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Fermionic isocurvature perturbations
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Isocurvature perturbations in the inflationary literature typically involve quantum fluctuations of bosonic
field degrees of freedom. In this work, we consider isocurvature perturbations from fermionic quantum
fluctuations during inflation. When a stable massive fermion is coupled to a nonconformal sector different
from the scalar metric perturbations, observably large amplitude scale invariant isocurvature perturbations
can be generated. In addition to the computation of the isocurvature two-point function, an estimate of the
local non-Gaussianities is also given and found to be promising for observations in a corner of the
parameter space. The results provide a new class of cosmological probes for theories with stable massive
fermions. On the technical side, we explicitly renormalize the composite operator in curved spacetime and
show that gravitational Ward identities play an important role in suppressing certain contributions to the

fermionic isocurvature perturbations.
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I. INTRODUCTION

The cosmic microwave background (CMB) measure-
ments [1-4] and the large scale structure observations [5,6]
are consistent with single field inflationary models which
can seed approximately adiabatic, scale-invariant, and
Gaussian  primordial density perturbations [7-15].
However, from the multifield nature of the Standard
Model (SM) of particle physics, one may naturally guess
that there would be more than one light degrees of freedom
during inflation which may be responsible for generating
isocurvature primordial perturbation initial conditions.
Indeed, in any slow-roll inflationary scenario, noninflaton
degrees of freedom must eventually turn on in order to
reheat successfully.l Hence, isocurvature scenarios are
theoretically well motivated.

Isocurvature perturbations have been studied in
various scenarios, such as double inflation [16—18], curva-
ton [19-21], axions [22-27] and gravitationally produced
superheavy dark matter [28—31]. Isocurvature perturbations
also can generate rich density perturbation phenomenology.
For example, unlike standard single field inflationary
scenarios, isocurvature perturbations are able to generate
large primordial local non-Gaussianities [28,31-45].
However, most previous studies of isocurvature perturba-
tions focused on bosonic degrees of freedom such as axions
and curvatons. Fermionic isocurvature degrees of freedom
such as gravitinos were only discussed in the literature
associated with the decay products of the inflaton or other
scalars [46—49]. Furthermore, these fermions discussed in
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the literature were characterized only by their dependence
on the entropy temperature fluctuation 67 which was
assumed to be directly linked to the curvature perturbation
£, in a manner consistent with the ‘“separate universe”
picture of 6N formalism [50]. Such previously discussed
fermionic isocurvature scenarios lead to strong correlation
or anticorrelation with the curvature perturbation {. One
can intuitively characterize these previous fermionic
isocurvature works as having no fermionic quantum fluc-
tuation information from the inflationary era.

In contrast, we examine in this paper a fermionic
isocurvature scenario that is not (significantly) correlated
with £ and has fermionic quantum fluctuation information
during inflation encoded in the isocurvature correlator. In
our scenario, the horizon length scale interaction dynamics
of the fermion particles is important, in sharp contrast with
the separate universe picture of 6N formalism. As we will
show, although classical gravitational field interactions
alone are sufficient to generate enough fermions during
the exit process of inflation to saturate the phenomenologi-
cally required cold dark matter abundance [51,52], fermion
propagators in the classical Friedmann-Robertson-Walker
(FRW) background is insufficient to produce any observ-
able isocurvature perturbations because of the fact that
massless fermions enjoy a classical conformal symmetry.2
Hence, any large fermion isocurvature correlator must
involve couplings to a conformal symmetry breaking sector.

For illustrating the existence of such fermionic isocur-
vature perturbations, we minimally extend the single field
inflation by adding a stable massive fermion field coupled
through a Yukawa coupling to a light noninflaton scalar
field whose mass is much lighter than the fermion field

’Even with the massive fermions, we will be naturally
concerned with light fermions where m,, /H < 1.
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(hence, there are no decays of the scalars to the fermions).
The light noninflaton scalar field (which is minimally
coupled to gravity) serves as a conformal symmetry
breaking sector through which the fermions will attain
appreciable correlations. We compute the isocurvature two-
point function of fermions that are gravitationally produced
during inflation and identify the phenomenologically viable
parameter space. We also estimate the local non-
Gaussianity and show that it may be observationally large
in a particular parametric regime.

At the technical level, treating fermionic isocurvature
fluctuations during inflation requires composite operator
renormalization in quasi-dS spacetime because the fer-
mionic energy-momentum tensor is a composite bilinear
operator (i.e. fermions cannot get vacuum expectation
values) and the leading two-point function contribution
involves a one-loop 1PI diagram. To our knowledge, this
paper is the first paper to apply composite fermion operator
renormalization in inflationary spacetime to treat isocur-
vature perturbations. Indeed, an improper treatment of the
operator renormalization can in principle lead to answers
that are many orders of magnitude off as we pointed out
with bosonic composite operators [53]. We also show that a
gravitational Ward identity plays an important role in
suppressing the scalar metric perturbation interaction con-
tribution to the isocurvature two-point function (thereby
justifying our introduction of another scalar sector).

This paper is presented in the following order. In Sec. II,
we motivate and discuss the fermion isocurvature model.
Next, we review the definition of the gauge-invariant
variables and the quantum operator associated with the
cold dark matter (CDM) isocurvature in Sec. III. In
Sec. III A, we present the regulator and the renormalization
conditions for our isocurvature operator. We explain the
constraints on the Yukawa coupling coming from the self-
consistency of our simplified scenario in Sec. IV. In Sec. V,
we compute the isocurvature 2-point function. The leading
order and the next leading order results are given in
Secs. VA and V B, and the power spectrum is presented
in Sec. VC. In Sec. VI, we discuss the numerical
implications of our results and non-Gaussianities.
Afterwards in Sec. VII, we discuss the explicit computation
of how a diffeomorphism Ward identity plays a role in
suppressing the scalar metric perturbation contribution to
the isocurvature two-point function. Finally, in Sec. VIII we
summarize and conclude. Some technical details of the
computations are given in the Appendixes.

II. FERMION ISOCURVATURE MODEL

As is well known, if any small mass fermion field
degrees of freedom exist during inflation which is usually
assumed to be a Bunch-Davies vacuum state, fermion
particles will be produced gravitationally (see, e.g.,
[51,52,54]). The inhomogeneities of the gravitationally
produced fermions will generically not align with the
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inhomogeneities of the inflaton, depending on its inter-
actions. If most of the radiation in the universe comes from
the inflaton decay, then the misalignment of the inhomo-
geneities of the fermions and the inflaton will lead to
isocurvature perturbations [55-57].

Now, to motivate our fermion model with Yukawa
interactions, it is important to understand why interactions
to the conformal symmetry breaking sector is required. It is
also well known that massless fermion classical action
enjoys a conformal symmetry:

G = €¥Wg,,. (1)

. (2)

Since FRW spacetime can be written as a conformal
transformation of the Minkowski space [i.e. a = exp(o)],
we would expect for a tree level fermion propagating on an
FRW spacetime without any interactions with a conformal
symmetry breaking sector

W — e—36(x)/2

= <l/_/Ml/’M<t’ ;C)U_IMWMO’ j})>c0nna_6’
(3)
where y,, is the Minkowski fermion. At leading order,

there are no other scales in this function except |x — y|.
Hence, we conclude

Py (1. %) 9w (1.3)) comn

o - 1
<l/_/l/’(t’ .X)l/_/l//(t, y)>conn ~ %= =6 (4)
a’lx =yl
in the massless limit.> We expect this to be the dominant
contribution in the limit that m,/H < 1. When
m,, /H > 1, we also expect there can be factors multiplying
this that vanish exponentially fast as m,,/H — co (we show
this explicitly in Sec. VA). Hence, we expect Eq. (4) to be
the leading order of magnitude composite correlator if the
theory is approximately conformally invariant. As we will
show below, the comoving gauge isocurvature perturba-
tions are proportional to

<5pﬁf> 5p5f)> UAGE) 1740 ) M.

Py Dy (py)?
where one sees the appearance of the suppressed correlator
computed in Eq. (4). Because of this suppression, fermionic
isocurvature perturbations require nontrivial interactions
with a conformal symmetry breaking sector.

If the conformal symmetry breaking sector is just the ¢
sector of the inflaton, then its effective coupling to the

fermions is suppressed because there is an infinitesimal
shift symmetry of the ¢ coming from a residual

The scaling behavior of the two-point correlator is similar to
that of correlators considered in Ref. [58] in the context of
conformal field theories.
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diffeomorphism symmetry in the comoving gauge. (We
will explain this explicitly in Sec. VII in terms of a Ward
identity.) Hence, to generate an observable fermionic
correlator during the horizon exit, another conformal
symmetry breaking sector must be introduced which does
not suffer from derivative coupling suppression similar to
¢* We thus introduce a Yukawa coupling to a light
noninflaton scalar and demonstrate that this interaction
can induce observable isocurvature fluctuations.’

Given this motivation, let us now specify the model
studied in this paper. We use one real scalar ¢ slow-roll
inflaton degree of freedom that dominates the energy
density during inflation and then perturbatively decays to
the SM sector to reheat the universe. We also introduce
another minimally coupled light real scalar degree of
freedom o which has no coupling to ¢ or the SM sector
(necessary for reheating) stronger than gravity.6 As we
explained, the main role of ¢ is to provide a conformal
symmetry breaking sector which can couple to the Dirac
fermions y through a Yukawa coupling. We assume y is
charged under a conserved discrete charge such that the one
particle states are stable and can act as dark matter. Note
that since we do not require all of the dark matter to come
from the fermions, this system is consistent with the
existence of the weakly interacting massive particle
(WIMP) dark matter. Because y is too weakly interacting
with the SM to be produced directly, gravitational produc-
tion of y during and after inflation is significant and gives
rise to nonthermal CDM and its isocurvature perturbations.

Such a model is described by the action’

S = /(dx){ﬁinf[gywﬁb] + Lsm+com G- {V}]

1 1 y
+ Lrulgyw ¢ AV} + _ngaﬂo'aua - Em(zfﬁz - 4—!0'4

+w(iy*Ve, —my, )y — /16!/71//}, (6)

where M2 =gl-=1, (dx)=,/=gd*x, and L and

Lsmicpm are the Lagrangians for the inflaton and the
SM 4+ CDM sectors, and Lgy describes the sector

4Although we have not investigated the suppression for the
tensor perturbation interactions with a full computation, we
expect a similar suppression of the tensor perturbation inter-
actions.

>Note that this introduction of a light scalar is not particularly
attractive from a model building perspective since we provide no
explicit mechanism to protect its light mass. We defer the
challenge of building an attractive model to a future work since
the purpose of this paper is to demonstrate the basic physics
mechanism.

For now, we will consider this as a tuning and will not address
serious model building issues in this paper. It is plausible that this
kind of scenario can be realized in the context of the supersym-
metry hidden sector.

"Our metric convention is (= +,+,+)-
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responsible for reheating. Because an interesting parameter
region exists for our scenario in which the y constitute a
tiny fraction of the total dark matter content, the Lagrangian
Lsmicpm describes the CDM sector difterent from y to
make the scenario phenomenologically viable. Note that
natural heavy dark matter candidates for y exist in the
context of string phenomenology [59,60]. Furthermore,
many extensions of the Standard Model also possess
superheavy dark matter candidates (see, e.g., [61-71]).
Since there are many scalar field degrees of freedom in
typical beyond the standard models, the possibility of
identifying one of these scalars with ¢ is also plausible.
Although the cosmological phenomenology of weakly
interacting dark matter on large scales has been investigated
already in literature (see, e.g., [19,28,30,31,72,73]), our
work is the first to describe fermionic fluctuation correla-
tions during inflation. Note that although Eq. (6) has a
quartic term o*, we will focus on the parametric region in
which the quartic coupling y will be small and tuned
against radiative generated quartic couplings from the
Yukawa interaction to keep the effects of the ¢ interactions
to a minimum. Hence, our effective parametric domain will
be controlled by {4, m,, m,,}.

We focus on a particular parametric region of
{4, m,, m,} such that ¢ only assists in generating large
scale density perturbations of v, and the density perturba-
tions and the relic abundance from the o particles vanish or
are suppressed compared to those from the y particles. For
example, requiring that the correlator (6c)|, relevant for
the isocurvature perturbations not be suppressed gives the
condition m,/H(t,) <1 where z, is the time at which
the fermion production ends. This implies m, < m,, is the
relevant parameter region. Furthermore, in order to prevent
any large isocurvature perturbations and relic abundance of
o, we assume that the o particles decay before ¢ becomes an
important fluid component of the evolution of the universe
(e.g., before matter-radiation equality). Note, however, that
this restriction is a matter of simplicity. In general, we note
that a weakly interacting and stable ¢ may also be
phenomenologically allowed without problems regarding
the relic abundance and the isocurvature from ¢. Moreover,
for simplicity, we restrict A such that (1) oo — py via the
Yukawa interactions is suppressed compared to the gravi-
tational process in producing wyw, and (2) any o+
gravity — iy processes are estimated to be unimportant.
This restriction is approximately equivalent to being in a
parametric region where tree-level propagator neglecting
resumption of the Yukawa interactions is valid.

In addition, in order to detach our model from the details
of the inflationary model of ¢, we focus on the light
fermion y, such that m, < H,, where H, is the Hubble
scale at the end of inflation. This is because the gravita-
tional particles production is generally sensitive to how the
inflation ends in such a way that an extra suppression factor
exp (—cml /H?) (where ¢ is a number depending on how
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the inflation connected with the post inflationary era)
appears in the estimation of the gravitationally produced
particle number density n,,. (Throughout the paper, we will
sometimes distinguish H, from H;,; which is defined to be
the expansion rate during inflation.) On the other hand, if
m,, < H,, the factor becomes simply an O(1) number, and
particularly, for fermions we can estimate the number
density n,,(,) as 0(0.1)m;, at H(t,) ~ m,, regardless of
how the inflation ends [51]. The physics of this universality
is tied to the conformal symmetry of the fermions in the
massless limit.

At this point, we emphasize that our model is different
from other fermionic (e.g., gravitino) isocurvature models
in literature (e.g., [49,74,75]). We explicitly predict the
amplitudes of fermion density perturbations from a joint
effect of the gravitational particle production and ¢ modu-
lation on m,, via the matter loop diagrams. In contrast, in
Refs. [49,74,75] the fermions are produced from the on-
shell inflatons and/or curvatons (the latter has the closest
identification in our model with o) after the end of inflation.
A sharp observable contrast of our model with these other
models is that our scenario predicts an uncorrelated type of
isocurvature (i.e. curvature-isocurvature cross-correlation is
negligible) while these other models purportedly generate a
correlated type of isocurvature. This is a consequence of the
fact that these other models do not describe any fermionic
fluctuations during inflation while in our model, the
expansion during inflation imparts work to virtual fer-
mionic fluctuations to put them on shell.

III. OPERATOR FOR ISOCURVATURE
PERTURBATION

Recall that the scalar perturbation of the metric is
parametrized as

5 (S) < —E aF’,- ) (7)
I = aF ; a2[A5,»j—|—B!ij] '

The gauge-invariant variables are constructed by combin-
ing metric perturbations and other perturbations, such as
density perturbations. For example, the conventional first-
order gauge-invariant perturbation associated with the
energy density of a fluid a is defined (see, e.g., [76] and
references therein) by

A dp,
Lo=5-HT" (®)
Pa

In particular, we define the conventional curvature
perturbation as

A 1)
c=2_gPo (9)
2 Prot
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where
OProt = Z‘Sﬂi s
i

This quantity ¢ is conserved when modes are stretched out
of the horizon even through the reheating era as long as it is
set by the adiabatic initial condition, i.e., { = {, for any
fluid a. Furthermore, if perturbations are generated solely
by inflaton during inflation, such as the single field
inflation, superhorizon perturbations automatically satisfy
the adiabatic initial condition and the perturbations are
conserved so that we can match them with those during the
early radiation dominated (RD) era, {y(tinf) = ¢, (trp) =
Cm(trp) = -+

On the other hand, an isocurvature perturbation is
defined by a relative density perturbation between two
different fluids

Pou =D i (10)

Sp. Op:
5s,-,53(c,-—(:,~>——3H<@—é). (11)
Pi Pj

In general, it may arise during inflation if there are more
than one degree of freedom. Although their mixing with
perturbations of different fluids can lead to the failure of the
conservation of the curvature perturbation ¢, such effects
are negligible as for any species i whose p; + P; is
sufficiently smaller than p,, + Py, until the universe
reaches radiation domination. Particularly, for gravitation-
ally produced fermions, we have

2

My, 2
~— < Az, (12)
. M

/_’w"’i)w
ﬁt0t+P[0t

v

t, Prot

where ¢, is the time that the gravitational fermion produc-
tion ends, H(t,) ~ m,,. Hence, we expect the superhorizon
curvature perturbation to be approximately conserved
through the reheating, {(trp) & {4 (tinf)-

The dominant fraction of the produced fermions are
nognrelativisti(:.8 Then the fermion energy density behaves
as

d _ _
Ep,,,(t) ~-3Hp, for t>1, (13)

and from Eq. (11) a general CDM isocurvature is
written as

¥This is a valid assumption because gravitationally excited
fermion modes that contribute to the energy density are less
than the fermion mass, i.e., |f;|?> for k/a < m,,, where f is
the Bogoliubov coefficient. See Appendix B for details.

One can find that 5, « a=*(t) for ¢ > ¢, if p,, is renormalized
by the adiabatic subtraction. See Appendix B and Ref. [54]. Then
we can treat i as a pressure less matter.
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_ Spcom _ 30py
4 p,

Ss (14)

PcoMm

As discussed in Sec. II, the CDM may include decay
products of the inflaton ¢. Thus the CDM density pertur-
bation is generally expressed as

13) ) 1)
Pcom _ &“"(l_wy/)ﬁ

Pcom Y Dy Pm

, (15)

where the subscript m denotes the CDM component
associated with the inflaton decay products (such as
WIMPs of minimal supersymmetric models), and

wx// Eﬁy//(py/ +ﬁm) (16)

In particular, in the comoving gauge (3p,,/ 5{/, = 8pp/Pm =
op,/ by = 0), the CDM isocurvature becomes
56
59 ~w, 2 (17)

’l/pv/

where the superscript denotes the gauge choice.
Under the nonrelativistic assumption, we also approxi-
mate the fermion mass term m,, wy as its energy density'

Py My, (18)

and then the fermion isocurvature perturbation becomes

Py — </)lll> —w yy — <l/_/l//> ) (19)

(Py) Yo

(€)
O¢ ~
()

s Wy

Notice that as it is a quantum composite operator, we
renormalize it with regulators and counterterms invariant
under the underlying gauge symmetry, diffeomorphism in
this case. In the following subsection, we present the
technical detail of the composite operator renormalization.
From now on, we will use the comoving gauge in

"%Using the adiabatic vacuum prescription, the renormalized
energy density is approximated in the nonrelativistic case as

3
(o)) % my ) = 2m, [ 551

where N, is a fermion number operator, and the subscript r
denotes that the operator is a renormalized composite operator.
This quantity is in accord with

dk a3k
m, ((Fw),) = 2m, / mgwkvzzmw / S P

In particular, () has an advantage in constructing gauge-
invariant variables because it is manifestly 4-scalar, but Ny.
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calculating the correlation function and drop the superscript
(C) for convenience.

A. Regularization and renormalization
for isocurvature perturbation

In this subsection, we explain our regularization procedure
and renormalization scheme that determines the counter-
terms. The most crucial renormalization condition that the
isocurvature perturbations are sensitive to is Eq. (38).

For the convenience of preserving covariance and
incorporating the adiabatic vacuum boundary condition,
we use Pauli-Villars (PV) regularization [77]. This involves
the replacements

WowtD e  o—0+ Y o, (20)

and the addition of the Pauli-Villars part in the free
Lagrangian

1 1
EPV = ch <_2.g‘wayan8y0n - 2M%0%> (21)
n=1

+ Dn‘/_/n (iya va - mn)l//n . (22)

n=1

For notational simplicity, we let Cy =1, My = m, and
Dy=1, my=m,, and let index N =0,1,..., and
n =1,2,.... We require the following constraints for scalar
regulators:

Y ocyt=0. Y M3 =0. > Cy'Mi=0.... (23)
N N N
and the following constraints for fermion regulators:

> D=0, Y Dilmy=0. Y Dy'm}=0.... (24)
N N N

where we need to introduce sufficient numbers of PV fields
and constraints to cancel all the divergences. Notice the
additional constraints in the fermions with odd powers
of my.

With the operator dimension and the symmetry consid-
ered, the renormalized operator is written as

W)y, = W), (o), (14 6Zy) +8Z5(0,,)* +6Z5(0,,)?
+ 6246y, +6Zs +6Z¢0o,, +6Z,R + 6Z3Ro,,,
(25)

where each field operator should be understood as includ-
ing a sum of the PV fields as in Eq. (20). Then we give the
renormalization conditions to determine the counterterms.
For 6Z; which are not coupled to R, R,,, R, and their
derivatives, we can go to the Minkowski space and impose
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the renormalization conditions there. (Of course, we do not
need to separate the curved space contribution and the flat
space contribution with two computations, but we present it
here this way here for clarity in the physical partition.) We
define the renormalized operator yy at one-loop order,
such that it measures the number density of the fermion
particles. First, we require its expectation value in the flat
space vacuum to vanish:

<Vac|l/_/l//(x)|vac>ﬂat + Z<Vac|l/_/nl//n(x)|vac>ﬂat + 625 =0

(26)
d*'p I —p+my
— DY Trd - — 0Zs = 0.
== G o
(27)

This corresponds to the evaluation of Fig. 1(a).

Next, we impose the renormalization condition consis-
tent with the fact that as far as the fermion sector is
concerned, a shift of ¢ by a constant in the tree-level action
is equivalent to a shift in the mass of the fermion. More
explicitly, we demand that if ¢ is shifted as ¢ — ¢ + ¢, the
one-point function satisfies

<VaC| (l//l//)x r|VaC>ﬂat <VaC| [(l//l//)x r + A(WW)x r] |Vac>ﬂat’
L; = =y, (28)

where A(yy), . corresponds to a shift in the ¢ dependent
composite operator counterterms and £; corresponds to the
¢ dependent mass shift Lagrangian term. This leads to the

A
C

© (d) (e)

FIG. 1. Diagrams determining the counter-terms where the
solid line corresponds to the fermion line and the dashed lines
corresponds to ¢ lines. Diagram (a) determines 6Zs and 6Z, and
Diagram (e) does 6Z4, 6Z¢ and 6Zg. Diagrams (b), (c), and (d) fix
0Z,, 6Z,, and 6Z3, respectively. It is convenient to truncate the
external o legs on diagrams (c), (d), and (e) with zero momentum
insertion, making these mass insertions.
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diagrams in Figs. 1(c)—1(e) with the external o propagators
truncated and fixes 0Z,, 6Z3, 6Z,:

d‘*k 1kt 1y 4
— (—1/1) / {(Z M i kz T mM ; ) }
+6Z, =0, (29)
i d*k o1 —k+m 3
— i [t (CDw
(27) m i k*+ my, — ic

and

—id [ diy{@w),) +62, =0 G1)

o et

+6Z, =0. (32)

Furthermore, we require iy to have no loop corrections
when contracted with on-shell fermion. This leads to
Fig. 1(b) (where we have set the composite operator
momentum to be 0 for convenience) and fixes 6Z;:

o 1
5Zl / ZC 1 k2+M2

LMN
1 [—k—ﬂ+mM] oL [—k—zﬂrmN}_
i(k+p)?+miy—ie i(k+p)+my—ic

(33)

Similarly, we demand yy to have no loop corrections when
contracted with on-shell scalar line. Explicitly, the diagram
corresponds to Fig. 1(e) determining 0Zg:

it [ @) o), er + oz, - oz =0 (34

:>l/1/

1 —k+m
Tr{ZDM e f

-1 257 _
x EN s ]zv_ie}+5z4—p 57 =0,
where p? = —m2.

For 6Z; that depend on curved spacetime nature, we
match the renormalized result to that from the adiabatic
subtraction. In order to fix 6Z;, we impose the number
density (in|(yw),,|in) to be the density defined by the
adiabatic prescription (see, e.g., [29,51,52,54,78-80]):
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ny = (il () lim) + 3 (inli(x), in) + 625 +6Z,R (x)

n=1

(36)

= (inJpy(x)|in) — (WKB, vac, t, [yry (x) [WKB, vact, ),
(37)

where |WKB, vac, 7,) is the WKB vacuum defined at 7, by
the adiabatic prescription. The diagram of interest is shown
in Fig. 1(a), and the divergent part of 6Z, determined this
way is linear in the fermion mass.

In order to determine 6Zg, we repeat the consideration
analogous to Eq. (32) on a background field o(x) = c,
where c is an infinitesimal constant. Since a constant o shift
is equivalent to a shift of the fermion mass, we want to
choose 6Zg to get

A0,,n,,(x)
=it ()3 il (i (5 (OB (5D ) i) o
CTP N.M
Y674+ 6ZgR(x), (38)

where the subscript CTP denotes closed-time path, and P is
the path-ordering operator for an “in-in” exception value.
(For example, see Refs. [81,82].) Note that the diagram of
interest corresponds to Fig. 1(e). As we will see later, this
renormalization condition plays a crucial role in determin-
ing the isocurvature correlator. The solution for all the 6Z;
can be expressed in terms of Feynman parameter integrals.
However, such explicit expressions are not relevant to
determine the isocurvature correlation function. In contrast
the left hand side of Eq. (38) is important.

To summarize, we have given a prescription to regularize
and renormalize the composite operator yy. The renorm-
alization conditions ensure that (in|(yy), |in) agrees with
that defined by the adiabatic prescription in curved space-
time, and they also ensure that a constant shift in ¢ is
equivalent to a constant shift in the fermion mass. Note that
because the gravitational production of fermions is still in
flux when m,, < H, we evaluate the number density ny,
later than 7, where H(z,) ~ m,,, as far as the renormaliza-
tion conditions are concerned.

IV. SCENARIO CONSTRAINTS
ON SCALAR FIELD o

In this section, we explain the constraints on the Yukawa
coupling 4 that comes from requiring ¢ to behave as an
unscreened long range force carrier whose on-shell particle
states do not significantly participate in y production.

We will find that the (o) |, power spectrum relevant for
the isocurvature perturbations is not suppressed if

m,/H(t.) <1 where t, is the time at which H(z,) = m,,
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(i.e. t, is the time at which the fermion + antifermion
number freezes [S1]). This implies m, < m,, is the relevant
parameter region for the scenario of this paper.
Furthermore, in order to prevent any large isocurvature
perturbations and a relic abundance of o, we assume that
(o) =0 and the o particles decay before ¢ becomes an
important fluid component of the evolution of the universe
(e.g., before matter-radiation equality). Note, however, that
this restriction is a matter of simplicity. There exist
parameter regions in (m;, A) such that ¢ survives as a
long-lived weakly interacting particle (i.e. a dark matter).
However, in such cases, the constraints from the relic
abundance and the isocurvature of ¢ restrict the ¢ mass to
be very small, e.g., m, <107 eV for H;,; ~ 103 GeV.
(See, e.g., [72,83-85] for the parametric bounds for the
QCD axion produced by inflation.) In principle, it is
possible to build a model that has such small m, with
the help of some underlying symmetry, such as a shift
symmetry.

Although we assume that m, < m,,, ¢ would generally
acquire a plasma mass correction through interactions with
an ensemble of y particles. Thus we consider the effect of
the produced y on the o correlator and show that the effect
is negligible. We expect the fermions do not affect scalar
modes before the horizon exit because the mass correction
by the fermion is still small compared to the Hubble friction
during inflation. After the scalar mode exits the horizon, the
fermions exert a tiny computable drag on ¢. The equation of
motion of ¢ from the action (6)11 is written as

0 = (in|[(0 — m2)o, — Wpw, + 6Zy + 6ZxR, + 6Z,00,
—émio, + 6Z:R, 0| - ]|in) (39)

= (O, - m) (o] ) +id? / (@) [y v l)onl)
+ (5Za|:|x - 5m(2r + 5Z§Rx) <6x[' ’ ]>
(620 +5ZgR ~Alpw ) (- ]) + O(y).  (40)

where [--:] denotes any quantum operators in the
correlation function. We choose the counterterms 67,
and 6Zp such that the tadpole (o) vanishes, i.e.,
(6Zg + 6ZxR — Awy)) = 0, where the PV regulator is
assumed. Moreover, when o varies very slowly outside
the horizon, we factor (o,[---]) out of the integral in
Eq. (40), and we renormalize the integral using the
counterterms (6Z,0J, — 6m2 + 5Z¢R,){(o,[---]) such that

""The counterterms appearing in the action includes

1 1
Sc_ta/(dx) [—5526(85)2—55m§a2+5zoa+6ZRRa+5Z¢R62 .

Note that the linear ¢ terms exist in the action because the action
does not preserve the Z, symmetry due to the Yukawa coupling.
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the result is consistent with that obtained by the adiabatic
subtraction'”:

i / (d2) [y ]) + (~6m3 + 6ZeR,) = ~22 (g:i )

(41)

where n,, is the renormalized fermion number density
defined by Eq. (37), and we have used Eq. (38) in the
derivation. Therefore, we find the effective mass of ¢ when
it slowly varies (i.e., k/a < H and m, < H)

On,, (t
met = m2 + Am2(t)  m2 + 12 —nW( ) . (42)
om,
Because e estimate 1, < 0(0.1)(m,H)*? when

< H." based on dimensional analysis, we expect that
the mass correction by the y loop is

Am2 () w2 2 )
’ om,,
{ 0(0.1 or less)A2m,/*H*? for m,, < H(1)
0(0.1)22m, for m, > H(1)

(43)

Therefore, in general, before the fermion production ends
m,, < H, this scalar mass correction Am? does not ruin the
stability of our scenario m2 + AmZ(t) < m} < H*(1) as
long as m2 < m}.

Next, we ask the question of which parametric region
would be consistent with the simplifying assumption that y
particles are primarily produced gravitationally and not
by o. To this end, we first consider the annihilation
oo — yy. The annihilation is the most significant at the
end of inflation because s particles produced from ¢ before
the end of inflation are diluted, and 66 — yy after the end
of inflation is also limited because the allowed kinematic

In other words, we identify —6m2 and 0Z with 6Z, and 6Zg

in Eq (38), and 6Z,0[1 is neglected since o is slowly varying.
YNote that the adlabatlc prescription to determine the number
densuy n,, does not apply for modes m,, < k/a < \/m, H when

, < H because vacuum varies nonadiabatically, ie., the adia-

myk,H

batlclty parameter €, = k’ 2 1, where k, = k/a and w; =

,/k2 +m See Appendix B for details. However, we can

estimate the upper bound of the number density as

dk
w0 = [ G

3
/\/_dek 1 3

~~ 0(0.1)(m, H)

‘ 2

for r<t,.
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phase space is redshifted. Thus we compare the number
density of the produced y from o at the end of inflation,
n,_,, with that of gravitationally produced v, n,, (1.) ~ m;,
and we require their ratio to be small:

te)

() - (e e
~ <HI§Z*)>2H3£—;}[2(ZI;.H;
) 12;"}1[_; < (45)

where the subscript ¢ means a variable is evaluated at the
end of inflation z,.

Even though m, < m,, the decay production of y
through ¢ — Wy may still be possible if ¢ is sufficiently
off shell due to its interactions with finite density of y in the
subhorizon region [the subhorizon physics here is different
from the superhorizon physics considered in Eq. (42)]. To
turn off this channel, we require that the o mass corrections
from the fermion number density at the time of the end of
inflation be small. This requires

H,/(27)

A* <1, (46)

W

where k 2 O(1). To see how x = O(1) can come about,
consider the following estimate of the subhorizon thermal
effect. The maximum effective number density of fermions
at the end of inflation is

T

H.\2
n,(t,) < 4my, (2—€> . (47)
The energy density associated with these fermions is
H,
AV ~n,(t,) ( ) + 1202, (48)
2n

where we neglected m, < H,/(2x). This leads to an
effective m, correction of

2
(1) #(Zﬂ) <4im, C’-ﬂ) L (49)

Kinematically blocking the ¢ decay into y, we find

H,
4)2 <E> <m,, (50)

which corresponds to k = 2. Note that this condition is
more restrictive than Eq. (45).

2
Am;
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zZ w
{ OO
(a) i (b)
Xy Xy X y
z
() (d)

(e)

FIG. 2. The leading order diagram (a) and the next leading
order diagrams (b), (c), (d), and (e) contributing to (¥ py,),
where the cross-dot vertices corresponds to Wy insertion.
Comparing the large r (r = |X — ¥]) behavior of the equal-time
correlator of the fermion and the scalar field, we show that
diagram (b) dominates in the limit r — oo.

In sum, requiring ¢ to behave as an unscreened long
range force carrier whose on-shell particle states do not
significantly participate in y production gives a constraint
on A. The strongest condition is given by Eq. (46)
with « = O(1).

V. ISOCURVATURE TWO-POINT FUNCTION

In this section, we evaluate the two-point function of the
renormalized isocurvature operator dg, given by Eq. (19).
The average number density was computed in [51], the
result is summarized in Appendix B. We only need to
evaluate ((py), (W), ). Since we want to use the
quantum computation to set the initial condition for the
subsequent classical fluid evolution, we will choose
the time of the evaluation such that both the quantum
and the classical fluid descriptions apply. We take x° =
YW = 1y at a time after the particle production ends, since
the fluid description cannot describe the particle production
process. We will take the separation |x —y| to be large
enough such that the intersection of their past light cone
I=(x) N I~(y) lives deep within the inflationary era. This
ensures that the contributions from late-time short distance
physics (e.g., reheating, phase transition) are minimized.
The relevant diagrams for ((yy), ,(w), ). are given in
Fig. 2. The crossed dot represents (), , insertion, the
solid dot represents the Yukawa interaction vertex, the
dashed line represents the scalar ¢ propagator, and the solid
line represents the fermion propagator.

A. Leading order result

We first consider the leading order diagram in Fig. 2(a).
The diagram is explicitly written as

PHYSICAL REVIEW D 91, 043516 (2015)
<‘/_/le/_/‘//)*>(11) - _Tr[<l//xl/_/y><l//yl/_/x>}
— Zvi,xUj,xUj}yVi,y' (51)
iJ

Using a contour integration technique, we can evaluate the
mode-sum analytically. The details are given in
Appendix C. The result'® is

Wy )10
7t4a§|1}—§'|6 (1 + 0[(%)2])
7140.?Il)?—§|6 (47) (g_w)a exp(—2z7%)  (my, > Hiy)

I{inf v
(52)

(my, < Hips)

f

where H,, is the expansion rate during inflation. We can
understand this result by backtracking the two points x, y to
the time when they were deep inside the horizon and seeing
what happened as they grew apart.

In the heavy mass case (m,, > Hj,), the Compton radius
m,,! is smaller than the horizon radius Hi,{. The physical
separation rpp, Will first grow to the Compton wavelength
and trigger the exponential suppression factor

exp(—2m,, rpnys) in the correlator,

3

_ _ m
<l//l//xl//l//y>ﬂat,mu,rphys>1 ~ 471_3 rlg exp<_2mwrphys)- (53)
phys

As the physical separation ryyy, grows further to exceed the

horizon radius H;}, the correlator would freeze and start

decreasing as (a,/a,)®, where a, = 1/(H,r) denote the
1

Hiner

we recover the heavy mass formula:

scale factor at the horizon crossing. Substituting a, =

_ -1
and Tphys = Hi g,

6 3
a, my,
(;) G, P2y o)
n phys

1 my, "\ 3 m
~— (2w o M) 4
aSr® (Hinf> exp( Hinf> (54)

In the light mass case (m,, << Hjy¢), the physical distance
will cross the horizon radius first, without the exponential
suppression of exp(—2#m,, rpnys). From the flat space UV

1

limit result -—,
phys

“Note that we do not consider the heavy mass case, m,, >
H;,; where H;, is the expansion rate during inflation, for the
isocurvature because the estimation of the particle production
depends on how the inflation ends as described in Sec. II.
However, we provide the leading order of the two-point function
to develop better intuition for the behavior of super horizon
modes of .
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<l/_/l//xl/_ﬂ//y>ﬂat.mrphys<l ~76 (55)
rphys
we use a, = ﬁ and ryys = Hi} to obtain
a\° 1 1
— | =—~=%=%- (56)
ay) Tonys G9T

Thus we recover the light mass result.
Unfortunately, the fractional relic density fluctuation at
(6p.py)

the CMB scale' is too small
). e
- , 57

(Py)*  mymi(aS/a®)

46,6
l,,/(ﬂarMB)N< 1

where rcyp 1S the comoving distance for the typical CMB

observation scale and the subscript * denotes the time when

fermion production ends. Let acyp denote the scale factor

when the CMB scale exits the horizon, and then we have

a, ml// rcmB

rems ~ dompHing (58)

Assuming the fermion production ends during reheating
when m,, = H(t,), and H « a~* during reheating, then we
have

et acH, (“f)l_a(m)l_i. (59)
a,m, a,H, \a, H,

Assuming that inflation ends 50 e-folds after the CMB
scale exits the horizon and a reheating effectively like a
matter dominated period, i.e., @ = 3/2, then we have

PHYSICAL REVIEW D 91, 043516 (2015)

(5px0py) N <aCMBH inf)6
<:5W>2 a*ml//

N aCMBaeHinf 6~e—300 ﬂ 2 (60)
a, a.m, my)

Using the fermion relic abundance formula (for Tgry =
10° GeV and g, = 100 cases) w,, ~ (m, /10" GeV)?, we
obtain

(Opxdpy) 5 (Bpabpy)
74

pt201 <p1// > 2

_ H, 2
¢ 300<1010 GeV) - (61

We thus find that generically the pure fermion isocurvature
is very small on scales relevant for the CMB.

B. Next leading order result

We consider the diagrams in Figs. 2(b)-2(e), which
contain the effects of the Yukawa interaction to the fermion
production. We can perturbatively compute the diagrams
using the “in-in” formalism (e.g., see Refs. [86,87] and
references therein).

First, we estimate which diagram gives the largest
contribution when x and y have large spatial separations.
From the fact that equal-time correlator (o,0,) scales as
r*~3 where 1?» =9/4—-m2/H?> from Eq. (A13) and
(w.,) scales as r—, we expect that diagrams that have
fewer fermion lines stretched between x and y decrease
slower as r — oo. Thus, we conclude diagram 2(b) gives
the dominant contribution to the two-point function.

For diagram 2(b), we expand it using commutators

1y(x,y) = (W), (W), ) e diag(h) (62)
=4 [ @) [ @)ooy o)
a2 [ (@) [ ) ) i) (oo 00 - )
w4l [e) [ @) i) ) o) 00 - w) (63)
< (@22 [a2) [ @ wwd) oy v o) (64)

where (dz) = \/—det(g,,)d*z, [---] means antisymmetri-

zation and {---} means symmetrization, and we have
implicitly assumed the PV regulator. From the scalar and

PSince (6pdp) is frozen as long as the two points are outside of
the horizon, we can extrapolate this large spatial separation result
obtained at the end of inflation to the recombination time.

|
fermion mode functions in de Sitter spacetime, we know
([oy,.0,,]) is suppressed by a™2 relative to ({c,,.,0,,}),
whereas ([yy, .y, ]) is suppressed by a™' relative to
({ww,,.ww,,}). The last line is obtained by keeping only
the dominant contribution.

Since the fermion particle production ends at 7, and the
previously produced particles have been diluted away, we
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expect the z and w integrals to peak around the time ¢,.
For late time and large spatial separations, the scalar
correlator (o(.0,)) is slowly varying with respect to
changes in z and w. Thus we may approximately take
<5{15w}> = <6{Z06w0}>, where z = (t*’z) and wy = (t*’j;)’
and factor it outside of the z, w integral:

1x.9) = o) | [ o) )|
| [ @t (65)

The remaining fermion integral [*(dz){[py ., py.]) is
quadratically divergent. The counterterms 6Z,0 + 6ZgRo
in (py), are in place to cancel such divergences.
Furthermore, our choice of the renormalization conditions
given in Sec. III A ensures that a constant shift in o is
equivalent to a shift of the fermion mass [see Eq. (38)]. An
explicit computation of the fermion loop integral using the
adiabatic subtraction is given in Appendix D. Thus we have

((85),.4(85) ryInro ® @3 420, Inmy | ][0, Inmy, |, ]

X(0((1)0G0))) (66)

where ¢, is the time when fermion production ends [i.e.
my, ~ H(t,)] and 0,, denotes the derivative with respect to
my,. Note that ((5s),.(6s),,)nLo freezes for ¢ > ¢, since
Oyyny, and n,, behave as a~? after the fermion production
ends. We will discuss the numerical implications of this
result below.

To summarize, we computed the isocurvature correlation
function to the next leading order, as in Eq. (66). Intuitively,
the light scalar’s quantum fluctuation modulates the fer-
mion’s mass, which affects the fermion relic abundance. In
the same line of thought, we may extrapolate this result to
estimate higher order corrections

()74 (8s)y)tun

W2 (n,(m, + 16(x,1,))n, (m, + 16(3.1.))),

r,y>

, (67)

~

5}
My

where we have treated n, to be a function of its mass and

the expectation value is taken with respect to the ¢ field.

C. Isocurvature power spectrum

In the long wavelength limit, which corresponds to the
low multipoles in the angular CMB anisotropy, the temper-
ature fluctuations dominantly come from the Sach-Wolfe
term [18], which is expressed as

A 1 2
Ar_ 1. 2 (68)
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Then the power spectrum of the temperature fluctuations

A2, (k) = 2"—; / d3x<¥ (t.%) % (t. 6)>e—f%-)?
1 4
= EAg(k) +gA§S(k), (69)
K R > -
M3k) =55 / Px((1,3)¢(1,0))e*F, (70)
K R > -
ML) =0 / Px(Ss(t,%)5(1,0)) e~ (71)

where the cross-correlation contribution ((5g) has been
neglected because of the reason explained in Sec. VIL
When the leading term approximation (66) is valid,
Eq. (66) yields the isocurvature power spectrum

anw(mv,)

3,0 =3 02 () i)+ o), (72

74

which includes the extra factor a)g, due to the thermal relics.
Furthermore, when the mass of scalar field o is sufficiently
light such that ¢ does not start its coherent oscillation
until the fermion particle production ends, i.e.,
my < H(t,) < Hyy, the power spectrum for o is

A2 k) & ) (73)

where £, is the time when the scale k exits the horizon. Note
that we have already shown that the correction of m, due to
the fermion loop is negligible in Sec. IV. Therefore, the
isocurvature power spectrum becomes

8mnw(mv/)) 2 Hz(tk)

(74)

AZ (k) ~ ww( " o

W

The currently known parametric bounds for this isocurva-
ture power spectrum is presented in Sec. VI A.

VI. RESULT AND DISCUSSION

A. Parameter bounds

In this subsection, we present the allowed parameter
region in the fermion isocurvature model from the obser-
vational constraints using the dark matter relic abundance
and the CDM isocurvature power spectrum. In this sce-
nario, there are five independent parameters: m,,, Hiy, 4,
Try, and m,, where H;; is the Hubble scale during
inflation and TRy is the reheating temperature. We assume
H;,; and Tgry are free parameters governed entirely by the
inflaton and the reheating sector. As discussed in Sec. II, as
long as m, < m,,, the exact value of the scalar mass m,, is
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numerically unimportant in this model. Therefore, we are
basically left with two parameters, namely 1 and ml/,.16
For the light fermion, m, < Hj,, the fermion particle
number freezes when H(t,)~m, as reviewed in
Appendix B. In particular, the Yukawa coupling works
effectively as a mass shift in our scenario mgy =
|m,, + A6(t,)|. The fermion relic abundance (B3) becomes

N2/ T
Q,h? ~3r( e S (75)
1011 Gev) \10° GeV

where the extra factor r comes from the difference in the
effective masses at ¢, and later time, at which the energy
density of y is not negligible, such as the matter dominated
(MD) era. For example, if o is treated as a Gaussian random
variable with /() ~ Hyy¢/2m, we can approximate r ~
my, [(megr) and write

My, 2( Tey
10" GeVv 10° GeV

2zm,, AH ¢ 2 Tri . ’
THiog (10“ GeV) ey) A my < AHin/2n
(76)

if m,/, > AHinf/Zﬂ'

Q1 ~

where O(1) factors are neglected.
Furthermore, from the result (74) in Sec. VC, the
fractional isocurvature amplitude [88] becomes

A%Y
=2 A2
A§+A§5

ﬁ m,l, 2 H 2 TRH 2 (77)
2 \10* GeV 1083 GeV 10° GeV ) ’

where we have used

as

(78)

Ot { m,,! for m,, > AH;¢/27

n 222~ Hyb for m,, < AHy/27

W

because the number density n,, at the time 7, is determined
by only one dimensionful scale mg ~ H(t,). The current
observational bound [1,89,90] of the isocurvature for the
uncorrelated case, i.e. ({5) = 0, is ag < 0.016 (95% C.L.)
from the Planck + WP9 combined data, which yield the
constraints on the parameters 4 and m,,. Combining the
above considerations, we have the parameter plot shown in
Fig. 3. We emphasize that the parameter region beyond the

'“Note that we implicitly assume that if m,, and Ty are such
that the dark matter relic abundance is not saturated by the y
energy density, the other CDM sector in Eq. (6) is adjusted to
provide the rest of the dark matter. Note that when the y dark
matter abundance is small, no large tuning is needed to make this
occur since the well known WIMP miracle can saturate the dark
matter abundance.
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FIG. 3 (color online). Bounds on the fermion mass and Yukawa
coupling for various inflationary Hubble scales. The vertical
bound corresponds to the total dark matter relic density con-
straint, and the right diagonal one corresponds to the constraints
from the CDM isocurvature, respectively. The left diagonal one is
a conservative bound from the o annihilation of this model,
Eq. (50), which may be relaxed. The splitting dashed lines in each
region separates the small mass and large mass correction
regimes. In this plot, we set Tgy = 10° GeV.

(left diagonal) bound from the ¢ annihilation, Eq. (50), is
not necessarily excluded. Because of the uncertainty of the
o annihilation effect, we provide it as a conservative bound
of this model.

The case that m,, < AH;,¢/(27) (which we will refer to
as the large mass correction regime) is potentially the most
interesting case because the fermion number density n,,
depends on |m,, + Ac|, not m, + Ao as the sign of the
fermion mass is irrelevant for particle production.'” This
may lead to interesting features such as large non-
Gaussianities when the effective mass varies from negative
to positive depending on the local Hubble patches at z,.
However, this parametric region has a couple of problems:
(1) the perturbative calculation of n, may be unsuitable
since we are not resuming the large mass corrections; and
(2) Eq. (46) may not be satisfied. Hence, for the rest of this
section, we primarily focus on the case that
my, > AH;/(27), which we will refer to as the small
mass correction regime.

B. Non-Gaussianities

In this subsection,
Bs(P1. P2, p3) defined by

we compute the bispectrum

"The sign of the fermion mass changes under a chiral
transformation.
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(226 (Z@) By(pr. s )
i

= /d3x1d3x2d3xge_izf’3“’a<5s(}1)5s(}2)5s(}3)>-
(79)

The fermion density fluctuation is intrinsically non-
Gaussian since n,, is the nonlinear function of &, which
is treated as a Gaussian random variable. When the
effective mass fluctuation due to Ao is small, we can
Taylor expand the number density with respect to Ao,

ny, (m,, + Ao) = n,(m,) + l(amwnw(my,))o

& LR,y (m,)? + OF). (50)

Then the bispectrum is written as

Bs(P1, P2, P3)

0 202
= st OO 45 )83 ) 42 perm]
W
+0(2°), (81)

which is shown diagrammatically in Fig. 4. Now we
compare this with the observational non-Gaussianities
using the conventional non-Gaussian parameter fyr,
defined by

Lo 6
By(p1, P2, P3) = ngL[A%(Pl)Ag(Pz) +2perms|.  (82)

Identifying B, as the bispectrum of the temperature
fluctuation using Eq. (68) and comparing it with By, we
find in the squeezed triangle limit

8B,
=g
Belpy—1
S (0,m, () A2(p))A3(p) +2 perms
6 my, AZ(p1)A%(ps) +2 perms’
(83)

FIG.4. The leading order diagrams to 3-point function (5¢655s)
is shown. The cross-dotted vertices corresponds to yy/n,
insertions.
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The factor of 8 arises because the radiation transfer function
for isocurvature is twice larger than that for adiabatic
perturbation for the low multipoles of the CMB anisotropy
as shown in Eq. (68). Although the isocurvature non-
Gaussianities parameter f§; should not be compared
directly with fy; defined by the curvature perturbation
[91], this can be done with the extra O(1) correction factor
[31,34,74,92-94]. The reason why aﬁln,,, appears instead of
a first derivative is because the squeezed triangle limit
allows the short distance propagator to become important.
Furthermore, subhorizon physics via the Yukawa interac-
tion, in principle, gives rise to the non-Gaussianities of
other types, e.g., the equilateral type. We postpone this
study for future work.

In order to obtain the functional structure of n,, (m, H; 1),
which relies on the background behavior, we specialize to
the case of the inflaton coherent oscillation reheating
scenarios, in which the total fermion number freezes during
the reheating. During the early stage of the reheating when
the inflaton field oscillates coherently, the equation of state
of the inflaton is zero and the background behaves like the
MD era. After approximating the early stage of the
reheating to the MD-like era (i.e. inflaton coherent oscil-
lations period), we get [see Eq. (B2)]

ny (1) ~ g <M>3 ~ my H? (Z_> T (s

a; '

However, this leading order result gives G%nw n,, = 0 which
renders f3; = 0 via Eq. (83).

To find the nonzero result of f3; , we need to study the
mass dependence of n, in more detail, which in turn
requires the knowledge of |B:(#;m)|*>. To this point,
we have approximated our spectrum by |B;(t;m)|* ~
1/20(k, — k), where k, = a(t,)m and ¢, is the time when
m = H. However, in general the spectrum should contain
more than one characteristic scale, such as k, = a(t,)H,
where 7, marks the end of inflation. Thus, in general, the
number density should contain a correction factor f (Hﬂ) ie.

n, ~ m, H? (Z) g <";”> (85)

and f(0) = 1. This higher order correction to n,, would
render 02, n,, # 0 for the MD-like reheating scenario.

For simplicity, if we assume that f(x) = 1 + a;x,'® then
in the limit where A2, Ag, and Ags are scale invariant, we
find

®0n very general grounds, n,, cuts off exponentially at very
large masses, m, 2 H,, as shown in Appendix B and
Refs. [30,31,51,52,78]. From this, we qualitatively estimate
the correction factor f from this exponential cutoff, which gives
an O(1) value for a;.
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S 0!5(1, m!//’ He’ TRH) 2 Qy/hz(mx//v TRH) -
fa~a

0.02 1077
my,[H,
x( i"o_l > (86)

Although we would naively guess a; ~ O(1), the justifi-
cation of the Taylor expansion for f(x) and the estimation
of the coefficient a; will be left for future work since the
main thrust of this work is the computation of isocurvature
perturbations and not the non-Gaussianities. The maximum
fau for the m,, 2 AH;,¢/(27) case (consistent with the
small mass correction case) is achieved when this inequal-
ity is saturated and ay is at its phenomenological maximum.
We find this maximum to be at

flé;/L,max ~ O(loo)al (87)

My
Hiy/(27)

Recall that our scenario assumes that 2zm,,/Hi, < 1.
Hence, although f3; cannot be made arbitrarily large,
there may exist a parametric regime in which f§; is
observable depending on a;. Note that this extremum
value corresponds to making the inhomogeneities
O(1) while staying consistent with phenomenology
through the w,, dilution factor: i.e. at this parametric
point, the fermion abundance is €, h? ~ 10~® while most
of the CDM is made up of assumed dark matter different
from .

VII. NATURAL SUPPRESSION
OF GRAVITATIONAL COUPLING
TO THE INFLATON

As briefly discussed in Sec. II, the gravity induced
coupling of the fermion to the inflaton gives a suppressed
contribution to the isocurvature correlation function.
We would like to consider this in more detail in this
section. In addition, the argument below also shows that
(pw() cross-correlation is negligible, justifying the clas-
sification of these fermionic isocurvature perturbations as
uncorrelated.

First, consider the {yy interaction given by Eq. (F17)
following the argument given in Ref. [53]. In this case, the
most important coupling term is az&siij,f € H;, because
the other interactions are derivatively suppressed, and it
decays as O(1/a?) or faster. Since ¢ also freezes outside the
horizon, using the similar argument given surrounding
Eq. (65) we can factor the ¢ correlation function out of the
dominantly contributing integral, which corresponds to the
diagram (b) in Fig. 2. Then we have
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Loy (x, y)

VU anlon) [ / dt. / Bzad(t
{ [ [ @wer i), :‘,,-<w>]>}
+o() 1

where zy = (£,.X), wy = (t..5), t=x"=y", and ¢,
denotes the time that the comoving distance r = |x — Y|
crosses the horizon during inflation. In the integral, we have
assumed the PV regulator. Note that 4 [ (dz)T;,i is a
generator of the spatial dilatation, x' — (1 + 4)x’ which
is an element of diffeomorphism. Thus, we have

/ dt, /dgza

because yy is a diffeomorphism invariant scalar. Indeed,
this is a Ward identity similar to that of Ref. [53]. Although
the integral in Eq. (88) does not completely vanish (because
of the time integral limit being ¢, and not —o0), the mode
function of y decays as 1/a’ (as shown in Appendix C)
because of the classical conformal symmetry characterizing
the massless fermionic sector,'’and we have

/dt /d3za

In a similar manner, we can have

(i T4 )]

(.. Ty ())) =0 (89)

(e T ~ 0 (L), 00

a’(1)

Gty ~o( ) o1)

Therefore, we can conclude that large scale density
perturbations of y particles generated by ¢ interaction
and the curvature and isocurvature cross-correlation via the
Cyy are negligible.

VIII. SUMMARY AND CONCLUSION

In this work, we have presented a fermionic isocurvature
scenario which contains fermionic field fluctuation infor-
mation during inflation. To our knowledge, this is the first
work that describes isocurvature inhomogeneities of

19Thus, the result is different for a scalar case, which is
minimally coupled to gravity. In particular, the cross-correlation
for the light scalar case is computed in Ref. [53] and is

ceneemn~o((5a) - (5a) )

where v =
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fermionic fields during inflation. Because massless free
fermions have a tree-level conformal symmetry, such
isocurvature models must couple to a conformal symmetry
breaking sector. Because the { sector coupling to fermion y
is suppressed due to the dilatation symmetry, an additional
scalar sector o is coupled to y (with mass m,,) through a
Yukawa coupling with strength A. Composite operator
renormalization in curved spacetime plays an important
role in determining the isocurvature perturbations. We have
computed the fermion isocurvature two point correlation
function which has its dominant contribution in the long
wavelength limit coming at one-loop 1PI level. We have
also estimated the local non-Gaussianity and found a value
that is promising for observability for a particular corner of
the parameter space.

As far as the existence proof inspired “minimal” model
of this paper is concerned, a large phenomenologically
viable parameter region spanned by {4,m,} exists for
various inflationary models controlled by {Hjs, Try }- The
large A parameter region is bounded either by current CMB
constraints on isocurvature perturbations or by the con-
straint of ¢ not decaying to y. The large m, region is
constrained by the relic abundance nonoverclosure. The
small m, region is constrained by requiring that ¢ not
decay to y (for a fixed 4 and H,;). The large non-
Gaussianity parametric region is associated with the largest
A consistent with isocurvature bounds and the simplifying
assumption m,, 2 AH;y¢/(27). This intuitively corresponds
to a large fermion inhomogeneity [i.e. dp,/p, ~ O(1)]
with a tiny p,,/(p, + p,) where p, corresponds to an
adiabatic cold dark matter component that helps saturate
the phenomenologically measured cold dark matter
abundance.

Our results regarding the gravitational fermion produc-
tion give good dynamical intuition on many models with
dynamical fermions existing during inflation. One short-
coming of the explicit model used in the current work is the
tuning of the ¢ sector imposed to keep it light and to prevent
any o decay into y. In addition to model building issues, it
would be interesting to consider in the future non-
Gaussianities from such models more completely and
carefully beyond the estimation presented in this work.
It may also be interesting to see what UV model fermionic
sector built independently of cosmological motivation can
be constrained using the analysis presented in this paper.
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APPENDIX A: SCALAR AND SPINOR FIELDS
IN CURVED SPACETIME

First we list the relevant results about scalar field.
Consider the following action:

1 1 1
S= [ diavial{ - 307000, s = ere )
2 2 2
(A1)
This gives rises to equation of motion

1

N

The scalar product between two solutions is defined as

0,(9"\/1910,¢) — (m* + ER)p = 0. (A2)

(b1 hs) = —i /Z 310, — a0,V gsld2r. (A3)

where X is a spacelike hypersurface.
For the FRW metric, we can use mode decomposition

$(x) = / Filepu(x) +cii(¥)  (A4)

with the normalization condition
1 7 >
ez ch) = 8~ p). (a3)
(uz, uﬁ) = 53 (k - [3) (A6)
The mode functions can be written explicitly as

oikE

(X)) = —m—— , A7

uk (X) (277.')3/261(]1) fk(rl) ( )

fkaqf]t - f]tanfk =1 (AS)

The time part of the mode function obeys the differential
equation

2

d 1
d—ﬂsz,n + {kz +a; [m2 + (é—ER(n)>] }fk_” =0, (A9)

where R(17) = 6a~'d;a, and 5 is the conformal time. For de
Sitter spacetime, the mode solution for a minimally coupled
scalar (¢ =0) is

1 ok, k
— T2 LEwH) O
1 ="7720/2 <aH>ez S <aH>’ (A10)

2

S}

—9_m
— 1

where v 5.
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The following relations of the first kind of Hankel
functions are useful:

_ifw (g) (z=0), (Al

(1)
H,
(z) = .

2 . .
H,(,l)(z) — (e Bl (7 5 00).  (A12)
74

From the mode expansion, we may construct the equal-
time correlator in dS spacetime. In particular, we are
interested in the large separation limit. For light scalar,
when v is real, we have

H? rG-v)

~ aHr)*3.
Y IGIr(1 - v)sin(vr) (aHT)

(A13)

(0.0y)

For heavy scalar, when v = ia and if a ~ %> 1, then

H3/2m /2
(0,0y)

v~ 3/2

mo 1
. e~H" sin {2gln(aHr) -1 (aHr)=3.

(A14)

Next, we give the result for the spinor field. Consider the
free Dirac field y action

s= [@)r vy -mp). (19

where (dx) = d*x\/|g,| and y* = y“e,; with vierbein 4.
The covariant derivatives for y are defined by

1

V”y/ = aﬂl// + Ea),‘inabl//, <A16)
the spin-connection is defined by
wit = edV e, (A17)

and the Lorentz generator on the spinor field is given by

1

z:ab == [yw 71)]’

i (A18)

where the y matrices satisfy {y,.7,} = =21, Wwith
n =diag(—1,1,1,1). Note that the sign convention is
chosen such that [Z!2, 23] = =13,

Extremizing the action with respect to oy and dy yields
the equations of motion:
(A19)

(iy”V” - m)l// =0, Vﬂy’/(—iy”) —ym = 0.

The solution space can be endowed with a scalar product as
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W1 y2)s = / dZn, i y'y, (A20)

in which X is an arbitrary spacelike hypersurface, dX is the
volume 3-form on this hypersurface computed with the
induced metric, and n, is the future-pointing timelike unit
vector normal to . The current conservation condition
V, (1 7y) = 0 (A21)
implies the integral in the scalar product is independent of

the choice of X.
If we adopt the Dirac basis for the y matrices, i.e.

I 0 . 0 o
U= . = . , A22
Y <0 _1> y <_6, 0> (A22)

the mode functions can be written as

1 eil;-% Uy i
U- (x) = —— b h; A23
k,r( ) a)3c/2 (271.)3/2 (ruB,k.xO ® k.r ( )
Vi, () = —irU: ()
1 e—ik} ru; § 10
_ k. —ic))ht . (A24
o 2x) <_”Z,k,x0 ® (—ioy)hy . (A24)

where h; , is the eigenvector of k- 6. The normalization
conditions require

AT (A25)

|MA,k,i1|2 + |MB,/<,?7|2 =1 (A26)
The time dependent parts of the mode functions obey the
following equation:

)= (7 ) ()

In the special case of the de Sitter background with the
Bunch-Davies boundary condition, we have

o FE(] = 1
win EGe TR G
( ) _ f (A28)

b\ i)

u k

12 —im(t—t,)+i%n(2k/a,H) (l m
1_ee H (3 lH)
if|k'xo| < 1 > am . m °
%e—z,,ethm(f—te)—lyln(ﬂc/apﬁ)r(% +im)

(A29)
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Since the interaction picture operator y(x) obeys the
same classical equations, Eq. (A19), we can expand the
operator using {U;, V;} as the basis,

w(x) = ZaiUi(x) + bV, (x). (A30)

and the normalization conditions on U;, V; give the usual
canonical anticommutation relations of the creation and
annihilation operators.

The first order WKB approximation is defined as

WKB [wtam o ,
<MA> _ 2w e—zf’wdn‘ (A31)
up \/wgw

In the following, when we talk about the fermion particle,
we are implicitly referring to the WKB mode.

Thus one can introduce the time-dependent Bogoliubov
coefficients {a,.f,} between the in modes and WKB
modes:

wy \in u, \ WKB uh \ WKB
< ) = a,w( > + /3,{,”( b ) . (A32)
U/ kg U/ ky Uy

Clearly, (a, ) — (1,0) as > —oco. We may also note that
the Bogoliubov coefficients obey the normalization con-
dition as

k.

|, |* + By =1 (A33)

in agreement with fermion statistics.

Using Eqgs. (A32), (A31), and (A27), we can derive the
evolution equation for the Bogoliubov coefficients, as
shown in Eq. (B1).

APPENDIX B: REVIEW OF FERMION
PARTICLE PRODUCTION

In this section, we give a brief review of the main result
about fermion production during inflation [51]. The fer-
mion number density can be obtained by solving these
equations of Bogoliubov coefficients

5 <ak,;7> B azmkH< 0 e”f”“”’”') (akﬂ)
! /Bk,r] 20* —e_if” wdrf 0 ﬂk,n .

(BI)
|

1 ik |MA.k,x°|2 ® 12
<l//xl/_/_v> :/d3k3 ‘ 3< PN
ay (2x) Up oty 0 ® (k- 0)
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L k,H
We define the nonadiabaticity for a mode k as €, = mm—’;,

where subscript p stand for “physical,” , = w/a, etc. As

the system evolves from an initial vacuum condition of

(Zi’;) = (}), Pr, will only increase significantly when
€r, ~ O(1). This implies the following results:

(1) In the heavy mass limit (m,, > Hiy), €, is always

L and  we get |B,[*~

suppressed by -<,
W
| <1, where C is some order one

ml/
Hn)
constant and H(#;) is the Hubble rate at the most

nonadiabatic moment for mode k.
(2) In the light mass limit (m,, < Hiy), €, is largest
when k, ~m,, and we call this time . If

m,, < H(n;), we have |f|* ~1 otherwise it is

suppressed by exp[—C %} as well.

exp[—C

Since the heavy fermion production is always exponen-
tially suppressed by the m,, /H ratio, we focus on the light
fermion case. The energy density at time ¢ is given by

4

v a(t*) 3

P (t) ~ /2 )
37 \ a(t)

where ¢, is the time when H(t) = m,,. If 1, occurs during
reheating, one gets the relic abundance today time as

(B2)

m 2/ T
Q,h* ~3( — s o).
10" GeV/) \10° GeV

APPENDIX C: ASYMPTOTIC BEHAVIOR
OF (y,7,) AT LARGE r

In this section we derive the result about the leading
order contribution to (n, (7, ), i.e. Eq. (52). By Wick
contraction, this reduces to computing the field correlator
(w.,). The standard way to compute the correlator is to
plug in the mode decomposition Eq. (A30) and compute
the mode functions {U,, V;}. The difficulties lie in how to
obtain the mode functions on a curved spacetime. For
inflationary background spacetime, one can use the de
Sitter spacetime as an approximation and obtain exact
analytic solutions. However, it is unclear how these mode
solutions evolve after inflation ends. Such postinflationary
solutions are relevant for our computation because the
particle production freezes out after the end of inflation.
Here we give an approach that answers this question.

First, we plug in the mode decomposition to the equal-
time correlator:

(B3)

_MA,k.xou;kyXO ® (l}% : 3) )

—|up o> ® 1>
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where we have performed the spin sum in the last step.
Since

3 ik , X ik i
d k—<2ﬂ)3\uA.k,xo| —[d k—(zﬂ)3<1_|”37k,x°| ) (C2)

k7
> e
= 53(1") —/d3kw|ulg,k!x0|2 (C3)

and 7 # 0, we see the diagonal elements are the same. Then
we perform the angular integral d2k. Recall that

. in(k
/ ke f (k) = / 47zk2dksmk(—r) £(k), (C4)
r
in(kr) f(k
/ Phe® R f(k) = (—itD,) / ariar KD SR
kr  k
(C5)
After the angular integral, we have
dnk’dk (A B
)= 5 : C6
) = [ (5 o) (co
sin(kr)
A= 2, 7
g ST (©7)
o . sin(kr) 1
B = (if- J)MA.k,r/”B,kJ, -0, i K (C8)
sin(kr)
C=- 2. . C
- S (©9)

It is sufficient to study these two integrals for the diagonal
and off-diagonal elements,

o 4zk?dk sin(kr
Iy =1 _/ WWA./(WF' IEr ) (C10)
w drk*dk sin(kr) 1
I,=1 =0 _— N —— Cl11
12 21 r/) (27[)3 UAknUB iy kr k ( )

Now, we only need to find the mode function u,, ug, and
perform the mode sum.

Let us consider the mode functions first. Since we are
interested in evaluating the fermion field correlator at a time
when the fermion production has ended, i.e. when m >
H(x") and is in the limit r — co, we can make the
following approximations about the mode functions
{ug 0. upy o). First, since the particle production has

stopped, the nonadiabatic parameter is suppressed by %

and thus we can approximately replace the Bogoliubov
coefficients by their late time asymptotic values, i.e.
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By = Pr. (C12)

Ay 0 R Ay,

Second, since we want to capture the particle production
effect on the correlator and the produced particles are
nonrelativistic at the time of production, by the time x°
which is sufficiently long after the production has ended,
we may approximate the produced modes that all have
k < a(x°)m. Thus, the WKB modes can be approximated
by

WKB wtam 1
< Uy > - \/ 20 e—i f” wdn' N ( \/§> e—i f” wdn
ug /) kiR = 0

(C13)

Combining these two approximations, we have

. 1 —if”wdn’
u in A —r=¢€

( A) z( V2 ) (C14)

i Wu)d/

Ug / kIR _ﬁk%e f g

Thus we can easily evaluate 1, [;,:
) 1 o 1 "
277 Ill,IR =—-Im kdki [1 - n(k)] . el r. (CIS)
r 0

We note that for the contribution from 1 vanishes

1 o . 1 )
—Im/ kdk[1] - ek = —Im/ (is)ids[1] - e=" = 0.
r 0 r 0
(C16)

For the contribution from n(k), we may assume it to be a
real analytic function on R and can be analytically
continuated to the upper-right quadrant of the complex k
plane. The location of the singularity of n(k) determines the
contour of k. For example, we may consider the n(k) for the
heavy fermion case (m > H,):

k/anad)2 _ 4_m

4(
n(k>heavy = eXp |:_ mH H

}, (C17)

where a,,4 is at the nonadiabatic time point. In this case, the
nonadiabatic time is the transition from the de Sitter era to
the reheating era, i.e. a,,q = a.. One can apply the steepest
descent to find that

1 dm 1
27111 neavy 1R A — —exp {— —_——— erz} (a?mH)

x Im [—i%\/ﬁaer%\/ﬁ} (C18)
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1 4 1
zgﬁag(mH)%exp ——m——a%er2 )

716 (C19)

For the light fermion, we may approximate the number
density spectrum as

1

1+ exp( (C20)

n(k)light =

2y’
(anadm)z)
where the nonadiabatic point occurs when H drops below
m, i.e. ayq = a(n,) = a,. This ansatz is only used to
mimic the cutoff of the spectrum at k ~ a,,qm. The
singularity lies at

2
m = (271 ‘I‘ l)ﬂ'i,

*

n=012 . (C21)

or k,,, = a,m+/(2n + 1)ze?. Again, one can perform the
steepest descent around the n =0 singularity
k, = a,m\/me¥. Let § = (k — k,)/a,m, and we have

2mzex — ) Za.mr| cos( 4/ Za,mr
a,r P 2 27" '

27111 jight1r = 743
(C22)

For both the heavy and the light fermion cases,
I, « exp(—a,Mr), where a,M is the scale that n(k) cuts
off. We should also remind ourselves that the UV vacuum
contributions also exist, which scales as

(C23)

I yy « exp[—aﬂmr]

due to the singularity at kK = a,m in the mode functions

uy®B KB Thus we have shown that the diagonal
element of Eq. (C6) is always exponentially suppressed.
Next, we turn to look at the off diagonal element 7,.

Unlike the 1, case, whose integrand |u,|? has a constant

asymptotic value in the IR region, the /;,’s IR contribution

_n: | /

Un knUp i = re 2 [ wdn (C24)

contains e~ time dependence. Physically, if we decom-

pose the in state into the WKB vacuum and excitation state

|in, vac) = ~|WKB, vac) + ~|WKB, 2-particles)

+ ~|WKB, 4-particles), (C25)
then this term comes from the interference term
(WKB, vacly | WKB, 2-particles)
€ (in, vac|y, W, |in, vac). (C26)

If we care about r large enough, for example corresponding
to the CMB observation scale at recombination, we may
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assume the relevant k scale exits the horizon and becomes
nonrelativistic during inflation. Thus we may safely use the
dS mode function to evaluate /15 ;g cmB-

Recall that during the dS era, we have Eq. (A28), where
we choose the end of inflation time ¢, as the reference point.
Thus

1 ; ; 1 m
* — —2im(t— 2% 1n(2k/a,H) T2 .
uA,k’nuB’k_n = Zﬂe (1=t,)+ %n(2k/a, )F <§ — 1 >

(C27)

Performing the integral using the steepest descent, we find
the leading contribution comes from the k ~ 0 singularity in
UpkyUp i, We note that the k dependent phase factor
e2iMk/H) cannot be absorbed by a redefinition of the
mode functions wuyy,, Upy,, since this phase factor
depends on the relative phase of w4y ,, up, which is
fixed by the Bunch-Davies initial condition.
Plugging in Eq. (C11), we have

‘ ‘ 2rt m\ 2
272 — _p2im(t—1(r))+ip(%) -3 H 1
T iIR= e " sinh(27%) H ’

(C28)

where ¢(#) = Arg(['(2 + ix)['(5 — ix)) and #(r) is the time
when a(t,)Hr = 4. We may consider the light mass limit

—2im(t—1(r))

22 1 1R tight © —e€ r (C29)

and the heavy mass limit

3
2772112,1R,heavy ~ —(477)% (g) ’ exp (—7: %) e=2im(1=1(r)) =3 |

(C30)

We may also consider the effect of having an IR cutoff
ki, which is the scale that exits the horizon at the
beginning of inflation. Such an IR cutoff will introduce
a exp(—kprr) type of exponential suppression factor.
However, for an observable universe with comoving radius
Ry, as long as kirRy,s << 1, we may ignore this suppres-
sion factor.

After evaluating the matrix element for the fermion
correlators, we find that

(1) For the light fermion case, i.e. m << Hjy, in the limit

r — oo
_ 11 /A B 31
<l//xl//y> ~ a;zc 2”2 (B* A ) ’ ( )

where
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A 1 am ex ﬂ cos( /=
=—na, — —4/za.,mr ~a.mr |,
2"H G P2 2

(C32)
Dr3, (C33)

where a, is evaluated at 7,.
(2) For the heavy fermion case, i.e. m > H,, in the
limit r — oo, we find in Eq. (C31)

B=—if-5(4x): <H£> "exp <—ﬂHﬂ> e2im(i=t(r)) =3,
(C35)

and a, is evaluated at the end of inflation.
Finally, we plug in the field correlator to (n, n, ) and
drop the terms that are exponentially suppressed when
r — oo, to get Eq. (52).

APPENDIX D: RELATIVE SUPPRESSION
OF COMMUTATORS

In this subsection, we want to compare the dependence
on the scale factor a(r) between (in|[O,,0,]|in) and
(in|{O,. O,}|in), where O, is a bosonic Hermitian oper-
ator and x, y are spacetime points located near the end of
inflation. For simplicity, we take H as a constant. In
particular, we are interested in the cases where
O =o,ypy,{. We want to show that the commutator of
O suffers from an additional suppression factor compared
to the anticommutator.

In general, the diagonal matrix elements of products of
the Hermitian operator obeys

((in]0,0,in))* = (in|0,0,Jin):  (DI)
therefore
(in|[0,. O,]|in) = 2iIm(in|0,0,|in), (D2)
(in|{0,, 0, }|in) = 2Re(in|0,0,|in). (D3)

We can just study (in|0,0,|in). We may use the mode
expansion of the field operator to evaluate such an
expression and focus on modes that are outside of the
horizon at both times 7,,7,.

We shall first take O = o, and we assume that the scalar
is light, i.e. m, <3 H, such that v is real:
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[deIGeW-?)] 1z
(2n)3a)*a)/* H4
- 1.Y,)l,

(inloyo,|in) = /47rk2dk

X [JJy + Y, Y, +i(Y,Jy (D4)
whereJX:J( 7). Y, —Y(
kinds of Bessel functlons with real values. The d?k is the
angular integral with normalization [ d*k =1, and
[ dke™ ) = sin(kr)/kr is real. If we focus on the k

modes that are outside of the horizon, i.e. k/aH < 1, we
may use the small argument expansion of the Bessel

function, i.e. when (0 < z < /1 +v)

) are the first and second

(D5)

Y, (2) & —@ @)y (D6)

Then, under the common scaling of a, — la,, a, — la,,
with A increasing, we see the various terms in the correlator
scales as

ai?a? I J, < 73, (DY)
ar?ay Py v, o 223, (D8)
a7 (Y g -0 Y) <A (D9)

Thus, we see under this common scaling, the IR contri-
bution to the two point functions are

Udzjceifc-(}—w]

(nlfowoin =2 [ Aniake s o7

a, a

1z 2v-3
Xﬁz(ijy + Yny) OCA -, (DIO)

. . . [f dzl‘(eii-(}—y)]

N e

IR (271’)361)/ ay/
1

HZ( J, =Y, <A, (DI

Thus, we have shown under the scaling a — Aa, the
commutator of ¢ is suppressed by the 172 factor relative
to its anticommutator. For the small mass scalar,
i,

For the case of O = £, we have similar statements as the
scalar case with v = 3, i.e. ([{,.{,]) 1 is suppressed by 173

relative to ({{,,,})r under the scaling of a — la.
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Next, we consider the case of O = . Using the mode
decomposition Eq. (A30) and mode functions Eqs. (A23)
and (A24), we have

kb))
l//l//xlllll/v Z a3a3 2” [h] (lﬁz)hj]
X [ j(_lGZ)h ]FleF;ka’ (D12)
where
Fijx = riug iy jx + (i < j). (D13)

Fij Fy = 2[riupi g jo+ (0 < ))(riup,; i ;)

(D14)

= 2up i laj g Uh )y
(D15)

* *
+ r,-rjuB‘,»wqu’j,qu’j’yuAJ-’y].

the factor ei(kith)(G-)
is real, and the factor
|

We note that in Eq. (D12),
after the angular average

PHYSICAL REVIEW D 91, 043516 (2015)

(] (icy) k] [} (=ic,)h}] = |[hiT(i62)h ]| is also real; thus

J
the imaginary and real parts of F, correspond to the

i j.x i ] y
commutator and anticommutator, respectively.
Next, we consider the two terms in Eq. (D15) one by

one, using the explicit expression of Eq. (A29) to get

. ) S ﬂk ﬂ,’k ﬂ'k T
B.ixHA,jxUBiyUA jy — 4aH 4ClH 4aH 4aH

J+lx + lY+ lx
X (J—,j,x + lY—,j,x)(J—,i,y - iY—,i,}')
X Vpy = 1 jy)s (D16)

where

ki
Jiix = J%j:i% <a H)’
X

Using the small z expansion of the Bessel function again,

where Re(v) =  in all the cases, we can extract its scaling

behavior under a — Aa,

k;
Yiiv= Y%;ti% <ax—lH> (D17)

ix Y)Y )iy = 1Y)y — Yy )
=Y Yo Y oYy x A%, real
—iJ Yo Y Yy =Y T Y Y e o A, imaginary
F Y Yo Yy Y Y YT o A!, imaginary

+ terms subdominant in A expansion.

Thus the imaginary part is suppressed by A~! relative to the
real part. We can do a similar analysis on the second part
FiTjUp i Ua g gy, in Eq. (D15) and find the same
behavior. Thus, for the yy operator, we have the following
scaling law:

{ow . o, g < 476, (D19)

<[lpl//x7 l/_/l/’yDIR o« 277 (Dzo)

Thus, we see the commutator for yy gives additional
suppression of the a~! factor compared with the anticom-
mutator, whereas the commutator for ¢ and ¢ gives addi-
tional suppression o the a=3 factor.

APPENDIX E: EXPLICIT CHECK OF THE MASS
INSERTION FORMULA

In this section, we show that the particle production part
of the following equation holds using the adiabatic sub-
traction:

(D18)

i / () [ 7)) = O wrs) = Buna(x).  (EN)

Expressing both sides of Eq. (E1) using the mode sum,
we see the left hand side is

i / " (aw) ([ ) = ﬁ / " duta, / @%

X Im[(uy tip ) (Ua ktipi);]

(E2)
and the right hand side is

&’k

i) = o [ GosOnllual = s, (E3)

Thus, we only need to check for each given k, and the
following equation is right:
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0

y
8m(|u8|2_ |”A|2) :8/ dWOdemKMA,kMB,k)x(MA,kMB,k)fv]-

(E4)

From the left hand side, we have

0 Uy
2 _ 2y — _ * ok 7
Ol = ) = 2R (i o 0 () .

Up

(ES)

and upon expressing the mode function at time x° in terms
of the volution operator acting on the initial value, we have

0 (ua [ 0, oy O (am k
5‘m<u3>k‘x— l/h dzU(er)@m k —am

x U(Z°<—m~)<uA>k’i- (E6)

Up

Combining these two expressions, we can obtain the
desired result after some algebra.

However, the remaining @’k integrals in Eqgs. (E2) and
(E3) are UV divergent. To make them finite, we express
both sides in terms of Bogoliubov coefficients and drop the
pure vacuum contribution to get

— ,'/xo(dw)qli/ll/m II_IWW]>

~ 16/7d3k o
" (2”ax)3 Wy ) x

< [ ana, () mliap(apil. (7

_ 2 &k a.m
am<lr'/‘l/x> %a_ifwam [Zlﬂk,xz ka:|

4 &k (a.m 5

Now, we only need to check

oulpisl =4 [ ana, () mltap) (i), (E9)

Suppose x° is late enough such that § , is constant and
equals its value at asymptotic future f;; then we get

Oulpil =4 [ 0. D i) (o) (E10)
Mi

Thus, Eq. (El) is compatible with the Bogoliubov
projection.
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APPENDIX F: GRAVITATIONAL INTERACTION

Here we derive the gravitational interaction. Consider the
action

S:SEH+S¢+SU+SW (Fl)

- / (dx){%M%,R - [—%g"”ﬁﬂdbapqﬁ - V(¢)}

1 1
+ {— zg"”aﬂof)ya -3 m?,o'z}

+ l/_/(lyﬂvy - ml//)l// - /161/_/1//} ) (Fz)
where M3 = 1= = 1. The metric is given in Arnowitt-

Deser-Misner formalism?’ [95] by

o )

o ( —N-2 NIN-2 ) )
~ \NIN"2 hii — NININ72 )’

where £;; is the metric tensor on the constant time hyper-
surface, and /" is the inverse metric. We use Latin indices
i,j,..., for objects on the three-dimensional constant time
hypersurface, and we use h;; and h' to raise and lower the
indices. Then we use the Hamiltonian and the momentum
constraints to determine the lapse function N and the shift
vector N':

1 1 .

0 :N {R(3) _W(EUEU _E2):| —2NT, (F4)
296 |1 pij ij 7700 0j

0= 290 [L (g - gain)] + amir 2101, (rs)

where T is the total matter stress tensor, R*®) is the Ricci
scalar calculated with the three-metric £;;, and

1 3) (3)
Eijzi(hij_vi Nj_vj Ni)’ (F6)

In order to consider the perturbation around the
background configuration

We use (—+ ++) sign convention for the metric, and
physical time 7.
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(10
e 0 Clz(t)éij ’

(F8)

PO =), =0,

where the background fields satisfy the background equa-
tions of motion

32 = L V() (Fo)
=L § (F10)
2

$+3H)+ V() =0, (F11)

we choose the comoving gauge, defined byzl
6 =0, vi =0, dirij =0, (F12)

where

hi; = az(l)[er}u’ [y =286 +vy. (F13)

Then we solve the constraint equations (F4) and (F5)
perturbatively using ¢ and y, and putting their solutions for
N and N back into the action, we can get the perturbed
action

*!In this section, Latin indices i, j are raised and lowered by J,
and repeated indices are contracted.

ij
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S© = 8 + 85 + Sy + Sty + 55

L0 L gO s

(oo Syy too " (F14)

For the interaction terms S(C) and S<C) we need the

) (oo Cyy
solutions of N and N' up to linear order in {,

NIO — 1+

9 no_p[ ¢, @
H, Ni —8,|: H+€vzc y (FIS)

where € = H /H 2 Hence, the metric perturbations become

2& —L4eL (),
591(5) _ ( . H2 . (2 H v é“),; . (F16)
(—ptewml),; a(6;20+vi)

and we have the {-matter cubic interaction action

C C 1 v v C
Stox + Sty = 5 / d*x\/=g(T" + T™)5g\S).  (F17)

where 7% and T}, are the stress energy tensors for ¢ and y,
respectively, which are written as

75 = ¢°¢"’9,0040 + ¢ L,, (F18)
Tﬂv__i[— W)y — Ve )] + ¢*Re(L,). (F19)

v =5l Vy )yl + ¢“Re(L).
Particularly, up to the cubic interaction, L;, = —Hiy.
Thus Ségt), + SE«S,?,, = — [dtH (1) + Hpy,, (1).
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