latter solution
to the regions inside a Reissner-Nordstrom black hole as
follows. Consider four-dimensional black holes (the gen-
eralization to d > 2 being straightforward). Start from the
metric in ingoing coordinates

M Q?
ds? = — (1 _?JFF) dv® +2dvdR+R2dQ3.  (86)

Now zoom into the neighborhood of a point on the two-
sphere, which without loss of generality can be chosen to
be the north pole, by letting & = ex with € < 1 i.e.

dO? + sin’0d¢?* ~ € (dx* + x*d¢?). (87)
In addition scale the radial coordinate such that r = ¢R

remains finite and the time coordinate such that t = v/e
stays fixed, and also hold fixed

2m = 2Me3; q = Q€. (88)

Under such rescalings one can see immediately using

R. =M+ \/M?>-Q? (89)
that the outer horizon at R, is pushed to infinity (in the r
coordinate) while the inner horizon at R_ remains at a finite
value of r. The resulting metric is
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)
ds? = — ("—2 - —m> P2 + 2didr + r2(dx® + X*dg?),
r r

(90)

which is the d =2 case of the metric given above. As
discussed above this metric covers the region between an
outer horizon, an inner horizon and the singularity.

For positive cosmological constant, the solution with
c3 > 0 describes a charged solution with a singularity at
r = 0 and a horizon at a finite value of r = ry, as discussed
in the previous section. The hypersurfaces of constant r
are only timelike in the region r < ry. The solution with
c3 <0 is more interesting: while the behavior of f(r) at
very small r and very large r is unchanged, the function can
pass through zero more than once in the intermediate
region, corresponding to inner and outer horizons.

D. Fluids for which 7, # 0

Many common matter Lagrangians induce stress energy
tensors which are compatible with the static ansatz (1)
but do not satisfy 7 ,, = 0. In such cases the (rr) Einstein
equation does not decouple and one cannot in general
immediately solve for g(r) (and hence the other defining
functions); the Einstein and matter field equations remain
coupled.

To illustrate this point it is useful to consider a class of
Lagrangians which have recently received considerable
attention in the context of AdS/CMT: (neutral) scalars
coupled to vector fields, so-called Einstein-Maxwell-
dilaton models. If we express the matter action for a single
such scalar ¢ coupled to a vector field A, as

$u == [ @573 007 + V@)

1 1
+Z€a¢F2 +§eﬂ¢m2A2), (91)

with the scalar potential and the parameters (a,f, m?)
defining the model, then the equations of motion are known
to admit Lifshitz, hyperscaling violating Lifshitz solutions
and other charged dilatonic black holes for various choices
of these parameters. The matter stress energy tensor is

1 1 1
T/w = E (aﬂ¢)(ab¢) - Z ((9(]5)29#” - E V(¢)g;w
1 1
+3 e <Fﬂ,,Fyﬂ =3 F"7F o gﬂb>

1 1
+ 3 m>eP? (AﬂAD - EAPApg/w) , (92)

and the matter field equations are
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1 1
O¢ =V'(¢) + é—tae””/’F2 + Eﬂmzeﬂ‘/’Az;

V,(e“Fr) =2m?el?AY, (93)

with V, the covariant derivative. Consistency with the
static, spatially homogeneous ansatz requires6

o=¢(r); A=a(r) (dr —%) (94)

but then 7 ,, # 0 whenever ¢(r) # 0 and/or m?a(r) # 0.
The metric plus matter is characterized by four functions
but the equations of motion are coupled and nonlinear so
they cannot be solved analytically in general. For example,
in the case of the pure massive vector (no scalar field) an
exact solution at zero temperature with Lifshitz scaling
symmetry is known (see e.g. [53]), but corresponding finite
temperature blackened solutions have only been found
numerically (see for example [54-57]). The zero temper-
ature Lifshitz solution can be written in our coordinate
system as

[\S)

=" o= ()/

r, m=—. (95)

In this case the (rr) Einstein equation can be integrated to
give an analytic solution for the function g(r), but the latter
is no longer given by ¢(r) o r>. The usual form of the
Lifshitz metric, i.e.

dp? de®  dx'dx;
d82 :74- <—?+ ,02 ) (96)
is obtained by the redefinitions
d
r=2zp% dr = <dt - _p) (97)
p

IV. RENORMALIZED VERSUS FLUID STRESS
ENERGY TENSORS

In this section we will explore the relationship between
the fluid stress energy tensor which we have defined and
the renormalized holographic stress energy tensor [58—60].
We begin with a brief discussion of holographic renorm-
alization for asymptotically locally AdS spacetimes; see
[61] for a review. Asymptotically one can always express
such spacetimes in Fefferman-Graham coordinates as

°A magnetic flux for a gauge field is again possible only in
four spacetime dimensions.
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dp* 1
ds®> = L? <p_p2 + /?gab (p, x)dx“dxb) (98)

where the metric g,, admits an expansion

9ab (P> X) = G0)ab (P2 X) + -+ + Gasnyap (P> ) + - -
(99)

The ellipses denote terms which are subleading as p — 0;
the form of the expansion depends on the details of the bulk
stress energy tensor but in the case of pure cosmological
constant (g(g), g(4+1)) are the non-normalizable and nor-
malizable modes, respectively.

Using the defining relation of AdS/CFT [62,63], the
expectation value of the dual CFT stress energy tensor is
defined as

2 S
(Teh) = (100)

V=90 59?5) ’

where we work in Lorentzian signature and S, denotes the
renormalized bulk action, in which counterterms have been
added to remove the volume divergences. Algorithmically
one expresses this in terms of the induced metric y,;, on a
hypersurface of constant p = p,. and the subtracted bulk
action Sy, as

L1 2 58
(TSFT) = —1im [W— j’;], (101)
PO pe™ /=Y by
where the renormalized action is defined as
Sren = lim Sgp, (102)
pe—0

with the subtracted action being the bare regulated action
plus counterterms which remove volume divergent terms.
In the specific case of pure cosmological constant the dual
stress energy tensor can be expressed as

. L\ d-1 d+ 1
<TSET> = lim [(_> TZb] = ( )g(dJrl)ab + -

pc—0 c L
(103)
where following [60] (and setting 162Gy = 1)
Top = Tap + Ty,
TEbY = 2<KYab - Kab)’
2d
T ==t (104

TBY being the Brown-York tensor and the ellipses in the
last expression denote contributions due to additional
counterterms which vanish when the metric y is flat.
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Restricting to this case, in which the corresponding
boundary metric g is flat, the renormalized CFT stress
energy tensor is

d+1
<T51§T> = ( I 9(d+1)ab- (105)
One can trivially rewrite (103) as
(T") = limg_ o [QN(TE) + Coyap + )] (106)

where the induced metric on the hypersurface of constant
radius is Q%y,, and C, = —2d/L. As anticipated, this is
very closely related to the expression used for the fluid
stress energy tensor but the CFT stress energy tensor is
defined using different hypersurfaces. Starting from the
generic fluid metric in ingoing coordinates (9) one can
define Schwarzschild coordinates x¢ such that

udr
a _— Jya 1
dx® = dx¢ +/1F(r)’ (107)
so that
dr? B
ds* = m + G(r)napdxddx?
+ (G(r) = F(r))ugupdxidx?. (108)
By defining
dp? dr?
% == (109)

p>  AF(r)’

the metric can be brought into Fefferman-Graham form.
For example, in the AdS black brane (52), by performing
the following change of radial coordinates

L? 1 (ryp\ 4\ 7
=—\(1+-|—= , 110
~S((E)7) o

with inverse transformation
L? 2 7

= — , 111

P= <1+\/h(r)> (1)

the black-brane metric can be written uniquely in the
Fefferman-Graham form requiring the boundary to be at
p = 0 and the Dirichlet condition for the representative of
the conformal structure at the boundary g(),» = 1745- The
transformed metric is
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2 L2 2 LZ a b
ds® = ?dp + p_ggfg(p)nabdxsdxs
2

L
Jr? (gfg(p) _ffg(p))(uudx?)z’
1 d+1\ 4= 1 d+1\ 2
= (=5(2) ) 0= 0) )
1 d+1\ 75
o) = (145 (7))

Notice that the coordinate transformation is singular at the

(112)

horizon py = 2aTL? /ry. A hypersurface of constant r, is
mapped to a radial hypersurface p(r..). The coordinates are
chosen such that the induced metric on a radial hypersur-
face as p — 0 approaches 7,,L?/p>.

Expanding the metric (112) around p = 0 one can extract
the holographic CFT stress energy tensor using (105),
which is indeed that of a conformal ideal fluid in (d + 1)
spacetime dimensions:

(4ﬂ)d+lLd

TCFT —
< ab > (d_l_l)dJrl

T (hyy, + duguy), (113)

where h,, = n,, + u,u,. The energy density p,, the
pressure p and the temperature 7 of the dual fluid are

_d rH d+1 _1 rH d+1 T_<d+1)rH
Pe=y\L)  P7L\L) T 4nrr
(114)

with the temperature being the Hawking temperature.

A. Cutoff stress energy tensor

To compare with the discussion in previous sections we
now define the stress energy tensor of a dual fluid living on
a generic timelike hypersurface X by taking the expression
(103) on a finite radial coordinate p. without taking the
limit towards the boundary. In other words, one defines

(TE,)s, = [(,%) d_lTZb}

Since the induced metric on this hypersurface is no longer
conformally flat, one needs to rescale the x¢ coordinates
as in the previous section. The stress energy tensor takes
the form of an ideal fluid with energy density p and

pressure p’:
d 7\ d+1 ne
F_2(_H 122
=1 (7)) (1+3)"
1
L

L

(115)

ey 116
(=) e
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where A = (p.ry/L?*)4". In the limit r. — co (A — 0)
one recovers the values given above (114) and the stress
energy tensor is traceless on the boundary as it should be.
Using the relationship (111) between r and p coordinates,’
(116) can be immediately rewritten as

2d L d+1
F__ =% 1— hi/2 ’
P (p(rc)> ( )

L O

r;i_;rl
hC:<1_rf+1>; (118)
which agree with (54) and (55) after taking into account the

inclusion of the counterterm and the conformal factor (in
Fefferman-Graham coordinates) which gives

# =) e T)
v =) (%)

The usual conformal fluid pressure and energy density
(114) can be now obtained after pushing the cutoff towards
the boundary r. — 0.

The agreement between the expressions follows from
the form of the coordinate transformations (107) and (109):
restricted to a surface of constant r the ingoing and
Schwarzschild coordinates coincide. When one extends
the solutions into the hydrodynamic regime, however, the
corresponding coordinate transformations will be of the
form

(119)

(120)

o
A(x)F(r, x)
dp dr

b T TR T

dx®* — u“(x) - = dx4,

(121)

where the ellipses are subleading terms in the hydro-
dynamic expansion. As we will see in the following
section, hypersurfaces of constant p no longer coincide
with hypersurfaces of constant r in the hydrodynamic
regime.

"Notice that the relation (111) is the same as the relation one
obtains starting from (52) in rescaled coordinates (9) with (53)
due to the cancellation of factors in the denominator of the right-
hand side of (109).
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FIG. 1 (color online). The spacetime has past and future
horizons H~ and H* respectively. The dual fluid lives on a
timelike surface X.. Lines of constant 7 and constant r in the
Eddington-Finkelstein coordinate system are shown.

B. Interpretation and dual field theory

In this section we turn to the interpretation in terms of
renormalization group flow of the putative dual field theory.
Let us step back from the specific examples to the generic
metric ansatz (1) in which the induced metric y(r.) on X is
given in (2). The spacetime Penrose diagram is illustrated
in Fig. 1.

In the putative fluid/gravity correspondence, the back-
ground metric for the fluid (and hence for the field theory)
is y(r.). Viewing r, as an energy scale, it is manifest that
this metric runs with the energy scale. In field theory
language, suppose the field theory has couplings ¢“(A)
which run with the energy scale A via their beta functions

(122)

then it is usual to characterize the couplings in terms of a
reference (cutoff) energy scale A° such that g*(A?) = ¢4. In
the case at hand, the induced metric for the fluid effectively
provides background couplings for the putative dual theory.
The boundary condition on X, imposes

1(re)ap = Ltlap: (123)
i.e. at this “energy” scale the metric is conformally flat.
Having fixed the metric at this reference point, the metric at
a different energy scale is generically not conformally flat
since the time and space components “run” differently. Just
as in field theory, however, the choice of reference point is
arbitrary: one can change r. — r..
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One can only provide a fluid/gravity interpretation if
the fluid stress energy tensor is conserved® and satisfies a
thermodynamic relation with the temperature and entropy
density. As many authors have pointed out, the Brown-
York stress energy tensor defined in (29) is a natural
candidate for the fluid energy momentum tensor as it is
conserved. One has to be careful here, though, since a fluid
stress energy tensor defined as

Tgb = Cl (I‘C)ng + C2(rc)’7ab (124)
will be conserved for any choice of (C;(r.), C»(r.)). The
function C,(r,) drops out of the combination (p + p)
appearing in the thermodynamic relation but C,(r,) is not
restricted by conservation. We argued previously that
C,(r,) must scale homogeneously under a conformal
rescaling of the induced metric so that the thermodynamic
relation is satisfied for any choice of the conformal factor:
Ci(re) = Q7C(r.) as ng, = Q1.

Clearly the thermodynamic relation is only satisfied for
a specific choice of C,(r,) (for fixed induced metric 7,,).
The choice of C(r.) defines the holographic dictionary
for the fluid. For Q =1 the choice of C,(r.) which is
consistent with the thermodynamic relation is precisely
C,(r.) = 1, in both the Rindler and the AdS cases. We will
now show why this must be the case in any putative
holographic correspondences (in which the bulk spacetime
is describable by Einstein gravity with matter) satisfying a
GKPW-type dictionary [62,63], i.e. a duality between the
on-shell bulk action with “boundary condition” y(r,.) and
the dual generating functional Wy(r.)]. We do not need to
assume a negative cosmological constant or indeed any
specific form for the bulk stress energy tensor.

The proof makes use of a Hamiltonian description of the
bulk dynamics, following the same approach as in the
Hamiltonian method of holographic renormalization [64].
One difference relative to the latter is that we will work
with a finite cutoff and we will not need to look in detail
at the renormalization. A second difference relative to
Hamiltonian holographic renormalization is that we do not
consider generic bulk solutions with given asymptotics;
instead we restrict to the hydrodynamic regime in which
the bulk solution is near to an equilibrium solution with
horizon.

Let us consider a (d + 2)-dimensional manifold which
can be radially foliated by hypersurfaces X, of constant r.
The metric can then be decomposed as

ds* = (N* + N ,N%)dr* + 2N ,dx*dr + y ,,dx"dx",
(125)

¥Strictly speaking the fluid stress energy tensor should satisfy
an appropriate conservation equation but is not always conserved.
The generalization to cases in which it is not conserved because
of e.g. sources for currents is straightforward.
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with N the shift and N, the lapse. This metric reduces to the
form used in the previous sections upon fixing the gauge
such that (N?> + N°N,) =0, which is always possible
since N, is timelike; comparing with the (9), one sees that

Yab = G(r)nah + (G(r) - F(r))uaub'
(126)

However, one cannot fix this gauge before deriving
the constraint equations. The action for Einstein gravity
coupled to an arbitrary matter Lagrangian £,, (which may
include a cosmological constant) can be written as

1 .
S=-—— / d*?x,/=yN(R + K> — K ,,K* - L,,)
2k(d+2)

(127)

where R is the curvature of the metric y,, and K, is the
extrinsic curvature of the hypersurface X,. Note that in this
rewriting of the bulk Einstein-Hilbert action one obtains a
boundary term which precisely cancels the Gibbons-
Hawking term; the variational problem for this action is
well defined for given boundary data y,,. The canonical
momentum conjugate to y,;, is

oL V-
ﬂ'ab = p = - 5 Y (K]/ab - Kab) (128)
5(0,r*) 2k(¢+2)

where the Lagrangian L is defined via § = [drL. Note
that the momenta conjugate to the shift and lapse vanish,
implying that the equations of motion are constraints. The
crucial next step is to use the Hamilton-Jacobi formalism of
mechanics to express the momenta on any given hyper-
surface as variations of the on-shell action with respect to
the induced values of the fields on this surface, namely

ﬂab(l"c _ 5Sonshell ] (129)
57/ab (r c)

Note that r,. is arbitrary, with the relation holding for any r,
provided that the radial coordinate is well defined. If a
GKPW dictionary of the form given in [62,63] holds, then
the on-shell action acts as the generating functional for
background metric y,;, and the corresponding stress energy
tensor is defined as

T“b - _ 2 5S0nshell (130)
VT an(re)”

Using the Hamilton-Jacobi relation this quantity becomes
the Brown-York tensor, with constant prefactor
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Tah —

(Ky®™ — Kab). (131)

k%d+2)

Therefore the identification of the on-shell action with the
generating functional of the dual theory in a background
metric y,, is equivalent to the stress energy tensor of the
dual theory being the Brown-York tensor.

The only assumption so far is the existence of a radial
foliation. If one further insists that such a foliation is by
timelike hypersurfaces then it would be valid outside a
horizon but clearly not applicable inside a horizon.
Moreover, while the variational problem is well defined
for the action (127) given the metric on the bounding
hypersurface, the variational problem would be equally
well posed if one added to the action boundary terms
Sgly] depending only on quantities intrinsic to the induced
geometry. The corresponding stress energy tensor would
then become

2 5Sgly|
Vani'd éyab

The boundary terms are uniquely determined in AdS/CFT
when one takes the conformal class of the metric to be fixed
as one takes the boundary to infinity and these terms are
equivalent to the counterterms needed to obtain finite
renormalized quantities. At finite r. there is no natural
way to fix the ambiguity with a generic bulk solution but, as
we saw earlier, if we restrict to the hydrodynamic regime
with the induced metric being flat, the ambiguity does not
affect the thermodynamic relation. If the boundary metric
for the dual theory is 7,, = Q?y,, then

Tab — Tah _

(132)

_ 2 5Sonshell
V _}7 5}7ab(rc)

in accordance with the relation noted earlier.

Yo
Tab:

—Q-T,  (133)

V. HYDRODYNAMICS AND NEAR
EQUILIBRIUM SOLUTIONS

In this section we will promote general seed equilibrium
solutions to hydrodynamic solutions by allowing the fluid
properties to become slowly varying. Following the dis-
cussion earlier, we consider the form (9) of the seed metric
which we rewrite below for convenience:

2
ds* = — 1 u,dxdr + G(r)dx,dx"

+(G(r) = F(r)) (udx)?, (134)
in which G(r.,) = F(r.) =1, while F(ry) =0 at the
horizon H.

In equilibrium one can always find a shifting and
subsequent rescaling of the radial coordinate to set
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A= 1. The flat spacetime metric in static Rindler coor-
dinates can for example be written in the form (134) with
A=1as

ds* =2drdt — (1 + p(r —r.))dt* + dx'dx;.  (135)
The identification of the pressure and energy density of
the dual fluid to the Rindler geometry of [8] follows from
(34)—(35) straightforwardly: the pressure is indeed the
parameter p while the energy density is zero.

Scaling 4 to one is generically not compatible with
imposing that the induced metric on the cutoff hypersurface
1s Minkowski, however, and we will find it more convenient
to retain a generic A in what follows. For example, for
the AdS black-brane geometry (52) the seed metric is
conveniently expressed after rescaling of the field theory
coordinates as

2didr - 1*h 2
ds? = v ;L - rrz}(lr) dr +%dx’dx,-, (136)

in which we again define k. = h(r,).

A. General hydrodynamic equations

In order to move to the hydrodynamic regime, one needs
to promote the thermodynamic parameters to become
slowly varying functions; see [1]. This can be achieved
by writing

ds?* = =2A(x) " u, (x)dxdr + (G(r,x))14

+ (G(r,x) = F(r,x))ug(x)uy(x))dxdx?, (137)
such that

du’(x) ~ O(e); oA~ Ole);

0,F(r,x) ~O(e); 0,G(r,x) ~Ole), (138)

with ¢ small. The inverse metric is given by
= A(x)?F(r,x); g = Ax)u(x);

g = (G(r,x)) " (n* + uuP) = (G(r,x))'he>. (139)

By construction this generalization preserves the induced
metric on X, and satisfies the Einstein plus matter equations
to leading order in e with the fluid parameters as given

above. To any order n > 1 one will need to correct the

metric by terms g,(,'l',) such that the Einstein equations are still
satisfied. Conservation of the Brown-York stress tensor on

2. to leading order in gradients implies

(p +p)Du, = —Dp;

(p+p)a. = -Dp, (140)
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where D} =h%0,, D=u0, and the acceleration
a. = Du,. Note that the Rindler fluid had the property
that the equilibrium energy density vanishes, and thus the
fluid was incompressible to leading order, but this property
is not in general satisfied.

Supposing that one weights derivatives such that 9, ~ 1
and 0, ~ ¢, if one adds a piece g,%) to the metric at order €”"

then one can compute the associated change in the Ricci

tensor at order ¢” to be 5R,(,'z).

usual linearized formula

This is computed using the

SR _—(wvﬂgM VAV, g+

— ViV, =V, V(™). (141)

with V evaluated using the leading order metric given
above. Note that, since one needs to retain terms in the
covariant derivative at order €°, only radial derivatives need
to be retained.

Order by order we must require the additional terms in

the metric to be such that the Einstein equations are

(n)

satisfied. Defining R,,,, as the part of the Ricci tensor

corresponding to g"~!) due to 0, derivatives and 5R,<Z;)
being the part of the Ricci tensor related to radial deriv-

atives 0, of g\, the Einstein equations at order n are

RY + 6R) ——Z VR - f,)&RU T,
(142)
where the Ricci scalar at each order is given by
") 4 5R™M) ZR (b GRY) g0 (143)

and the inverse metric up to order k is defined in the way
to assure that the trace of the metric is always the same
tr(g) = d + 2; for example at first order it is

g(l);w —_ _g(o)ﬂ/’g(())””gl(,:;) . (144)

Conditions (142) can be then rewritten in a more compact
way as

R +8RY =T,

_ 1

T(’Z) _ T(’;) __ (}f,)’ﬂ”‘k),
i H d ;:0 Gu

(145)

with
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(146)

- k n—K)q,
:ZT((II})Q( k)af
k=0

Imposing the natural gauge choice ggf,) =0forn>1we
obtain the following for the perturbations of the Ricci
tensor induced by the addition of g("):

n . 0\ _1G .
owfy) == g (Ll ) -3, ()

1
2G4/2

1
_2Gd/2 uhlo, < G2 ())’

o
/1_25R2b>:—ZF(G’hab F'ugu,)hedo, (G Cd)>

1SR —

1 n
ud,(G420,4") + 3 Flught0, (Egﬁd)>

1 n. GF 0
O{GY2FO,g0)) +=—h, 0,9,

269 G
Fall

+ G u(ahz)udgg'l)—F’u(au"argy;))
1FG”

e pa ) _1G% )
=3 g7 Ml ged =57 han e

uu?d,(GY*(G' hyy, — F/Maub)giy:l))’
(147)

T

where primes denote radial derivatives. Moreover we find

1 F ,1) .
e (0720, (goin) )

1 1
_EFla (G id)th) +—0r cd hcd

A726R1 = —

2G?
1 d/2 n)ycd
_2Gd/2+la (GY F(?g he?)
+—Gd/28 (Gd/zarg u‘ud)
d aGd/ZGl()Ld ()cd
+2Gd/2+| ( Geq'th ) 2G2gcd ’
(148)
where we defined
SR = gOabsR"). (149)

Notice that
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A25R) |y,
n d
= ua”c”dggd) |zl. <4F/

it (04

<rc>G/<rc>+ﬂ<rc>)

0450060 ).

(150)

which is identically zero when we impose the required
Dirichlet boundary conditions on the hypersurface X, i.e.
gy, =0 with n > 1.

The Einstein equations can be used to solve for the
different components of the metric perturbations, which at
each gradient order can be decomposed in terms of a basis
of linearly independent scalars, vectors and traceless
symmetric tensors:

; W 1
g((lb) = au,u, + 2u(a[7’(b)) + }’(ab) + ;Z}/( hy,  (151)
with
) = syl = FWpab = 0, (152)

Using (145) it is easy to show that the following
equations must be satisfied:

1 ../1 16/
Lo L Tl — 1
26,(Gy )+2G6(G )+ 0, (153)

ﬂ ) ﬂ. G/ " 1 G/Z lG//
Ea%ﬁ(a)ﬁ(d—z)garﬂé>—l(—(d—2)—+ )ﬁ(a)+

4 G226
—(RY) =T =0. (154)
d, 1 d,G?
2 G'F P2 FG?
- 9,(GY2Fa,y 2=y — (n)
ZGd/z ( )+ G Y 2 G2 7 +
d 1 )
~ PG, (Gy<">> +(RY —TWypab =0, (155)
P o) | FG' 1.\, @
EF@,}/“}, + A 4(d 4)?+2F 0,7
MPFG? ) s 1 atn
2R Vib) _Rid)hghi “‘;lRid)thhab
+ <7_'<")h”hd Y e > = (156)
cd "tap d cd ab | — Y-
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These equations are, respectively, the (rr) equation, the 7
projection of the (ra) equation, the h%’ trace of the (ab)
equation and the projection (hh¢ —1/dhh,;,) of the
(ab) equation. Additional, linearly dependent, equations
may be obtained from other projections of the Einstein
equations. For example, projecting the (ra) components of
the Einstein equations onto u“ one obtains an additional

equation for a(")
dG' A y)
bl “tra (-
/1 8 al 1 8,( G )

+ (Ry - TS’ZR)u“ = 0.

1 2
5 40%al")
(157)

Since this equation is second order it is more convenient to
use the first order equation (155). Similarly one can obtain
an additional equation for ") from the projection 4§ u of
the (ab) components of the Einstein equations.

The Bianchi identities at order n are

(V, G

Zvn k

(158)

Using the Einstein equations at each order and the con-
servation of the bulk stress energy tensor at order n,
(V, 7)) = 0, the following identity holds:

(i elO vk SO (159)
or equivalently
(160)

The independent () and (a) components of (160) are

1 P .
EA4FF/(R£V) - T<">) +/13F/(R£a) - T(ra))ua+

FG' n —(n a
_2}“2 G2 (R Elb)_T((/lb))h b
/12F —(n n —(n
+Gd/28 (GY2(2F(RY —TW) +2A(R =T\ )u))

+/12W8 (GY2(RY R ) j—ir[?)uaub) -0,

L (G42(AF(RY,

i 0r =T+ (R =T )ut)) =0,

(161)
From (148) and using the leading order equations of motion

(21) one can show that the following expressions are
identically satisfied:
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AF (5R£,7)u“ + 5R£:,? uu®
_ <_$T(0) ATy ) o,
AFSRY) ha + SR ubhe

1 11
:<——T<°)+——T<>hef) "ubhe.  (162)

d dG "~ ¢

Using
= AFT) + T ub

Zgab b']'nk

Eq. (161) can be brought into the form:

AFT + T yb

L TOG (163)
o, (642 (4 (R ~7) + R =T

n—1
© o () p | K) b (n—k
+ AT ug, u +Ezgab” 7! )))

k=1

u® =0,
o, (42 (4 (R i) + R =T

1
+dGTefhefga ub + — Zga ubT (n= k))hg—o.
(164)

Integrating these conditions and evaluating them on X,
gives

AR =T + RY) = TWub)ly, = £ ()]s,

(165)

where f4"(x) arises as an integration constant.
The Gauss-Codazzi equations on X, at order n are given
by

VPTG s, = —2Ra/n s, = =2(Rey) + 6RG)) |5
(RS + RYub)ly,

= 2w T) =20 ()l

5, - (166)
As discussed around (32), conservation of the fluid stress
tensor requires that 7 ,,n* vanishes to all orders, which in
turn requires that 7 Ew n#* = 0 to all orders n since n* does
not change due to the required Dirichlet boundary con-
ditions. If the fluid is not conserved then 7 2’,’) n* #0
characterizes this nonconservation. In both cases the
integration constant arising from integrating the Bianchi
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identities is therefore zero for the fluid stress energy tensor
to satisfy the required conservation equation.
The extrinsic curvature at order n is given by

KU = (Loga)l) = KY) + 6K (167)

N[ =

where again we divide it into two contributions: IA(E:;)

corresponding to contributions at order n coming from
spacetime derivatives 9, of g"~!) and 5K£:Z) coming from
radial derivatives of ¢). Let us introduce the following
notation for the velocity derivatives:

6 =0.u a, = Duy; (168)
c J,d . 1
Kab = h(ahb)acud’ Oup = ,Cab - Zehalﬂ (169)
where as defined earlier, D = u°V,.. We obtain
" 1

Kilb) =0, + aghab — UgAdp) — u(,ﬁb) InA, (170)

~(n 1 n— .
K :EDggb Vg, with n>1, (171

where we have used the Dirichlet boundary condition and
the expression for the normal vector (27), and

n 1 n 1 12 n !
oK) = 3003k, =34 s + 26 (o

~(n) 1 0
+ 74 (o) +-r (rc)hab)- (172)

The Brown-York stress energy tensor can also be split as

Top " =T o1y, (173)
where again
T = 2K - KL), (174)
with
R = R, (175)

is the contribution coming from the (n — 1)th order metric,
and

BY(n)

6Toy " = 2(6K i nay, = 5KL3).  (176)
with
5K = sk pab (177)
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is the contribution coming from the correction of the metric
at order n. The last part can be worked out formally giving

AlsTBY™ — <—uauby(”>/(rc) =280 (r )y,

+ hab (_a<n)l(rc') +

—fi?’(rc)). (178)

We will work in Landau gauge for the fluid stress tensor

F(n)

T, u*=0; n>1. (179)

Imposing this condition on the fluid stress energy tensor
given in (124) gives two additional constraints order by
order n > 1 on the Brown-York stress energy tensor

Ay () = Tl:;f(n)uaub -0,

A8 (r) + TBY W yant = o, (180)

which follow from the two independent projections of the
condition above (179), and we used the fact that C,(r.) =
1 for a flat metric on X. and that C,(r.) results only in a
redefinition of the pressure and energy density.

B. General first order hydrodynamics

The Ricci tensor contribution coming from the seed
metric is

RY =o,

. G’ d dG'
RY = u, <E du¢ +—DG' — DG)

26 4G2

dG' 1
- _ -1 _DJ_ /
tyga—d=135D0:G

ca-nZ

2G?

1 .G
Dj‘G —ZdEDé' 11’1},,

dG'
4G

/ '
+d—FDG—1dGFDln/1>

DF

N 1
/1_1R((llb> = u,uy (EF’GCMC -

4G 2 G

—DG
2 G

1
+ hy (— ~G'O.u¢ — DG —

! (d-2)G )

. (d-2)G'F
-I-u(aa,,) F +T G
d-2)G | d
2 EM@D}J)F—*

2
1 G'F
+u(an)‘>ln/1<F/+§(d—2) G >

+u Dy F' + G'Kap

(181)
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Recalling that

G(r.)=F(r.) =1, DG(r.) = DF(r.) =0, (182)
the momentum constraint RE;L) ntls = (IAQEIL) +6R£1L))n/‘ s, =
0 evaluates into the ideal fluid equations of motion (140).

The Brown-York stress energy tensor contribution (174)

arising from the seed metric (134) is given by

(d-1)

7Y = _20u,u, +2hab( a—Dln/l)Jr

=204 + 2u(ap) + 2u<aDj) In 4, (183)
and the Landau gauge condition (180) becomes
AWV (r.) = =26,
BV (r) = a, + DEn . (184)

Hence the complete contribution to the Brown-York stress
energy tensor (173) at first order in Landau gauge is
given by

T2Y0 = _h,,(2DIn A+ 22V (r)) = 26, — 7)) (r0).

(185)

Note that this result holds generally, regardless of the
structure of the bulk stress energy tensor.

Consider first the case in which there is no matter. Then
to first order in gradients there is only one independent
scalar which may be chosen to be ; there is only one vector
orthogonal to u“, which we may choose as a,; the only
symmetric traceless tensor orthogonal to u® is o¢,,. The
other scalars (Dp, DInp) can be eliminated using the
equation of state and the fluid equations, while the other
vector D} Inp can similarly be eliminated. Hence the
dissipative part of the fluid stress energy tensor can be
written as

7oy = =2n(r )6 — E(r)Oh . (186)

to first order in gradients, where
1 ~cd(1)
n(re)oa, = Eﬂhachb(ﬂ/ (re) +0ap | (187)

E(r)0 = 2aV (r,) +2D1n A, (188)

define the shear viscosity 7(r,.) and the bulk viscosity &(r,)
at the hypersurface Z..
Notice that the shear over entropy ratio

_ %/lhachhdf/wi(l)/(rc) + Oab
475G (ry)4?

, (189)
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where we used (40), satisfies the universal value 7/s =
1/4x only if

1
Eﬂhachbdf/w(l),(rc) + 64, = G(ry)"*oy. (190)

C. The cutoff AdS fluid, revisited

We will now consider the case of a negative cosmologi-
cal constant, expanding around the asymptotically AdS
black-brane geometry (52). The first step is to write the
latter in the required form (134) through (53). One
computes the hydrodynamic solution by promoting ry
and u, to be slowly varying ry(x), u,(x). Since G is
independent of both quantities DG = DG = 0, which
considerably simplifies the formulas given above.

The bulk stress energy tensor is

pr = _Ag/w' (191)
The condition for the Brown-York stress energy tensor (and
hence the fluid stress energy tensor) to be conserved is
identically satisfied at zeroth order since 7 f,g)n/‘ =0.
Conservation at higher orders is guaranteed by the
Dirichlet condition for the metric on X..
The reduced bulk stress energy tensor is

2

7‘—(9 _
o

Agh) (192)

which leads to
- —(1) 4 2
T =00 Tht=2A0;

(1), 4 (1), 4 L ~1),, 2.1
TWne =0, TU) hant —&Tg,jh bhoy = aAyE.[). (193)

Using the conservation of the stress energy tensor (140) it is
possible to trade derivatives of the horizon radius ry with
derivatives of the fluid velocities

Oty (1
P (39”‘* - 5(rc)aa>, (194)
where
5( ) _ 2(1_(rH/rc)d+1) o 2hc .
T @ D) /r )™ 2+ (d+ (1= )’
(195)

notice that when r. — oo we have §(r.) — 1 and one
recovers the usual relation for conformal fluids (231).
Equations (153)—(157) are
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(196)

2 2
2 (r—g}/“)) +%3r<r—§7(1)> =0,
r r r

r d(d-1) (d+1) , (d-2)
dhe 70V +he—— M) < Ttk y
1
172
~577 y{ (197)
d-2 d—1
ﬁé””+—( - L gy o421 > L+
d L
=0, 198
rr\/—( re)dq (198)
1341
ar<rd+2h(r)a ( " 2)) +2d+/h, Gup = 0.
(199)

The Landau gauge condition (184) on the stress tensor
gives the following equations:

2L

Y (r) + 7}79 =0, (200)
(2L [ h.+(d+1)(1—h,)
pu(re) ~ rovhs <2hc+(d+1)(1—hc>>a“' 200

Solutions to Egs. (196)—(199) with Dirichlet boundary
conditions ¥ (r.) = a(r.) = A (r.) =7 (r.) =0

are given by

2L
) = 1-—)6 202
= omr(1-7)e 202
L r rd
al) 5 ((d+1)<1—ﬁ +(d-1)h
rd
+ (2— (d+ 1)—‘>hc>9, (203)
r

m _  Lé(r ) rdt! rd
P = 2h3/2 r ,,d+1_1 +re l_ﬁ he |ag,
(204)
~(1) 2L 5 1
= X — 1
=22 Vi, (k(r) )+ )ogh/h) Oab
(205)
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where

1 I

'y
kr)="1 F, (1 1 . (206
(1) =="2 1<’d+1’ NP ESE d+1)’ (206)

see Appendix A for details of the derivation. The fluid
stress energy tensor (186) at first order is

7o) = =2n(r 6w — E(r)Oh . (207)

with shear and bulk viscosity given by
1 re (1)1 r}'ﬂ,
”(rc)o-ab 2 L V hcyab (rc) + 0w | = ﬁo-alw (208)

&(re) = (209)

CEREL N S

Hence, although the fluid is non conformal due to non-
conformal equation of state (48) giving a nonzero trace for
the stress energy tensor, the bulk viscosity is vanishing.
Given the entropy density s(r.) = 4zr¢,/r¢ the universal
shear over entropy ratio bound is recovered at each
hypersurface Z,:

n(re) _ 1

()~ 2

confirming the results found previously for the nonrelativ-
istic fluid dual to a finite cutoff hypersurface in AdS gravity
[39] and the relativistic version of it [37]; see also [38].
Alternative derivations using renormalization group (RG)
flows can be found in [5,26,29]; see also [49] for a
derivation using linear response theory.

D. Relation to the conformal fluid

The finite cutoff solution can be connected to the usual
AdS/CFT results if we first redefine the field theory
coordinates

=—x (211)

in order to have a conformally flat metric on the boundary.
The leading order metric now reads

2
Uy r
ds®> = =2 dy“dr + p(hab

\/h—c _h/hcuaub)dyadyh’

(212)

so that as r. - oo we have h. — 1 and the metric is the
usual black-brane metric. The rescaling acts on the deriv-
atives 9% = %8}; with u, unchanged; hence we have
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and the perturbations (202)—(205) in the rescaled coordi-
nates where we take into account dx®dx’ — r2/L*dy*dy®
now read

2 r
y(1) — 1—— e 214
S G
yy — L d (127 4 (d— 1
[0 —WV—(+) _ﬁ +(_>

rd

+ <2— (d+ 1)—;>h0)9y, (215)
r

y(1) 5(7‘0) rg+l }"g
Pa *_rh3/2r r rd“_l +re 1_ﬁ he ) aa,

(216)
20 = 2 2 (k) = k() £ logh/h, ) o).
ab ry c c (d + 1) c ab
(217)
The limit r. — oo gives now
P S 2, (218)
et ﬁg(d_n(h_])ey (219)
JA— (220)
2
S(1) r 1 ,
}/;b - 2E (k(l") - k(OO) +(dTl>10g h) 0;[)
2
=22 F (/) @21)
TH
where asymptotically F(x) ~1— ﬁ# Notice that the

first order perturbation of the AdS black-brane metric is
given in [1] as

2 2
ds1)? = 2r—F(r/r,q)aabdy‘ldyl7 —l—grﬁyuaubdy”dyb%—
TH
- 2ra{aub>dy”dyb. (222)

Relative to the metric perturbation given above the coef-
ficients in the vector and tensor sector agree but those in the
scalar sector do not. However, the two metrics are con-
nected by the following diffeomorphism: consider a shift of
the radial coordinate r such that

(223)

1
— .
r—r p

Working to first order in gradients this results in a shift

PHYSICAL REVIEW D 91, 044001 (2015)

s =" 2 _(a—1)n=-1)),

s = 2,0,
14 r d

(224)

thereby bringing the metric into the form given in [1].

The shear and bulk viscosity of the dual theory on the
boundary can be obtained directly from (208)-(209)
according to the prescription (133) by9

CFT

n o d—1

y li
= lm r
ab r.—co ¢

”(rc)rcdyb = V%O“Zb,

EFT = lim rd=1¢(r,) = 0. (225)
Hence, the stress energy tensor at finite cutoff reproduces
the usual AdS/CFT results as the cutoff is taken to the
boundary.

The same result can be obtained directly from the metric
perturbation at infinity (218)—(221) and using the usual
AdS/CFT prescription (106). Since the metric on the
boundary is (conformally) flat the dual fluid stress energy
tensor is

(TSFTY = lim R4=Y(TBY - 2dy ;).

R—o0

(226)

where the Brown-York stress energy tensor is given by

7oy " = 2K Oy ~ K.
Toy " = 2K + Ky — K. (227)

and the extrinsic curvature is computed at a finite cutoff
surface Xp giving

1
K(O) - nr(O) arggi) |R ,

ab — 2
1 1 r 1 1 r 0
KLy =5 00,90 1k + 510,90 |
1
+ Enc(())acggzob) |R + g(aﬂag,(;)n”(()) R
K© = g9 yav(©)

K — KEzlh)yab(O) + KES,)J/“I’“)- (228)

The induced metric on the hypersurface Xy is generically
nonflat since

7O = R2(hay — h(R)uguy),

n_(d=1 , :
P = T) (A(R) = 1)RO”u,u, — 2Raj uy)
R? ;2
+2—F(R/ry)o,, + RO h,,
ry d
yab(l) — _yac<0>yhd<0>yg>, (229)

"We take L = 1 for notational simplicity.
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giving nontrivial contributions to the normal vector up to
and including order 1

RF8+\/”

(230)

Considering everything together and using the leading
order equations of motion to relate derivatives of the
horizon radius ry to derivatives of u,

Oury 1 y
=-0"u, —a,,
Iy d

(231)

we obtain the fluid stress energy tensor dual to a black-
brane metric in AdS spacetime:

<Tgl]7:T> = phab +puaub - 27]6ab - Zggyhalﬂ (232)
with
p = rith; p=drs™, n=r; E=0.
(233)

E. UV field theory interpretation

The Dirichlet boundary condition on a finite cutoff
hypersurface X necessarily leads to a non-Dirichlet boun-
dary condition at the boundary. The aim of this section is to
explore the interpretation of the fluid on the cutoff surface
as a state in a deformation of the ultraviolet conformal field
theory on the boundary. The strategy is to look at the
solution (214)—(217) near the spacetime boundary by
sending r — oo, changing to Fefferman-Graham coordi-
nates. Using the standard AdS/CFT dictionary one can
thereby show how the original UV CFT has been deformed.

The black-brane metric in Eddington-Finkelstein coor-
dinates up to order 1 in the hydrodynamic expansion is

ds? = -2 ;Z_Cdy“dr + Gy (y, r)dy*dy”,
Gyp (v.1) = P (hap = h/hettgu).
1
Gy (. r) = aV Eguaub +2pVaguy,

- 1
+ yU)Uab + 7(1) _ehab’

y (234)

where the coefficients in G(alb> are given by (214)—(217) with
the obvious notational redefinition
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- ﬂ(l)au; 7721};) - ?(I)Gabv
(235)

0, ﬂﬁzl)

and we have again set L = 1 for convenience. This metric
can be rewritten in the Fefferman-Graham form

1
ds* = —+ ?g(z, P)apdzidz?, (236)

by requiring the following transformation equations to be

satisfied order by order for the variables p(r,y), z%(r,y)
and the metric g,;,(p, z):
(0,0)* + gup(2,p)0,20,2> = 0,
ar a , ar Caa d — _ l’ta 2’
(0:0)(0ap) + 9ea(z, ) 0,204z Ji?
(3ap)(pp) + 9ea(2,p)0azfDpz? = p*Gap(y, 7). (237)

At order zero the change of variables to bring the metric
(234) into Fefferman-Graham form (236) with

9z.0)) = Alp) (hab - h(;l(f))) uaub),

(238)

18

1
o) =2 VAp:  yO(zp) =2 —k(r(p)ut
(239)
with
\/E 1 1 d+1
k(r) = Fi(1, 1 ,
=R e e
Vhe
0,k(r) =— . 240
k) = =3 (240)
The inverse transformation is given by
1 2 a1
=—|——— = A(p(r)),
v omm) )
2 (y.r) =y + k(r)u’ (241)

At first order we can solve Eq. (237) using the following
ansatz:
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p(y.r) =pOy,r)+pW(y.r),
2y, r) =294y, r) + 2Dy, r)

— 24y, ) + L 00 (3) + m(r)a ().

d
(0) (1)

9ab(2:P) = Gop (2, 9) + Gop (2, 9)- (242)

The zeroth order metric (238) is both dependent on the
Fefferman-Graham coordinates (z,p) and implicitly de-
pendent on the Eddington-Finkelstein coordinate y through
the dependence on ry(y):

oz = A0.0) (slc) -
(243)
The velocities and the metric can be Taylor expanded as
follows:
u'(z) = u(y) + ka“(y),
9a(2:9) 0 = gl (v 7) + 1 ()k(r) Do G (v, 7)
+ (@,00)7 PV (3. 1), (v.7)

— A(p(r) (hab —hﬁ)

+2k(r)A(p(r)) <1 - h£> agattp) + ...,

c

(244)

where the last term in the metric can be ignored since we
are ultimately interested in g, (y. p),'" and we will have to
perform the inverse transformation.

We use (194) and the following derivatives:

1
0,72y, r) =K (r,y)u® +1(r) Zeu“ + m/(r)a?,
0.2y, r) = 8¢ + Ock(y. r)u + k(y. r)d.u®,

O.k(y,r) = <—k(y, r) ~I—%+
| (1= h,) Bory
~5 (0 k) 2
0,00(5.) = == VAP0,
! (1=vh) dcry
0p0(y.r) = L VAP sy

""The hydrodynamic expansion has been performed in
transverse coordinates y and not in the Schwarzschild-type
coordinates z.

PHYSICAL REVIEW D 91, 044001 (2015)

where primes denote as usual derivatives with respect to the
radial coordinate. After some manipulations the trans-
formation to Fefferman-Graham form (242) is given by

1 1 Vi

/ e 1 AL c
I(r) = /5K + Kk =2k -

(l_hc)

h

h
Seall,

1, 1
Z 1 iy
+2kk(d—|— ) +r2k

(4

1., (1-+h.) 1
) =k ¥V </ —kpMn / 24
m'(r) rk e &(r.) + rzkﬂ + kK, (246)
and after redefining
(M ! (m !
p Wy, r) = - VAXWD(y, r) 6_1'9 (247)

we have

X0(y,r) =K <21r \/%a(l) - (1_\/%/}_’)> (248)

which gives

X0 =kt (T iy —1). (249)
’ r/h.h r}d;rl ¢ .

The black-brane metric up to order 1 in Fefferman-Graham
coordinates can be parametrized by

1

0D (0) = B0 r(0)) - gty + y(y. r(0)) - Oy

d d
+ (v, r(p)0as + 22y, r(p))aaup).  (250)
with
h Al (1 - hc)
= 2Ak-— -2 Akh 1
P(y.7) R 2 (d+1)
1 h
+pAa<1) - 2AX(1)h_C’
1
w(y,r) = =2Ak + —2Ay(1) + 24X,
I
h 1 A
> = 4+Ak— (1 -5(r, -
(v.r) =+ khc( 5(re)) + i 8(re)+
1 (1 - hc) 1
- EAkh B (d+1)5(r.) + ﬁAﬁ(l)’
A
[(y,r) = -24k + _27/(1). (251)
r

Notice that all the above expressions reduce to the
expressions given earlier in [2] using the shifts (224)
and then sending r, — 0.
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Using the zeroth order expression (239) into (251), using
(214)—(217) and expanding the metric near the boundary of
the spacetime, we can read off the leading radial term in the
boundary metric

IV () = fap + (1= 1/ he)uquy+

2 1 5(r)
h%/zdeua vt 35 P A(altp)+
1 Vi
-2\ k(r, ‘Inh, S
<<rc)+(d+l) ry n c)aab+

(252)

where the ellipses denote terms with higher powers of
derivatives. Notice that after sending r. — oo the flat metric
on the boundary is restored.

The precise interpretation of the fluid on the cutoff
hypersurface in terms of the dual CFT can now be given
using (252). The metric gflb) characterizes the background
metric for the dual CFT or, equivalently, the source for the
CFT stress energy tensor. Whenever r.. is finite and hence
h. # 1, the metric g( b) is not flat. Imposing a Dirichlet
boundary condition on the finite cutoff surface X therefore
translates into making a specific deformation of the original
UV CFT: a nonflat background metric for the field theory
fluid. Hence in terms of the UV CFT the fluid lives in a
dynamical background metric, namely a metric which
depends on the fluid velocity and temperature; a similar
interpretation was given in [37].

Note that this deformation in the background metric
appears to arise already at zeroth order in the hydrodynamic
expansion. This was to be expected because, as discussed
around (9) and (35), we started from a seed metric in which
the time Killing vector is normalized to 1 at the cutoff
hypersurface which implies that its norm at infinity is not
canonical. One can therefore rescale the coordinates so that
the zeroth order term in (252) is flat; this is achieved by
rescaling the direction parallel to the velocity by a factor of
\/h, but leaving the directions perpendicular to the velocity
unchanged. In terms of these rescaled coordinates, the
background metric for the dual theory then becomes

- 2 1 8(r,
= -0 +
9ap Nab — h1/2 d UgUp Vchc

< (c)‘i‘(dil)\/h_lnhC)aab—F...’

where the ellipses denote terms with higher powers of
derivatives.

( uh>+

(253)

VI. CONNECTION TO THE MEMBRANE
PARADIGM

Consider the limit in which the cutoff hypersurface X,
approaches the horizon r, — ry. In the example of a

PHYSICAL REVIEW D 91, 044001 (2015)

negative cosmological constant considered above the dual
fluid has in this limit, as one would expect, the same
properties of the Rindler fluid found in [8]. In particular we
can show this by taking the r. — ry limit of the fluid stress
energy tensor, giving

n(ry) =1,

with the usual shear over entropy universal bound being
satisfied as s =1/4x, and the bulk viscosity term
vanishing.

In earlier literature another fluid has been associated to a
hypersurface close to the horizon, namely the stretched
horizon, within the so-called membrane paradigm [41-43].
The latter is an interpretation of the dynamics of a horizon in
terms of a dissipative membrane fluid endowed with specific
transport properties. However the two approaches are quite
different even though both fluids are associated with a
hypersurface close to a horizon. On the one hand, within the
fluid/gravity duality approach, we have constructed a
hydrodynamic solution using a derivative expansion. For
consistency, Gauss-Codazzi equations representing the con-
servation of the Brown-York stress tensor have to be
satisfied. We have seen in (133) that (up to appropriate
conformal factors) the Brown-York stress tensor can be
given a holographic interpretation as the stress energy tensor
of the dual fluid associated with the finite cutoff hypersur-
face. The stress energy tensor has to be conserved at
arbitrarily high order in the derivative expansion and there-
fore encodes all the transport coefficients.

On the other hand the membrane paradigm approach
does not employ any derivative expansion around an
equilibrium solution. Instead the membrane fluid equations
are derived by reshuffling the Einstein equations and giving
an ad hoc interpretation of them in terms of nonrelativistic
dissipative Navier-Stokes equations.

In order to understand better the differences between the
two approaches we will explore the membrane paradigm
point of view in this section and derive the Damour-Navier-
Stokes equation together with additional evolution equa-
tions for geometrical quantities defined on a d-dimensional
spacelike foliation of a (d + 1)-dimensional hypersurface
embedded in a (d + 2)-dimensional bulk spacetime. We
will follow closely the approach of [50] by considering the
case of a general hypersurface foliating the bulk spacetime,
with the hypersurface not necessarily null and not neces-
sarily close to the horizon; we then take the near horizon
limit at the end.

(254)

A. Spacelike foliation of a generic hypersurface H

Consider a generic (d + 1)-dimensional spacelike, time-
like or null'" hypersurface H and further foliate it by

"In this formalism the hypersurface is general; however for
our purposes we will later restrict it to be timelike.
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d-dimensional closed, i.e. compact without boundary,
spacelike hypersurfaces S, so that H = ,cpS,. This means
that the metric ¢ induced by the spacetime metric g onto S,
is positive definite and in components can be expressed

9op = Yap + lakﬁ’ + kalﬂ’ (255)

where (/, k) is a pair of null vectors normal to S, satisfying

[-1=0; k-k=0; [ k=—e, (256)
where ¢ is a positive number. It is possible to define a
unique pair (/, k) by requiring
h=1-Ck; [ k=-1, (257)
where £ is the evolution vector tangent to H and orthogonal
to S, at any point in H with the property
Lyt =ho,r=1, h-h=2C. (258)
L;, can be viewed as the evolution operator along Z.: given
an infinitesimal displacement described by the parameter
ot, each point of S, is displaced into S, s, by the vector 6th,
and S, are then hypersurfaces Lie dragged by the evolution
vector h. The character of h gives the character of the
hypersurface H; in particular if C < 0, then H and £ are
timelike. o
The vectors ([, k) are collinear to the pair (/, k) asso-
ciated to the dual-null foliation formalism [65]

I=Al; k=B, (259)
where (1,k) can be defined as the null normal vectors to
two families'? of null hypersurfaces generated by outgoing
and ingoing light rays orthogonally from S,:

l=—du;  k=—dv, (260)
with # and v being parameters defining the dual-null
foliations.

A natural additional vector that can be constructed out of
(L, k) is

m =1+ Ck; m-m = —-2C; m-h=0. (261)
Notice that if % is timelike, m is necessarily spacelike and it
defines the normal vector to the hypersurface H, which,
together with & spans the orthogonal space to S,.

Given a generic tensor 7" on the bulk spacetime, one can
canonically define another tensor of the same covariance
type ¢*T using the projector

"These two families can be uniquely defined if the hyper-
surface H is spacelike or timelike, but there is an arbitrariness in
the case H is null.
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(@ T)p 5" = G- @iyt -G To) 0 (262)
A tensorial field T for which ¢*T = T is said to be tangent
to the surface S,. For any such tangent tensorial fields T
we can define the covariant derivative on the spacelike
surfaces S,

DT = ¢*VT, (263)
where clearly V is the covariant derivative on the (d + 2)-
dimensional bulk spacetime.

B. Extrinsic geometry of the spacelike surface S,

Given a vector field » orthogonal to the spacelike surface
S., the deformation tensor along this field is defined as

0 = g*(Vo); O = ¢4qiV,u,.

(264)
measuring the variation of the metric in S, when the surface
S, is displaced along v. The deformation tensor is sym-
metric and can be decomposed into a traceless symmetric
shear tensor and a trace part

‘752 = Ggﬁ) dg( g OV = g0, (265)
the latter measuring the change of the area element in S,
when displaced by v.

The variation of the normal fields to S, with respect to
each other is instead contained in the normal fundamental

forms, which for the pair (/, k) can be written as

1

Q= k-l Q) = kp@%vw (266)
Q@:E%LVJ; Q) = k”ﬂ%VH‘ (267)

with the important relation'
QW = —Ql) + De. (268)

The extrinsic curvature can be defined out of the shape
tensors along k and [ as follows:

K5, = k“@m + l"®ﬂ (269)
The extrinsic curvature together with the normal funda-
mental forms are the sufficient quantities to describe the
extrinsic geometry of the spacelike surfaces S..

13 :
For completeness we have reported the general equation;
however since we will always use the definition (257), we can set
c=0.
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C. Kinematics of the spacelike surfaces S,

Covariant derivatives of the normal vectors / and k can be
decomposed using quantities defined on the spacelike
surfaces S, after using the projector (255):

Vs =04 + Q1 — 1,V 0y = vpkaly,  (270)

Voks =00 — O ky — k,Viky — v laks.  (271)
where we have used Eqgs. (259)—(260) to derive

Vil = vyl vy = L;InA; (272)

Vik = vk; vy = Ly InB. (273)

Combining (270)—(271) and using the definitions (257) and
(261) we can derive the covariant derivatives for m and h

V,mg = @f;/’;) + Qﬁﬁhﬂ ~ 1,Vely = vpykals

+ (V(IC)kﬁ — Ckavlkﬁ — Cl/(k) lak/}, (274)
Vah/, = @gl? + Q&Dmﬂ — l(,Vkl/; - U(l)k(,lﬁ+
— (VaC)kﬁ + Ckavlk/j —|— Cy(k)lakﬁﬂ (275)
where we used
o = 4 co®; e =e0_ce®, (276)

which follow straightforwardly from definition (264).

D. Dynamics of the spacelike surfaces S,

Having derived the expressions for the first derivatives of
the vector fields m and /i, we can now manipulate the
second order derivatives using the Ricci identity, which for
a generic vector field v is written as

Ryuv” = (V,V, =V, V )7, (277)
to derive evolution equations along m and h for the
quantities defined on the spacelike hypersurfaces S,.
Moreover, requiring the metric to be a solution of
Einstein equations one can always trade the Ricci tensor
for the trace subtracted bulk stress tensor

R,y=T,, (278)
where we have used the same notation as in the earlier
sections. There are as many equations as there are many
independent ways to project the Einstein equations along
m, h and ¢g. Some of the equations are listed below
for illustration and we refer to Appendix B for details of
their derivation. Projection along ¢ and m results in the
generalized Damour-Navier-Stokes equation as obtained
previously in [50]:
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g £, +60QY)

o (d=1
= —Dﬂog e +7< 7 )D(ﬂ(’”)

+ Dy(vy + Crgy) —0ODC + ¢* T ,qm*,  (279)

which describes the evolution of the normal fundamental
tensor QY along the vector field /. Other equations can be
considered; e.g. the evolution equation for 8" along m can
be obtained by projecting twice along m,

vme(m) + vm (I/([) + Cl/(k)) + @i’/?)@(m)aﬂ_F
- VIIJ(Z) - U(1)9(1> - 2cg(l)aDa InA — (9“‘) + y(k))VmC+
— OV, (Vil® + V k) + 4CQU2QY) — 2Cu vy +

= CPu0%) — C?Vywyy + T ymm” =0, (280)

or the evolution equation of #) along h by projecting
along h and m,

Ehe(’”) + Eh(I/(l) + Cl/(k)) + @g;)@(m)aﬂ_|_
- VZIJ(I) - u(l>9(l) - (e(k) + v(k>)£hC
+ CV o (Vil® = Vik) + Cygy 0%

+ C?Vywyy + T mh? = 0. (281)

An example of a tensorial equation is the evolution
equation of the shape tensor (E)g;) which is

* m m h 1
q'£,00) =04 e + 1,0

+ GE):]/;)‘ChC - Cvu(vklu - vlky)ngl//}"i_

+CQ,DyInA

— Cuy O + WR e 3. (282)

E. The null limit

The equations derived above are valid for a generic
hypersurface H. The limit in which the hypersurface H is
null can be achieved by sending

C -0 m— I h— 1. (283)
In this limit the null vector field / plays the double role of the
tangent and the normal to the null hypersurface H. In this
way the system of equations derived above becomes degen-
erate and reproduces the usual equations for the dynamics of
null hypersurfaces; see e.g. [66]. Equation (279) becomes the
Damour-Navier-Stokes equation

-1
g ,00 + 000l = —p,ow 4= 1) y )p,00!

+ Doviy + ¢ Tyl (284)
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while Egs. (280)-(281) become the
Raychaudhuri equation

so-called null

V90 + 0500 — o) + T, 11 =0,  (285)
and the tensorial equation (282) becomes the tidal force
equation for 8;/}
el Dall (w
g L,00) = 000" + 1y0) + ¢" (I'Ryyal).  (286)
The essence of the gravitational membrane paradigm is to

reinterpret Eq. (284) formally in terms of a nonrelativistic
dissipative Navier-Stokes equation

LiP,+ 0P, = =0up + 21Dpos” + 0,0 — f,  (287)

upon the identification

l
Pa=—0  wy=p n=1/2

E=—(d=-10/d:  ¢Tul" = fun (288)
‘P, being the momentum surface density, p the fluid
pressure, 7 and & the shear and bulk viscosity associated
respectively with the shear tensor aalﬂ and the expansion rate
0", and f,, an external force surface density. Notice that the
membrane fluid does not appear to be physical since it has a
negative bulk viscosity.

F. Relation to the holographic fluid

This putative membrane fluid is not directly related to the
near horizon Rindler fluid discussed in previous sections
obtained from a holographic prospective, and here we
depart from the interpretation given in [38]. Let us
summarize the differences between the two setups. In
the membrane approach we consider a generic timelike
hypersurface for which we can take a null limit and we do
not need to input specific information about the horizon
nature of the null hypersurface. In the holographic
approach we consider a timelike hypersurface outside a
horizon; we fix the metric on this hypersurface.

In the membrane approach we work in a manifestly
nonrelativistic formulation, in that we consider the (d + 1)-
dimensional hypersurfaces to be foliated by spacelike
d-dimensional hypersurfaces. The normal vectors to these
spacelike hypersurfaces play an important role: it is their
variation with respect to each other (a normal fundamental
form) which is interpreted as the momentum density of the
membrane fluid. Moreover, the shear and expansion of
the spacelike surfaces along normal vectors is interpreted as
the shear and expansion of the membrane fluid.

In the fluid/gravity approach, we can work either in
relativistic or nonrelativistic formulations. In the earlier
sections of this paper we have used the relativistic approach
as this is computationally more efficient but one could
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equally work with nonrelativistic expansions as in [6,7].
The holographic fluid properties are captured by the
induced metric on the (d 4 1)-dimensional timelike hyper-
surface, which acts as the background metric for the fluid,
and by the extrinsic curvature of the hypersurface, which
encodes the pressure, energy density and velocity of
the fluid.

The putative membrane fluid is generally dissipative and
the shear and bulk viscosity take universal values. Note
however that if the chosen spacetime metric is what we
have called a zeroth order equilibrium metric the shear
tensor and the expansion rate of the horizon would vanish,
so the dissipative terms would disappear.

In the holographic interpretation of fluid/gravity duality
the zeroth order gravity solution represents a thermody-
namic equilibrated state in which the behavior is non-
dissipative. In order to get dissipative behavior at all it is
necessary to perturb the thermodynamic solutions around
equilibrium. This means that the existence of a family of
solutions close to equilibrium thermodynamic solutions is
an essential requirement to obtain hydrodynamic behavior.
The shear and bulk viscosity depend on the system under
consideration although /s takes the well-known universal
value of 1/4z in Einstein gravity.

In the fluid/gravity approach the Navier-Stokes equa-
tions (together with specific corrections) arise from work-
ing out the Einstein equations in a gradient expansion. All
components of the Einstein equations are needed to work
out the fluid equations. In the membrane paradigm only a
specific projection of the Einstein equations is used to
obtain the membrane fluid equations: remaining equations
such as the tidal force equation do not have a natural
interpretation in terms of fluid quantities.

VII. CONCLUSIONS

In this paper we have presented a construction of
generic (d + 2)-dimensional near equilibrium metrics
corresponding to the hydrodynamic regime of putative
(d + 1)-dimensional holographic fluids associated with
timelike hypersurfaces foliating a general (i.e. general bulk
stress energy tensor) bulk spacetime. Using the method of
Hamiltonian holographic renormalization we gave a pre-
scription for the fluid stress energy tensor in the case of
(conformally) flat Dirichlet boundary conditions on these
timelike hypersurfaces. Our prescription is consistent with
standard holographic results in the limit where the timelike
hypersurface is taken to the conformal boundary.

The resulting stress tensor is proportional to the Brown-
York stress tensor of the corresponding hypersurface plus
certain boundary terms. These boundary terms are in
principle uniquely defined when the hypersurfaces are
taken to the asymptotic boundary and represent the
necessary counterterms to ensure the on-shell action to
be finite. On a finite cutoff the above-mentioned boundary
terms cannot be fixed uniquely but we have shown that in
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the hydrodynamic regime they only provide a redefinition
of the thermodynamic quantities without affecting the
thermodynamic relation or hydrodynamics.

Another source of boundary terms is the part of the
spacetime between the finite cutoff and the boundary at
infinity. In the spirit of Wilsonian holographic renormal-
ization [34,35] (see also [36]), this part of the geometry is
dual to the contribution of high energy degrees of freedom
which can be integrated out, giving rise to a boundary
effective action. In this paper we are taking a hard cutoff
point of view along with e.g. [37,38]; namely we consider
only the part of the geometry between the horizon and the
cutoff itself, ignoring everything else beyond it. It would be
interesting to see how in the hydrodynamic regime our
results can be matched to the local contributions coming
from the so-called UV part of spacetime.

Relative to earlier works (see for example [37,38]) we
have clarified a number of subtleties. In particular, we have
emphasized the fact that different coordinate systems give
physically distinct fluids on timelike hypersurfaces
obtained at any given radial cutoff. At leading order in
the hydrodynamic expansions we can simply perform
coordinate transformations and relate the pressures and
energy densities but the hydrodynamic expansions are
taken about different hypersurfaces and in particular with
respect to different dual field theory spacetime coordinates;
hence out of equilibrium we are dealing with physically
different fluids. In the case of pure AdS gravity this subtlety
does not arise with a flat or conformally flat Dirichlet
boundary condition on the finite cutoff due to the fact that
the conformal factor does not depend on the field theory
coordinates but the issues discussed here would be relevant
for dealing with hydrodynamics for cases such as AdS
R-charged black holes (obtained as decoupling limits of
rotating D3-branes)."*

One of the conclusions of [37,38] was that the fluid
changes from a relativistic to nonrelativistic fluid as the
radial coordinate decreases. Here we found that the near
horizon description is the Rindler fluid of [7,8], which
indeed can be viewed as a nonrelativistic fluid.

After discussing classes of spacetimes with a general
bulk stress tensor at thermodynamic equilibrium, we
concentrated on the specific case of Einstein gravity in
AdS and verified the consistency of our prescription for the
fluid stress tensor with standard holographic results when
the timelike hypersurface is taken to the conformal boun-
dary of AdS. Having at our disposal the holographic
dictionary at conformal infinity we gave a precise inter-
pretation of the fluid on the cutoff hypersurface in terms of
a specific deformation of the UV CFT. The resulting UV
fluid can be thought of as living in a nonflat background,
depending on the fluid velocity and temperature.

See the recent work [67].
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Finally, we have also explored the near horizon limit of
the cutoff AdS fluid, which up to first order in a gradient
expansion is effectively a Rindler fluid. We have empha-
sized the differences with the membrane fluid discussed
earlier in the literature departing also from the interpreta-
tion of the membrane paradigm given in [38]. In particular
we have showed how through the holographic-type con-
struction one can obtain fluid equations up to arbitrary
order in a gradient expansion in contrast to the membrane
fluid which is only a suitable rewriting of certain compo-
nents of Einstein equations into a fluidlike fashion. Of
course one could easily use explicitly the form of the
horizon metric and some derivative expansion of it in the
membrane fluid equations, but this would be equivalent to
taking the holographic point of view and would for
example spoil the original structure of the membrane fluid
equation.

Recently an interesting connection between asymptoti-
cally flat spacetimes and asymptotically AdS black holes
has emerged [68,69]: it has been shown that asymptotically
AdS black holes compactified on tori correspond to certain
asymptotically flat Schwarzschild black branes and the
holographic dictionary for the stress energy tensor has been
derived through generalized dimensional reduction. It
would be interesting to see how our construction would
fit into this framework, and also how our construction can
be applied to blackfolds [70,71] which interpolate between
asymptotically AdS and asymptotically flat regions.
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APPENDIX A: DETAILS OF THE
HYDRODYNAMIC EXPANSION

The zeroth order metric is

2
ds> = —Euadx“dr + (Ghgyy, — Fuguy)dx®dx”. (A1)
The inverse metric is
hab
g(O)rr —_ /12F; g(O)m = u“; g(O)ab —_ ? (A2)
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The zeroth order Christoffel symbols are

r a r 1
=0, =0 T =ZaFu,
0)r 1
rflh) = _EAZF(G/hab - F/Mablb),
« 1G B 1
F(r(z);) =5¢" h, I“i%) = —EﬂuC(G’hab — Flu,uy),
(A3)
with useful contractions being
o = —d 50,GY% TR =0 (A4)

After promoting the parameters to depend on x, the metric
(A1) is not a solution of the Einstein’s equations. However
adding corrections ¢ one can construct a solution order
by order. The usual gauge choice is ¢\ = ¢!/ = 0 so that
the lines at constant x* are bulk radial null geodesics and
the metric keeps the Eddington-Finkelstein form to all
orders, which is useful in order to avoid coordinate
singularities at the horizon.

The variations of the Christoffel symbols can be com-
puted formally to all orders using

n ] = n v n v n
ST’ = Eg(o)m(vﬂgﬁy) + 9,00 - Vgi)).  (AS5)
where vﬂ is the covariant derivative with respect to the

background zeroth order metric. Hence using (A3) we can
compute

ST = 0,

chg (cd)’

) 1 G
ST _—/1 §,g" — 21~
" 2"G

5F§b> = - lj'Zfrar.gazb + E’IZ(G/hab - F/uaub)ucud'gi’;)’
(n)a ac ¢ ac ()
5Frb Eah 8, 9ep _2G2h hZ Yed »

n 1 n
5Fz(zb) = __/1 car ab EE(Glhab - Fluaub)hceufg£f>,
(A6)

and the useful contractions
ST = a ( hed g;)

The variations of the Ricci tensor to all orders can be
computed using

STU =0, (A7)
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5R,w =-V 5Fp,,” +V 51“,,,, , (A8)
which gives (147).

The Christoffel symbols up to first order obtained from
the seed metric (A1) with parameters depending on x are

i =o,
L1 11
FSL) :EAMMF/—FEQ“—ED#]H/{,

1

rir = 5 2F(G'hay = F'uguy) = K G + u(uap F

1
M(aﬂDi')F — EiuaubDF—l-

1
- zlhabDG + AFM(aab) lnﬁ,

« G 1
=T

]
Qq —— w,DIn ],
26 TGt T oG Hpto

2.G
¢ 1, .
Ft(11b> = UKy + uugaap) _Qiuc(Glhab — Fluqup)+

(G-F)
G

1
—Eh bDJ'CG‘FEM MbDJ'CF+M I/l ab ln/l

1
(2u(a§20) + a®u,uy) + —hc O G+

(A9)

and useful contractions

Mp _ a/2,
Fpr —7/28 G

1
o =— 0,62+ u,DIni—D}fIni. (Al0)

The Ricci tensor components are shown in (181).
The general solution to Egs. (196)—(199) is

y'D = (yor + 7116,

(1 _ pr_ L
f— 5 b
N e e
L
o) =200+ W?((d —1)(h=1) +2(h, = 1))8.
~(1) lL\/ €r2(4

(4k(r) + 7o + 7110 h(r))og. (A11)

Tab _ZrcH

where k(r) is given by (206) and y, v1, Bo. 1, %o, Yo and 7,
are integration constants. Dirichlet boundary conditions fix
some of them to
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Yo
Y1= ">
rC

L
pr=rd <—”cﬁ0 +W}Tc5(”c)>’

(d+1)Lr¢!
ay = — d hg/z (hc_l)’
}70 = _4k(rc) - 771 In hcv

(A12)

Landau gauge conditions (200)—(201) fix the other inte-
gration constants to

2L
TR
L(dh.(24(d=1)5(r.))—(d+1)(2+d5(r.)))

Po=- 5, 3/2 5("0)7

2(d+1)rzh;

(A13)
and requiring regularity on the horizon ry gives
4
=, Al4
71 d+1 ( )

leading to the solutions (202)—(205).

APPENDIX B: DETAILS ON THE 2 +1+1
FOLIATION OF THE SPACETIME

Knowing (258), (259) and (260) it is possible to show the
following identities:
DB =0;

D,(C/A)=0 on H. (B1)

These can then be used to derive the useful relations
@V, = Q.

== + nAj;
@V, = -0 + D, InA B2
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Let us first consider

(vﬂva - vavﬂ)mﬂ

— V/)’(B&m)ﬂ + h/”Vpr) + oo + QS%””U)+
- Cv(k)Qg) + ®§h)ﬂ9§;) - 0% mDﬂ InA

l

+ m QPR — 1,00PD, In A — 1,V,(V, )
+mapypy = kel — v Vike = Vi ket
= ket + (0 + 149V C = CkVs(Vik) +
— U laliC = Cla Ly = CupVila = Cujy lut
= CyWl, = V™ = V(v + Cog)+

- ®((xk)ﬁ,DﬁC -+ l/(k) laVkC, (B3)

where we repeatedly used (274). By further projecting on g,
using (B2)—(B1) and the relations

¢V,0/"" = D,0l"" + 6! D,InA,  (B4)
gLy = g9, Q0 + o). (B)

as well as Einstein equations (278) we get the generalized
Damour-Navier-Stokes equation (279). Equations (280)—
(281) can be derived similarly.

To derive Eq. (282) we consider

thpV”myq’,f,q;f = W’ (Rypp,m” + Vﬂvpmy)qﬁqz, (B6)
and repeatedly make use of (274)—(275), (B2) and

Faqy L0 = ghqsV, 00 + 0l e + e el
(B7)
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