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We investigate some cosmological models arising from a nonminimal coupling of a fermionic field to
gravity in the geometrical setting of Einstein-Cartan-Sciama-Kibble gravity. In the presence of torsion,
we discuss the role played by the nonminimal coupling together with fermionic self-interaction potentials
in facing problems such as cosmological singularity, inflation, and dark energy.
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I. INTRODUCTION

In spite of the great successes of general relativity (GR),
cosmological models deriving from the Einstein theory of
gravity still lack a proper explanation for inflation and dark
energy. Inflation and the present cosmic acceleration are
indeed two of the main reasons which motivate the study of
theories of gravity alternative to general relativity, at least at
large scales. Among these, scalar-tensor gravitational
theories have been one of the most widely investigated
since the early 1960s [1]. Scalar-tensor theories also arise in
other contexts like the low energy limit of Kaluza-Klein
gravity [2], in quantum field theory in curved spacetimes
[3], and in the tree-level action of string theory [4]. The
basic paradigm of such theories is the nonminimal coupling
of gravity to a scalar field, whose as-yet-unknown nature is
still the subject of intense scientific research. Among the
others, one of the suggested hypotheses is that the scalar
field is not fundamental but is constituted by a fermion
condensate. The idea that scalar fields can be composed of
other fields (for example, Dirac fields) is not very new; for
instance, in particle physics it was already proposed by
Weinberg with specific reference to the Higgs field [5] (in
this regard, see also [6,7]).
In cosmology, fermion fields have been considered

mostly since the 1990s; they have been studied as possible
sources of inflation and dark energy, driving the Universe
into accelerated expansions at both early and late times
[8–24]. In most of the papers appearing in the literature,
fermions are minimally coupled to gravity; only a few and
quite recent works instead investigate the effects of
fermionic nonminimal couplings [25–28].
In this paper, we explore some cosmological scenarios

when a Dirac field is nonminimally coupled to gravity with

torsion. The nonminimal interaction term we take into
account is of mass dimension 5 and reduces to the product
ψ̄ψR between the condensate ψ̄ψ of the Dirac field and the
scalar curvature R. In a previous paper [29], we have studied
the consequences of this nonminimal coupling on the
renormalizability of the Dirac equations, showing that in
the case torsion is not neglected, fermionic nonminimal
couplings are renormalizable and possess a well-defined
behaviour even in the ultraviolet regimes. In the present
work, we investigate the cosmological counterpart of the
theory proposed in [29]. Accordingly, here we work within
the geometrical setting of Einstein-Cartan-Sciama-Kibble
gravity (ECSK), where curvature and torsion couple to
energy and spin of the Dirac field, respectively. As we shall
see, in this metric-affine approach we obtain a dynamical
equation for the scale volume of the Universe which is easier
to handle than the analogous one in the purely metric case
(compare with [27]). As a result, we present a simple analysis
of cosmological issues such as cosmological singularity,
inflation, and dark energy when the above-mentioned non-
minimal coupling is taken into account. In particular, with the
help of some illustrative examples, we discuss the role played
by different self-interaction potentials in driving inflation and
dark eras in connection with the nonminimal coupling.
The layout of the paper is the following: in Sec. II we

briefly outline the theory introduced in [29], recalling its
main features; in Sec. III we analyze different cosmological
scenarios, first in the presence of a Dirac field only, and
then when dust and radiation fluid are present too; finally,
we devote Sec. V to the conclusions. Throughout this
paper, natural units (ℏ ¼ c ¼ kB ¼ 8πG ¼ 1) and metric
signature ðþ;−;−;−Þ are used.

II. THE ð1þ ϵψ̄ψÞR-THEORY WITH TORSION

In this section we briefly review the theory introduced in
[29]. In the general framework of ECSK gravity, let us
consider a Lagrangian density of the form
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L ¼ ð1þ ϵψ̄ψÞeR − eLD; ð1Þ

where the Einstein-Hilbert term R is nonminimally coupled
to a Dirac Lagrangian of the form

LD ¼ þ i
2
ðψ̄ΓiDiψ −Diψ̄ΓiψÞ −mψ̄ψ þ Vðψ̄ψÞ ð2Þ

through the nonminimal coupling term ϵψ̄ψR, ϵ being a
suitable coupling constant. Here, we denote by γμ

(μ ¼ 0; 1; 2; 3) Dirac matrices and we introduce the nota-
tion Γi ¼ eiμγμ, where e

μ
i indicates a tetrad field associated

with a metric gij ¼ eμi e
ν
jημν. In Eq. (2), Di denotes the

covariant derivative of the Dirac field ψ defined as Diψ ¼
∂ψ
∂xi þ ωi

μνSμνψ and Diψ̄ ¼ ∂ψ̄
∂xi − ψ̄ωi

μνSμν, where ωi
μν is a

spin connection and Sμν ≔ 1
8
½γμ; γν�. Equivalently, we have

Diψ ¼ ∂ψ
∂xi −Ωiψ and Diψ̄ ¼ ∂ψ̄

∂xi þ ψ̄Ωi, where

Ωi ≔ −
1

4
gjhfΓik

j − ejμ∂ie
μ
kgΓhΓk ð3Þ

and Γik
j are the coefficients of a linear connection Γ,

associated with the spin connection through the usual
relation

Γij
h ¼ ωμ

i νe
h
μeνj þ ehμ∂ie

μ
j : ð4Þ

Denoting by φ ≔ ð1þ ϵψ̄ψÞ and by V 0 ≔ dV
dðψ̄ψÞ, from (1)

we can derive field equations of the form

Rij −
1

2
Rgij ¼

1

φ
Σij ð5aÞ

Tij
h ¼ −

1

2φ

∂φ
∂xp ðδ

p
i δ

h
j − δpj δ

h
i Þ þ

1

φ
Sijh ð5bÞ

iΓhDhψ þ i
2
ThΓhψ −mψ þ V 0ðψ̄ψÞψ − ϵψR ¼ 0; ð5cÞ

where

Σij ≔
i
4
ðψ̄ΓiDjψ −Djψ̄ΓiψÞ −

1

2
LDgij

¼ i
4
ðψ̄ΓiDjψ −Djψ̄ΓiψÞ −

1

2
ϵψ̄ψRgij −

1

2
Vðψ̄ψÞgij

þ 1

2
ψ̄ψV 0ðψ̄ψÞgij ð6Þ

and

Sijh ¼
i
2
ψ̄fΓh; Sijgψ ð7Þ

are, respectively, the energy-momentum and the spin
density tensors. In Eqs. (5b) and (5c), Tij

h ≔ Γij
h − Γji

h

denotes the torsion tensor and Ti ≔ Tij
j its contraction,

while in Eq. (7), Sij ≔ 1
8
½Γi;Γj�. The energy-momentum

and spin tensors satisfy the conservation laws

∇iΣijþTiΣij−ΣpqTjpq−
1

2
SpqrRpqrjþ1

2
R∇jφ¼0 ð8aÞ

∇hSijh þ ThSijh þ Σij − Σji ¼ 0 ð8bÞ

automatically ensured by the Dirac equations (5c) [29]. It is
seen that the antisymmetric part of the Einstein-like equa-
tions (5a) amounts to the conservation law for the spin (8b).
The significant part of the Einstein-like equations is then the
symmetric one which, making use of the trace of (5a) and
separating the purely metric terms from the torsional ones
through Eq. (5b), can be written in the final form

~Rij −
1

2
~Rgij ¼

1

φ
~Σij þ

1

φ2

�
−
3

2

∂φ
∂xi

∂φ
∂xj þ φ ~∇j

∂φ
∂xi

þ 3

4

∂φ
∂xh

∂φ
∂xk g

hkgij−φ ~∇h ∂φ
∂xh gij

�

þ 3

64φ2
ðψ̄γ5γτψÞðψ̄γ5γτψÞgij

−
ϵðψ̄ψÞðm

2
ψ̄ψ − 2V þ 3

2
ψ̄ψV 0Þ

2φð1
2
φ − 3

2
Þ gij

−
1

2φ
Vðψ̄ψÞgij þ

1

2φ
ψ̄ψV 0ðψ̄ψÞgij; ð9Þ

where ~Rij, ~R, and ~∇i are, respectively, the Ricci tensor, the
Ricci scalar curvature, and the covariant derivative induced
by the Levi-Cività connection and

~Σij ≔
i
4
½ψ̄Γði ~DjÞψ − ð ~Dðjψ̄ÞΓiÞψ �; ð10Þ

~Di denoting a spinor covariant derivative with respect
to the Levi-Cività connection. The Dirac equations can be
handled in a similar way, assuming the expression

iΓh ~Dhψ −
1

φ

3

16
½ðψ̄ψÞ þ iðiψ̄γ5ψÞγ5�ψ

−mψ þ V 0ðψ̄ψÞψ − ϵψR ¼ 0: ð11Þ

For further details, the reader is referred to [29].

III. BIANCHI-I COSMOLOGICAL MODELS

A. Coupling to Dirac field only

In order to investigate cosmological scenarios deriving
from (9) and (11), let us consider a Bianchi type I metric of
the form
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ds2 ¼ dt2 − a2ðtÞdx2 − b2ðtÞdy2 − c2ðtÞdz2: ð12Þ

Denoting by τ ≔ abc the scale volume, evaluating the linear and spin connection coefficients associated with the metric
tensor (12) and inserting the results together with (12) itself in Eqs. (9), the latter are seen to assume the form

_a
a

_b
b
þ

_b
b
_c
c
þ _a
a
_c
c
¼ 1

2φ
mψ̄ψ −

3

64φ2
ðψ̄γ5γνψÞðψ̄γ5γνψÞ þ

1

φ2

�
−
3

4
_φ2 − φ _φ

_τ

τ

�
−

1

2φ
Vðψ̄ψÞ ð13aÞ

b̈
b
þ c̈
c
þ

_b
b
_c
c
¼ 1

φ2

�
φ _φ

_a
a
þ 3

4
_φ2 − φ

�
φ̈þ _τ

τ
_φ

��
þ 3

64φ2
ðψ̄γ5γνψÞðψ̄γ5γνψÞ

−
ϵðψ̄ψÞðm

2
ψ̄ψ − 2V þ 3

2
ψ̄ψV 0Þ

2φð1
2
φ − 3

2
Þ −

1

2φ
Vðψ̄ψÞ þ 1

2φ
ðψ̄ψÞV 0ðψ̄ψÞ ð13bÞ

ä
a
þ c̈
c
þ _a
a
_c
c
¼ 1

φ2

�
φ _φ

_b
b
þ 3

4
_φ2 − φ

�
φ̈þ _τ

τ
_φ

��
þ 3

64φ2
ðψ̄γ5γνψÞðψ̄γ5γνψÞ

−
ϵðψ̄ψÞðm

2
ψ̄ψ − 2V þ 3

2
ψ̄ψV 0Þ

2φð1
2
φ − 3

2
Þ −

1

2φ
Vðψ̄ψÞ þ 1

2φ
ðψ̄ψÞV 0ðψ̄ψÞ ð13cÞ

ä
a
þ b̈
b
þ _a
a

_b
b
¼ 1

φ2

�
φ _φ

_c
c
þ 3

4
_φ2 − φ

�
φ̈þ _τ

τ
_φ

��
þ 3

64φ2
ðψ̄γ5γνψÞðψ̄γ5γνψÞ

−
ϵðψ̄ψÞðm

2
ψ̄ψ − 2V þ 3

2
ψ̄ψV 0Þ

2φð1
2
φ − 3

2
Þ −

1

2φ
Vðψ̄ψÞ þ 1

2φ
ðψ̄ψÞV 0ðψ̄ψÞ; ð13dÞ

together with the conditions

~Σ12 ¼ 0 ⇒ a _b − b _a ¼ 0∪ ψ̄γ5γ3ψ ¼ 0 ð14aÞ

~Σ23 ¼ 0 ⇒ c _b − b_c ¼ 0∪ ψ̄γ5γ1ψ ¼ 0 ð14bÞ

~Σ13 ¼ 0 ⇒ a_c − c _a ¼ 0∪ ψ̄γ5γ2ψ ¼ 0: ð14cÞ

The equations ~Σ0A ¼ 0 (A ¼ 1; 2; 3) result in identities.
Conditions (14) are constraints imposed on the metric or on
the Dirac field. There are three ways to satisfy these
conditions: one is to impose constraints of purely geomet-
rical origin by requiring that a _b − b _a ¼ 0, a_c − c _a ¼ 0,
c _b − b_c ¼ 0, obtaining an isotropic universe; another is to
impose constraints of purely material origin by insisting
that ψ̄γ5γ1ψ ¼ 0, ψ̄γ5γ2ψ ¼ 0, ψ̄γ5γ3ψ ¼ 0, giving an
anisotropic universe without spin-torsion interactions (in
fact, in this case necessarily we have that ψ̄γ5γ0ψ ¼ 0, and
otherwise the condition ψ̄γ0ψ ¼ 0 must be true, implying
that the whole spinor must vanish); the last situation would
be of both geometrical and material origin by insisting that
for instance a _b − b _a ¼ 0, with ψ̄γ5γ1ψ ¼ 0, ψ̄γ5γ2ψ ¼ 0
giving a partial isotropy for only two axes with the
corresponding two components of the spin vector vanish-
ing. We will be back to this issue in a moment.

Following a useful procedure [10,12,14,29,30], we can
suitably combine Eqs. (9), obtaining the expressions of the
scale factors as functions of the scale volume τ,

a ¼ τ
1
3ðXYÞ13eðZþW

3

R
dt
φτÞ ð15aÞ

b ¼ τ
1
3X−2

3Y
1
3eð

−2ZþW
3

R
dt
φτÞ ð15bÞ

c ¼ τ
1
3X

1
3Y−2

3eð
Z−2W

3

R
dt
φτÞ ð15cÞ

(X; Y; Z, and W being integration constants), and the
dynamical equation [31] for τ,

2
̈τ
τ
¼ −3

φ̈

φ
− 5

_τ

τ

_φ

φ
−
3mψ̄ψ − 3Vðφþ 1Þ þ 3φψ̄ψV 0

φðφ − 3Þ :

ð16Þ

Here, it is noteworthy that Eq. (13a) plays the role of a
constraint on the initial data and thus on the integration
constants. In this regard, in [29] it has been actually
checked that if the Hamiltonian constraint (13a) is satisfied
initially, then it is preserved in time. Analogously, in the
metric (12) the Dirac equations (11) become
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_ψ þ _τ

2τ
ψ þ imγ0ψ þ 3i

16φ
½ðψ̄ψÞγ0 þ iðiψ̄γ5ψÞγ0γ5�ψ þ iϵRγ0ψ − iV 0γ0ψ ¼ 0 ð17aÞ

_̄ψ þ _τ

2τ
ψ̄ − imψ̄γ0 −

3i
16φ

ψ̄ ½ðψ̄ψÞγ0 þ iðiψ̄γ5ψÞγ5γ0� − iϵRψ̄γ0 þ iV 0ψ̄γ0 ¼ 0: ð17bÞ

In order to solve Eqs. (17), we can adapt to the present
context the arguments developed in [24]. First of all we
combine Eqs. (17), obtaining the differential equations

d
dt

ðτψ̄ψÞ þ 3τ

8φ
ðiψ̄γ5ψÞðψ̄γ5γ0ψÞ ¼ 0: ð18Þ

We search for solutions of (17) satisfying the condition

ψ̄γ5ψ ¼ 0: ð19Þ

Under such a hypothesis, Eq. (18) implies

ψ̄ψ ¼ K
τ
; ð20Þ

where K is an integration constant. At the same time, from
Eqs. (5a) and (5c) we can derive the expression of the scalar
curvature R as a function of the bilinear spinor ψ̄ψ :

Rðψ̄ψÞ ¼ mψ̄ψ − 4V þ 3ψ̄ψV 0

φ − 3
: ð21Þ

In view of Eqs. (19), (20), and (21), the Dirac equation (17a)
can be rewritten as

_ψ þ _τ

2τ
ψ þ iGðτÞγ0ψ ¼ 0; ð22Þ

where we have set

GðτÞ≔
�
mþ 3

16φ
ψ̄ψþ ϵRðψ̄ψÞ−V 0ðψ̄ψÞ

�
jψ̄ψ¼K

τ

: ð23Þ

Considering the 4-component spinor field

ψ ¼

0
BBB@

ψ1

ψ2

ψ3

ψ4

1
CCCA; ð24Þ

Eqs. (22) assume the explicit form

_ψ1 þ
_τ

2τ
ψ1 þ iGðτÞψ1 ¼ 0 ð25aÞ

_ψ2 þ
_τ

2τ
ψ2 þ iGðτÞψ2 ¼ 0 ð25bÞ

_ψ3 þ
_τ

2τ
ψ3 − iGðτÞψ3 ¼ 0 ð25cÞ

_ψ4 þ
_τ

2τ
ψ4 − iGðτÞψ4 ¼ 0: ð25dÞ

A solution of Eqs. (25) is then given by

ψ ¼ 1ffiffiffi
τ

p

0
BBB@

C1 exp ð−i
R
GdtÞ

C2 exp ð−i
R
GdtÞ

C3 exp ðþi
R
GdtÞ

C4 exp ðþi
R
GdtÞ

1
CCCA; ð26Þ

where Ci are integration constants which, because of
constraints (19) and (20), have to satisfy the equations

C�
1C1 þ C�

2C2 − C�
3C3 − C�

4C4 ¼ K ð27aÞ

C�
1C3 þ C�

2C4 ¼ 0: ð27bÞ

Moreover, the constants Ci have to satisfy further con-
straints deriving from the nondiagonal part of the Einstein-
like equations (9). As we have discussed above, these
additional conditions result in a maximum of three real
equations given by

C�
1C2 þ C�

2C1 þ C�
3C4 þ C�

4C3 ¼ 0 ð28aÞ

C�
1C2 − C�

2C1 þ C�
3C4 − C�

4C3 ¼ 0 ð28bÞ

− C�
1C1 þ C�

2C2 − C�
3C3 þ C�

4C4 ¼ 0: ð28cÞ

Equations (27) and (28) form a system of at most six real
equations for eight real unknowns; thus in general, one
should expect that solutions exist.
However, if all of the last constraints were considered

then we can draw some additional conclusions. By com-
bining the first two of (28), we see that

C�
1C2 þ C�

3C4 ¼ 0; ð29Þ

which can be combined together with the second of (27) to
show that

C2ðjC1j2 − jC4j2Þ ¼ C2C�
1C1 − C2C�

4C4

¼ −C4C�
3C1 þ C�

3C1C4 ¼ 0; ð30Þ
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and so either C2 ¼ 0 or jC1j2 ¼ jC4j2 in general. If jC1j2 ¼
jC4j2 we would have that the third of (28) remains jC2j2 ¼
jC3j2 and so K ¼ 0. If C2 ¼ 0 we have that (29) and the
second of (27) imply that either C3 ¼ 0 or C1 ¼ C4 ¼ 0,
which by (28) again yields C3 ¼ 0. In both cases, this again
returns K ¼ 0. Therefore, if all (28) are accounted for, then
K is necessarily zero, and there would be no condensate:
this is to be expected, because these three conditions are
equivalent to the requirement of total isotropy of the spinor
field. Indeed, if this were to be the case, then all of the
spatial components of the spin vector would have to vanish,
and because the algebraic identity ψ̄γ5γμψψ̄γμψ ¼ 0 is
always true, then ψ̄γ5γ0ψψ̄γ0ψ ¼ 0. Now, if ψ̄γ0ψ ¼
ψ†ψ ¼ 0, the spinor itself would be zero. Therefore we
have to select the condition ψ̄γ5γ0ψ ¼ 0, which means that
also the temporal component of the spin vector is zero, and
therefore the entire spin vector is zero. Furthermore, since

jiψ̄γ5ψ j2 þ jψ̄ψ j2 ¼ −ψ̄γ5γμψψ̄γ5γμψ ; ð31Þ

the reasoning above leads to the conditions iψ̄γ5ψ ¼
ψ̄ψ ¼ 0, which imply that there is no condensate, and
thus no nonminimal coupling. In conclusion, we have to
dismiss the case ψ̄γ5γ1ψ ¼ 0, ψ̄γ5γ2ψ ¼ 0, ψ̄γ5γ3ψ ¼ 0
because it is not possible to have a geometrically aniso-
tropic universe filled with isotropic matter.
A second scenario is to have partial isotropy in both

geometry and matter as for instance in the case a _b−b _a¼0

with ψ̄γ5γ1ψ ¼ 0, ψ̄γ5γ2ψ ¼ 0. In this circumstance the
last of (28) is lost and thus a solution can be found. For
example, a solution is given by jC1j2 ¼ K and all other
constants equal to zero or by jC2j2 ¼ K and all other
constants equal to zero: they give

ψ ¼ exp

�
−i
Z

Gdt

� ffiffiffiffi
K
τ

r 0
BBB@

1

0

0

0

1
CCCA or

ψ ¼ exp

�
−i
Z

Gdt

� ffiffiffiffi
K
τ

r 0
BBB@

0

1

0

0

1
CCCA; ð32Þ

which can be interpreted, respectively, as a spinor in the
spin 1

2
or the spin − 1

2
eigenstate in the nonrelativistic case

(that is, with the two lower components vanishing in
standard representation).
The third and last case is given by a totally isotropic

universe a _b − b _a ¼ 0, a_c − c _a ¼ 0, c _b − b_c ¼ 0 filled
with anisotropic matter [32]. In such a circumstance
Eqs. (28) do not apply and Eqs. (27) certainly admit
solutions, for instance, still of the form (32).

We remark that in any case, the condensate evolves as
ψ̄ψ ¼ K

τ and that is all we need to perform the analysis of
the cosmological model. The fact that the entire informa-
tion about the spinor is not necessary and that only the
condensate is important may sound strange, but it is exactly
what we would expect to have in macroscopic systems
(after all, also in the physics of condensates one does not
need the complete dynamical behavior of each single
electron or Cooper couple to know the evolution of the
condensate itself—similar arguments can be used to justify
why one does not need the motion of each single atom or
molecule to know the evolution of a gas).
So, resuming the problem of finding the dynamical

equation for the scale volume τ, we may insert the relation
ψ̄ψ ¼ K

τ into (16), getting the final equation

2
̈τ
τ
φþ 3φ̈þ 5

_τ

τ
_φ ¼ 3mK

τð2 − ϵK
τ Þ

−
3ðϵK þ 2τÞV
τð2 − ϵK

τ Þ

þ 3ðϵK þ τÞKV 0

τ2ð2 − ϵK
τ Þ

: ð33Þ

The fact that one can combine the equations in this
way should not be surprising. In fact, given a timelike
normalized vector field Xa and the projection tensor
hab ¼ gab − XaXb, the physical properties of any aniso-
tropic cosmology can be characterized by the expansion
scalar and the shear scalar:

θ ¼ hab ~∇aXb σ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σabσ

ab
q

σab ¼
1

2
hcahdbð ~∇cXd þ ~∇dXcÞ −

1

3
habθ: ð34Þ

In the particular case of the metric (12), the expansion is

θ ¼ _a
a
þ

_b
b
þ _c
c
¼ _τ

τ
ð35Þ

so that (33) is analogous to the Raychaudhuri equation. It is
also useful to write the shear scalar in terms of the metric
(12) and τ:

σ ¼ 1

2

��
_a
a

�
2

þ
�
_b
b

�2

þ
�
_c
c

�
2

−
1

3

�
_a
a
þ

_b
b
þ _c
c

�2�1=2

¼ 1

2

�
2ðZ2 þW2 − ZWÞ

3ðτ þ ϵKÞ2
�
1=2

; ð36Þ

where in the last expression we have used (15). It is
immediately clear that the only way to increase the
anisotropy of the system is to have a contraction, so these
models, if expanding, tend to isotropize. In addition, and
differently from GR, for τ → 0 (and for ϵ > 0) the shear
tends to a finite value depending on K and other constants
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of integration; on the contrary, if ϵ < 0, the shear scalar can
blow up before τ ¼ 0.
Using the identity 2τ̈φþ3τφ̈þ5_τ _φ¼ d2

dt2 ð2τ−ϵK lnτÞ,
(33) yields

d
dt

�
d
dt

ð2τ − ϵK ln τÞ
�
2

¼ 6

�
mK − ðϵK þ 2τÞV þ ðϵK þ τÞK

τ
V 0
�
_τ: ð37Þ

In the following, by exploiting the linear dependence on the
potential and its derivative in Eq. (33) [or (37)], we analyze
different scenarios associated to various choices of the
potential V. To do that we follow two different approaches:
the first one is a reconstruction technique, where a given
time evolution for the scale volume is assumed and then
Eq. (33) is solved for V, making systematic use of the
relation ψ̄ψ ¼ K

τ ; the second one consists in choosing V in
such a way that the right-hand side of Eq. (37) becomes
easily solvable (exactly or at least for some approxima-
tions) and the corresponding solutions represent interesting
cosmological evolutions. The properties of these scenarios
will be characterized in terms of the behavior of θ and σ.

1. The case V ¼ 0

To start with, we discuss the simplest case V ¼ 0. In this
circumstance Eq. (37) assumes the form

d
dt

�
d
dt

ð2τ − ϵK ln τÞ
�
2

¼ 6mK_τ; ð38Þ

which can be integrated as

d
dt

ð2τ − ϵK ln τÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mKτ − A

p
; ð39Þ

yielding a first-order differential equation for τ with
integration constant A. Assuming A is negative, Eq. (39)
can be integrated as

tþ B ¼ � 2
ffiffiffiffiffiffijAjp

3mK

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mK
jAj τ þ 1

s !

� 2ϵKffiffiffiffiffiffijAjp arctanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mK
jAj τ þ 1

s !
; ð40Þ

but as it is also clear, A negative (with of course τ positive)
means that the argument of the arctanh is larger than 1 and
thus such a function is ill defined. Therefore we are forced
to assume A ≥ 0: in the case A > 0, the differential
equation is integrated as

tþ B ¼ � 2
ffiffiffiffi
A

p

3mK

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mK
A

τ − 1

r !

∓ 2ϵKffiffiffiffi
A

p arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mK
A

τ − 1

r !
; ð41Þ

which is well defined whenever the volume is larger than a
given lower bound τ0 ≥ A

6mK and thus showing that,
regardless of the value of B, there is no way in which
the minimal volume τ0 can be zero; if A ¼ 0, we get the
solution

tþ B ¼ �
ffiffiffi
2

p ðϵK þ 2τÞffiffiffiffiffiffiffiffiffiffiffiffi
3mKτ

p ; ð42Þ

from which again we cannot have zero scale volume at a
finite time. In all these cases then, singularities are avoided
due to the presence of the nonminimal coupling term we
have here: in fact, if ϵ ¼ 0 then there will be nothing
preventing us from having a negative A, so that it would be
possible to have the solution (40), which in this case would
reduce to

tþ B ¼ � 2
ffiffiffiffiffiffijAjp

3mK

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mK
jAj τ þ 1

s !
; ð43Þ

allowing zero scale volume τ ¼ 0 at the finite time

t ¼ −B� 2
ffiffiffiffi
jAj

p
3mK . These phenomena are not new in the

context of ECSK theories (with minimal [33–36] and
nonminimal couplings [37]). However, differently from
these studies, our analysis relies exclusively on the exact
field equations and therefore it is of purely mathematical
nature.
Also, it must be pointed out that the analysis of the

Hamiltonian constraint (13a) provides interesting con-
straints on the constants of this model. To see this point,
using Eqs. (15) and (39), we easily get the identities

_a
a
¼ 1

3

_τ

τ
þ ðZ þWÞ

3

1

φτ
ð44aÞ

_b
b
¼ 1

3

_τ

τ
þ ð−2Z þWÞ

3

1

φτ
ð44bÞ

_c
c
¼ 1

3

_τ

τ
þ ðZ − 2WÞ

3

1

φτ
ð44cÞ

_τ2 ¼ τ2

ð2τ − ϵKÞ2 ð6mKτ − AÞ: ð44dÞ

Inserting the content of (44) into (13a), we obtain the
relation
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−
A
12

þ 1

9
½−3ðZ þWÞ2 þ 9ZW� ¼ K2

�
m
2
ϵþ 3

64

�
: ð45Þ

Because of the restriction imposed on A (A ≥ 0) found
above, the left-hand side of (45) is always nonpositive and
so must be the right-hand side: this necessarily requires

ϵ ≤ −
3

32m
; ð46Þ

which represents an upper bound for the coupling constant
ϵ in the case that the self-interaction potential V, or also
other kinds of matter different from the only fermionic
field, are absent. This fact, together with Eq. (36), implies
that the singularity on the scale factors can be replaced by a
singularity in the shear that happens at finite time (if
A

6mK ≤ jϵjK). In this respect, therefore, the claim that these
models are singularity free is an incomplete statement, as
the model could retain a singularity (albeit of a different
type) at some point in its history.
Another interesting aspect associated with the nonmini-

mal coupling we are studying is that if there were a
(cosmological) time interval in which the first term on
the right-hand side of Eq. (41) were negligible with respect
to the second one, then in such a time interval we would
have an expansion of the Universe according to τ ∼ ðtan tÞ2,
which could account for an accelerated behavior possibly
fitting inflationary scenarios (at least for isotropic models).
The above-mentioned circumstance could be achieved for
example by assigning initial data and then integration
constants such that

ffiffiffiffi
A

p
=K is very small.

The model outlined above is therefore rather intriguing,
because it can solve the problem of the cosmological
singularity in a quite elegant way and simultaneously, by
a careful fine-tuning, it can address the issue of inflationary
scenarios. Unfortunately, the model with V ¼ 0 is unable to
account for cosmic acceleration at late time. This is easily
seen still considering Eq. (41), this time evaluated for large
values of τ (with respect to a given reference volume of the
Universe), obtaining a behavior of the scale volume as
τ ∼ t2, i.e., θ ¼ 2=t, which at late time ensures isotropiza-
tion [see Eqs. (15)] but under a decelerated expansion of the
scale factors.

2. The potential for a decelerated power law expansion

As a first example in which a potential is present,
following a reconstruction approach we look for a potential
V which gives rise to an expansion law of the form τ ¼ τ0t2

already treated in the previous section. This behavior of τ
implies that the scale factors a; b; c have a decelerated
expansion law, at least at late time.
Inserting τ ¼ τ0t2 into (33), multiplying by τ and

expressing all in terms of ψ̄ψ , we get the differential
equation for the unknown V:

2τ0 þ 2ϵτ0ψ̄ψ ¼ 3mK
ð2 − ϵψ̄ψÞ −

3Kðϵψ̄ψ þ 2Þ
ψ̄ψð2 − ϵψ̄ψÞV

þ 3Kðϵψ̄ψ þ 1Þ
ð2 − ϵψ̄ψÞ V 0: ð47Þ

The solution of (47) is

Vðψ̄ψÞ ¼ 1

ðϵψ̄ψ þ 1Þ
�
−
2ϵτ0
3K

ðψ̄ψÞ3 − 4τ0
3K

ðψ̄ψÞ

þ 2ϵτ0
3K

ðψ̄ψÞ2 ln ðψ̄ψÞ þmðψ̄ψÞ
�
: ð48Þ

In addition, the cosmology isotropizes (σ → 0) in the
future, since

σ ¼ 1

2

�
2ðZ2 þW2 − ZWÞ
3ðτ0t2 þ ϵKÞ2

�
1=2

: ð49Þ

As above, these results could be deduced also from
Eqs. (15), which converge to a ∝ b ∝ c for this behavior
of τ.

3. Potentials for exponential expansion

As a second example, we search for potentials inducing
exponential expansion of the scale volume. We begin with a
reconstruction technique considering a scale volume of the
form τ ¼ τ0 expðtÞ. In this case θ ¼ 1, and

σ ¼ 1

2

�
2ðZ2 þW2 − ZWÞ
3½τ0 expðtÞ þ ϵK�2

�
1=2

ð50Þ

so that the anisotropy becomes quickly zero. Inserting τ ¼
τ0 expðtÞ into (33), multiplying by τ and using ψ̄ψ as an
independent variable, we get the final equation

2K
ψ̄ψ

¼ 3mK
ð2 − ϵψ̄ψÞ −

3Kðϵψ̄ψ þ 2Þ
ψ̄ψð2 − ϵψ̄ψÞV þ 3Kðϵψ̄ψ þ 1Þ

ð2 − ϵψ̄ψÞ V 0:

ð51Þ

The latter admits the solution

Vðψ̄ψÞ ¼ ψ̄ψð2ϵþ 3mÞ − 2

3ðϵψ̄ψ þ 1Þ : ð52Þ

Another potential which yields exponential expansion at
least at late time is given by

Vðψ̄ψÞ ¼ −
1

6ðϵψ̄ψ þ 1Þ : ð53Þ

Indeed, with the choice (53), Eq. (37) can be integrated as

ð2τ − ϵKÞ_τ
τ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mKτ þ τ2 þ A

p
; ð54Þ
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with A denoting an integration constant. It is evident that if
A is negative there exists automatically a strictly positive
minimum value of the scale volume, and then the singu-
larity in the scale volume is avoided. For instance, setting
A ¼ −1 for simplicity, Eq. (54) can be integrated as

tþ C ¼ 2 ln ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mKτ þ τ2 − 1

p
þ 3mK þ τÞ

− ϵK arctan

�
3mKτ − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mkτ þ τ2 − 1

p
�
; ð55Þ

which for large values of τ yields exponential expansion.
We discuss more in detail the case A > 0; in such a
circumstance by integrating Eq. (53) we get

tþ C ¼ 2 ln ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mKτ þ τ2 þ A

p
þ 3mK þ τÞ

þ ϵKffiffiffiffi
A

p ln

�
Aþ 3mKτ þ ffiffiffiffi

A
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6mKτ þ τ2 þ A
p

τ

�
:

ð56Þ

For large values of τ we have as above exponential
expansion of the scale volume; moreover, setting ϵ < 0,
for very small values of τ (with respect to a given reference
volume of the Universe) we can approximate the solution
(56) to

tþD ¼ ϵKffiffiffiffi
A

p ln

�
2A
τ

�
; ð57Þ

yielding again exponential expansion. We notice that both
the potentials (52) and (53) are not trivial in view of the
nonminimal coupling. Indeed, if ϵ ¼ 0 then (53) reduces to
a cosmological constant while (52) makes the Lagrangian
(2) identical to that of a massless Dirac spinor with
cosmological constant.

4. Potentials for transition from an early power law
inflation to a decelerated power law expansion era

Let us consider the potential

Vðψ̄ψÞ ¼ γðψ̄ψÞpþ1

6Kpþ1ðp − 1Þðϵψ̄ψ þ 1Þ ; ð58Þ

where γ is a suitable constant. It is easily seen that for such
choice of potential Eq. (37) becomes

d
dt

�
d
dt

ð2τ − ϵK ln τÞ
�
2

¼ ð6mK þ γτ−pÞ_τ: ð59Þ

From (59), by integrating we get�
2 −

ϵK
τ

�
2

_τ2 ¼ 6mKτ þ γ

−pþ 1
τ−pþ1 þ A; ð60Þ

A being an integration constant. Now, for large values of τ
Eq. (60) approximates the equation

2j_τj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
6mKτ

p
; ð61Þ

giving rise to τ ≈ t2 and then to isotropization. On the
contrary, for very small values of τ Eq. (60) can be
approximated by

jϵjK j_τj
τ
¼

ffiffiffiffiffiffiffiffiffiffiffi
γ

1 − p

r
τ
1−p
2 : ð62Þ

By choosing p such that 1−p
2

¼ − 1
3q, q ≥ 2 being an even

number, we have τ ≈ t3q, which represents power law
inflation at least for isotropic models. In the case of initial
anisotropy, the shear scalar

σ ¼ 1

2

�
2ðZ2 þW2 − ZWÞ
3ðτ0t3q þ ϵKÞ2

�
1=2

ð63Þ

ensures a quick isotropization, depending on q. It should be
noted that potentials of the form (58) would work equally
well also in the case of minimal coupling (ϵ ¼ 0).

5. Potentials for transition from a decelerated
expansion era to dark era

Let us consider the scale volume function of the form

τ ¼ τ0ðsinh ðλtÞÞ2 ð64Þ

for which the expansion is θ ¼ 2λ cothðλtÞ and the shear
scalar is

σ ¼ 1

2

�
2ðZ2 þW2 − ZWÞ
3½τ0sinh2ðλtÞ þ ϵK�2

�
1=2

; ð65Þ

i.e., a cosmology for which there is a transition between a
power law and a de Sitter expansion and the anisotropy
decreases, converging eventually to zero. In this case, we
have the identity

d2

dt2
ð2τ − ϵK ln τÞ ¼ 8λ2τ þ 4τ0λ

2 þ 2ϵKλ2τ0
τ

¼ 8λ2K
ψ̄ψ

þ 4τ0λ
2 þ 2ϵλ2τ0ψ̄ψ : ð66Þ

In view of (66), Eq. (33) assumes the form

8λ2K
ψ̄ψ

þ 4τ0λ
2 þ 2ϵλ2τ0ψ̄ψ ¼ 3mK

ð2− ϵψ̄ψÞ −
3Kðϵψ̄ψ þ 2Þ
ψ̄ψð2− ϵψ̄ψÞV

þ 3Kðϵψ̄ψ þ 1Þ
ð2− ϵψ̄ψÞ V 0: ð67Þ
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A solution of (67) is given by

Vðψ̄ψÞ ¼ −
2λ2τ0ψ̄ψ

3Kðϵψ̄ψ þ 1Þ ½ϵ
2ðψ̄ψÞ2 þ 4� þ mψ̄ψ

ϵψ̄ψ þ 1
−
8λ2

3
:

ð68Þ

6. Potentials for transition power law inflation—
decelerated power law expansion—dark era

Now, let us consider a suitable combination of the
potentials introduced above as

Vðψ̄ψÞ ¼ −
α

6ðϵψ̄ψ þ 1Þ −
βψ̄ψ

6Kðϵψ̄ψ þ 1Þ

þ γðψ̄ψÞpþ1

6Kpþ1ðp − 1Þðϵψ̄ψ þ 1Þ ; ð69Þ

α, β, and γ being constants. This particular choice of
potential gives rise to a dynamical equation for the scale
volume of the form

d
dt

�
d
dt

ð2τ − ϵK ln τÞ
�
2

¼ ð6mK þ 2ατ þ β þ γτ−pÞ_τ;

ð70Þ
which, integrated a first time, yields�
2 −

ϵK
τ

�
2

_τ2 ¼ ð6mK þ βÞτ þ ατ2 þ γ

−pþ 1
τ−pþ1 − A;

ð71Þ
A being an integration constant. Choosing p as above, for
very small values of τ we recover a power law inflation
phase; for large values of τ we recover exponential
expansion but, by carefully choosing the values of the
parameter α and β, we can have a phase where the term
ð6mK þ βÞτ is very dominant over the term ατ2 and thus
obtain a decelerated power law expansion.
As a side remark, it should be noted that in the presence

of potentials of the form (69), the Hamiltonian constraint
(48) reduces to a relation identical to (45). However, now
the integration constant A does not have to satisfy the
condition A ≥ 0. Thus in this case no restrictions are
imposed on the coupling constant ϵ.

7. A note on renormalizability in the case of
a nontrivial potential

So far, we have studied a list of potentials and we have
given the expression of the single potential that condenses
them all: altogether, they are capable of fitting within a
unique scheme all expansion eras, but there is still a
problem we must address about renormalizability. As is
well known, the presence of torsion renders the Dirac
equation nonrenormalizable; and as is also widely

recognized, nonminimal coupling does that too: one would
then reasonably expect that torsion in nonminimal coupling
would induce for the Dirac equation an even higher degree
of nonrenormalizability. But what happens is quite the
contrary: opposite to our intuition, the degree of non-
renormalizability is lowered. In fact, the resulting nonlinear
terms are even super-renormalizable [29]. This is a nice
result, and consequently it would be desirable that it be
maintained also in the presence of this potential. We split
the two cases. In the ultraviolet case, we have that

Vðψ̄ψ → ∞Þ → −
β

6ϵK
þ γðψ̄ψÞp
6ϵKpþ1ðp − 1Þ ; ð72Þ

so that the potential is reduced to one term that behaves as a
cosmological constant, which in high-energy physics is
irrelevant, plus a term that scales as ðψ̄ψÞp, which therefore
is renormalizable if and only if p ≤ 4

3
, and specifically in the

case of the equality the theory is renormalizable, while for
the inequality the theory is super-renormalizable. In the
infrared case, it is

Vðψ̄ψ → 0Þ → −
α

6
þ γðψ̄ψÞpþ1

6Kpþ1ðp − 1Þ ; ð73Þ

with a cosmological constant that now is relevant, and it
constitutes the reason why the dark energy behavior is
recovered, plus an additional term in ðψ̄ψÞpþ1, for which
we have to require p ≥ −1 if we want the results about dark
energy preserved. All in all, the constraint given by −1 ≤
p ≤ 4

3
is the one that keeps the theory both in infrared and in

ultraviolet regimes completely renormalizable. And nicely,
these are also the exact constraints we would need to get for
1−p
2

¼ − 1
3q the limiting condition q ≥ 2 needed to provide

inflation and also the limiting condition p ≥ −1 needed to
maintain the dark energy results. In this sense the potential
we have furnished, together with the constraining con-
ditions −1 ≤ p ≤ 4

3
, is such that it recovers the correct

dynamics for the expansion of the Universe precisely
because it is the potential for which the theory is renorma-
lizable. This is an interesting (and surprising) additional
result of the theory, of because at first the form of the
potential might have looked quite arbitrary, and some might
have thought it was chosen to yield the wanted cosmology,
but in reality that potential could not have been any
different, or else the theory would have been ill defined
in terms of particle physics. That the expected behavior of
the standard model of cosmology could be implied by
constraints on the standard model of particle physics was,
to our knowledge, not known before.

B. In the presence of dust fluid

In the case of the presence of dust fluid with density ρ,
the conservation laws for the fluid together with the relation
τ ¼ K

ψ̄ψ ensure the relation
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ρ ¼ ρ0
τ
¼ ρ0

K
ψ̄ψ : ð74Þ

In such a circumstance, setting

m̄
2
≔

ρ0
K

þm
2
; ð75Þ

it is easily seen that the dynamical equation for the scale
volume τ becomes

2
̈τ
τ
φþ 3φ̈þ 5

_τ

τ
_φ ¼ 3m̄K

τð2 − ϵK
τ Þ

−
3ðϵK þ 2τÞV
τð2 − ϵK

τ Þ

þ 3ðϵK þ τÞKV 0

τ2ð2 − ϵK
τ Þ

; ð76Þ

formally identical to Eq. (33), with m̄ replacing m. The
conclusion follows that, by substituting m by m̄, all results
and conclusions stated in Sec. III. A hold also in the
presence of dust.

C. In the presence of radiation fluid

We consider the presence of a radiation fluid with
equation of state p ¼ 1

3
ρ. The conservation laws for the

fluid provide the relation ρ ¼ ρ0

τ
4
3

. In this case, the dynamical
equation for τ is given by

2
̈τ
τ
φþ 3φ̈þ 5

_τ

τ
_φ ¼ 2ρ0

τ
4
3

þ 3mK
τð2 − ϵK

τ Þ
−
3ðϵK þ 2τÞV
τð2 − ϵK

τ Þ

þ 3ðϵK þ τÞKV 0

τ2ð2 − ϵK
τ Þ

: ð77Þ

Choosing a potential of the form V ¼ V̄ þ ~V, with V̄
satisfying the equation

2ρ0
τ
4
3

−
3ðϵK þ 2τÞV̄
τð2 − ϵK

τ Þ
þ 3ðϵK þ τÞKV̄ 0

τ2ð2 − ϵK
τ Þ

¼ 0; ð78Þ

amounting to

2ρ0
K

1
3

ðψ̄ψÞ13 − 3Kðϵψ̄ψ þ 2Þ
ψ̄ψð2 − ϵψ̄ψÞ V̄ þ 3Kðϵψ̄ψ þ 1Þ

ð2 − ϵψ̄ψÞ V̄ 0 ¼ 0;

ð79Þ

Eq. (77) reduces to

2
̈τ
τ
φþ 3φ̈þ 5

_τ

τ
_φ ¼ 3mK

τð2 − ϵK
τ Þ

−
3ðϵK þ 2τÞ ~V
τð2 − ϵK

τ Þ

þ 3ðϵK þ τÞK ~V 0

τ2ð2 − ϵK
τ Þ

; ð80Þ

which is identical to (33). Again, an analysis analogous to
that developed in Sec. III. A is then applicable also in this
case with identical results. A solution of (79) is given by

V̄ ¼ 2ρ0

�
ψ̄ψ

K

�4
3

: ð81Þ

1. The case V ¼ 0

In this case Eq. (77) simplifies to

2
̈τ
τ
φþ 3φ̈þ 5

_τ

τ
_φ ¼ 2ρ0

τ
4
3

þ 3mK
τð2 − ϵK

τ Þ
; ð82Þ

which can be handled as above, giving rise to the final
equation�

2 −
ϵK
τ

�
2

_τ2 ¼ 12ρ0τ
2
3 þ 12ϵKρ0

τ
1
3

þ 6mKτ þ A; ð83Þ

A being a suitable integration constant. For very small
values of τ and supposing ϵ > 0, Eq. (83) can be approxi-
mated to

ϵK
j_τj
τ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ϵKρ0

p
τ−

1
6; ð84Þ

yielding τ ≈ t6, which can account for an accelerated early
phase of the Universe (at least for isotropic models). As it is
clear from (84), we underline that this dynamics is strictly
due to the nonminimal coupling. This is a remarkable
difference with respect to the minimally coupled theory
where the presence of a fermionic self-interacting potential
is necessary to generate inflationary phases at early time
[30]. For very large values of τ, Eq. (83) can be approxi-
mated to

2j_τj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
6mKτ

p
; ð85Þ

yielding τ ≈ t2 and thus a decelerated expansion and
isotropization of the Universe.

2. Transition power law inflation—decelerated power
law expansion—dark era

Finally, taking the potential

Vðψ̄ψÞ ¼ −
α

6ðϵψ̄ψ þ 1Þ −
βψ̄ψ

6Kðϵψ̄ψ þ 1Þ ð86Þ

into account, suitably choosing the parameters α and β and
repeating the arguments as in Sec. III. A. 6, we recover
again a phase transition: power law inflation—decelerated
power law expansion—exponential expansion.

IV. CONCLUSIONS

In this paper we have considered cosmological models in
the framework of Einstein-Cartan-Sciama-Kibble gravity in
which a Dirac field is nonminimally coupled to gravity.
This nonminimal coupling has been investigated in a

STEFANO VIGNOLO, SANTE CARLONI, AND LUCA FABBRI PHYSICAL REVIEW D 91, 043528 (2015)

043528-10



previous paper [29] in connection with the renormaliz-
ability issue of Dirac equations. Here, we study some
cosmological scenarios arising from such a theory. In order
to account for possible initial anisotropies of the Universe,
we have considered Bianchi-I models, looking at spatially
flat Friedmann Robertson Walker (FRW) models as a
particular case. We have shown that the nonminimal
coupling can in general avoid the initial cosmological
singularity in the scale volume (scale factors), in agreement
with the results recently obtained in [37], where another
type of fermionic nonminimal coupling was studied.
However this does not necessarily imply that the model
is singularity free as the Hamiltonian constraint can induce
bounds on ϵ which could cause a singularity in the shear at
finite time. In this respect therefore, care should be taken in
stating that these models are not “singularity free.”
Using two different approaches, we have obtained

several examples of fermionic self-interaction potential
which generate a number of interesting cosmological
phases (power law inflation, decelerated power law expan-
sion, and dark era). In fact by an accurate fine-tuning, even
a transition power law inflation—decelerated power law
expansion—dark era is possible. Some of the potentials we
obtained have the remarkable properties to be a relatively
simple combination of power of ψ̄ψ and to be able to lead

dynamically to a dark era. The presence of cosmological
fluids does not substantially modify the results achieved in
the case when only a Dirac field is present. We have
analyzed specifically the cases of dust and radiation. In
this last case it became evident that the nonminimal
coupling alone is the origin of a power law inflation at
early time.
From our results it emerges that a fermionic self-

interaction potential is necessary in order to generate an
accelerated expansion phase of the Universe at late time,
when the contribution of the nonminimal coupling van-
ishes. Conversely and differently from what happens in the
minimally coupled theory, in the presence of nonminimal
coupling the fermionic potential can no longer be necessary
for inflation; indeed there exist cases where the nonminimal
coupling alone is sufficient to generate inflationary phases
at early time (small values of scale volume).
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