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Constraints to the parameters of inflation models are often derived assuming some plausible range for the
number—e.g., Nk ¼ 46 to Nk ¼ 60—of e-folds of inflation that occurred between the time that our current
observable Universe exited the horizon and the end of inflation. However, that number is, for any specific
inflaton potential, related to an effective equation-of-state parameter wre and temperature Tre, for reheating.
Although the physics of reheating is highly uncertain, there is a finite range of reasonable values for wre.
Here we show that, by restricting wre to this range, more stringent constraints to inflation-model parameters
can be derived than those obtained from the usual procedure. To do so, we focus in this work in particular
on natural inflation and inflation with a Higgs-like potential and on power-law models as limiting cases of
those. As one example, we show that the lower limit to the tensor-to-scalar ratio r, derived from current
measurements of the scalar spectral index, is about 20%–25% higher (depending on the model) with this
procedure than with the usual approach.
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I. INTRODUCTION

Models of inflation that rely on the slow rolling of a
single scalar field have become the canonical family of
models for inflation [1–3]. These models are specified by a
potential-energy density VðϕÞ given as a function of the
inflaton field ϕ. As long as the slow-roll conditions, which
require that the slope and curvature of VðϕÞ are sufficiently
small, are satisfied, the Universe inflates. Inflation then
ends and is followed by a period of reheating (see Ref. [4]
for a review) that converts the energy density in the inflaton
to the thermal bath, at a reheating temperature Tre, that fills
the Universe at the beginning of the standard radiation-
dominated epoch.
In the canonical-reheating scenario [5], oscillations of

the inflaton around the minimum of its potential correspond
to massive inflaton particles, and these particles then decay
to the plasma of Standard Model particles that compose the
radiation-dominated Universe. However, the physics of
reheating may be far more complicated. For example,
different rates for different types of decays into different
Standard Model particles may yield different clocks for
starting the usual radiation-dominated epoch. There may be
a preheating stage [6], where there is a resonant production
of particles [7], which can enhance the inflaton decay via
scattering [8], or where inhomogeneous modes may be
excited [9]. Turbulence may also play a role [10]. It is
generally assumed that the reheat temperature is above the
electroweak transition (presumably so that weak-scale dark
matter can be produced). More conservatively, though, the
reheat temperature must be above an MeV, the temperature

of big bang nucleosynthesis, the earliest time for which we
have clear empirical relics. The theoretical uncertainty in
reheating is often taken into account, in the consideration of
experimental constraints to inflation models, by surmising
some reasonable range—e.g., Nk ¼ 46 to Nk ¼ 60—for
the number Nk of e-folds of inflation between the time that
our observable horizon exited the horizon during inflation
and the end of inflation. The upper limit to this range arises
if inflaton oscillations reheat the Universe instantaneously
to a grand unified theory-scale temperature, and the lower
limit arises if reheating is closer to the electroweak scale.
Here we consider an alternative approach where we

parametrize the cosmic fluid during reheating by an
effective equation-of-state parameter wre, that tells us
how its energy density (ρ ∝ a−3ð1þwreÞ) decays during this
epoch. In the canonical-reheating scenario wre ¼ 0, but
numerical studies of thermalization indicate a possibly
broader range of values 0≲ wre ≲ 0.25 [11]. By demanding
that the equation-of-state parameter falls within this range,
we infer slightly better constraints to inflation models than
in the usual approach wherein some overly permissive
range of Nk is assumed. The approach we use here was
discussed in Refs. [12–16] and applied post-Planck to
power-law potentials in Ref. [17]. In this paper we explore
this approach and show its general validity for single-field
inflation models. As an example, we apply it to study
constraints to the parameter space for natural inflation
[18,19] and Higgs-like inflation models [20]. We show in
particular that the lower limit to the tensor-to-scalar ratio r
inferred from current measurements of ns should be a bit
higher (by about 25%) if we restrict the value of wre to the
range suggested by reheating theory.
The structure of this paper is as follows. In Sec. II we

discuss how the effective reheating equation-of-state
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parameter imposes restrictions to the model. In Sec. III we
review the natural and Higgs-like inflaton potentials we
focus upon in this paper. Section IV presents the results,
and in Sec. V we make concluding remarks.

II. REHEATING

Figure 1 shows the comoving Hubble parameter aH
with time [21]. It grows forNk e-folds during inflation with a
time dependence that is fixed given a specific inflaton
potential VðϕÞ. It then decreases forNre e-folds of expansion
during which the energy in the inflaton potential is dissipated
into a radiation bath. The standard radiation-dominated era
then proceeds for NRD e-folds before the advent of matter
domination (and then dark-energy domination). It is clear
from the figure that the number of e-folds of expansion
between the time that a given scale exits the horizon and the
end of inflation is related to the number of e-folds since the
end of inflation until that scale reenters the horizon during
matter/radiation domination. The expansion history also
determines the evolution of the energy density, and a second
relation can be obtained from a given expansion history by
demanding the proper relation between the energy density
during inflation and the energy density today.
A consistent model for inflation must have an inflaton

potential VðϕÞ that at some point steepens so that the
slow-roll condition ϵ < 1 (where ϵ ¼ ðV 0=VÞ2=2M2

pl is the
slow-roll parameter and Mpl is the reduced Planck mass)
breaks down, at which point inflation ends. The number of
e-folds between the time that a comoving scale k exits the
horizon and the end of inflation is

Nk ¼
Z

ϕend

ϕk

Hdϕ
_ϕ

; ð1Þ

where ϕk is the inflaton value when k exits the horizon,
HðϕÞ is the Hubble parameter, and the dot denotes a

derivative with respect to time t. The Hubble parameter can
then be written in terms of the inflaton potential using the
Friedmann equation, H2 ≃ V=ð3M2

plÞ, and _ϕ is evaluated

through the slow-roll equation, 3H _ϕþ V 0ðϕÞ≃ 0, where
the prime denotes a derivative with respect to ϕ. The values
of the scalar spectral index ns and tensor-to-scalar ratio r
can be obtained as a function of Nk. Given the relation
between Nk and the number of postinflation e-folds of
expansion, the value of Nk relevant for cosmic microwave
background measurements is a fixed function of ns once a
given reheating history (specified by wre and the reheat
temperature Tre) is assumed. Below we will use the fairly
well-determined value of ns to infer, for a given reheat
scenario, the inflaton-potential parameters and from them
the allowable values of r.
Let us consider the pivot scale k ¼ 0.05 Mpc−1 at which

Planck determines ns [22]. The comoving Hubble scale
akHk ¼ k when this mode exited the horizon is related to
that, a0H0, of the present time by

k
a0H0

¼ ak
aend

aend
are

are
aeq

aeqHeq

a0H0

Hk

Heq
; ð2Þ

where quantities with subscript k are evaluated at horizon
exit. The other subscripts refer to the end of inflation (end),
reheating (re), radiation-matter equality (eq), and the
present time (0). Using eNk ¼ aend=ak, eNre ¼ are=aend,
and eNRD ¼ aeq=are, we obtain the constraint

ln
k

a0H0

¼−Nk−Nre−NRDþ ln
aeqHeq

a0H0

þ ln
Hk

Heq
ð3Þ

on the total expansion [23]. The Hubble parameter during
inflation is given by Hk ¼ πMplðrAsÞ1=2=

ffiffiffi
2

p
, with the

primordial scalar amplitude lnð1010AsÞ ¼ 3.089þ0.024
−0.027 from

Planck [22].
The energy density ρend at the end of inflation is related

to the energy density ρre at the end of reheating by the
equation-of-state parameter wre during reheating via

ρre
ρend

¼ exp½−3Nreð1þ wreÞ�; ð4Þ

where Nre is the number of e-folds of expansion during
reheating.
The energy density at the end of inflation is obtained

from

ρend ¼ ð1þ λÞVend; ð5Þ

where the ratio λ of kinetic to potential energies at the end
of inflation is

FIG. 1 (color online). Comoving Hubble parameter aH versus
scale factor log a. A comoving modewith wavenumber k exits the
horizon during inflation when k ¼ aH and then reenters during
matter domination. Different equations of state for reheating are
plotted: canonical reheating (wre ¼ 0Þ in blue (solid); wre ¼ −1=3
in red (long dash); wre ¼ 1=3 in brown (short dash); and the
limiting case wre ¼ 1 in green (dotted).
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λ ¼ 1

3=ϵ − 1
: ð6Þ

When inflation ends (ϵ ≈ 1), we have λ ≈ 1=2.
We next calculate the energy density at reheating.

Assuming conservation of entropy,

gs;reT3
re ¼

�
a0
are

�
3
�
2T3

0 þ
21

4
T3
ν;0

�
; ð7Þ

where gs;re is the effective number of relativistic degrees of
freedom at reheating and Tν;0 ¼ ð4=11Þ1=3T0 is the current
neutrino temperature. Thus,

Tre

T0

¼
�

43

11gs;re

�
1=3 a0

aeq

aeq
are

: ð8Þ

Since the energy density at reheating is ρre ¼ðπ2gre=30ÞT4
re,

we plug Eq. (8) into Eq. (4) to get the numberNre of e-folds
during reheating as a function of the numberNRD of e-folds
during radiation domination. Plugging that into Eq. (3), we
obtain finally

Nre ¼
4

1 − 3wre

�
−Nk − log

�
k

a0T0

�
−
1

4
log

�
30

greπ2

�

−
1

3
log

�
11gs;re
43

�
−
1

4
logðVendÞ

−
1

4
logð1þ λÞ þ 1

2
log

�
π2rAs

2

��
; ð9Þ

where gre and gs;re can be both taken to be ≈100 and we will
use k ¼ 0.05 Mpc−1 throughout the paper, albeit keeping
the subindex k in Nk to avoid confusion. Then using
Eq. (4), the reheating temperature is

Tre ¼ exp

�
−
3

4
ð1þ wreÞNre

��
3

10π2

�
1=4

ð1þ λÞ1=4V1=4
end :

ð10Þ

III. INFLATON POTENTIALS

We now discuss the two classes of inflation models that
we consider in this work.

A. Natural inflation

This model, first proposed in Ref. [18], appears when
a global Uð1Þ symmetry is spontaneously broken. The
inflaton is then the pseudo-Nambu–Goldstone boson.
The shift symmetry protects the flatness of the potential.
The inflaton potentials we consider are

VðϕÞ ¼ 2Λ4

2m
ð1þ cosϕ=fÞm; ð11Þ

where the energy density Λ4 and decay constant f are
the parameters of the model. We generalize the usual

natural-inflation potential, which has m ¼ 1, to other
values of m to broaden slightly the class of models we
consider. The slow-roll parameters for this model are

ϵ ¼ m2
e−x

2f2ð1 − e−xÞ þm
; where x ¼ mNk

f2
; ð12Þ

and

η ¼ ηV − ϵ ¼ −m
2f2

2f2ð1 −me−xÞ þm
2f2ð1 − e−xÞ þm

: ð13Þ

These lead to the observables r and ns − 1, which are

r ¼ 8m2
e−x

2f2ð1 − e−xÞ þm
ð14Þ

and

ns − 1 ¼ −
m
f2

−
2mðmþ 1Þe−x

2f2ð1 − e−xÞ þm
: ð15Þ

Wewill also need to calculate the numberNk of e-folds that
happen after a mode with wave number k exits the horizon,
which is found to be

Nk ¼
f2

m
log

�
1

1þm=ð2f2Þ
ðns − 1Þf2 −m2

ðns − 1Þf2 þm

�
: ð16Þ

Even though the model has two parameters (Λ and f),
only one of them is free, since they are related through the
amplitude of the scalar power spectrum. From the value of
the potential Vk at horizon exit, we find Λ to be

Λ ¼
�
3

4
π2rAs

�
2f2 þ n

2f2ð1 − e−mNk=f2Þ þm

�
m
�

1=4
: ð17Þ

In the f → ∞ limit, these potentials behave like pure
power laws; i.e.,

VðϕÞ ∼M4−2mϕ2m when f → ∞; ð18Þ

where M is an energy scale that plays the role of Λ and is
also fixed.

B. Higgs-like inflation

The potentials we consider for Higgs-like inflation are

VðϕÞ ¼ Λ4½1 − ðϕ=μÞ2�n; ð19Þ

with slow-roll parameters,

ϵ ¼ 2n2y
μ2ð1 − yÞ2 ; ð20Þ
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and

η ¼ ηV − ϵ ¼ 2n½−1þ ðn − 1Þy�
μ2ð1 − yÞ2 : ð21Þ

The variable y is defined as

yðμÞ≡ϕ2
0=μ

2¼−W
�
−gðμÞexp

�
−gðμÞ−8Nk

μ2

��
; ð22Þ

where WðzÞ is the Lambert W function and

gðμÞ≡ðϕend=μÞ2¼1þn2

μ2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4þ2μ2n2

p
μ2

<1: ð23Þ

Again, we generalize the usual case (n ¼ 2) to explore a
broader class of models. In the general case, the tensor-to-
scalar ratio and scalar spectral index are

r ¼ 16n2y
μ2ð1 − yÞ2 ; ð24Þ

and

ns − 1 ¼ −
4n
f2

½1þ ðnþ 1Þy�
ð1 − yÞ2 : ð25Þ

We will again need the number,

Nk ¼
μ2

4n

�
− log

�
y
g

�
þ y − g

�
; ð26Þ

of e-folds of inflation, and once again we can express the
amplitude Λ of the potential in terms of the scalar power-
spectrum amplitude As and the decay constant μ,

Λ ¼
�
3

2
π2rAsð1 − yÞ−n

�
1=4

: ð27Þ

This model also behaves as a power law in the μ → ∞
limit, the exponent being in this case n,

VðϕÞ ∼M4−nϕn when μ → ∞: ð28Þ

FIG. 2 (color online). In the lower panels, we plot the reheat temperature Tre for natural inflation as determined by matching the
number of e-folds during and after inflation. Results are shown for decay constants f ¼ 5Mpl, 7Mpl, and ∞, where the latter
corresponds to the m2ϕ2 limit. Four different effective equation-of-state parameters wre for reheating are considered in each case: from
left to right in their intersection with the bottom of the plots, they are wre ¼ −1=3 (red), wre ¼ 0 (blue), wre ¼ 0.25 (black), and wre ¼ 1
(green). The values wre ¼ −1=3 and wre ¼ 1 bracket the very most conservative allowed range of values for wre, while wre ¼ 0 and
wre ¼ 0.25 bracket the range suggested by the literature on reheating. All curves intersect at the point where reheating occurs
instantaneously, and the wre ¼ 1=3 curve would be vertical. Values of the termination condition in the range 0.1≲ ϵ≲ 1 give rise to
variations that are narrower than the widths of the curves. The light purple regions are below the electroweak scale TEW ∼ 100 GeV.
The dark purple regions, below 10 MeV, would ruin the predictions of big bang nucleosynthesis. Temperatures above the intersection
point are unphysical as they correspond to Nre < 0. The gray shaded triangles indicate the parameter space allowed if 0 < wre < 0.25.
The light yellow band indicates the 1σ range in ns − 1 ¼ −0.0397� 0.0073 from Planck [22], and the dark yellow band assumes a
projected uncertainty of 10−3 [3] for ns − 1 as expected from future experiments (assuming the central value remains unchanged).
The top panels plot the numberNk of e-folds of inflation as a function of ns. The vertical dashed red lines demarcate the allowed range of
ns, inferred from the lower panel, and the horizontal dashed red lines in the upper panels indicate the allowed range of values of Nk.
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IV. RESULTS

The results of the calculation are shown for usual natural
inflation in Fig. 2 and for usual Higgs-like inflation in
Fig. 3. The reheat temperature Tre determined by matching
the number of e-folds during and after inflation is shown in
the lower panels of each figure. We show results for four
different reheating effective equation-of-state parameters
wre. The value wre ¼ −1=3 indicates the smallest possible
value of wre required for inflation to end. The value wre ¼ 1

provides the most conservative upper limit which comes
simply from causality. The values wre ¼ 0 and wre ¼ 0.25
bracket the range of values of wre in detailed models of
reheating. The curves for all values of wre intersect at the
point where reheating is instantaneous, and the wre ¼ 1=3
curve would be vertical and intersect this point. The gray
shaded triangles indicate the region allowed if the reheating
equation-of-state parameter lies in the range 0 < wre < 0.25.
The top panels of Figs. 2 and 3 plot the number Nk of

e-folds during inflation for each model and value of f (for

FIG. 3 (color online). Same as Fig. 2 but for Higgs-like inflation with parameter values μ ¼ 14Mpl, 20Mpl, and ∞.
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FIG. 4 (color online). The ns-r parameter space for (left) natural inflation and (right) Higgs-like inflation. Curves that indicate
instantaneous reheating (red) and reheating at the electroweak scale (black) are shown as well as curves that showNk ¼ 46 andNk ¼ 60
e-folds of reheating (purple). Diagonal blue lines indicate different values of the decay constants f or μ, where the orange line is the
power-law limit. The horizontal dotted lines indicate the smallest tensor-to-scalar ratio r consistent with the 1σ range of values of the
scalar spectral index ns, obtained by restricting the reheating equation-of-state parameter to physically plausible values, which are higher
by about 25% than those obtained by simply taking a range Nk ¼ 46 − 60 for the number of e-folds of reheating.

EQUATION-OF-STATE PARAMETER FOR REHEATING PHYSICAL REVIEW D 91, 043521 (2015)

043521-5



natural inflation) or μ (for Higgs-like inflation). It can be
seen, in particular, that the limit to the allowable range of
values of ns imposed by reheating considerations thus
restricts the allowed range of values of Nk. The range of
values of Nk is generally smaller than the range Nk ≃ 46 −
60 often assumed, being replaced (at our pivot scale
k ¼ 0.05 Mpc−1) by Nk ≃ 47 − 57 for the large f; μ limit,
and slightly smaller values for lower f; μ.
It is also important to note that the tightness of the

constraint to the ns parameter space for fixed f (for natural
inflation) or μ (for Higgs-like inflation) is determined not
by the precision of current measurements but by the self-
consistency of the inflationary-plus-reheating model. For
the m2ϕ2 case, the new range of possible ns for inflation is
(0.958,0.965).
We also show results in Fig. 4 as plots of the r-ns

parameter space for natural inflation and for Higgs-like
inflation. It is seen here that, even after considering the
complete range of values of f (for natural inflation) or μ
(for Higgs-like inflation), the parameter space allowed by
restricting the reheating equation-of-state parameter to
physically plausible values is more constrained than that
assumed simply taking a range Nk ¼ 46 − 60 for the
number of e-folds of inflation. In particular, we see that
the smallest tensor-to-scalar ratio r allowed by the current
1σ range of values for ns is a bit larger with our approach
than that obtained with the less restrictive analysis.
The black (dashed) curves correspond to the maximum
reheating possible with equation-of-state parameter
wre ¼ 0. Increasing the value of wre would only shift the
black curves to the right.

V. CONCLUSIONS

We have explored a new technique to find constraints
to inflationary models by studying their reheating period.
Instead of focusing on the physics of the reheating phase
itself, or assuming an overly ample parameter space by
constraining the number of e-folds of inflation, we char-
acterize the whole reheating era by a single equation-of-
state parameter wre, that we constrain to have physically
reasonable values. This leads to more precise constraints to
the inflationary observables.
We have applied this formalism to two families of

potentials (natural inflation and Higgs-like inflation),
finding better lower bounds for the tensor-to-scalar ratio
r, as can be seen in Table I (where the usual m ¼ 1, n ¼ 2
potentials are in bold face). It is important to notice that
these results are robust to changes in the equation-of-state

parameter as long as it is kept under wre ¼ 1=3, as
suggested by the literature on reheating.
The results derived for the potentials studied also apply,

taking the limiting cases f or μ → ∞, to power-law models,
and, as we show in Fig. 4, the allowed region for the power-
law case (green line) is more constrained using our method
than with the usual analysis in which the range for the
numbers of e-folds is fixed. For comparison, the right-hand
plots in Figs. 2 and 3 correspond to the plot made in
Ref. [17] for them2ϕ2 potential, showing in the upper panel
Nk instead of Nre.
The most interesting feature of this technique is its

general validity. It was considered for power-law potentials
in Refs. [17,24], and we have generalized here to natural
and Higgs-like potentials. Still, the approach can be
similarly applied to any single-field inflation model and
will generically lead to slightly more restrictive bounds to
the inflationary parameter space, including the range of
values of the tensor-to-scalar ratio r. As a result, upper
bounds to r, for example, will generally be slightly more
restrictive to inflationary models than they would other-
wise be.
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TABLE I. Minimum value of the tensor-to-scalar ratio r at the
pivot scale k ¼ 0.05 Mpc−1 allowed by reheating considerations
and the Planck 1σ range of values of the scalar spectral index ns
for each of the models studied. In the central column, we show
the minimum r from the usual analysis in which a range of Nk is
allowed, and in the right column, we show the new minimum
obtained by constraining the reheating equation-of-state.

Model rmin old rmin new

Higgs n ¼ 1 0.020 0.025
Higgs n ¼ 2 0.024 0.030
Higgs n ¼ 3 0.035 0.050
Higgs n ¼ 4 0.055 0.070
Natural m ¼ 1 0.033 0.040
Natural m ¼ 3=2 0.055 0.070
Natural m ¼ 2 0.10 not allowed
m2ϕ2 0.13 0.14
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