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We examine the cosmological consequences of an alternative to the standard expression for bulk
viscosity, one which was proposed to avoid the propagation of superluminal signals without the necessity
of extending the space of variables of the theory. The Friedmann equation is derived for this case, along
with an expression for the effective pressure. We find solutions for the evolution of the density of a viscous
component, which differs markedly from the case of conventional Eckart theory; our model evolves toward
late-time phantomlike behavior with a future singularity. Entropy production is addressed, and some
similarities and differences to approaches based on the Mueller-Israel-Stewart theory are discussed.
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I. INTRODUCTION

The standard expression for relativistic viscosity was
derived by Eckart in 1940 [1], and cosmological implica-
tions of the Eckart viscosity were examined by Treciokas
and Ellis [2] and Weinberg [3,4], and subsequently by
several others [5–7]. Later the possibility of bulk viscosity
was explored in the context of inflation [8–14] and as a
source for the accelerated expansion of the Universe
[15–22], including the possibility that a single fluid with
viscosity could account for both dark matter and accel-
erated expansion, although the latter idea faces severe
difficulties [23,24]. For a recent review of cosmological
bulk viscosity, see Ref. [25].
It is well known that the Eckart expression for viscosity

has the flaw that it can yield superluminal signal propa-
gation. Various proposals have been put forward to remedy
this problem [26–30], with the most widely studied being
the Mueller-Israel-Stewart (MIS) theory of Refs. [26–28].
Cosmological implications of the latter are examined in
Refs. [31–33], and further discussion can be found in
Refs. [34–41].
Here we discuss cosmological aspects of a more recent

proposal to evade the causality issue, namely, the model
introduced by Disconzi [42], based on earlier work by
Lichnerowicz [43,44], and generalized in Ref. [45]. In
the Eckart theory, the bulk viscosity is derived from
the divergence of the four-velocity of the fluid, i.e., the
stress-energy tensor is given by (we take c ¼ 8πG ¼ 1
throughout)

TE
αβ ¼ ðpþ ρÞuαuβ þ pgαβ − ζðgαβ þ uαuβÞ∇μuμ; ð1Þ

where p is the pressure, ρ is the density, u is the four-
velocity, and g is the metric (with convention −þþþ).
The viscosity coefficient, ζ, is not necessarily constant, and

is frequently taken to vary as an unknown power of the
fluid density. Since Eq. (1) can lead to superluminal signals,
Disconzi [42] proposed instead that

Tαβ ¼ ðpþ ρÞuαuβ þ pgαβ − ζðgαβ þ uαuβÞ∇μCμ; ð2Þ

where C is the dynamic velocity, defined by Cα ¼ Fuα
[44]. F is called the index of the fluid (see below) and
depends on the nature of the fluid (and thus on the equation
of state). We can think of F as providing a suitable
relativistic correction (see Sec. V) to the formulation of
the velocity in the viscous case, as the very definition of the
velocity four-vector is somewhat ambiguous when viscos-
ity is present [46]. On the other hand, this ambiguity is
absent when ζ ¼ 0; hence, it is plausible to introduce a
modification only in the viscous part of Eq. (1), leading
to Eq. (2).
The model for viscosity from Refs. [42,45] leads to a

well-posed theory without superluminal signals under
many interesting conditions. While it has not been rigor-
ously proven to be causal under all possible circumstances,
there are no known systems in which it is noncausal, so it is
plausible to conjecture that it is causal under all conditions.
In comparison, the Eckart model for viscosity can be
shown to be noncausal under some conditions. The MIS
model has the same status as the model under consideration
here; namely, it has not been rigorously proven to be causal,
but there are no known systems for which it is noncausal.
Hence, in terms of causality, the model of Refs. [42,45] is at
least an improvement on the Eckart theory, and it is no
worse than the MIS model, while being much simpler than
the latter.
The model under consideration here [42,45] uses

F ¼ pþρ
μ ; ð3Þ
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where μ is the rest mass density, although in principle other
choices of F could be explored. Recall that μ is conserved
along the flow lines, i.e.,

∇αðμuαÞ ¼ 0: ð4Þ
Now we briefly turn our attention to some technical

points. While it might appear from Eq. (2) that F can be
rescaled by an arbitrary constant, with the constant
absorbed into the definition of ζ, leaving Tαβ unchanged,
this is, in fact, not the case. The quantity F is not an
arbitrary parameter, but is the specific enthalpy given by
Eq. (3). Further, F is not, in general, constant except for
certain special cases.
Although Eq. (2) reduces to Eq. (1) upon setting F ¼ 1,

which is useful for comparison, this holds only at a formal
level, in that the limit F → 1 is not well behaved. Indeed,
the hypotheses of the theorems in Refs. [42,45] require
F > 1 (compare with Eq. (23), as it should be, as those
results ensure a causal dynamics, a feature not shared by
Eckart’s theory. In particular, the reader should be aware
that, in light of Eq. (3), setting F ¼ 1 in our equations
corresponds to imposing the constraint pþ ρ ¼ μ, a con-
dition that will not hold in general in Eckart’s theory. We
return to this point in Sec. V.
In any case, despite the necessity of restrictions for the

applicability of the theorems in Refs. [42,45], we shall
expand our study beyond the hypotheses of those theorems.
We are justified in doing so because such theorems are
sufficiently general (e.g., they make no symmetry
assumption) as to encourage a detailed study of the physical
implications of adopting Eq. (2). To expand a little more on
this point, we notice that Eq. (2) is a particular case of

Tαβ ¼ ðpþ ρÞuαuβ þ pgαβ − ζπαβ∇μCμ

− ϑπμαπνβð∇μCν þ∇μCνÞ; ð5Þ

where παβ ¼ gαβ þ uαuβ and ϑ is the shear-viscosity
coefficient. The equations studied in Refs. [42,45] do
not have bulk viscosity, but carry the shear term and make
no symmetry assumption on the metric. From the point of
view of the techniques of weakly hyperbolic systems
employed in those works, the shear term is the most
problematic one due to the multiple characteristics that
arise from πμαπνβ. Heuristically, therefore, when the full
stress-energy tensor (5) is considered, one expects that
causality would fail first due to the presence of the shear
term. But, since causality in the presence of shear viscosity
has been shown, under appropriate assumptions, in
Refs. [42,45], it becomes reasonable to suspect that the
simpler case of Tαβ with bulk viscosity only, i.e., Eq. (2),
will also present a good causal behavior. With these
considerations in hand, we point out that here we are
concerned mainly with the applications of Eq. (2), with the
question of the well-posedness and causality behavior of

our equations left for future work, where these questions
will be addressed in full detail.
We conclude with some comments on the parametriza-

tions (2) and (3). While at first sight they seem arbitrary,
they are in fact well motivated in light of known difficulties
when introducing viscosity into general relativity, difficul-
ties which are ultimately traced to the lack of a Lagrangian
formulation for viscous fluids. A full discussion is given
in Refs. [42,45] and, to a lesser extent, in Ref. [43]. In a
nutshell, the adoption of Eq. (2) allows one to approach the
problem via a traditional point of view that has been
successful in the study of other matter models in general
relativity: namely, the information about the matter fields is
contained in the stress-energy tensor that enters Einstein's
equations. This is in contrast with the MIS theory, where
many other aspects have to be incorporated, more or less
arbitrarily, in the dynamics [see, e.g., Eq. (27) below and
the discussion that follows].

II. MODIFIED FRIEDMANN EQUATIONS

The Friedmann-Robertson-Walker metric with spatially
flat geometry (in accordance with observations) is

ds2 ¼ −dt2 þ a2ðtÞðdr2 þ r2dθ2 þ r2sin2θdϕ2Þ; ð6Þ

where a is the scale factor. In what follows, we will take
a ¼ 1 at the present.
It will be convenient to write ∇μCμ more explicitly.

For the Friedmann-Robertson-Walker metric,

∇μuμ ¼ 3 _a
a ; ð7Þ

and we find

∇μCμ ¼ _F þ 3F _a
a : ð8Þ

The first Friedmann equation then becomes

_H þH2 ≡ ä
a
¼ −

1

6

�
3pþ ρ − 3ζ _F − 9ζF

_a
a

�
; ð9Þ

where, as usual, H ≡ _a=a is the Hubble parameter, and we
have absorbed a possible cosmological constant into the
definition of ρ (with ρΛ ¼ −pΛ). The second Friedmann
equation remains unchanged, i.e.,H2 ¼ ρ=3. The evolution
of ρ is given by

_ρþ 3ðpþ ρÞH − 3ζð _F þ 3FHÞH ¼ 0: ð10Þ

Now we can define an effective pressure via

peff ¼ pþ Π; ð11Þ
where Π gives the effective change in the pressure due to
viscosity. Then Eqs. (8) and (10) give
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Π ¼ −ζ∇μCμ ¼ −ζ _F − 3ζFH: ð12Þ

For the case of Eckart viscosity, one has Π ¼ −3ζH, which
formally agrees with Eq. (12) upon setting F ¼ 1.

III. EVOLUTION OF VISCOUS FLUIDS

Consider a fluid with an equation of state

p ¼ wρ; ð13Þ
where, e.g., w ¼ 0 corresponds to nonrelativistic matter,
w ¼ 1=3 to radiation, and w ¼ −1 to vacuum energy.
However, we take the most general possible case and
allow w to vary with time.
From Eqs. (4) and (7) one immediately gets

μ ¼ μ0a−3; ð14Þ

where μ0 is the present-day value of μ. From Eqs. (3), (11),
(12), (13), and (14) we find

peff ¼ p −
ζ _wρ
μ0a−3

−
ζð1þ wÞ_ρ
μ0a−3

−
6ζð1þ wÞρH

μ0a−3
: ð15Þ

Since _ρþ 3Hðρþ peffÞ ¼ 0, we can eliminate _ρ from
Eq. (15):

peff ¼
�
1−

3Hζð1þwÞ
μ0a−3

�
−1
×

�
p−

ζ _wρ
μ0a−3

−
3Hζð1þwÞρ

μ0a−3

�
:

Then the effective equation of state parameter, weff≡
peff=ρ, which gives ρðaÞ via

d ln ρ
d ln a

¼ −3ð1þ weffÞ; ð16Þ

is given by

weff ¼
wμ0a−3 − ζ _w − 3Hζð1þ wÞ

μ0a−3 − 3Hζð1þ wÞ : ð17Þ

Lacking detailed knowledge of the functional form of ζ, we
will follow earlier treatments and simply take ζ to scale as
an undetermined power of the density, namely, ζ ¼ ζ0ρ

α.
Also, for simplicity, we will assume from now on that w is
constant.
There are several special cases of interest. When w ¼ −1

(vacuum energy), viscosity has no effect. This is clear from
the definition of F Eq. (3), which shows that F ¼ 0 for
pþ ρ ¼ 0, so there is no viscosity in our model. The
opposite extreme, a stiff equation of state with w ¼ 1, also
yields no effect on the density evolution, as Eq. (17) gives
weff ¼ w ¼ 1 in this case. This can be understood as
follows. For an ideal fluid, it is possible to show that
stiffness is equivalent to ∇αCα ¼ 0 [44]. In fact, this is one
of the motivations to introduce F: in Newtonian fluids, the

incompressibility condition is assured by the vanishing of
the divergence of the velocity. A stiff fluid is the relativistic
analogue of incompressible Newtonian fluids, and, there-
fore, we would like a similar divergence-free condition to
hold, except that now we speak of a four-divergence. This is
possible if we consider the dynamic velocity C instead of
the ordinary four-velocity u. For perfect fluids, considering
the stress-energy tensor uniquely in terms of u or C leads
to the same results. However, as we have stressed, there
is a fundamental difference in which of these quantities we
take as defining the viscous part of Tαβ. On the other hand,
the feature of a fluid being stiff should not depend on
whether viscosity is present, exactly in the same way that
incompressibility for Newtonian fluids is defined by a
divergence-free condition in both the Euler and the Navier-
Stokes equations. But under the assumption of a stiff
fluid, i.e., ∇αCα ¼ 0, the bulk term drops out of Eq. (2),
consistent with the previous behavior when w ¼ 1. It is
essential to stress, however, that this absence of viscosity
effects is a consequence of the symmetry of the problem,
and not of the general model [42] on which we base our
equations. Indeed, in a Robertson-Walker space-time, the
only allowed contribution to viscosity comes from the bulk
term, but in a general space-time, shear viscosity will be
present when the fluid is stiff.
Next, consider the case where the viscous fluid with

constant w dominates the expansion, so that H2 ¼ ρ=3.
Then Eqs. (16) and (17) give

d ln ρ
d ln a

¼ −3ð1þ wÞ
�

1 − 2
ffiffiffi
3

p ðζ0=μ0Þa3ραþ1=2

1 −
ffiffiffi
3

p ð1þ wÞðζ0=μ0Þa3ραþ1=2

�
:

ð18Þ

We can make some general qualitative arguments regarding
the density evolution in this case. First assume that the
viscosity is negligible at early times, so that the second
terms in both the numerator and denominator of Eq. (18)
are≪ 1 when a ≪ 1. For negligible viscosity, ρ evolves as
a−3ð1þwÞ, so both viscosity correction terms scale as
a3−3ð1þwÞðαþ1=2Þ. Thus, the viscosity correction to the
equation of state will grow with time as long as
α < 1−w

2ð1þwÞ. The result will be (as expected) a value of

ρðaÞ that decreases more slowly than in the standard
nonviscous case. Then, when a reaches the value for which
μ0a−3 < 2

ffiffiffi
3

p
ζ0ρ

αþ1=2, the value of weff drops below −1,
and ρ begins to increase with a. This phantom evolution
inevitably results in a future singularity [47]. We can see
from Eq. (18) that this singularity is reached when
μ0a−3 ¼

ffiffiffi
3

p ð1þ wÞζ0ραþ1=2, at which point weff → −∞.
(For a discussion of future singularities with a different,
more general set of viscosity-motivated modifications to
the effective pressure, see Refs. [48–50].) Note that a value
of weff < −1, while puzzling from a theoretical perspective,
is not ruled out by current cosmological data and may even
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be observationally favored over weff > −1 [51–53]. Our
model also provides an elegant way for the dark matter
to “cross the phantom divide,” evolving from weff > −1 to
weff < −1, something which is notoriously difficult to
achieve in more conventional dark energy models.
Explicit solutions to Eq. (18) can be obtained for several

special cases. Consider first α ¼ −1=2. This value has no
special significance, but the analytic solution illustrates
some of these qualitative arguments. For this special case,
the solution to Eq. (18) is

ρ ∝ a−3ð1þwÞð1 − Ba3Þw−1; ð19Þ

where B ¼ ffiffiffi
3

p ð1þ wÞðζ0=μ0Þ. This solution exemplifies
our earlier qualitative arguments. For Ba3 ≪ 1, we simply
have standard nonviscous evolution. But when Ba3

increases to Oð1Þ, ρ decreases more slowly than in the
nonviscous case. At Ba3 ¼ ð1þ wÞ=2, the value of weff
decreases below −1, and the density begins to increase
with the scale factor (phantomlike behavior), ultimately
approaching −∞ as Ba3 → 1.
A more complex implicit solution is obtained for the

value α ¼ −7=2, namely

ρ
1
7a

6
7
− 3ð1−wÞ
7ð4þ3wÞ

�
ð4þ3wÞρ3−7

ffiffiffi
3

p
ζ0

μ0
ð1þwÞa3

� 1−w
7ð4þ3wÞ ¼ constant:

Another exact solution is found for α ¼ −5=6 and
w ¼ −2=3, for which

aρ −
ffiffiffi
3

p
ζ0

2μ0
a4ρ

2
3 ¼ constant: ð20Þ

These solutions can be compared to the evolution in the
case of conventional Eckhart theory. Repeating the above
arguments with Eq. (1), so that peff ¼ p − 3ζH, leads to a
solution for ρðaÞ for arbitrary α and constant w ≠ −1,
namely

ρ ¼
� ffiffiffi

3
p ζ0

1þ w
þ Ca3ð1þwÞðα−1=2Þ

�
2=ð1−2αÞ

; ð21Þ

for α ≠ 1=2. (The case α ¼ 1=2 simply yields a constant
difference between weff and w.) In Eq. (21), C is a constant
that can be set to give ρ ¼ ρ0 at a ¼ 1. For α < 1=2,
viscosity is subdominant at early times, so ρ ∝ a−3ð1þwÞ,
while ρ approaches a constant at late times. In contrast,
as seen above, our model gives a density that evolves to
phantomlike behavior at late times.

IV. ENTROPY PRODUCTION

Using Eqs. (2), (3), (4), and the conservation law
uβ∇αTαβ ¼ 0, we find

uα∂αp−μuα∂αF¼−ζFð∇αuαÞ2−ζ∇αuαuβ∂βF: ð22Þ

Since ρ ¼ μð1þ eÞ, where e is the specific internal energy,
we see that pþ ρ ¼ μð1þ eþ p

μÞ, and thus comparison
with Eq. (3) yields

F ¼ 1þ eþ p
μ : ð23Þ

In particular, we see that F is the relativistic specific
enthalpy of the fluid, and furthermore, we can identify
the dynamic velocity Cμ of Eq. (2) as the enthalpy current.
(For a discussion, see, e.g., Ref. [46].) From Eq. (23),
dF ¼ deþ pdð1μÞ þ 1

μ dp, which combined with the first

law, i.e., Tds¼deþpdð1μÞ, produces−μTds¼−μdFþdp,
or yet−μT∂αs ¼ −μ∂αF þ ∂αp. Here, T is the temperature
and s the specific entropy. Contracting the last equality
with uα, combining with Eq. (22), and invoking Eq. (7)
finally produces

μT _s ¼ 3ζHð _F þ 3FHÞ: ð24Þ

For the sake of brevity, we shall restrict ourselves to the
case p ¼ wρ, with w constant, as in the previous section,
although our conclusions hold under other conditions. Let
us also suppose in this section a general behavior of the
form ρ ∝ aβ at lowest order, which is consistent with the
discussion of Sec. III and much of the intuition drawn from
standard cosmology. As μ ≥ 0, T ≥ 0, and in the cases of
interest we can assume H > 0 and ζ ≥ 0, we immediately
see that, if β ≥ −6, which covers a wide range of possible
models, we obtain _s ≥ 0, in accordance with the second
law of thermodynamics. Notice that equality happens when
ζ ¼ 0 (i.e., no viscosity).
We can also analyze the entropy current Sα ≡ sμuα.

Using Eqs. (4) and (24), we find at once that

T∇αSα ¼ 3ζHð _F þ 3FHÞ; ð25Þ

and, once again, that the second law, ∇αSα ≥ 0, is satisfied
under the same conditions as above.
These results should be contrasted with models based on

the MIS theory [32], where ∇αSα ≥ 0 does not follow from
the MIS stress-energy tensor and simple scaling arguments
for the thermodynamic quantities, but rather is dynamically
imposed along with a redefinition of Sα.
More precisely, let ~Sα be the entropy current as in the

MIS theory, i.e., ~Sα ¼ Sα − τ ~Π2

2Tξ uα, where ξ ≥ 0 is the bulk
viscosity coefficient, τ ≥ 0 is the relaxation coefficient
for transient bulk viscous effects, and ~Π is the MIS bulk
viscous stress. From Eq. (25), it follows that
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∇α
~Sα ¼ 3H

T

�
ζ

T
_F þ 3

ζ

T
FH −

τ ~Π2

2Tξ

�

−
τ ~Π2

2Tξ

�
2

_~Π
~Π
þ _τ

τ
−

_T
T
−
_ξ

ξ

�
: ð26Þ

In the MIS formulation, it is imposed that

~Πþ τ _~Π ¼ −3ξH − 1
2
τ ~Π

�
3H þ _τ

τ −
_ξ
ξ −

_T
T

�
: ð27Þ

Combining Eq. (27) with Eq. (26) gives

∇α
~Sα ¼ 3Hζ

T
ð _F þ 3FHÞ þ 3H ~Π

T
þ

~Π2

Tξ
: ð28Þ

Typically, ~Π is negative, and thus the sum of the last two
terms in Eq. (28) will be non-negative, implying ∇α

~Sα ≥ 0,
if ~Π ≤ −3Hξ, which will be satisfied for ξ sufficiently
small. This can be relaxed since, under our assumptions,
the first term in ζ gives a positive contribution.
Although this analysis remains very qualitative, the

point here is that if we insist on defining the entropy
current by ~Sα and employ the assumptions of the MIS
theory, while at the same time adopting Eq. (2), we still
obtain that ∇α

~Sα ≥ 0 under reasonable conditions. In any
case, it is important to remember that Eq. (27) is, in a sense,
arbitrary. It is adopted in that it constitutes the simplest
condition, linear in ~Π, that enforces ∇α

~Sα ≥ 0, but other
conditions can be imposed. For instance, in our context,
∇α

~Sα ≥ 0 will hold if ~Π satisfies, instead of Eq. (26), the

equation _Πþ 1
2
ð_ττ −

_ξ
ξ −

_T
T þ 4HÞΠ ¼ 0. Yet other evolution

equations for ~Π can be devised. For instance, one may set
the entire right-hand side of Eq. (28) equal to a positive
combination of the thermodynamic quantities.
The aim of these considerations is to emphasize the

flexibility of our approach. While we showed above that
∇αSα ≥ 0 and _s ≥ 0 follow naturally from the equations of
motion under simple assumptions, one can still adopt a
MIS-like point of view when desirable. In this sense,
models based on Eq. (2) can be viewed as mixed between
the traditional approach (on which Eckart’s theory is
based), and the extended irreversible thermodynamics
(on which MIS’s theory is based).

V. THE LIMIT F → 1

Here we explore in more detail the behavior, mentioned
in the Introduction, of solutions when F → 1. We start
by pointing out that if we restore the units in (23), we have
F ¼ 1þ c−2ðeþ p=μÞ, where c is the speed of light. Thus,
F ¼ 1þOð 1c2Þ, which justifies the notion that F gives a
relativistic correction to u, as initially remarked.

To explore the limit F → 1, it is instructive to suppose
that we are working in the traditional thermodynamic
setting, where the pressure p and the specific energy are
non-negative. In this case, setting F ¼ 1 in (23) implies
p ¼ 0 ¼ e. This corresponds to the special case of pres-
sureless dust, for which w ¼ 0. The first law of thermo-
dynamics now gives Tds ¼ 0, which combined with (24)
leads to ζ ¼ 0, provided that T > 0 and H > 0. We can
understand this in two ways. Generally, ζ is a function of
the thermodynamic quantities, and hence a function of F,
ζ ¼ ζðFÞ. Therefore, we see that ζðFÞ → 0 as F → 1. This
is consistent with the idea that in the limit of zero pressure
the interaction rate due to particle collisions should go to
zero (for finite interaction lengths), so in that sense there
should be no dissipation. We can, however, consider a
second possibility, namely, the case where ζ is constant
and nonzero. In this situation, passing to the limit F → 1
gives a contradiction. Keeping in mind that (24) relies on
the equations of motion, this means that, although we can
obtain well-behaved solutions without superluminal signals
for F > 1, these results do not pass to the limit; in other
words, the limit of solutions is not, in general, a solution,
when ζ is constant.

VI. FINAL COMMENTS

The model for relativistic viscosity introduced in
Ref. [42] combines the advantages of Eckart’s model with
those of the MIS theory. It is nearly as simple as Eckart
viscosity but does not have the causality problems of that
model. It is much simpler than the MIS theory, and, like the
MIS theory, it is plausible to conjecture that the model is
causal for all physical systems of interest, although at
present neither the model discussed here nor the MIS model
can be rigorously proven to be causal under all possible
circumstances. Acceptable thermodynamic behavior (i.e.,
agreement with the second law of thermodynamics) under
reasonable circumstances is also achieved.
This model also yields a number of interesting results

when applied to cosmological fluids. One appealing
property is that it automatically reduces to zero viscosity
for both vacuum energy and a stiff fluid. We find that
constant-w fluids can produce a future singularity for a
wide range of parameter choices.
All of these features make Eq. (2) a promising candidate

for a viscous stress-energy tensor in cosmology, inviting
further investigation of the model.
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