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Future galaxy redshift surveys aim at probing the clustering of the cosmic large-scale structure with
unprecedented accuracy, thus complementing cosmic microwave background experiments in the quest to
deliver the most precise and accurate picture ever of our Universe. Analyses of such measurements are
usually performed within the context of the so-called vanilla ΛCDM model—the six-parameter
phenomenological model which, for instance, emerges from best fits against the recent data obtained
by the Planck satellite. Here, we show that such an approach is prone to subtle systematics when the
Gaussianity of primordial fluctuations is concerned. In particular, we demonstrate that, if we neglect even a
tiny amount of primordial non-Gaussianity—fully consistent with current limits—we shall introduce
spurious biases in the reconstruction of cosmological parameters. This is a serious issue that must be
properly accounted for in view of accurate (as well as precise) cosmology.
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I. INTRODUCTION

The currently accepted standard model for the formation
of cosmic structure posits that the Universe underwent an
early phase of accelerated expansion (dubbed “inflation”
[1]), during which a random field of primordial density
fluctuations emerged. Subsequent gravity-driven hierarchi-
cal growth of such density fluctuations led to the formation
of galaxies, galaxy clusters, and the cosmic large-scale
structure (LSS). As inflation is not a fundamental theory,
different classes of inflationary models predict different
statistical distributions for the primordial density fluctua-
tions (see, e.g., Ref. [2] for a comprehensive review).
Naturally, structures accreting from different initial con-
ditions will have different statistical properties. The study
of such properties constitutes one of the most powerful
probes for understanding the physics of the (mostly
unobservable) early Universe.
One of the most general ways to quantify the statistics of

primordial density fluctuations is measuring their level of
non-Gaussianity. Whilst the simplest slow-roll inflationary
model predicts initial conditions that are almost perfectly
Gaussian, the relaxation of specific assumptions gives rise
to substantial and model-dependent deviations from
Gaussianity. A particularly convenient (although not

unique) way to parametrize primordial non-Gaussianity
(PNG) is to add a quadratic correction to the original
Gaussian Bardeen potential field [3,4],

Φ ¼ ΦG þ fNL � ðΦ2
G − hΦ2

GiÞ: ð1Þ

The quantity dubbed fNL, which may be regarded as a free
parameter, determines the amplitude of PNG. In the most
general case, fNL may depend on both time and scale, and
thus we use the � convolution symbol instead of ordinary
multiplication; as is often done in the literature, for the sake
of simplicity we here assume fNL to be scale independent.
PNG has been studied extensively over the past decade,

using data from both the cosmic microwave background
(CMB) and the LSS. With respect to the latter, inves-
tigations have included cluster number counts, galaxy
clustering, cosmic shear, LSS topology, and others (see,
for example, Refs. [5–11] and references therein). Recently,
analyses of Planck satellite data managed to severely
constrain the allowed parameter space of PNG [12].
Henceforth, according to a number of studies, only certain
future LSS experiments will be able to provide comparable
constraints on fNL, such as those using galaxy redshift
surveys [11,13–15] or that are conducted in the radio
continuum [16,17], or those using newborn techniques
such as neutral hydrogen intensity mapping [18] or cross-
correlation with other observables [19–21].*stefano.camera@manchester.ac.uk
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Given that many LSS cosmological tests keep finding
levels of PNG that are consistent with zero (though usually
with large error bars; see, e.g., Ref. [22]) and the fact that
confidence levels have been dramatically shrunk by Planck
data, it is meaningful to ask if PNG could be altogether
ignored without significantly affecting constraints on the
other cosmological parameters. If this is the case, the
analysis of future cosmological data will be significantly
simplified. Conversely, PNG should be kept in mind in
order to not bias future cosmological constraints. This is the
very question we address in this work. Specifically, we
investigate whether wewould introduce a bias in the best-fit
value of other cosmological parameters if we neglected
PNG in a universe with a small but nonvanishing value of
fNL. Then, we compare this possible bias with the statistical
uncertainties predicted for future LSS surveys. Throughout
this paper we refer to a Class IV cosmological experiment,
of which the most renowned representatives are, e.g., the
Square Kilometre Array (SKA) [23] at radio wavelengths,
the Dark Energy Survey (DES) [24], the forthcoming
European Space Agency Euclid1 satellite [25,26] and the
Large Synoptic Survey Telescope (LSST) [27] at optical
frequencies.
As a reference model, we assume a flat ΛCDM universe

with total matter density (in units of the critical density)
Ωm ¼ 0.315, baryon fraction Ωb ¼ 0.0487, dark energy
equation-of-state Chevallier-Polarski-Linder parameters
w0 ¼ −1 and wa ¼ 0 [28,29], and a dimensionless
Hubble constant h≡H0=ð100 km=s=MpcÞ ¼ 0.673; the
primordial power spectrum is described by its scalar
spectral index ns¼0.960 and amplitude As¼2.195×10−9

[30]. We consider cosmological constraints as expected for
galaxy cluster counts, clustering of galaxies, and galaxy
clusters, as well as their combination.

II. METHODOLOGY

A. Modeling PNG corrections

The impact of deviations from Gaussianity on the
abundance and clustering of the tracers of the underlying
dark matter structure have been investigated by many
authors, who obtained either theoretical, semianalytic, or
fully numerical results. Here, we summarize the most
relevant aspects and refer the interested reader to, e.g.,
Fedeli et al. [11] and references therein for additional
details. PNG effects mainly concern the mass function and
linear bias of dark matter halos. These modifications
involve different integrals of the gravitational potential
bispectrum, BΦðk1;k2;k3Þ. The bispectrum amplitude
depends on both the amplitude As of the gravitational
potential power spectrum, PΦðkÞ, and on fNL so that

BΦðk1;k2;k3Þ ¼ fNLA2
sΓðk1;k2;k3Þ: ð2Þ

The PNG shape is determined by the dependence of
Γðk1;k2;k3Þ upon the three momenta.
Here, we investigate the effect of some bispectrum

shapes. Besides the often used local-type PNG—whose
bispectrum is maximized for squeezed configurations,
where one of the three momenta is much smaller than
the other two—we also consider “orthogonal” PNG, so
called because its configuration is nearly orthogonal to the
local and equilateral shapes (for a review see Ref. [31]).
The former is known to have the heaviest impact on the
clustering of the LSS, while the latter is nonetheless
interesting because it presents degeneracies with other
cosmological parameters that are different from those of
all other PNG types.
There are a number of prescriptions in the literature for

computing PNG deviations to the abundance of dark matter
halos. Here, we follow LoVerde et al. [32], who used an
Edgeworth expansion of the mass density field in order to
derive a non-Gaussian generalization of the Press and
Schechter [33] mass function, nPSðm; zÞ. We define a
correction factor

Rðm; zÞ ¼ nPSðm; zÞ
nðGÞPS ðm; zÞ

ð3Þ

by means of which one can translate any given Gaussian
halo mass function nðGÞðm; zÞ, computed according to one’s
favorite recipe, to its non-Gaussian counterpart, i.e.,

nðm; zÞ ¼ Rðm; zÞnðGÞðm; zÞ: ð4Þ

In this work, we use a Gaussian Sheth and Tormen [34]
mass function.
Moreover, if the initial conditions for structure formation

are non-Gaussian, the linear halo bias acquires an addi-
tional scale dependence, which can be modeled as [35]

bðm; z; kÞ ¼ bðGÞðm; zÞ þ βRðkÞσ2m½bðGÞðm; zÞ − 1�2; ð5Þ

where bðGÞ is the Gaussian linear halo bias of Sheth et al.
[36]. The function βRðkÞ encodes all the scale dependence
of the non-Gaussian halo bias at mass m ¼ mðRÞ, and can
be written as [37]

βRðkÞ ¼
Z þ∞

0

dξ
ξ2MRðξÞ

8π2σ2mMRðkÞ

×
Z

1

−1
d cos θ

BΦðξ; α; kÞ
PΦðkÞ MRðαÞ; ð6Þ

with α ¼ kþ ξ, where θ is the angle between k and ξ, σ2m
is the mass variance, and

MRðkÞ ¼
2TðkÞWRðkÞk2

3H2
0Ωm

ð7Þ
1http://euclid‑ec.org/.
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relates the density fluctuation field smoothed on a scale R
to the respective peculiar potential. TðkÞ is the matter
transfer function and WRðkÞ is the Fourier transform of a
top-hat window function. In the case of a local bispectrum
shape, it has been shown that the PNG scale dependence is
βRðkÞ ∝ k−2 at large scales. For other shapes, the depend-
ence is usually weaker (see Refs. [11,13] for details).
In order to model the impact of PNG and other

cosmological parameters on the assembly of the LSS,
we make use of the well-established halo model [38,39].
It is a semianalytic framework based on the fundamental
assumption that all the objects we are interested in are
contained within bound dark matter halos, so that their
clustering properties can be simply expressed as a super-
position of the object distribution within individual halos
and the mutual clustering properties of halos. In this
framework, galaxies are distributed within dark matter
halos according to some conditional probability distribu-
tion, pðNgjmÞ. (Note that in general this probability
distribution would depend also on redshift, whereas for
simplicity we ignore this dependence, unless explicitly
stated.) Its first and second statistical moments, hNgjmi and
hNgðNg − 1Þjmi, respectively, represent the average num-
ber of galaxies that reside within a dark matter halo of mass
m and the variance of that average number. A similar
reasoning applies to clusters, except that it is commonly
assumed that only one cluster may occupy a given dark
matter halo, so that

hNcðNc − 1Þjmi ¼ 0; ð8Þ

hNcjmi ¼ Θðm −mcÞ; ð9Þ

where ΘðxÞ is the Heaviside step function and mc is some
(possibly redshift-dependent) mass threshold.
Hereafter, we follow Fedeli et al. (Ref. [11], Sec. 4) and

by means of the halo model and of the quantities introduced
above we consistently construct three-dimensional power
spectraPXYðk; zÞ, whereX; Y ¼ g; c for galaxies and galaxy
clusters, respectively. Note that, thanks to this method, we
also compute the cross-correlation power spectrum between
galaxies and galaxy clusters. Eventually, we calculate
number counts of galaxy clusters NcðzÞ as well.
Regarding the sources, we consider Hα galaxies, which

for instance will be selected by a Euclid-like experiment.
These are preferentially going to be blue star-forming
galaxies, and therefore we model the moments of the
galaxy distribution within dark matter halos following
semianalytic models of galaxy formation [39], which give

hNgjmi ¼ Ng;0Θðm −m0Þ
�
m
m1

�
γ

; ð10Þ

where Ng;0 ¼ 0.7,m0¼1011h−1M⊙,m1¼4×1012h−1M⊙,
and γ ¼ 0.8Θðm −m0Þ. Fedeli et al. [11] showed that this

choice of parameters produce an effective galaxy bias that
is in fair agreement with predictions based on semianalytic
galaxy formation models [40,41] for a Class IV survey like
Euclid [42]. Moreover, we set

hNgðNg − 1Þjmi ¼ hNgjmi2fðmÞ; ð11Þ

where the function fðmÞ represents the deviation of
the galaxy distribution from a Poissonian and can be
modeled as

fðmÞ ¼
(
log2

ffiffiffiffiffi
m
m0

q
if m ≤ 1013h−1M⊙;

1 if m > 1013h−1M⊙:
ð12Þ

Finally, we consider galaxy clusters that will be photomet-
rically selected, and for this reason we choose the minimum
cluster halo mass mc ¼ mcðzÞ using the Euclid Red Book
photometric selection function [25].

III. RESULTS

A. PNG effects on galaxies and galaxy clusters

Figure 1 illustrates the auto- and cross-correlation power
spectra of galaxies and galaxy clusters as a function of scale
at z ¼ 1 for three values of fNL in the local-shape scenario.
Solid curves are for flocNL ¼ −2.17. We choose this particular
value because, as recently remarked by Camera et al. [14],
in ΛCDM with slow-roll single-field inflation, galaxy
surveys should measure fNL ≃ −2.17. This happens
because there is a nonlinear general-relativistic correction

FIG. 1 (color online). Galaxy (red) and galaxy cluster (blue)
power spectra and their cross-spectrum (magenta) at z ¼ 1 with
flocNL ¼ −2.17, 3.51 and 9.3 (solid, short- and long-dashed curves,
respectively).
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on very large scales which mimics a local PNG with fNL ≃
−5=3 [13,43]. This correction is derived in the CMB
convention because it is based on the primordial Φ. It
does not affect CMB measurements of PNG, but it must be
added to the local PNG parameter for LSS. The translation
from the CMB to the LSS convention (which we adopt
here) sets fLSSNL ≈ 1.3fCMB

NL (see, e.g., Ref. [11]), which
eventually gives fNL ≃ −2.17. The other two sets of
spectra are for flocNL ¼ 3.51 and 9.3 (short- and long-dashed
curves, respectively). The former has been chosen because
it is the Planck best-fit value (LSS convention) [12], while
the latter better shows the PNG departure from the
Gaussian prediction still lying within the Planck 1σ bound.
We can extract some useful information from Fig. 1. As

expected, galaxy clusters (blue curves) are more biased
than galaxies (red curves), so that their power spectrum is
larger. Given this, the PNG correction—which is propor-
tional to ½bðGÞ − 1�2k−2—kicks in at smaller scales (larger
wave numbers) compared to galaxies, as can be seen by
looking at the different behavior of the two curves at small
k. Besides, we can notice that the cross spectrum between
galaxies and galaxy clusters (magenta curve set) is not
merely an average of the two progenitors’ spectra. Indeed,
the three spectra are characterized by different scale
dependencies, which means that each observable carries
a different piece of information about the clustering of the
LSS. For example, there are different shapes at large k,
whereby the galaxy 1-halo term carrying information on
nonlinear scales starts to become important, but no 1-halo
term is present in the cluster power spectrum (since it is
commonly assumed that only one cluster is contained
inside each dark matter halo).
Opposite to what happens to the power spectra, the effect

of PNG on galaxy cluster counts is smaller, since it is
integrated over mass and redshift. Therefore, to give a
flavor of the non-Gaussian mass function, in Fig. 2 we plot
the correction factor of Eq. (3), Rðm; zÞ, at z ¼ 1 and for
the same fNL values as in Fig. 1.

B. Induced bias on cosmological parameters

To estimate the bias on a set of cosmological parameters
fϑαg triggered by neglecting some amount of PNG in the
data analysis phase, we follow the Bayesian approach of
Heavens et al. [44], based on the Fisher information matrix
[45]. The basic idea is that if we try to fit a model that does
not correctly include all the relevant effects against actual
data (PNG in this case), the model likelihood in parameter
space will have to shift its peak in order to account for
incorrect assumptions. In other words, the true parameter
likelihood peaks at a certain point in the full parameter
space spanned by fϑαg ∪ ffNLg; by neglecting PNG,
however, we actually look at the fNL ¼ 0 hypersurface,
where the likelihood maximum will not in general corre-
spond to its true value. The corresponding shift induced on
the other model parameters—what we here call the bias

bðϑαÞ—is directly proportional to δfNL ≡ ftrueNL − 0 and
may be computed via

bðϑαÞ ¼ −ðF−1ÞαβF̂βfNLδfNL; ð13Þ

where Fαβ is the Fisher matrix for the wrong parameter set,
F̂αβ is the true Fisher matrix for the full parameter set

FIG. 2. Ratio of the non-Gaussian Schechter mass function to
the Gaussian one as a function of mass at z ¼ 1 with
flocNL ¼ −2.17, 3.51, and 9.3 (solid, short-, and long-dashed
curves, respectively).

FIG. 3 (color online). Bias on cosmological parameters (in units
of the error on the corresponding parameter) induced by
neglecting PNG versus flocNL when Fisher matrices for all probes
are considered.
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TABLE I. Forecast marginal errors σ, correlation parameters r, and (normalized) biases of ΛCDM cosmological parameters ϑ for flocNL ¼ 9.3.

Local-type PNG (flocNL ¼ 9.3)

TOT TOTþ Planck PSTOT PSTOTþ Planck

ϑ σ r b=σ σ r b=σ σ r b=σ σ r b=σ

Ωm 1.2 × 10−3 5.5 × 10−1 1.6 9.6 × 10−4 4.5 × 10−1 1.5 1.4 × 10−3 6. × 10−1 9.6 × 10−1 1.2 × 10−3 6.7 × 10−1 1.3
Ωb 8. × 10−4 3. × 10−1 8.5 × 10−1 2.7 × 10−4 −2. × 10−1 −6.8 × 10−1 8.6 × 10−4 2.7 × 10−1 4.4 × 10−1 2.9 × 10−4 −4.1 × 10−1 −8.1 × 10−1

w0 2.1 × 10−2 2.2 × 10−2 6.2 × 10−2 7.7 × 10−3 −4.3 × 10−1 −1.4 3. × 10−2 −5.4 × 10−1 −8.6 × 10−1 9.5 × 10−3 −6.8 × 10−1 −1.3
wa 1. × 10−1 3.2 × 10−1 9.2 × 10−1 2.2 × 10−2 9.6 × 10−2 3.2 × 10−1 1.3 × 10−1 −2.3 × 10−1 −3.7 × 10−1 2.2 × 10−2 −1.1 × 10−2 −2.2 × 10−2

h 8.9 × 10−3 4.6 × 10−1 1.3 1.9 × 10−3 1.6 × 10−1 5.4 × 10−1 1. × 10−2 4.4 × 10−1 7. × 10−1 1.9 × 10−3 1.4 × 10−1 2.8 × 10−1

lnð1010AsÞ 2.6 × 10−2 −5.7 × 10−1 −1.6 7.9 × 10−3 −3.3 × 10−1 −1.1 3. × 10−2 −1.8 × 10−1 −2.8 × 10−1 8. × 10−3 −2.1 × 10−1 −4.2 × 10−1

ns 5.7 × 10−3 −6.4 × 10−1 −1.8 2.7 × 10−3 −4.7 × 10−1 −1.6 6.7 × 10−3 −6. × 10−1 −9.7 × 10−1 3.1 × 10−3 −6.4 × 10−1 −1.2

TABLE II. Same as Table I for fortNL ¼ −65.

Orthogonal-type PNG (fortNL ¼ −65)

TOT TOTþ Planck PSTOT PSTOTþ Planck

ϑ σ r b=σ σ r b=σ σ r b=σ σ r b=σ

Ωm 1.2 × 10−3 −5.6 × 10−1 2.2 6. × 10−4 −2.2 × 10−1 1.1 1.4 × 10−3 −6.3 × 10−1 1.3 6.4 × 10−4 −4.1 × 10−1 1.1
Ωb 8. × 10−4 −2.8 × 10−1 1.1 2.3 × 10−4 −4.6 × 10−2 2.3 × 10−1 8.6 × 10−4 −2.8 × 10−1 6. × 10−1 2.3 × 10−4 3.2 × 10−2 −8.9 × 10−2

w0 2.1 × 10−2 1.1 × 10−1 −4.2 × 10−1 1.8 × 10−2 −1. × 10−1 5.1 × 10−1 2.8 × 10−2 −4.5 × 10−1 9.8 × 10−1 2.4 × 10−2 −6. × 10−1 1.7
wa 1. × 10−1 −3.8 × 10−1 1.5 7.2 × 10−2 −9.2 × 10−4 4.6 × 10−3 1.3 × 10−1 1.2 × 10−1 −2.5 × 10−1 9.3 × 10−2 5.1 × 10−1 −1.4
h 8.9 × 10−3 −4.5 × 10−1 1.8 1.8 × 10−3 −2.8 × 10−1 1.4 1. × 10−2 −4.5 × 10−1 9.7 × 10−1 1.9 × 10−3 −3.6 × 10−1 9.9 × 10−1

lnð1010AsÞ 2.6 × 10−2 5.8 × 10−1 −2.3 1.1 × 10−2 1.4 × 10−1 −6.9 × 10−1 3.1 × 10−2 2.5 × 10−1 −5.4 × 10−1 1.4 × 10−2 −4.1 × 10−1 1.1
ns 5.7 × 10−3 6.3 × 10−1 −2.4 2. × 10−3 2.6 × 10−1 −1.3 6.7 × 10−3 6.1 × 10−1 −1.3 2.1 × 10−3 3.6 × 10−1 −9.9 × 10−1
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(including fNL), and F̂βfNL is a vector corresponding to the
F̂ matrix line/column relative to fNL.
Details on the Fisher information matrices for galaxy and

cluster power spectra and their mutual cross spectrum can
be found in Refs. [11,46]. In the following analysis, we
consider ten redshift bins of width 0.1 centred from z ¼ 0.9
to 1.8. We hold kmax ¼ 0.3h Mpc−1 fixed to avoid the
strongly nonlinear regime, while the smallest wave number,
kmin, matches the largest available scale in a given redshift
bin. [Regarding this point, we notice that general-
relativistic corrections on very large scales may affect
the results (see, e.g., Refs. [14,47]), but it has been shown
that for future surveys (for instance, Euclid) their effect
should be negligible [48].] Figure 3 shows jbðϑαÞ=σðϑαÞj
for the case where we sum the Fisher matrices for all
probes, i.e., for galaxies, clusters, and their cross spectrum
and cluster number counts. We present the bias in units of
the forecast marginal error on the corresponding parameter,

σðϑαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þαα

q
; ð14Þ

which allows us to better assess the impact that such a bias
will imply. The parameter set which we allow to vary is the
full ΛCDM set fϑαg¼fΩm;Ωb;w0;wa;h; lnð1010AsÞ;nsg,
in addition to the PNG parameter fNL. Data points refer to
sampled fNL values, whereas solid curves come from the
analytic expression of Eq. (13). Clearly, there are param-
eters that are prone to having their “best-fit” value shifted if
we estimate them within the wrong theoretical framework.

This is the case for Ωm, ns, and As, which are known to be
more degenerate with fNL (see the correlation coefficients
in Tables I and II and the related discussion). On the other
hand, our analysis is in good agreement with the literature,
as we do not observe a significant dependence of σðϑαÞ on
the assumed fNL fiducial value (see, e.g., Refs. [49,50]).
Ultimately, this means that a blatant disregard for PNG

(which is somewhat understandable given the stringent
Planck limits) may threaten the constraining power of
future surveys—if not by worsening their precision, then by
undermining their accuracy. Surely, a Fisher-matrix
approach does not fully capture the likelihood properties
on the whole parameter space. Nevertheless, we want to
emphasize that our analysis by no means refers to some
extreme situation. On the contrary, the fNL fiducial values
here considered are well within Planck 2σ constraints for
local-type PNG.
To further stress this point, in Fig. 4 we present 1σ joint

marginal contours in the ½Ωm; lnð1010AsÞ� and ðw0; waÞ
planes (left and right panels, respectively), with solid lines
for the true error contours from F̂ and dashed contours for
when fNL is neglected in the Fisher analysis. This is done
for local-type PNG with flocNL ¼ 9.3 (left plots in both
panels) and for orthogonal-type PNG with fortNL ¼ −65
(right plots in both panels), when we consider Fisher
matrices for all probes (“TOT,” top plots) or only for the
combination of the three auto and cross spectra (“PSTOT,”
bottom plots). Black and red ellipses refer to forecasts
either ignoring or including current Planck constraints,
respectively. It is clear that in both cases, and for all the

FIG. 4 (color online). Forecast 1σ joint marginal contours in the ½Ωm; lnð1010AsÞ� and ðw0; waÞ planes (left and right panels,
respectively) for local- and orthogonal-type PNG with flocNL ¼ 9.3 and fortNL ¼ −65. Solid ellipses are the true error contours, while
dashed ellipses come from neglecting fNL in the analysis. Black and red colors refer to results without and with Planck priors on ΛCDM
parameters, respectively. Top (bottom) panels are for TOT (PSTOT).
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configurations and PNG choices considered in this work,
some non-negligible shift occurs. A more quantitative
insight can be drawn from Tables I and II, where relevant
quantities of the ΛCDM cosmological parameters are
given, such as forecast marginal errors σðϑαÞ, fNL corre-
lation parameters

rðϑα; fNLÞ ¼
ðF−1ÞαfNLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF−1ÞααðF−1ÞfNLfNL
q ; ð15Þ

and normalized biases bðϑαÞ=σðϑαÞ.
A major point emerging from this analysis is that—even

though orthogonal-type PNG deviations from the Gaussian
prediction have a much smaller impact upon the clustering
of the LSS compared to PNG with local shape—current
constraints on orthogonal PNG are consequently looser. In
particular, Planck data [12] agrees with fortNL ¼ −33� 51
(LSS convention). That is to say, the value fortNL ¼ −65 we
assume here is well within Planck 1σ bounds. Nonetheless,
if it were the true value and we neglected it, we would miss
the true likelihood peak by more than 1σ, which is
intolerable for the aims of future cosmological experiments.

IV. CONCLUSIONS

In this paper, we investigated the impact of neglecting
PNG when performing parameter reconstruction for an
idealized representative of next-generation Class IV cos-
mological experiments. Specifically, we considered a
spectroscopic galaxy redshift survey along the lines of
the European Space Agency Euclid satellite. This allowed
us to compute galaxy and galaxy cluster three-dimensional
power spectra, as well as their cross spectrum and galaxy
cluster number counts, in a fully consistent way within the
halo model framework.
Hence, we estimated the bias on the reconstruction of

standard ΛCDM cosmological parameters induced by
disregarding PNG in the analysis. This was done in a
Bayesian Fisher-matrix perspective, by considering the
ΛCDM vanilla cosmological model as a subspace (in
parameter space) of a ΛCDM universe with PNG. In other
words, we recover the concordance cosmological model if
we restrict the parameter space to the fNL ¼ 0 hypersur-
face. By doing so, the peak of the parameter likelihood on
the hypersurface does not (in general) correspond to its true
peak in the full parameter space if fNL is nonzero and it is

not completely uncorrelated to the other cosmological
parameters.
Our major results are summarized in Tables I and II and

in Fig. 4. In particular, we found that an incorrect treatment
of PNG in the data analysis will undermine the exper-
imental accuracy of the reconstruction of some cosmologi-
cal parameters. For example, the best-fit value of the dark
energy parameters w0 will be biased by more than one
standard deviation if local-type PNG is in fact present with
a value of fNL consistent with 1σ Planck constraints. This is
mainly due to the high precision of oncoming surveys,
which will provide us with very tight constraints on the
ΛCDM model parameters. Indeed, if on the one hand their
expected allowed regions in parameter space will only
slightly shrink by neglecting fNL in the analysis (as known
in the literature), on the other hand the small but non-
negligible degeneracy with fNL will cause a shift of their
reconstructed best-fit values. To avoid this, it appears clear
that PNG has to be consistently accounted for.
Finally, we emphasize that—although we adopt the

specifics of a Euclid-like survey as a reference experiment—
our findings should be regarded as potential systematics for
thewholeclassoffuture, high-precisiongalaxysurveys, such
as DES, LSST, and the SKA.
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