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We consider a Bohmian approach to the Wheeler-DeWitt quantization of the Friedmann-Lemaître-
Robertson-Walker model and investigate the question of whether or not there are singularities, in the sense
that the Universe reaches zero volume. We find that for generic wave functions (i.e., nonclassical wave
functions), there is a nonzero probability for a trajectory to be nonsingular. This should be contrasted to the
consistent histories approach for which it was recently shown by Craig and Singh that there is always a
singularity. This result illustrates that the question of singularities depends much on which version of
quantum theory one adopts. This was already pointed out by Pinto-Neto et al., albeit with a different
Bohmian approach. Our current Bohmian approach agrees with the consistent histories approach by Craig
and Singh for single-time histories, unlike the one studied earlier by Pinto-Neto et al. Although the
trajectories are usually different in the two Bohmian approaches, their qualitative behavior is the same for
generic wave functions.
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I. INTRODUCTION

Recently, some of us investigated the issue of singularities
in theWheeler-DeWitt approach to quantum cosmology and
showed that the answer depends strongly on the version of
quantum mechanics that one considers [1]. Two versions
were compared: the consistent (or decoherent) histories and
the Bohmian approach (also called the de Broglie–Bohm or
pilot-wave approach). Both approaches have a way of
introducing possible histories of the Universe. In the
Bohmian approach, there is an actual configuration whose
time evolution is determined by the wave function. The
possible paths of the configuration are the histories. On the
other hand, in the consistent histories approach the (coarse-
grained) histories are sequences of propositions at different
moments in time. (For example, a possible proposition could
be that the system occupies a certain region in space).
A simple quantum cosmological model was studied,

namely, the quantized Friedmann-Lemaître-Robertson-
Walker model, with a homogeneous scalar field. For the
consistent histories approach, Craig and Singh [2,3] showed
that the possible histories are always singular irrespective of
the given wave function. Either they start from a singularity
or they end in a singularity. On the other hand, according to
the Bohmian approach of Pinto-Neto et al. [1], there are
wave functions for which there are also histories that display
a bounce (which corresponds to a universe that contracts
until it reaches a minimum volume and then starts expand-
ing) and hence do not have a singularity.

However, while the dynamics of the Bohmian model is
very natural, there is no natural probability distribution on
the set of histories. As such, there is no immediate way of
making probabilistic statements, like about the probability
for a history to have a singularity for a particular wave
function. On the other hand, Craig and Singh [2,3] showed
that probabilistic statements can be made in the consistent
histories approach. This might seem puzzling since, at least
in the context of nonrelativistic systems, it is often claimed
that consistent histories and Bohmian mechanics yield the
same predictions for outcomes of measurements [4,5]. The
reason for this mismatch is that in the consistent histories
approach, the scalar field is treated (at least formally) as a
time variable, whereas it is not in the Bohmian approach.
The goal of this paper is to explore another Bohmian
dynamics which is also based on treating the scalar field as
a time variable. In this case, there is a natural probability
distribution for the scale factor which agrees with the one of
the consistent histories approach when single-time histories
are considered. Hence, this allows for a better comparison
between the Bohmian approach and the consistent histories
approach concerning the question of singularities. In
particular, given a wave function, we can now calculate
the probability for a trajectory to run into a singularity. We
will find that although the trajectories are different from the
ones in the model proposed in [1], they are often quali-
tatively the same. In particular, we will find that some wave
functions allow for trajectories that are never singular and
instead display a bounce. More precisely, we will see that
for a nonclassical wave function, there is always a nonzero
probability for a bounce (while trajectories corresponding
to a classical wave function always have a singularity). This
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should be contrasted with the fact that in the consistent
histories approach the probability for a singularity is always
one, for any wave function.
The outline of the paper is as follows. We start by

recalling the Wheeler-DeWitt quantization of the
Friedmann-Lemaître-Robertson-Walker model and the
Bohmian approach of [1]. In Sec. III, we will discuss
possible choices of Hilbert space that were considered in
the consistent histories approach. In Sec. IV, we will
develop and discuss the alternative Bohmian dynamics.
In Sec. V, we calculate the probability for a trajectory to be
singular. Finally, in Sec. VI, we consider the probabilities
for singularities in the consistent histories approach,
extending the work of Craig and Singh from two-time
histories to many-time histories, and compare these to those
predicted by the Bohmian approach.

II. WHEELER-DEWITT QUANTIZATION
AND BOHMIAN MECHANICS

A classical flat Friedmann-Lemaître-Robertson-Walker
space-time is described by a metric,

ds2 ¼ NðtÞ2dt2 − e2αðtÞγijdxidxj; ð1Þ
where N is the lapse function, a ¼ eα is the scale factor,
and γij is the flat spatial 3-metric. Considering the matter
content described by a free massless homogeneous scalar
fieldϕðtÞ, the Lagrangian1 of the system can bewritten as [6]

L ¼ Ne3α
�

_ϕ2

2N2
−

_α2

2N2

�
; ð2Þ

whereadotmeansderivativewithrespect tocoordinate time t.
The corresponding equations of motion lead to

_ϕ ¼ � N
e3α

c; _α ¼ N
e3α

c; ð3Þ

where c is an integration constant. N remains an arbitrary
function of time. This implies that the dynamics is time
reparametrization invariant. Different choices of N merely
correspond to different choices of the parametrization of the
paths in ðϕ; αÞ space. In the case c ¼ 0, theUniverse is static.
For c ≠ 0, we have

α ¼ �ϕþ c̄; ð4Þ
with c̄ another integration constant.
The Universe reaches the singularity (i.e., zero volume)

when a ¼ eα ¼ 0. For a nonstatic universe the singularity is
reached for either ϕ → −∞ or ϕ → ∞. So the Universe
either starts with a big bang or ends in a big crunch. In

terms of proper time τ, which is defined by dτ ¼ Ndt,
integration of (3) yields a ¼ eα ¼ ½3ðcτ þ ~cÞ�1=3, where ~c
is an integration constant, so that a ¼ 0 for τ ¼ −~c=c (and
there is a big bang if c > 0 and a big crunch if c < 0). This
means that the Universe reaches the singularity in finite
proper time.
Canonical quantization of this theory leads to the

Wheeler-DeWitt equation

∂2
ϕψ − ∂2

αψ ¼ 0: ð5Þ

In the corresponding Bohmian theory [1], there is an actual
scalar field ϕ and scale factor a ¼ eα, which satisfy

_ϕ ¼ N
e3α

∂ϕS; _α ¼ −
N
e3α

∂αS; ð6Þ

where ψ ¼ jψ jeiS. The function N is again the lapse
function, which is arbitrary, and, as in the classical case,
implies that the dynamics is time reparametrization
invariant.2

The Wheeler-DeWitt equation implies

ð∂ϕSÞ2 − ð∂αSÞ2 þQ ¼ 0; ð7Þ

∂ϕðjψ j2∂ϕSÞ − ∂αðjψ j2∂αSÞ ¼ 0; ð8Þ

where

Q ¼ −
1

jψ j ∂
2
ϕjψ j þ

1

jψ j ∂
2
αjψ j ð9Þ

is the quantum potential. If Q ¼ 0, then (7) implies that
ð∂ϕSÞ2 ¼ ð∂αSÞ2. In addition, ∂αS is then conserved along
a Bohmian trajectory. Hence, in this case, the Bohmian
motion is reduced to the classical motion given by (3).
Equation (8) is a continuity equation and implies that the

Bohmian dynamics preserves jψ j2. However, since jψ j2 is
not normalizable it can not be straightforwardly used to
make statistical predictions. In this paper, we will consider
an alternative Bohmian dynamics, which allows for imme-
diate statistical predictions and which allows for a direct
comparison with consistent histories approaches discussed
in [2,3,14].

1For simplicity, we have dropped the constant factor 4πG=3 in
front of _α2. This factor could be removed by a suitable rescaling
of the scalar field.

2Note that the time reparametrization invariance is a special
feature of Bohmian approaches to mini-superspace models [7,8].
For the usual formulation of Bohmian dynamics for the full
Wheeler-DeWitt theory of quantum gravity, a particular spacelike
foliation of space-time or, equivalently, a particular choice of
“initial” spacelike hypersurface and lapse function, needs to be
introduced. Different foliations (or lapse functions) yield different
Bohmian theories [9–12]. So, in this case, the dynamics is not
invariant under space-time diffeomorphisms. (Yet, while the
usual Bohmian formulation is not diffeomorphism invariant, this
may perhaps be achieved with alternative approaches. For a
discussion of analogous issues concerning special relativity in
Bohmian mechanics, see [13].)

F. T. FALCIANO, N. PINTO-NETO, AND W. STRUYVE PHYSICAL REVIEW D 91, 043524 (2015)

043524-2



III. WHEELER-DEWITT EQUATION
AND HILBERT SPACES

So far we have not introduced a Hilbert space for the
Wheeler-DeWitt equation (5). We will discuss two possible
choices of Hilbert space that have appeared in the literature
[2,3,14–16]. Both are motivated by considering ϕ (at least
formally) as a time variable. However, as we shall see, for
the purpose of assigning histories to the scale factor, either
in the consistent histories or in the Bohmian framework,
both choices can be considered equivalent, assuming a
suitable choice of “observable” for the scale factor in
each case.
First, consider a general solution to the Wheeler-DeWitt

equation (5), which is of the form

ψðα;ϕÞ ¼ ψLðαþ ϕÞ þ ψRðα − ϕÞ; ð10Þ

where the indices L and R denote respectively “left-
moving” and “right-moving”. This terminology stems from
the fact that if ϕ is regarded as time, then ψL, as a function
of α, moves to the “left” over time, without change in
shape, whereas ψR moves to the right (see Fig. 1). In terms
of the Fourier transform, we have

ψðα;ϕÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dkψLðkÞeikðαþϕÞ

þ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dkψRðkÞeikðα−ϕÞ: ð11Þ

The general solution can also be decomposed into a
positive and negative frequency part

ψ ¼ ψþ þ ψ−; ð12Þ

where

ψþ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

0

dkψLðkÞeikðαþϕÞ

þ 1ffiffiffiffiffiffi
2π

p
Z

0

−∞
dkψRðkÞeikðα−ϕÞ; ð13Þ

ψ− ¼ 1ffiffiffiffiffiffi
2π

p
Z

0

−∞
dkψLðkÞeikðαþϕÞ

þ 1ffiffiffiffiffiffi
2π

p
Z

∞

0

dkψRðkÞeikðα−ϕÞ; ð14Þ

which satisfy3

i∂ϕψ� ¼ Ĥ�ψ� ¼ ∓
ffiffiffiffiffiffiffiffiffi
−∂2

α

q
ψ�: ð15Þ

The left- and right-moving components of ψ� will be
denoted by ψL;� and ψR;�. If one uses the scalar field ϕ as a
time variable, Eq. (15) represents a Schrödinger-like
equation and given the initial wave function ψ0

� at time
ϕ0, the (formal) solution is given by

ψ�ðα;ϕÞ ¼ e�i
ffiffiffiffiffiffi
−∂2α

p
ðϕ−ϕ0Þψ0

�ðαÞ: ð16Þ

The first choice of Hilbert space is H1 ¼ L2ðR;C2Þ
[2,3,15]. We have that H1 ¼ H1;þ⊕H1;−, with H1;� ¼
L2ðR;CÞ the positive and negative frequency Hilbert
spaces. We write ΨðαÞ ¼ ðψþðαÞ;ψ−ðαÞÞ with Ψ ∈ H1

and ψ� ∈ H1;�.
4 The inner product is given by

hΨjΦi1 ¼
Z

dαðψ�þϕþ þ ψ�
−ϕ−Þ: ð17Þ

The dynamics for the positive and negative frequency states
is given by (15). Since the Hamiltonians Ĥ� are Hermitian
operators on H1;�, this dynamics preserves the inner
product.
The natural observable corresponding to the scale factor

is given by the projection-valued measure (PVM)

P̂1ðdαÞ ¼ P̂1;þðdαÞ⊕P̂1;−ðdαÞ; ð18Þ

where

P̂1;�ðdαÞ ¼ jαihαjdα; ð19Þ

with jᾱi ¼ δðα − ᾱÞ. (Since R P̂1;�ðdαÞ ¼ 1̂�, with 1̂� the
identity operator on H1;�, it immediately follows thatR
P̂1ðdαÞ ¼ 1̂, the identity operator on H1.)

FIG. 1. The wave functions ψR and ψL respectively move to the
right and to the left without change in shape.

3For a wave function ψðαÞ ¼ 1
2π

R
∞
−∞ dkψðkÞeikα, the

action of the Hamiltonian is defined as
ffiffiffiffiffiffiffiffiffi
−∂2

α

p
ψðαÞ ¼

1
2π

R
∞
−∞ dkjkjψðkÞeikα.
4Actually, in [2,3,15] only the positive frequency sector of H1

is considered, by appeal to superselection. However, the Bohmian
trajectories will depend on whether the wave function is a
superposition of both frequencies or not. (Following the termi-
nology of [17], one could say that frequency is weakly super-
selected, but not strongly.) Therefore, a general analysis should
include both frequency sectors.
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For a state Ψ ¼ ðψþ;ψ−Þ, the corresponding density for
α is

ρðα;ϕÞ ¼ jψþðα;ϕÞj2 þ jψ−ðα;ϕÞj2; ð20Þ

i.e., hΨjP̂1ðdαÞjΨi1 ¼ ρðα;ϕÞdα. (The Hilbert space is the
same as that of the Pauli theory for a nonrelativistic spin-
1=2 particle, with P̂1ðdαÞ being the analogue of the
position PVM in the Pauli theory.)
The second choice of Hilbert spaceH2 is again the direct

sum of positive and negative frequency Hilbert spaces, i.e.,
H2 ¼ H2;þ⊕H2;−, withH2;þ ¼ H2;− [14,16]. States inH2

are maps from R to C2 and states in H2;� are maps from R
to C. We write Ψ̄ðαÞ ¼ ðψ̄þðαÞ; ψ̄−ðαÞÞ with Ψ̄ ∈ H2 and
ψ̄� ∈ H2;� (the bar is used in order to distinguish the states
from those in H1). The inner product on H2;� is given by

hψ̄ jϕ̄i2;� ¼ 2

Z
dαψ̄�ð∓Ĥ�Þϕ̄ ¼ 2

Z
dαψ̄�

ffiffiffiffiffiffiffiffiffi
−∂2

α

q
ϕ̄;

ð21Þ

so that the inner product for H2 reads5

hΨ̄jΦ̄i2 ¼ 2

Z
dαðψ̄�þ

ffiffiffiffiffiffiffiffiffi
−∂2

α

q
ϕ̄þ þ ψ̄�

−

ffiffiffiffiffiffiffiffiffi
−∂2

α

q
ϕ̄−Þ: ð22Þ

The dynamics for the positive and negative frequency states
is given again by (15). Since the Hamiltonians Ĥ� are
Hermitian operators on H2;�, the dynamics also preserves
this inner product.
For the norm of a wave function Ψ̄, the integrand on the

right-hand side of (22) reads

2

�
ψ̄�þ

ffiffiffiffiffiffiffiffiffi
−∂2

α

q
ψ̄þ þ ψ̄�

−

ffiffiffiffiffiffiffiffiffi
−∂2

α

q
ψ̄−

�
: ð23Þ

One might be tempted to regard this quantity as the density
of α at a given time ϕ for the state Ψ̄. However, it is not
always positive definite, even if we restrict ourselves to
positive frequencies [18,19].
One possibility to obtain a positive density is by using

the Newton-Wigner states [14,20]

jᾱ; NWi ¼ 1

2π

Z
∞

−∞

dkffiffiffiffiffiffiffiffi
2jkjp eikðα−ᾱÞ: ð24Þ

These states are normalized according to hα;NWjᾱ;NWi2 ¼
δðα− ᾱÞ and form a basis of H2;�. The PVM then reads

P̂2ðdαÞ ¼ P̂2;þðdαÞ⊕P̂2;−ðdαÞ; ð25Þ

where now

P̂2;�ðdαÞ ¼ jα; NWihα; NWjdα: ð26Þ

Note that, as before,
R
P̂2ðdαÞ ¼ 1̂, beingunderstood that the

action of these operators on the states in the Hilbert spaceH2

is through the inner product defined in Eq. (22).
In the consistent histories approach, (coarse-grained)

histories for α can be introduced, by choosing a Hilbert
space, a PVM [or positive operator-valued measure
(POVM)] and a Hamiltonian. The results will be identical
when choosing either ðH1; P̂1; ĤÞ or ðH2; P̂2; ĤÞ, where
Ĥ is the Hamiltonian operator determined by (15) (the
former is considered in [2,3], albeit just for positive
frequencies, the latter in [14]).6 The reason is that
there is a unitary mapping H2 → H1, which maps P̂2 →
P̂1 and leaves the Hamiltonian invariant. This mapping is
defined by ψ̄�ðαÞ → ψ�ðαÞ ¼ hα; NWjψ̄�i2;� (or

jα; NWi → jαi in terms of basis states, or ψ̄�ðkÞ →
ψ�ðkÞ ¼

ffiffiffiffiffiffiffiffi
2jkjp

ψ̄�ðkÞ in terms of Fourier components).
This map is unitary since hΨjΦi1 ¼ hΨ̄jΦ̄i2 (which follows
from the fact that

R
P̂2ðdαÞ ¼ 1̂, the identity operator on

H2). Since it takes P̂2 → P̂1, we have

hΨ̄jP̂2ðdαÞjΨ̄i2 ¼ hΨjP̂1ðdαÞjΨi1 ¼ ρðα;ϕÞdα: ð27Þ
As such, we clearly get the same result for probabilities of
histories with ðH1; P̂1Þ or ðH2; P̂2Þ.
We can also develop a Bohmian approach given a Hilbert

space, a POVM and a Hamiltonian. For a given wave
function, the distribution corresponding to the PVM will be
the Bohmian equilibrium distribution. The dynamics can
then be defined in such a way that this distribution is
preserved [22,23]. In the next section, we will consider a
dynamics that preserves the density (20). So also in the
Bohmian approach, the two choices ðH1; P̂1; ĤÞ and
ðH2; P̂2; ĤÞ yield an identical dynamics for the scale factor.

IV. ALTERNATIVE BOHMIAN DYNAMICS

The density ρðα;ϕÞ, given in (20), is not preserved by the
Bohmian dynamics (6), i.e., if the density of α is given by
ρðα;ϕ0Þ at a certain time ϕ0, then the Bohmian dynamics in

5Perhaps a more familiar way of writing the inner products
(21) and (22) is in terms of solutions to the wave equations (15)
[14]. The inner product (21) then corresponds to the Klein-
Gordon inner product hψ̄ jϕ̄iKG ¼ −i

R
dαðψ̄�∂ϕϕ̄ − ϕ̄∂ϕψ̄

�Þ for
two positive frequency solutions to (15). The inner product (22)
then corresponds to hΨ̄jΦ̄i2 ¼ hψ̄þjϕ̄þiKG − hψ̄−jϕ̄−iKG. Note
that this inner product is positive definite, unlike the usual
definition for the inner product of two solutions to the Klein-
Gordon equation, which does not contain the relative minus sign
between the positive and negative frequency part.

6See [21] for similar considerations on equivalence of quantum
theories.
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general leads to a density different from ρðα;ϕÞ at other
times ϕ [1]. However, one can postulate a different
dynamics that preserves ρ [23–25]. According to this
dynamics, possible trajectories αðϕÞ satisfy

Z
αðϕÞ

−∞
dᾱρðᾱ;ϕÞ ¼

Z
αð0Þ

−∞
dᾱρðᾱ; 0Þ; ð28Þ

or, equivalently,

dα
dϕ

¼ v2ðα;ϕÞ ¼ −
1

ρðα;ϕÞ
Z

α

−∞
dᾱ∂ϕρðᾱ;ϕÞ: ð29Þ

Since ρ satisfies the continuity equation

∂ϕρþ ∂αðv2ρÞ ¼ 0; ð30Þ

it is preserved by the Bohmian dynamics.
Let us compare this dynamics to the one formulated in

Sec. II. First, consider a real wave function ψ , i.e.
Imψ ¼ 0.7 According to the dynamics of Sec. II, the
possible solutions are αðtÞ ¼ αð0Þ, ϕðtÞ ¼ ϕð0Þ, so that
the universe is static, with a constant scale factor and
constant scalar field. Since these solutions can not be
expressed as αðϕÞ they must be different from the trajec-
tories given by (28).
Now assume that the trajectories for the first Bohmian

dynamics can be expressed as αðϕÞ (at least locally). If
∂ϕS ≠ 0, then the vector field tangent to these trajectories is
given by

v1ðα;ϕÞ ¼ −
∂αS
∂ϕS

: ð31Þ

The velocity fields v1 and v2 are generically not the same.
Using (7) and (8), to evaluate the integral in (29), we have
that

v2 ¼ v1 −
1

ρ

Z
α

−∞
dᾱ

ρ

2ð∂ϕSÞ2
�
∂ϕQ

þ 2∂ϕS

ρ
f∂ϕðρ∂ϕSÞ − ∂αðρ∂αSÞg

�
: ð32Þ

So a wave function ψ will lead to the same trajectories only
if

∂ϕQþ 2∂ϕS

ρ
f∂ϕðρ∂ϕSÞ − ∂αðρ∂αSÞg ¼ 0: ð33Þ

Generically the above condition will not hold. For
example, consider a positive or negative frequency wave

function. Then the term in curly brackets is zero [because
the density ρ then equals jψ j2 and hence satisfies (8)] and
the condition is reduced to ∂ϕQ ¼ 0, which is generically
not satisfied.
On the other hand, if the wave function ψ is either

only left- or right-moving, i.e., ψ ¼ ψLðαþ ϕÞ or ψ ¼
ψRðα − ϕÞ, then the condition (33) is automatically sat-
isfied. In this case, the trajectories are the same for
both Bohmian approaches. In addition, the quantum
potential (9) is zero, so that the trajectories are classical.
(Conversely, if Q ¼ 0, then the wave function ψ is either
left- or right-moving and the trajectories are the same for
both Bohmian approaches.) As shown in Sec. II, the
classical trajectories are given by α ¼ �ϕþ c, with c a
constant. The positive and negative sign respectively
correspond to a right- and left-moving wave function.
The trajectories reach the singularity a ¼ eα ¼ 0 respec-
tively at ϕ → −∞ and ϕ → ∞. Note, however, that in our
second Bohmian approach, we have not introduced a
lapse function and hence we do not have a straightforward
definition of proper time. So, it is not immediately
clear whether the singularities are reached in finite proper
time or not. Nonetheless, since these trajectories are
classical, it seems natural to introduce a proper time that
agrees with that of the classical theory. As such, the
conclusion is again that the singularities are reached in
finite proper time.
This dynamics seems less natural than the one given

earlier. The reason is of course that ϕ plays the role of time
in this dynamics. However, there seems to be no reason to
give it that distinguished role. For example, we could
equally well have taken α to play the role of time. This
would have resulted in completely different paths. Of
course, this is only a simplified model. In a more serious
model, we expect that some of the matter fields will
represent time on an effective level. But this should follow
from analyzing a more fundamental Bohmian dynamics,
similar to (6) (see e.g. [9,26,27]), rather than be postulated a
priori.

V. SINGULARITIES AND BOHMIAN MECHANICS

In this section, we consider the possibility of singular-
ities (zero scale factor) for trajectories given by the
Bohmian dynamics of Sec. IV . In particular, using the
equilibrium distribution (20) as probability distribution, we
calculate the probability for a trajectory to have a singu-
larity, for a given wave function.
We start by considering the asymptotic behavior

of the Bohmian trajectories. First, suppose that the
wave function has only right-moving components,
i.e., Ψðα;ϕÞ ¼ ΨRðα − ϕÞ ¼ ðψR;þðα − ϕÞ;ψR;−ðα − ϕÞÞ.
Then the support of the wave function is localized on α < 0
for ϕ → −∞ and α > 0 for ϕ → þ∞. This follows from
the fact that

7Note that in Sec. II, we wrote the wave function as
ψ ¼ ψþ þ ψ−, whereas in Sec. III we wrote it as
Ψ ¼ ðψþ;ψ−Þ. These notations are of course equivalent.
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lim
ϕ→−∞

Z
0

−∞
dαρΨRðα;ϕÞ ¼ lim

ϕ→−∞

Z
0

−∞
dαðjψR;þðα − ϕÞj2 þ jψR;−ðα − ϕÞj2Þ

¼ lim
ϕ→−∞

Z
−ϕ

−∞
dνðjψR;þðνÞj2 þ jψR;−ðνÞj2Þ

¼ ∥ΨR∥21 ¼ 1 ð34Þ

and, similarly, for the other limit we have

lim
ϕ→þ∞

Z
∞

0

dαρΨRðα;ϕÞ ¼ lim
ϕ→þ∞

Z
∞

0

dαðjψR;þðα − ϕÞj2 þ jψR;−ðα − ϕÞj2Þ

¼ lim
ϕ→þ∞

Z
∞

−ϕ
dνðjψR;þðνÞj2 þ jψR;−ðνÞj2Þ

¼ ∥ΨR∥21 ¼ 1: ð35Þ
In the same manner, for a wave function that has only left-moving components, i.e., Ψðα;ϕÞ ¼ ΨLðαþ ϕÞ ¼
ðψL;þðαþ ϕÞ;ψL;−ðαþ ϕÞÞ, we have that

lim
ϕ→−∞

Z
∞

0

dαρΨLðα;ϕÞ ¼ lim
ϕ→−∞

Z
∞

0

dαðjψL;þðαþ ϕÞj2 þ jψL;−ðαþ ϕÞj2Þ

¼ lim
ϕ→−∞

Z
∞

ϕ
dνðjψL;þðνÞj2 þ jψL;−ðνÞj2Þ

¼ ∥ΨL∥21 ¼ 1 ð36Þ
and

lim
ϕ→þ∞

Z
0

−∞
dαρΨLðα;ϕÞ ¼ lim

ϕ→þ∞

Z
0

−∞
dαðjψL;þðαþ ϕÞj2 þ jψL;−ðαþ ϕÞj2Þ

¼ lim
ϕ→þ∞

Z
ϕ

−∞
dνðjψL;þðνÞj2 þ jψL;−ðνÞj2Þ

¼ ∥ΨL∥21 ¼ 1; ð37Þ

so that the support is now localized on α > 0 for ϕ → −∞
and α < 0 for ϕ → þ∞.
So in summary, we have that

ΨR has support on

�
α < 0 for ϕ → −∞
α > 0 for ϕ → ∞

;

ΨLhas support on

�
α > 0 for ϕ → −∞
α < 0 for ϕ → ∞

:

This analysis shows that for any wave function
Ψ ¼ ΨR þΨL, its left- and right-moving components will
become asymptotically nonoverlapping in α space. As a
consequence, asymptotically, Bohmian trajectories will be
determined either by ΨR or ΨL. Hence, asymptotically, the
trajectories are classical, given by α ¼ ϕþ c or α ¼ −ϕþ
c (see Fig. 2).8 (The same holds for the Bohmian dynamics

of Sec. II, in the case that the trajectories can be expressed
as αðϕÞ.)
This asymptotic classical behavior implies that there may

be four different types of trajectories, namely, trajectories
that represent a universe that

FIG. 2. Asymptotic classical behavior of the Bohmian trajec-
tories for an arbitrary wave function.

8There might also be a trajectory that does not display this
asymptotic behavior and acts as a bifurcation line between
trajectories with different possible asymptotic behavior.
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(1) starts with a big bang and keeps expanding forever
(2) keeps contracting until a big crunch
(3) starts with a big bang and ends in a big crunch
(4) undergoes a bounce, i.e., contracts until it reaches a

minimal size and then expands again.
Only trajectories of type 4 are nonsingular. As we shall see,
all four types of trajectories may occur. Though, for a given
wave function, there can not be trajectories of both types 1
and 2. This is an immediate consequence of the no-crossing
property of the Bohmian dynamics (which states that
trajectories cannot cross at equal times in configuration
space), since such trajectories would cross each other.
In the previous section, we showed that wave functions

that are purely left- or right-moving give rise to classical
trajectories, which are either of type 1 or type 2, and which
are singular. There are also wave functions for which there
are trajectories of type 3 or 4.
As a simple example, consider a wave function which is

even or odd in α. For such a wave function, the velocity
field v2 is odd in α. As such, for every possible trajectory
αðϕÞ, also−αðϕÞ is a possible trajectory. Because of the no-
crossing property, this implies that no trajectory will cross
the ϕ axis.9 In other words, trajectories that have positive
value of α at any given time ϕ, must have α > 0 at all times
and hence avoid the singularity. These trajectories corre-
spond to bouncing universes. They asymptotically start
with α ¼ −ϕþ ci, reach a minimal value αmin and then
asymptotically evolve according to α ¼ ϕþ cf for ϕ → ∞.
See Fig. 3 for an example. Conversely, trajectories that
asymptotically start with α ¼ ϕþ ~ci originate from a
singularity. Eventually they reach a maximal vale αmax
and then for ϕ → ∞ they move again to the singularity
according to the trajectory α ¼ −ϕþ ~cf. So these trajec-
tories are big bang–big crunch solutions.
Let us now analyze the general case and establish the

probability to have singular trajectories for a generic wave

function Ψ ¼ ΨR þΨL. Call PL;i and PR;i the probability
for the Universe to start respectively with α < 0 (from the
left) and α > 0 (from the right) in the limit ϕ → −∞.
Similarly, PL;f and PR;f denote the probabilities for the
Universe to end up, respectively, with α < 0 and α > 0 in
the limit ϕ → ∞. Since ΨR and ΨL do not overlap
asymptotically, we have

PL;i ¼ lim
ϕ→−∞

Z
0

−∞
dαρΨðα;ϕÞ ¼ ∥ΨR∥21;

PR;i ¼ lim
ϕ→−∞

Z
∞

0

dαρΨðα;ϕÞ ¼ ∥ΨL∥21;

PL;f ¼ lim
ϕ→∞

Z
0

−∞
dαρΨðα;ϕÞ ¼ ∥ΨL∥21;

PR;f ¼ lim
ϕ→∞

Z
∞

0

dαρΨðα;ϕÞ ¼ ∥ΨR∥21; ð38Þ

and

PL;i ¼ 1 − PL;f ¼ PR;f ¼ 1 − PR;i: ð39Þ
We can now find the probability for the Universe to start

or to end in a singularity for a given wave functionΨ. First,
assume that PR;i < PR;f. In this case, trajectories starting
from α > 0 as ϕ → −∞ can not end up moving to α < 0 as
ϕ → ∞. If a trajectory did do that, then all the trajectories
that started on the α < 0 would must also end up with
α < 0 as ϕ → ∞ because of the no-crossing property. This
implies that PL;f ≥ PL;i and hence, because of (39), that
PR;i ≥ PR;f, but this contradicts our assumption. Thus, in
the case that PR;i < PR;f, the probability for a bounce is
Pbounce ¼ PR;i. In addition, it implies that the probability
for trajectories to start from a singularity and to keep
expanding is Pexpanding ¼ PR;f − PR;i and the probability
for trajectories to start and end in a singularity (i.e.,
trajectories with a big bang and big crunch) is
Precollapsing ¼ PL;i − ðPR;f − PR;iÞ ¼ PR;i. Finally, the
probability for trajectories coming from α > 0 to keep
contracting towards the singularity is Pcontracting ¼ 0.
Similarly, for the case that PR;i > PR;f, one can show that
Pbounce ¼ PR;f, Pcontracting ¼ PL;f − PL;i, Precollapsing ¼ PL;i

and Pexpanding ¼ 0.
In summary, for an arbitrary state Ψ, we have

Pbounce¼Precollapsing¼minðPL;i;PL;fÞ¼minðPR;i;PR;fÞ;
Pexpanding¼maxðPL;i−PL;f;0Þ¼maxðPR;f−PR;i;0Þ;
Pcontracting¼maxðPL;f−PL;i;0Þ¼maxðPR;i−PR;f;0Þ:

ð40Þ

This implies that the probability Psingularity ¼ 1 − Pbounce to
run into a singularity satisfies

1

2
≤ Psingularity ≤ 1; ð41Þ

FIG. 3. Some trajectories for a wave function that is symmetric
under α → −α. The trajectories on the left represent universes
which start with a big bang and end in a big crunch. The
trajectories on the right represent universes that bounce.

9Their might also be the trajectory αðϕÞ ¼ 0 which acts as a
bifurcation line between trajectories with different asymptotic
behavior.
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i.e., the probability to run into a singularity is at least one
half. Maximum probability is reached when there are only
left- or right-moving components. In that case, every
trajectory either runs into a singularity or starts from a
singularity. On the other hand, for a superposition of left- or
right-moving components, there is always a nonzero
probability for a bounce. For a state Ψ, the maximum
probability that can ever be attained for a trajectory to be
nonsingular is 1=2, which happens when PL;i ¼ PL;f. This
happens for the examples of the symmetric and anti-
symmetric states discussed before.10

The trajectories for the first Bohmian approach, which
was presented in Sec. II, are different from those considered
here. However, the trajectories in the first approach that are
expressible as αðϕÞ have the same asymptotic behavior as
those considered here and hence are qualitatively the same.
Notwithstanding, in that case, there is no natural probability
distribution over trajectories which allows to calculate the
probability for trajectories to be singular.

VI. SINGULARITIES AND
CONSISTENT HISTORIES

According to the consistent histories approach the
probability for a singularity is always one. Coarse-grained
histories are either of type 1 or 2. This was shown for two-
time histories in [2,3], with the times being the infinite past
and future.
In [1], some of us argued that introducing a third

intermediate time would not lead to a family of consistent
histories, unless the state is classical (i.e. the state is a left-
or right-moving wave function). As such, for nonclassical
states, the consistent histories approach would be unable to
deal with the properties of the Universe at intermediate
times. This would of course undermine the consistent
histories approach for this cosmological model.
However, the argument in [1] is incomplete, mainly

because only one particular family of histories was con-
sidered. That is, the class of propositions (which are
represented by projection operators) was taken to be the
same as that in [2,3] for all three times. And for this class,
the histories are not consistent (unless the intermediate time
is chosen sufficiently early or late). However, this does not
exclude other possible families of histories for which
the histories are consistent. We will show that a suitable
class of propositions can be chosen such that consistent
histories can be considered for an arbitrary number of

intermediate times.11 With this choice, the probability for a
singularity is always one. This generalizes the results in
[2,3] to an arbitrary number of times.
To setup the consistent histories framework, we will use

the triplet ðH1; P̂1; ĤÞ. As explained in Sec. III,
ðH2; P̂2; ĤÞ would lead to the same results.
A coarse-grained history is a sequence of regions

Δ1;…;Δn in α-space at a sequence of times ϕ1;…;ϕn.
These are obtained by considering an exhaustive set of
regions fΔk

ik
g, ik ¼ 1; 2;…, of α space for each time ϕk,

k ¼ 1;…; n. For each of these regions, there is a projection
operator

P̂k
Δk

ik

¼
Z
Δk

ik

P̂1ðdαÞ ð42Þ

defined in terms of the PVM P̂1ðdαÞ. In terms of these
projection operators, the class operator for a history h ¼
ðΔ1

i1
;…;Δn

in
Þ is

Ĉh ¼ P̂n
Δn

in
Ûðϕn;ϕn−1ÞP̂n−1

Δn−1
in−1

Ûðϕn−1;ϕn−2Þ � � �
� � � P̂2

Δ2
i2

Ûðϕ2;ϕ1ÞP̂1
Δ1

i1

Ûðϕ1;ϕ0Þ; ð43Þ

where ϕ0 is some initial time and Ûðϕk;ϕk−1Þ ¼
e−iĤðϕk−ϕk−1Þ is the unitary time evolution from time ϕk−1
to ϕk.
In order to associate probabilities to a family of histories,

the decoherence condition

hĈh0ΨjĈhΨi1 ≈ 0; for h0 ≠ h; ð44Þ
needs to be satisfied. The probability for a history h is then
given by

Ph ¼ ∥ĈhΨ∥21: ð45Þ
Given a wave function Ψ (and given that ϕ1 is suffi-

ciently far in the past or ϕn sufficiently far in the future), we
can always find a collection of sets fΔk

ik
g such that the

decoherence condition is satisfied. The reason is that the
wave function is a superposition of a left-moving and a
right-moving packet. For each time ϕk, we can choose the
regions fΔk

ik
g such that supports of ΨL and ΨR are each

approximately within one of the Δk
ik
(but not necessarily

with the same ik). We then have that for each time ϕk,
P̂k
Δk

ik

ΨLðα;ϕkÞ ≈ 0 for all but one Δk
ik
, which we denote

Δk
L. For Δk

L, we have that P̂k
Δk

L
ΨLðα;ϕkÞ ≈ΨLðα;ϕkÞ. We

then also have that ĈhLΨLðα;ϕ0Þ ≈ΨLðα;ϕnÞ, with hL ¼
ðΔ1

L;…;Δn
LÞ. In other words, there is a coarse-grained

10The example that was used in [4,5] to compare the Bohmian
approach to the consistent histories approach in the context of
nonrelativistic quantum mechanics is actually completely analo-
gous to the case of a symmetric state in our cosmological model. In
[4,5], the wave function is composed out of two packets that cross
each other in time. The wave function is considered to be
completely symmetric so that Bohmian trajectories will never
cross the symmetry axis, while the histories in the consistent
histories approach correspond to either left- or right-moving paths.

11The analysis is completely analogous to that of [4,5]. The
reason is that, as already noted in footnote 10, we are considering
two packets that move across each other, just like in the example
of [4,5].
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history that approximately follows the track of the packet
ΨL. Similarly, there is a coarse-grained history hR that
approximately follows the track of the packet ΨR.
If one of the ϕk is such thatΨL andΨR are approximately

nonoverlapping at that time (for example by taking ϕ1

sufficiently early or ϕn sufficiently late, since we know that
the overlap vanishes in the limit ϕ → �∞.), then

ĈhLΨðα;ϕ0Þ ≈ΨLðα;ϕnÞ; ĈhRΨðα;ϕ0Þ ≈ΨRðα;ϕnÞ
ð46Þ

and

ĈhΨðα;ϕ0Þ ≈ 0; for all h ≠ hL; hR: ð47Þ
Since12

hĈhLΨjĈhRΨi ≈ 0; ð48Þ
we have that the decoherence condition (44) is satisfied.
The only two coarse-grained histories with nonzero prob-
ability are hL and hR, with probabilities

PhL ≈ ∥ΨL∥21; PhR ≈ ∥ΨR∥21: ð49Þ
In order to consider the question whether there is a

singularity, we should take ϕ1 → −∞ and ϕn → ∞. Then
(46)–(49) hold and, using a similar notation as in the
previous section, we have

Pbounce ¼ Precollapsing ≈ 0;

Pexpanding ¼ PhL ≈ ∥ΨL∥21;

Pcontracting ¼ PhR ≈ ∥ΨR∥21: ð50Þ
The probability for a bounce is negligibly small. It can

actually be made arbitrarily small by suitably choosing the
set fΔ1

i1
g. So according to the consistent histories approach,

one can always find a consistent family of histories where
the probability for a singularity is one.

VII. CONCLUSION

We have analyzed a Bohmian approach to the Wheeler-
DeWitt quantization of the Friedmann-Lemaître-
Robertson-Walker model. This Bohmian approach agrees
with the consistent histories approach concerning the
probabilities for single-time histories. However, it makes
different predictions for the probability of trajectories or
histories to have a singularity. In the consistent histories
approach, at least for the families considered in the present
paper, the probability for a history to have a singularity is
one. On the other hand, in the Bohmian approach, for
generic wave functions (i.e., nonclassical wave functions),
there is a nonzero probability for a trajectory to be non-
singular and have a bounce.
So, as was already emphasized in [1], where a different

Bohmian model was considered to make the comparison
with the consistent histories approach, the question of
whether or not the Wheeler-DeWitt quantization leads to
singularities depends very much on which version of
quantum theory one adopts.
In this paper, we have only analyzed the Wheeler-DeWitt

quantization. It would be interesting to also study the
Bohmian approach to loop quantization. For the consistent
histories approach to loop quantization, it was recently
shown that histories do not have singularities for generic
wave functions [28]. It is unclear whether this is also true
for a Bohmian approach.
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