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Systems of interacting networks of strings such as cosmic strings or quantum vortices can be
approximated in a certain regime as an anisotropic fluid with an equation of state depending on a
conserved flux. The equations for ideal magnetohydrodynamics are shown to be another example of a fluid
of this type. Previous work on these fluids is now extended to include dissipative effects. The new
dissipative terms are discussed in terms of both standard resistive magnetohydrodynamics and small-scale
structure formation in networks of cosmic strings. The requirement of frame invariance is shown to restrict
the form of higher order corrections to heat flow in the anisotropic direction.
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I. INTRODUCTION

Networks of one-dimensional strings appear in a variety
of contexts. In particular, networks of quantized vortex
lines appear in turbulent quantum fluids, and networks of
cosmic strings may have formed in a symmetry breaking
phase transition in the early Universe. These networks have
been extensively studied using numerical models which
track the motion of individual strings in the network, as in
for instance the vortex-filament model of Schwartz [1] or
the Smith-Vilenkin model for cosmic strings [2]. For many
purposes it may be useful to instead consider a “macro-
scopic” perspective in which individual strings are coarse
grained in a fluid approximation. In the context of quantum
turbulence, such an approximation underlies the Hall-
Vinen-Bekharevich-Khalatnikhov equations [3] which
describe the net vorticity of the network as a continuous
field interacting with the usual two-fluid model of a
superfluid. On the other hand, in the cosmic string context
the dynamics of the strings themselves are often considered
independently from any interaction with external fields.
Coarse-graining such a network leads to an independent
“string fluid” which may exhibit interesting properties
distinct from any additional interactions with other fluids.
The individual strings in the network carry a conserved

flux. For instance the vortex lines in a superfluid carry
quantized angular momentum and the topological defects
in the Abelian-Higgs model carry magnetic flux. In the
coarse-grained fluid the conservation of flux is manifested
as the conservation of an antisymmetric tensor F:

∇μFμν ¼ 0: ð1Þ

In a fluid of strings carrying magnetic flux, F is just the
dual of the electromagnetic field tensor, and the vanishing
of its divergence is just a statement of the homogeneous
Maxwell equations. But in fact for any fluid of directed

strings there is a conservation law for a tensor F which
describes the topological flux of the strings [4]. It is
tempting at this point to point out the similarity to
magnetohydrodynamics (MHD) which is another example
of a fluid with a conserved magnetic flux. A connection
between Nambu-Goto strings and MHD has in fact been
previously noticed by Olesen [5]. In Sec. II B we show
through quite different methods that ideal MHD is a
particular case of what we call a “perfect string fluid.”
Formally, a coarse-grained network of strings has many
similarities with a plasma, but there are differences in the
equation of state of the fluid at equilibrium.
Some readers may here question the idea of an equilib-

rium for cosmic string networks at all. Through reconnec-
tion events the small-scale structure on long strings tends to
lead to the production of small loops. It was realized early
on from numerical simulations that the reverse process
whereby small loops attach to long strings is much less
effective for densities below a critical density [2,6]. Given a
minimum energy cutoff beyond which small loops are
restricted from fragmenting, most of the energy will flow
into loops of energy comparable to the cutoff size. So any
equilibrium properties will be cutoff dependent, and thus
artificial in a sense. Of course the idea of separating the
string dynamics from all other interactions is artificial as
well, and loops near the cutoff may leave the system
through various decay channels.
But what the same numerical simulations do show is

that very different initial conditions will lead to the same
cutoff-dependent equilibrium state, which depends on the
energy density as well any net flux of the strings through
the system space. And the statistics of the equilibrium
states in the numerical simulations agree with analytical
calculations by Mitchel and Turok [7] which involve
notions of temperature and entropy for the string networks.
The temperature of the equilibrium states remains near the
Hagedorn temperature for a very wide range of densities
[8]. This may suggest that the decay of small loops and
wiggles can be accounted for as the flow of heat from a*schub071@d.umn.edu
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hot string fluid out of thermal equilibrium with the
environment.
In any case, in this paper we restrict our investigation

to the dynamics of an isolated string fluid, and take a
macroscopic perspective in which an equation of state is
given without reference to an underlying string network.
Indeed the example of magnetohydrodynamics shows that
what we here call a string fluid may have nothing to do with
strings at all on a more microscopic level. The requirements
of thermodynamics are then shown to lead to dissipative
terms in the fluid equations which correspond to the
formation of small-scale structure in an underlying string
network.
The paper is organized as follows. In Sec. II the concept

of a perfect string fluid is reviewed. A full treatment
emphasizing the variational principle satisfied is found in
[9], and the concept has also been studied in the context of
blackfolds [10]. The dissipative equations will depend on
the equation of state in equilibrium, so two particular cases
of a perfect string fluid are discussed. In Sec. II A an
idealized equation of state for a network of Nambu-Goto
strings is reviewed. In Sec. II B it is shown that ideal MHD
is another example of a perfect string fluid.
Section III A begins the discussion of dissipative effects

by discussing the ambiguities in choosing the flow velocity
and field line direction for a general fluid. Given such a
choice, the conserved tensors are broken up into equilib-
rium and dissipative parts. In Sec. III B the entropy current
is determined, and the positivity of entropy production is
used to find the explicit form of the dissipative terms.
The dissipative parts of the energy-momentum tensor

are much the same as for an ordinary fluid, but the
dissipative parts of the conserved flux tensor are discussed
in Sec. III C. Entropy production due to the curvature of the
field lines is discussed in terms of plausible effects in an
underlying network of cosmic strings. The nonrelativistic
limit of the theory is taken and compared to ordinary
resistive magnetohydrodynamics. The dissipative correc-
tion to the electric field can be seen as resulting from Ohm’s
law, but there is an additional term coupling the electric
field to temperature gradients.
In Sec. III D necessary conditions for the fluid to be at

equilibrium are derived. As for ordinary fluids, there is a
timelike Killing vector proportional to the velocity. In the
string fluid there is also an irrotational vector field propor-
tional to the field line direction. In Sec. III E an extension to
a higher order dissipative theory similar to the Israel-
Stewart model [11] is discussed. The equation describing
heat flow along a string is corrected to be hyperbolic, and
the speed of second sound is calculated for the idealized
cosmic string model discussed in Sec. II A.

II. PERFECT STRING FLUIDS

An ordinary perfect fluid involves one or more con-
served currents nμa (indexed by a) which represent extensive

quantities such as electric charge, particle number, or
entropy. The currents flow in the direction of the timelike
velocity u of the fluid,

nμa ¼ nauμ; ð2Þ

and we will here use a ðþ;−;−;−Þ signature.
The thermodynamics of the fluid is specified by giving

the energy density ρ as a function of the magnitudes na.
Then the chemical potentials ma are defined as

ma ≡ ∂ρ
∂na ; ð3Þ

and the pressure p is defined essentially as a Legendre
transform,

ρ ¼ −pþmana ð4Þ

dp ¼ nadma: ð5Þ

Given these quantities, the energy-momentum tensor is
just

Tμν ¼ ðρþ pÞuμuν − pgμν; ð6Þ

and the fluid equations are equivalent to the conservation
laws

∇μTμν ¼ ∇μn
μ
a ¼ 0: ð7Þ

Note that if one pair of density and chemical potential is
singled out as the entropy density s and temperature T, the
remaining conservation laws (7) and the expression for
the derivatives of the pressure (5) can be used to prove the
conservation of s,

uμ∇νTμν ¼ ∇νðmana þ TsÞuν − uν∇νp

¼ T∇νsuν: ð8Þ

Similar expressions will be useful in extending to the
dissipative case.
A string fluid also involves the conservation of at least

one antisymmetric flux tensor F,

∇μFμν ¼ 0: ð9Þ

In the case of a perfect string fluid, F is a simple
bivector that can be written as the alternating product of
two vectors. Further, the fluid velocity u is in the linear
space spanned by these vectors. The velocity u can be used
to define a normalized spacelike direction w and a positive
magnitude φ,

φwμ ≡ Fμνuν ð10Þ
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uμuμ ¼ −wμwμ ¼ 1 ð11Þ

uμwμ ¼ 0: ð12Þ

Together, u and w determine the directional part Σ of F,

Σμν ≡ wμuν − uμwν ð13Þ

Fμν ¼ φΣμν: ð14Þ

It will also be useful to define the projector h onto the space
spanned by u and w, and its orthogonal complement ⊥,

hμν ¼ ΣμρΣρν

¼ uμuν − wμwν ð15Þ

⊥μ
ν ¼ ~Σμρ ~Σνρ

¼ δμν − uμuν þ wμwν; ð16Þ

where we are using tildes to denote the Hodge dual,

~Σμν ≡ 1

2
ϵμνρσΣρσ: ð17Þ

The dual ~F of F itself is a two-form that can be integrated to
give the net flux carried by the strings across a surface. The
magnitude φ is thus a measure of this flux and it is taken to
be a thermodynamic variable on the same footing as the
densities na. The conjugate chemical potential to φ is
denoted by μ,

μ≡ ∂ρ
∂φ : ð18Þ

And the pressure for a string fluid now involves μφ,

ρ ¼ −pþmana þ μφ: ð19Þ

In an earlier paper [9] it was shown that a quite general
variational principle leads to an energy-momentum tensor
of the form

Tμν ¼ ðρþ pÞuμuν − ðτ þ pÞwμwν − pgμν; ð20Þ

where τ is a thermodynamic potential related to the tension
of the strings,

τ≡ −pþ μφ: ð21Þ

The equations of motion of the perfect string fluid are then
equivalent to the conservation of Tμν and all currents and
fluxes (7) (1).

A. Wiggly string fluid

We now review some particular examples of string
fluids. Directly coarse-graining a network of Nambu-
Goto strings leads to T and F tensors expressed in terms
of correlations between the (nonunit vector) string velocity
U and the tangent vector to the string W [4,12],

Tμν ¼ hUμUν −WμWνi
Fμν ¼ hWμUν −UμWνi: ð22Þ

The vectorsU andW are properties of the individual strings
in the network and the brackets denote an integration over a
coarse-graining volume. There are sixteen independent
components of these tensors, and so the conservation of
the T and F tensors alone does not fully specify the system.
The extra assumption needed was suggested by

Vanchurin’s kinetic theory of a gas of string segments
[13]. This model suggested that the strings would equi-
libriate to a state in which there are no correlations between
the statistics of right and left movers. So it was taken as an
additional principle that the string fluid should locally be in
an equilibrium of this form. This allowed for the correla-
tions in (22) to be factored into the average string velocity
field Ū and the average tangent vector field W̄.
At this point we note that for a general string fluid the

conservation ∇μFμν ¼ 0 together with the condition that F
be a simple bivector implies that spacetime can be foliated
by two-dimensional manifolds that are everywhere tangent
to the linear subspace defined by the projector h in (15)
[12]. Since Ū and W̄ lie in this tangent space, it is tempting
to interpret the manifolds as the world sheets of “macro-
scopic strings”which point in the direction of the field lines
of W̄ and propagate with velocity Ū.
Ultimately these fields can be expressed in terms of the

variables φ; u; w in the present paper, and the energy-
momentum tensor takes the form

Tμν ¼ φðMuμuν − TwμwνÞ; ð23Þ

where the quantities M and T can be respectively inter-
preted as the mass per length and tension of the macro-
scopic strings.
In fact M and T have exactly the same form as the mass

per length and tension of a single “wiggly string”which can
be described as an ordinary Nambu-Goto string with small-
scale perturbations integrated out [14,15]. In the string
fluid, the wiggles of the macroscopic strings may also
involve disconnected loops smaller than the coarse-
graining scale. The coarse-grained wiggles appear in the
string fluid as a conserved “wiggle number density” n, in
terms of which the equation of state can be expressed as

ρðn;φÞ ¼ φM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ0φÞ2 þ n2

q
; ð24Þ
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where μ0 is the mass per length of a Nambu-Goto
string [9].
Given that n describes structure below the macroscopic

scale, and that the tendency towards production of small
loops should monotonically increase n, this strongly
suggests that n is proportional to the entropy density s:

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ0φÞ2 þ ðTHsÞ2

q
; ð25Þ

where TH is some constant of proportionality. In the limit
as s goes to infinity, the temperature T goes to the finite
value TH,

T ≡
�∂ρ
∂s

�
φ

→ TH; ð26Þ

which suggests that we identify TH as the Hagedorn
temperature. For a single wiggly string there is also a
corresponding conserved current and equation of state
(differing by a factor of φ), and the identification of this
current as the entropy has been previously made [16]. Even
so the entropy is conserved in both the dynamics of wiggly
strings and in perfect string fluids. The idea will be
extended in this paper by introducing dissipative effects
leading to increases in entropy density.

B. Magnetohydrodynamics

A relativistic formulation of magnetohydrodynamics is
given for instance by Harris [17]. The energy-momentum
tensor is simply the sum of a fluid part and an electro-
magnetic part,

Tμν ¼ Tμν
m þ Tμν

EM

¼ ðρþ pÞuμuν − pgμν − ~Fμρ ~Fν
ρ þ

1

4
gμν ~Fρσ ~Fρσ: ð27Þ

Taking the divergence,

uν∇μTμν ¼ T∇μsuμ − uν ~F
ν
ρjρ ¼ 0; ð28Þ

where we have used the homogenous Maxwell equa-
tions (1) and the expression for divergence of entropy
(8), and the current j is defined by the Maxwell equations,

jμ ≡∇μ
~Fμρ: ð29Þ

The positivity of entropy production,

∇μsuμ ≥ 0; ð30Þ

will be satisfied if in fact the current is given by

jρ ¼ quρ þ σ ~Fμρuμ; ð31Þ

where σ is a positive scalar and q can be arbitrary. But in the
rest frame of the fluid ~Fμνuμ is just the electric field, so this
is just a statement of Ohm’s law [18]. We will return to this
point, but presently we consider the isentropic case of ideal
magnetohydrodynamics.
For entropy to be conserved in (28) the electric field must

vanish in the rest frame,

~Fμνuν ¼ 0: ð32Þ

This is just the well-known condition for frozen-in mag-
netic field lines, but for our purposes it implies that ~F and
its dual F are simple bivectors, and that u is in the linear
subspace spanned by F. So we can define φ and w as
before, noting that they can be interpreted as the magnitude
and direction of the magnetic field in the rest frame.
The energy-momentum tensor can be simplified using

the expression for the orthogonal projector (16),

Tμν ¼ ðρþ pÞuμuν − pgμν − φ2⊥μν þ 1

2
gμνφ2

¼ ðρþ pþ φ2Þuμuν − φ2wμwν −
�
pþ 1

2
φ2

�
gμν:

ð33Þ

So if the total equation of state is taken as

ρtotal ¼ ρþ 1

2
φ2; ð34Þ

then the other thermodynamic quantities are found to be

μ ¼ φ ð35Þ

ptotal ¼ pþ 1

2
φ2 ð36Þ

τ þ ptotal ¼ φ2; ð37Þ

showing that this is indeed an example of a perfect
string fluid.
Note that the form of the energy density is just what we

would expect from the variational principle for perfect
string fluids [9]. There it was shown that the total energy
density ends up being the negative of the Lagrangian. And
the extra term in the energy density is just the negative of
the usual Lagrangian for electromagnetism

−
1

4
~Fρσ ~Fρσ ¼ −

1

2
φ2:

III. DISSIPATIVE STRING FLUIDS

A. Tensor decomposition

In a more general string fluid the conservation equations
for T, F, and any additional conserved currents na still
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hold, but the tensors are no longer in the equilibrium forms
(14) and (20). Just as for an ordinary dissipative fluid, there
is no longer a single preferred fluid velocity u. We may take
the fluid velocity to be in the direction of the timelike
eigenvector of energy-momentum tensor (a choice known
as the “Landau-Lifshitz frame” [19]) or we may choose the
velocity to be in the direction of one of the currents (known
as the “Eckart frame” [18])—the directions no longer
coincide in general. In a string fluid we are now faced
with the additional problem that the tensor Fmay no longer
be a simple bivector, and so there is ambiguity in how to
define w.
We may still select u and w as orthonormal vectors in the

two-dimensional timelike eigenspace of FμρFρν. In general
the fluid velocity from the Eckart or Landau-Lifshitz
frames will not lie in this space so this can define a distinct
third possible choice for velocity. As we will see, this frame
will have some similarities to the Eckart frame. To
distinguish the two cases, the ordinary Eckart frame will
be referred to as the “particle frame” and the choice of
velocity from this eigenspace as the “string frame.”
There is also the difficulty that none of the frames above

satisfy the integrability conditions of the perfect string
fluid. We can no longer foliate spacetime by world sheets
everywhere tangent to u and w. However the conservation
of F does imply that we can define a gauge potential A,

~F≡ dA:

And by Darboux’s theorem A can be written in terms of
four scalar fields X1; Y1; X2; Y2,

A≡ X1dY1 þ X2dY2:

So then ~F can be decomposed into two simple two-forms
with vanishing exterior derivatives

~F ¼ dX1∧dY1 þ dX2∧dY2:

These two-forms each annihlate a two-dimensional space
which does satisfy the integrability condition. So this could
be used to define yet another natural choice of u and w
which preserves the integrability condition.
We restrict our attention to fluids that are sufficiently

close to equilibrium so that the difference between these
frames is small. We will be more precise on this point later,
where frame invariance will be used to restrict higher order
dissipative terms in the theory. For now, given a choice of u
and w, we can define ρ, φ, and na from the nonequilibrium
tensors,

ρ≡ Tμνuμuν

φ≡ Fμνuμwν

na ≡ nμauμ: ð38Þ

These values can be used to define the other thermody-
namic quantities through the equilibrium equation of state.
And so T and F can be decomposed into an equilibrium
tensor and a nonequilibrium correction. The nonequili-
brium correction may further be decomposed into parts
parallel and orthogonal to u and w.

Tμν ¼ ðρþ pÞuμuν − μφwμwν − pgμν þ 2qðμuνÞ þ πμν

ð39Þ

Fμν ¼ φΣμν − 2u½μλν� þ 2w½μνν� þGμν ð40Þ

nμa ¼ nauμ þ Nawμ þ νμa; ð41Þ

and q and π are further split,

qμ ≡QLwμ þ qμT ð42Þ

πμν ≡ −ΠLwμwν þ ΠT⊥μν − 2wðμπνÞL þ πμνT : ð43Þ

The vectors and tensors λ; ν; G; qT; πL; πT; νa are all fully
orthogonal to u and w, and πT is defined to be traceless. It
should be emphasized that this is simply a decomposition
of the tensors, and there is no loss of generality at this point.
If u and w are taken from our preferred frames some of

these pieces vanish. In the string Eckart frame, u and w are
chosen from an eigenspace so that both vectors λ and ν in F
vanish. There is still some freedom in our choice of u, but
there is a unique u such that the longitudinal heat flow QL
vanishes.
In the Landau-Lifshitz frame the vector ν is nonzero but

all heat flow components q vanish. Specifying w through

φwμ ≡ Fμνuν; ð44Þ

the vector λ vanishes as well.

B. Entropy current

The entropy density s is defined through the equilibrium
equation of state, and satisfies the usual thermodynamic
identities

s ¼ p
T
þ 1

T
ρ −

μ

T
φ −

ma

T
na

ds ¼ 1

T
dρ −

μ

T
dφ −

ma

T
dna: ð45Þ

It will be useful to promote the derivatives of the entropy to
vectors,

βμ ≡ 1

T
uμ ð46Þ

αμ ≡ μ

T
wμ: ð47Þ
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Then the equilibrium entropy current can be written in
terms of the equilibrium tensors T0, F0, na0,

suμ ¼ pβμ þ βνT
μν
0 − ανF

μν
0 −

ma

T
nμa0 ð48Þ

dðsuμÞ ¼ βμdT
μν
0 − ανdF

μν
0 −

ma

T
dnμa0: ð49Þ

Closely following the approach of Israel and Stewart
[11] we then make the assumption that the derivatives of
nonequilibrium entropy current sμ satisfy the same relation
with the nonequilibrium tensors,

dsμ ¼ βμdTμν − ανdFμν −
ma

T
dnμa: ð50Þ

The entropy current is taken to be a function of the
components of T; F; na, and we can expand about the
equilibrium point T0, F0, na0. To first order,

sμ ¼ suμ þ βμðT − T0Þμν − ανðF − F0Þμν −
ma

T
ðna − na0Þμ

¼ suμ þ 1

T
qμ −

μ

T
νμ −

ma

T
νμa: ð51Þ

Comparison with (45) suggests q is naturally interpreted as
a heat vector describing the transport of energy in the rest
frame. The currents ν and νa respectively describe the
transport of flux and charge in the rest frame through
diffusion.
Expressions for the dissipative quantities appearing in

the theory can now be determined by requiring that the
entropy production be non-negative,

∇μsμ ≥ 0: ð52Þ

The divergence of s can be found through similar manip-
ulations as those leading to the conservation of entropy in the
perfect fluid (8). For brevity at this point we will consider a
theory with no dependence on conserved currents na, and
choose the Landau-Lifshitz frame so that the heat vector q
vanishes. These aspects of the derivation are no different
than that for particle fluids (see e.g. [19]) and can be easily
derived for a string fluid in the sameway. Beginning with the
dissipative energy-momentum tensor (39),

uν∇μTμν ¼ ∇μðρþ pÞuμ þ μφwμwν∇μuν

− uμ∇μp − πμν∇μuν

¼ T∇μsuμ þ μ∇μφuμ − μφhμν∇μuν − πμν∇μuν

ð53Þ

where h is the projection operator defined in (15). If it were
still true that F ¼ φΣ the middle terms involving φ would
cancel using a relation derived in [9]. This would be

one way to show entropy is conserved in a perfect string
fluid. But now the relation is modified due to dissipative
terms in F,

∇μφuμ ¼ ∇μðφΣμλwλÞ
¼ ∇μðFμλwλ − νμÞ
¼ Fμλ∇μwλ −∇μν

μ

¼ φΣμλ∇μwλ þ ð2w½μνλ� þ GμλÞ∇μwλ −∇μν
μ

¼ φhκμ∇κΣμλwλ − φwλhκμ∇κΣμλ þ � � � :

It can be shown (for instance by explicitly writing Σ and
h in terms of u and w) that hκμ∇κΣμλ is orthogonal to w. So
the second term above vanishes, and returning to the
derivation (53),

0 ¼ ∇μsuμ þ
μ

T
½ð2w½μνλ� þ GμλÞ∇μwλ −∇μν

μ�

−
1

T
πμν∇μuν

¼ ∇μ

�
suμ −

μ

T
νμ
�
þ μ

T
ð2w½μνλ� þ GμλÞ∇μwλ

þ νμ∇μ
μ

T
−
1

T
πμν∇μuν

¼ ∇μsμ þ
μ

T
Gμλ∇μwλ þ νμ

�
∇μ

μ

T
þ μ

T
wλ∇λwμ

�

−
1

T
πμν∇μuν: ð54Þ

Now the second law (52) will be satisfied if each of the
other terms is strictly negative. Sowe choose ν andG to have
the form

νμ ¼ ξT⊥μρ

�
∇ρ

μ

T
þ μ

T
wσ∇σwρ

�
ð55Þ

Gμν ¼ −ξL
μ

T
⊥μρ⊥νσ∇½ρwσ�; ð56Þ

where the coefficients ξT; ξL are positive scalars. Breaking
up the viscous tensor π into its parts as in (43) we find a
series of terms each of which is set to be negative by
choosing

ΠL ¼ −3ζLwρwσ∇ρuσ ð57Þ

ΠT ¼ 3

2
ζT⊥ρσ∇ρuσ ð58Þ

πμL ¼ 2ηL⊥μρwσ∇ðρuσÞ ð59Þ

πμνT ¼ 2ηT

�
⊥μρ⊥νσ −

1

2
⊥μν⊥ρσ

�
∇ðρuσÞ; ð60Þ
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with positive coefficients ζL; ζT; ηL; ηT . In principle the
physics in the longitudinal direction w may be different
from the transverse directions, which is why there are twice
as many dissipative coefficients as for an isotropic fluid. The
normalization of the coefficients is chosen so that if the
physics were isotropic ζL ¼ ζT would be the usual bulk
viscosity coefficient and ηL ¼ ηT the usual shear viscosity
coefficient.
Note that the longitudinal viscosity vector πL (59)

potentially represents two distinct physical effects. One
is due to changes in the transverse velocity along a single
macroscopic string or field line. The other effect is due to
differences in the longitudinal velocities of nearby strings.
Due to the symmetry of the energy-momentum tensor these
must be described by the same viscosity coefficient, but if
we allow for intrinsic angular momentum these could in
principle be different.
For completeness we may also consider a frame in which

the heat vector q does not vanish. Following the same line
of derivation there would be an extra entropy production
term

−qμ
�
∇μ

1

T
þ 1

T
uν∇νuμ

�

in (54). The two pieces of q are thus set as

QL ¼ κLwμð∇μT − Tuν∇νuμÞ ð61Þ

qνT ¼ κT⊥μνð∇μT − Tuν∇νuμÞ; ð62Þ

where κL; κT are the positive heat conductivity coefficients.
The apparent difference in sign from the Fourier heat
conduction law is just due to the signature of the metric.

C. Dissipation in F

Besides the appearance of an anisotropic direction, the
dissipative terms in T are essentially the same as for an
ordinary fluid. What may require some interpretation are
the dissipative terms (55)–(56) in F,

Fμν ¼ 2w½μðφuþ νÞν� þGμν: ð63Þ

The tensor is here written in a form emphasizing the
analogy to ordinary particle currents (41). The velocity uE
in the string Eckart frame where ν does not appear
explicitly in F is clearly given by

uE ≈ uþ 1

φ
ν; ð64Þ

where this is only an equality to first order in the dissipative
fields. Following a similar line of reasoning to Landau-
Lifshitz [19], we replace the velocity in the first term of the
energy-momentum tensor,

ðρþ pÞuμuν ≈ ðρþ pÞuμEuνE − 2
ρþ p
φ

νðμuνÞE : ð65Þ

So the heat vector in the Eckart frame is approximately

qE ¼ −
ρþ p
φ

ν: ð66Þ

Substituting the expression (55) for ν and ignoring the term
due to curvature of w,

qE ¼ ρþ p
φ

ξT∇⊥
μ

T
: ð67Þ

So by the thermodynamic identity

Td

�
μ

T

�
¼ −

�
ρþ p
φT

�
dT þ dp; ð68Þ

we can make the identification

ξT ¼
�

φT
ρþ p

�
2

κT: ð69Þ

So ξT can be related to heat conductivity—but this is
not the only way to understand ν, and the interpretation of
G is still obscure. This may be clarified by taking the
nonrelativistic limit:

∇μ ¼ ðc−1∂t;∇iÞ
uμ → ð1; c−1vÞ ð70Þ

wμ → ðc−1v · w;wÞ; ð71Þ

where w is a unit vector. The metric is taken to be the
Minkowski metric, so as c goes to infinity the time
components of ⊥μν go to zero. Thus the time components
of ν and G vanish, and we will take the spatial components
to be of order c−1. So in the nonrelativistic limit ∇μFμν ¼ 0
is reduced to the equations

∇ · ðφwÞ ¼ 0 ð72Þ

∂tðφwÞ ¼ −∇ × ðφw × vÞ −∇ × ðw × νÞ −∇iGij: ð73Þ

Using the limit of the spatial part of the projection tensor

⊥ij ¼ −δij þ wiwj;

the dissipative parts are expressed as

ν ¼ −ξT
�
∇⊥

μ

T
−
μ

T
κ

�
ð74Þ

Gij ¼ ξL
μ

T
ð∇½iwj� − w½iκj�Þ; ð75Þ
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with the curvature vector

κ ≡ ðw ·∇Þw ¼ ð∇ × wÞ × w; ð76Þ

and ∇⊥ indicates the gradient with the w-component
projected out. The curvature also satisfies the identity

w × κ ¼ ∇ × w − ðw · ∇ × wÞw;

which is used in w × ν and the dual of G,

~G ¼ ξL
μ

T
ðw ·∇ × wÞw

w × ν ¼ −ξT
�
w ×∇ μ

T
−
μ

T
ð∇ × wÞ⊥

�
: ð77Þ

We have already discussed how ξT and gradients in μ=T are
related to heat conduction. Now even if the thermodynamic
variables are constant notice that ξT and ξL describe the
production of entropy due to the curl of the field lines in the
transverse and longitudinal directions respectively.
This can be intuitively understood in the wiggly string

fluid. A curl that is completely perpendicular to w is found
for instance in large loops lying in a plane. The loops tend
to contract under tension in the direction of curvature.
There is an outflow of heat due to the emission of small
loops as the strings contract, so there will still be some net
flow of strings ν even in the rest frame where there is no net
flow of energy.
One idealized situation in which only the coefficient

ξL applies is when each individual field line of w is an
infinite straight line, and all field lines in a given plane
perpendicular to some axis are pointing in the same
direction. If the direction of the field lines in a plane
changes as we move along the axis, the curl of w will point
in the direction of w itself. If strings from one plane diffuse
to an adjacent layer reconnections will lead to the pro-
duction of entropy in the form of wiggles and there will be
some loss of flux (see Fig. 1). This last point is perhaps
easiest to understand in the limit of two layers of strings
with nearly opposite directions reconnecting.
The nonrelativistic limit also makes it easy to see the

connection to magnetohydrodynamics. The vector φw is
just the magnetic field B, and from the equation of state
(35) μ ¼ φ. So from (73) the electric field vector is equal to

E ¼ B × v þ w × νþ ~G: ð78Þ

Bringing μ ¼ φ inside the curls in (77),

E ¼ B × v þ ξT
T
ð∇ ×BÞ⊥ þ ξT

T2
B ×∇T þ ξL

T
ð∇ ×BÞw:

ð79Þ

The first term is also in ideal magnetohydrodynamics and is
due to the Lorentz boost out of the rest frame of the fluid.

At low frequencies the displacement current can be
neglected and Ohm’s law can be written,

E ¼ σ−1J ¼ σ−1∇ ×B: ð80Þ

So the coefficients ξ can be related to the electrical
conductivity σ,

ξ ¼ T
σ
: ð81Þ

This is somewhat different from ordinary resistive mag-
netohydrodynamics due to the possibility of anisotropic
conductivity, but also due to the presence of the temper-
ature gradient term. In the string Eckart frame this term
would vanish, but that would also restrict E to be parallel to
B in the rest frame.
The origin of the difference can be seen by comparing

our introduction of dissipative terms in this paper to the
standard introduction of Ohm’s law discussed in Sec. II B.
In standard magnetohydrodynamics the energy-momentum
tensor is assumed to be separated into distinct fluid and
electromagnetic parts Tm þ TEM even out of equilibrium.
The entropy is taken to only be a function of the fluid
quantities, not the electromagnetic part. This makes sense
in equilibrium since dependence on φ and the electromag-
netic energy density cancel,

ds ¼ 1

T
dρtotal −

μ

T
dφ −

ma

T
dna

¼ 1

T
dρm −

ma

T
dna: ð82Þ

But the string fluid approach taken in this paper has entropy
being a function of electromagnetic sector out of equilib-
rium, leading to the presence of a term in the entropy

FIG. 1. Adjacent layers of straight strings diffuse and overlap.
Through reconnection, entropy in the form of wiggles is
produced. There is also some loss of net flux as indicated by
the number of black wiggly strings passing the dotted line.
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current representing the diffusion of field lines (51). This
diffusion term in the entropy current is ultimately respon-
sible for the presence of the temperature gradient term in
the electric field (79).

D. Stationary solutions

If a dissipative string fluid reaches a state of maximum
entropy, the requirement that no further entropy be pro-
duced leads to stricter restrictions than are found in the
perfect string fluid. This is a direct analogy to the stationary
solutions of ordinary relativistic fluids which have among
other things been taken to model rotating stars [20].
Clearly for the entropy to be conserved all of the

dissipative terms leading to entropy production in (54)
must vanish. For the components of the viscous stress πμν to
vanish, the shear and expansion∇ðμuνÞ must also vanish. In
particular,

∇μuμ ¼ 0 ð83Þ

wμwν∇μuν ¼ 0: ð84Þ

So the conservation of entropy (8) and the vanishing of
expansion implies s is constant in the flow direction

uμ∇μs ¼ 0:

If there are any conserved currents na besides the entropy
clearly these must also be constant in the u direction by the
same reasoning. Furthermore, using the vanishing of shear
(84) in the expression for the divergence of F,

0 ¼ wμ∇νFμν ¼ −∇νφuν: ð85Þ

So φ is also constant in the flow direction, and thus all
thermodynamic variables must be.
To proceed we will make use of a general relation for

perfect string fluids. From the contracted conservation of T,

wμ∇νTμν ¼ 0;

it can be shown that the “dual currents” maw satisfy the
relation

s∇μφTwμ þ na∇μφmawμ ¼ 0:

Incidentally, this is a fluid generalization of the dual current
which appears in Carter’s work on single strings [21]. For
simplicity the following demonstration will consider the
case where the entropy is the only current so that

∇μφTwμ ¼ 0: ð86Þ

Beginning with the conservation of T, and making use of
the relation above and the conservation of ρþ p in the u
direction,

0 ¼ ∇μTμν ¼ ðρþ pÞuμ∇μuν − φTwμ∇μ
μ

T
wν −∇νp:

The requirement that the diffusion vector ν vanishes implies

⊥λν

�
wμ∇μwν þ∇ν ln

μ

T

�
¼ 0; ð87Þ

so then the conservation of T can be simplified further to

0 ¼ ðρþ pÞuμ∇μuν þ φT∇ν μ

T
−∇νp:

Making use of the thermodynamic identity (68), this
implies

uμ∇μuν ¼ ∇ν lnT; ð88Þ

which together with the vanishing of the shear of u leads to
the conclusion

∇ðμβνÞ ¼ ∇ðμ
1

T
uνÞ ¼ 0: ð89Þ

So β is a Killing vector in equilibrium, a fact also true for
ordinary fluids.
At this point, note that the orthogonal projection of

∇νTμν ¼ 0 leads to

⊥λμðuν∇νuμ − wν∇νwμ −∇ν ln μÞ ¼ 0: ð90Þ

The first two terms have a natural interpretation as the
extrinsic curvature vector K,

Kλ ≡ hρσ∇ρhσλ ¼ ⊥λρðuσ∇σuρ − wσ∇σwρÞ:

So in the stationary solutions, curvature in the macroscopic
world sheets is balanced by changes in μ. This relation (90)
was noticed already in [10] through a different line of
reasoning. In our approach the similar relation (87) relating
the curvature of the field lines to changes in μ=T is more
quickly seen.
At equilibrium there is a Killing vector β in the direction

of the velocity u. It will turn out there is also a preferred
vector in the w direction. Using the conservation of F and
(85)–(86),

0 ¼ ∇μFμν ¼ φTwμ∇μ
1

T
uν − φuμ∇μwν

¼ φðuν∇μwν − uν∇νwμÞ;

where the Killing vector property was used in the second
line. Therefore it is true that

uμ∇½μ
μ

T
wν� ¼ 0;
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and using the vanishing of ν and G (which depend on the
other components),

∇½μαν� ¼ ∇½μ
μ

T
wν� ¼ 0: ð91Þ

So α and β, which were introduced earlier as derivatives
of the entropy, form a natural coordinate system for the
stationary fluid. The fact that their commutator vanishes
can be easily proven from the conservation of F as above.
Note that this is distinct from the analysis of a preferred
spacelike vector appearing in [10]. There the assumption
that all thermodynamic quantities are constant along the
field lines w was effectively made, restricting the generality
of the stationary solutions.
Finally we note that as for the case of an ordinary fluid,

ma=T for each current is constant throughout the fluid. This
follows easily from the vanishing of the dissipative part of
na in the Landau-Lifshitz frame [19].

E. Second-order theory

The theory we have been discussing is essentially an
extension of the first-order relativistic fluids of Eckart [18]
and Landau and Lifshitz [19]. It is well known that these
theories suffer certain difficulties. Hiscock and Lindblom
have shown that the equilibrium states are unstable on
short time scales under certain perturbations [22]. Another
difficulty of first-order theories which is easily seen to be
present in the current theory as well is the appearance
of parabolic equations. For instance, the equation for
longitudinal heat flow is given by (61)

QL ¼ κLwμð∇μT − Tuν∇νuμÞ:
For a system of straight strings at rest with no orthogonal
gradients, this leads to the one-dimensional heat equation

_T ¼ κL
C
∂2
wT;

where C is the heat capacity at constant flux

C≡ ∂ρ
∂T : ð92Þ

So a small perturbation in T will instantly be felt across the
entire string.
The resolution to both problems for ordinary fluids

[11,23] is by including second-order terms in expansion
of the nonequilibrium entropy current sμ (51). For instance,
an additional term − 1

2
kuμQ2

L for some positive coefficient
k will lead to an extra term −κLT2k _QL in the expression for
heat conduction above (61). This will in turn modify the
heat equation to

kCT2T̈ þ C
κL

_T ¼ ∂2
wT;

which is now hyperbolic, with the speed of second sound

c2s ≡ 1

kCT2
: ð93Þ

As a practical matter, however, there are many more
possible independent second-order terms in the string fluid
than in the ordinary Israel-Stewart theory. This is both due
to the breaking of rotational symmetry into transverse and
longitudinal directions, and also due to the presence of an
extra direction in equilibrium. For instance there may be all
the possible terms,

gρσνρπσLu
ν; gρσνρπσLw

ν; ~Σρσν
ρπσLu

ν;…

and so on—each with an independent parameter.
Even so there are some principles which can restrict the

number of independent terms. For one it should be required
that the theory be invariant under changes of frame. The full
entropy current s is a function of the tensors T and F, but
we have expanded it about a certain arbitrary equilibrium
state T0; F0. Expanding about a different equilibrium state
should lead to the same result to the order of the highest
term kept in the expansion.
Following the same approach as Israel-Stewart [11], the

entropy current (51) is given a second-order correction S,

sμ ¼ pβμ þ βνTμν − ανFμν −
ma

T
nμa þ Sμ: ð94Þ

The principle of frame invariance is then that dsμ ¼ 0 under
changes of u and w.
The thermodynamic relation (49) may be Legendre

transformed to

dðpβμÞ ¼ Fμν
0 dαν − Tμν

0 dβν þ nμ0d

�
ma

T

�
: ð95Þ

So the change in s under changes of α; β is

dsμ ¼ ðT − T0Þμνdβν − ðF − F0Þμνdαν þ dSμ;

and by frame invariance the change in S must be

dSμ ¼ μ

T
ðF − F0Þμνdwν −

1

T
ðT − T0Þμνduν:

Using the full decomposition of the tensors in Sec. III A,
this is

dSμ ¼ μ

T
ð−uμλν þ wμνν þGμνÞdwν

−
1

T
ðuμqνT − wμπνL þ πμνT þ ΠT⊥μνÞduν

−
1

T
ðμλμ þQLuμ − πμL − ΠLwμÞwνduν: ð96Þ
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So S may include arbitrary terms which are invariant to
second order under changes of frame, but it must also
include terms so as to produce the change above.
Clearly it is important to know how the various quantities

change with the frame. The changes du; dw to nearby
equilibrium states are on the order of the field quantities
themselves, as can be seen for instance in the change to the
Eckart velocity in (64). The thermodynamic quantities
ρ;φ; na defined through (38) are all invariant to first order,
and thus so must be any thermodynamic quantity. Likewise
Gμν;ΠL;ΠT; π

μν
T are all invariant to first order, but the

remaining dissipative fields are not:

dνμ ¼ −φduμ⊥
dqμT ¼ −ðρþ pÞduμ⊥
dλμ ¼ −φdwμ

⊥
dπμL ¼ −ðτ þ pÞdwμ

⊥
dQL ¼ þðρ − τÞwνduν; ð97Þ

where the subscript ⊥ indicates the change is projected
orthogonal to u; w.
Even though these are not invariant, they can form the

invariant combinations

qμT −
ρþ p
φ

νμ ð98Þ

πμL − μλμ: ð99Þ

This is a very modest step in reducing the complexity of the
second-order theory in that the five quantities in (97) may
only appear with arbitrary parameters in the two combi-
nations above. Note that the first combination, the invariant
heat, was implicitly already used in (66) to relate ν to heat
conduction.
The change in S (96) can only be produced by the

noninvariant terms (97), and we will denote this non-
invariant piece S0. There is some ambiguity in how to split
this from the invariant part of S, but we will make a choice
so that S0 vanishes in the Landau-Lifshitz frame. It can then
be explicitly calculated:

Sμ0 ¼
1

T

�
1

2
uμqνT − wμπνL þ πμνT þ μwμλν

�
qTν
ρþ p

þ μ

T

�
1

2
uμλν − wμνν

�
λν
φ

−
1

T

�
1

2
QLuμ − ΠLwμ − πμL þ μλμ

�
QL

ρ − τ
: ð100Þ

In the absence of any particle currents the longitudinal heat
QL transforms differently from the other quantities (97). So
its only appearance in the second-order theory is in the
terms of S0 above, with no new parameters.
Thus the coefficient k of the Q2

L term which leads to the
speed of second sound (93) is

k ¼ T−1

ρ − τ
¼ 1

sT2
;

where the second equality uses the fact that there are no
particle currents in the equation of state. So the speed of
second sound is

c2s ¼
s
C
¼ s

T
∂T
∂s : ð101Þ

In a pressureless perfect string fluid this is just the
expression for the ordinary longitudinal speed of sound
(see for instance [24]).
In particular, recalling the wiggly string fluid equation of

state (25),

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ0φÞ2 þ ðTHsÞ2

q
;

the speed of second sound is

cs ¼
ffiffiffi
τ

ρ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
T
TH

�
2

s
: ð102Þ

This is again just equal to the ordinary speed of perturba-
tions on the string, expressed in terms of the tension and
mass density. And the second equality makes it clear that
the speed of second sound is causal and vanishes as the
temperature approaches the Hagedorn temperature. Of
course for many reasons the wiggly string fluid equation
of state should be understood as a toy model, but this
reasonable result is at the very least a consistency check on
the second-order theory.
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