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Isocurvature perturbations in the inflationary literature typically involve quantum fluctuations of bosonic
field degrees of freedom. In this work, we consider isocurvature perturbations from fermionic quantum
fluctuations during inflation. When a stable massive fermion is coupled to a nonconformal sector different
from the scalar metric perturbations, observably large amplitude scale invariant isocurvature perturbations
can be generated. In addition to the computation of the isocurvature two-point function, an estimate of the
local non-Gaussianities is also given and found to be promising for observations in a corner of the
parameter space. The results provide a new class of cosmological probes for theories with stable massive
fermions. On the technical side, we explicitly renormalize the composite operator in curved spacetime and
show that gravitational Ward identities play an important role in suppressing certain contributions to the
fermionic isocurvature perturbations.

DOI: 10.1103/PhysRevD.91.043516 PACS numbers: 98.80.Cq, 04.62.+v

I. INTRODUCTION

The cosmic microwave background (CMB) measure-
ments [1–4] and the large scale structure observations [5,6]
are consistent with single field inflationary models which
can seed approximately adiabatic, scale-invariant, and
Gaussian primordial density perturbations [7–15].
However, from the multifield nature of the Standard
Model (SM) of particle physics, one may naturally guess
that there would be more than one light degrees of freedom
during inflation which may be responsible for generating
isocurvature primordial perturbation initial conditions.
Indeed, in any slow-roll inflationary scenario, noninflaton
degrees of freedom must eventually turn on in order to
reheat successfully.1 Hence, isocurvature scenarios are
theoretically well motivated.
Isocurvature perturbations have been studied in

various scenarios, such as double inflation [16–18], curva-
ton [19–21], axions [22–27] and gravitationally produced
superheavy dark matter [28–31]. Isocurvature perturbations
also can generate rich density perturbation phenomenology.
For example, unlike standard single field inflationary
scenarios, isocurvature perturbations are able to generate
large primordial local non-Gaussianities [28,31–45].
However, most previous studies of isocurvature perturba-
tions focused on bosonic degrees of freedom such as axions
and curvatons. Fermionic isocurvature degrees of freedom
such as gravitinos were only discussed in the literature
associated with the decay products of the inflaton or other
scalars [46–49]. Furthermore, these fermions discussed in

the literature were characterized only by their dependence
on the entropy temperature fluctuation δT which was
assumed to be directly linked to the curvature perturbation
ζ, in a manner consistent with the “separate universe”
picture of δN formalism [50]. Such previously discussed
fermionic isocurvature scenarios lead to strong correlation
or anticorrelation with the curvature perturbation ζ. One
can intuitively characterize these previous fermionic
isocurvature works as having no fermionic quantum fluc-
tuation information from the inflationary era.
In contrast, we examine in this paper a fermionic

isocurvature scenario that is not (significantly) correlated
with ζ and has fermionic quantum fluctuation information
during inflation encoded in the isocurvature correlator. In
our scenario, the horizon length scale interaction dynamics
of the fermion particles is important, in sharp contrast with
the separate universe picture of δN formalism. As we will
show, although classical gravitational field interactions
alone are sufficient to generate enough fermions during
the exit process of inflation to saturate the phenomenologi-
cally required cold dark matter abundance [51,52], fermion
propagators in the classical Friedmann-Robertson-Walker
(FRW) background is insufficient to produce any observ-
able isocurvature perturbations because of the fact that
massless fermions enjoy a classical conformal symmetry.2

Hence, any large fermion isocurvature correlator must
involve couplings to a conformal symmetry breaking sector.
For illustrating the existence of such fermionic isocur-

vature perturbations, we minimally extend the single field
inflation by adding a stable massive fermion field coupled
through a Yukawa coupling to a light noninflaton scalar
field whose mass is much lighter than the fermion field

*danielchung@wisc.edu
†hyoo6@wisc.edu
‡pzhou@wisc.edu
1Even though the reheat degrees of freedom do not need to be

dynamically important during the quasi-de Sitter (dS) era,
multiple fields are certainly lurking in the scenario.

2Even with the massive fermions, we will be naturally
concerned with light fermions where mψ=H ≪ 1.
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(hence, there are no decays of the scalars to the fermions).
The light noninflaton scalar field (which is minimally
coupled to gravity) serves as a conformal symmetry
breaking sector through which the fermions will attain
appreciable correlations. We compute the isocurvature two-
point function of fermions that are gravitationally produced
during inflation and identify the phenomenologically viable
parameter space. We also estimate the local non-
Gaussianity and show that it may be observationally large
in a particular parametric regime.
At the technical level, treating fermionic isocurvature

fluctuations during inflation requires composite operator
renormalization in quasi-dS spacetime because the fer-
mionic energy-momentum tensor is a composite bilinear
operator (i.e. fermions cannot get vacuum expectation
values) and the leading two-point function contribution
involves a one-loop 1PI diagram. To our knowledge, this
paper is the first paper to apply composite fermion operator
renormalization in inflationary spacetime to treat isocur-
vature perturbations. Indeed, an improper treatment of the
operator renormalization can in principle lead to answers
that are many orders of magnitude off as we pointed out
with bosonic composite operators [53]. We also show that a
gravitational Ward identity plays an important role in
suppressing the scalar metric perturbation interaction con-
tribution to the isocurvature two-point function (thereby
justifying our introduction of another scalar sector).
This paper is presented in the following order. In Sec. II,

we motivate and discuss the fermion isocurvature model.
Next, we review the definition of the gauge-invariant
variables and the quantum operator associated with the
cold dark matter (CDM) isocurvature in Sec. III. In
Sec. III A, we present the regulator and the renormalization
conditions for our isocurvature operator. We explain the
constraints on the Yukawa coupling coming from the self-
consistency of our simplified scenario in Sec. IV. In Sec. V,
we compute the isocurvature 2-point function. The leading
order and the next leading order results are given in
Secs. VA and V B, and the power spectrum is presented
in Sec. V C. In Sec. VI, we discuss the numerical
implications of our results and non-Gaussianities.
Afterwards in Sec. VII, we discuss the explicit computation
of how a diffeomorphism Ward identity plays a role in
suppressing the scalar metric perturbation contribution to
the isocurvature two-point function. Finally, in Sec. VIII we
summarize and conclude. Some technical details of the
computations are given in the Appendixes.

II. FERMION ISOCURVATURE MODEL

As is well known, if any small mass fermion field
degrees of freedom exist during inflation which is usually
assumed to be a Bunch-Davies vacuum state, fermion
particles will be produced gravitationally (see, e.g.,
[51,52,54]). The inhomogeneities of the gravitationally
produced fermions will generically not align with the

inhomogeneities of the inflaton, depending on its inter-
actions. If most of the radiation in the universe comes from
the inflaton decay, then the misalignment of the inhomo-
geneities of the fermions and the inflaton will lead to
isocurvature perturbations [55–57].
Now, to motivate our fermion model with Yukawa

interactions, it is important to understand why interactions
to the conformal symmetry breaking sector is required. It is
also well known that massless fermion classical action
enjoys a conformal symmetry:

gμν → e2σðxÞgμν; ð1Þ
ψ → e−3σðxÞ=2ψ : ð2Þ

Since FRW spacetime can be written as a conformal
transformation of the Minkowski space [i.e. a ¼ expðσÞ],
we would expect for a tree level fermion propagating on an
FRW spacetime without any interactions with a conformal
symmetry breaking sector

hψ̄ψðt; ~xÞψ̄ψðt; ~yÞiconn ¼ hψ̄MψMðt; ~xÞψ̄MψMðt; ~yÞiconna−6;
ð3Þ

where ψM is the Minkowski fermion. At leading order,
there are no other scales in this function except j~x − ~yj.
Hence, we conclude

hψ̄ψðt; ~xÞψ̄ψðt; ~yÞiconn ∼
1

a6j~x − ~yj6 ð4Þ

in the massless limit.3 We expect this to be the dominant
contribution in the limit that mψ=H ≪ 1. When
mψ=H ≫ 1, we also expect there can be factors multiplying
this that vanish exponentially fast asmψ=H → ∞ (we show
this explicitly in Sec. VA). Hence, we expect Eq. (4) to be
the leading order of magnitude composite correlator if the
theory is approximately conformally invariant. As we will
show below, the comoving gauge isocurvature perturba-
tions are proportional to

�
δρðCÞψ

ρ̄ψ

δρðCÞψ

ρ̄ψ

�
∼
hψ̄ψðt; ~xÞψ̄ψðt; ~yÞiconn

hψ̄ψi2 ; ð5Þ

where one sees the appearance of the suppressed correlator
computed in Eq. (4). Because of this suppression, fermionic
isocurvature perturbations require nontrivial interactions
with a conformal symmetry breaking sector.
If the conformal symmetry breaking sector is just the ζ

sector of the inflaton, then its effective coupling to the
fermions is suppressed because there is an infinitesimal
shift symmetry of the ζ coming from a residual

3The scaling behavior of the two-point correlator is similar to
that of correlators considered in Ref. [58] in the context of
conformal field theories.
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diffeomorphism symmetry in the comoving gauge. (We
will explain this explicitly in Sec. VII in terms of a Ward
identity.) Hence, to generate an observable fermionic
correlator during the horizon exit, another conformal
symmetry breaking sector must be introduced which does
not suffer from derivative coupling suppression similar to
ζ.4 We thus introduce a Yukawa coupling to a light
noninflaton scalar and demonstrate that this interaction
can induce observable isocurvature fluctuations.5

Given this motivation, let us now specify the model
studied in this paper. We use one real scalar ϕ slow-roll
inflaton degree of freedom that dominates the energy
density during inflation and then perturbatively decays to
the SM sector to reheat the universe. We also introduce
another minimally coupled light real scalar degree of
freedom σ which has no coupling to ϕ or the SM sector
(necessary for reheating) stronger than gravity.6 As we
explained, the main role of σ is to provide a conformal
symmetry breaking sector which can couple to the Dirac
fermions ψ through a Yukawa coupling. We assume ψ is
charged under a conserved discrete charge such that the one
particle states are stable and can act as dark matter. Note
that since we do not require all of the dark matter to come
from the fermions, this system is consistent with the
existence of the weakly interacting massive particle
(WIMP) dark matter. Because ψ is too weakly interacting
with the SM to be produced directly, gravitational produc-
tion of ψ during and after inflation is significant and gives
rise to nonthermal CDM and its isocurvature perturbations.
Such a model is described by the action7

S ¼
Z

ðdxÞ
�
Linf ½gμν;ϕ� þ LSMþCDM½gμν; fΨg�

þ LRH½gμν;ϕ; fΨg� þ −
1

2
gμν∂μσ∂νσ −

1

2
m2

σσ
2 −

y
4!
σ4

þ ψ̄ðiγa∇ea −mψÞψ − λσψ̄ψ

�
; ð6Þ

where M2
p ¼ 1

8πG ¼ 1, ðdxÞ≡ ffiffiffiffiffiffi−gp
d4x, and Linf and

LSMþCDM are the Lagrangians for the inflaton and the
SMþ CDM sectors, and LRH describes the sector

responsible for reheating. Because an interesting parameter
region exists for our scenario in which the ψ constitute a
tiny fraction of the total dark matter content, the Lagrangian
LSMþCDM describes the CDM sector different from ψ to
make the scenario phenomenologically viable. Note that
natural heavy dark matter candidates for ψ exist in the
context of string phenomenology [59,60]. Furthermore,
many extensions of the Standard Model also possess
superheavy dark matter candidates (see, e.g., [61–71]).
Since there are many scalar field degrees of freedom in
typical beyond the standard models, the possibility of
identifying one of these scalars with σ is also plausible.
Although the cosmological phenomenology of weakly
interacting dark matter on large scales has been investigated
already in literature (see, e.g., [19,28,30,31,72,73]), our
work is the first to describe fermionic fluctuation correla-
tions during inflation. Note that although Eq. (6) has a
quartic term σ4, we will focus on the parametric region in
which the quartic coupling y will be small and tuned
against radiative generated quartic couplings from the
Yukawa interaction to keep the effects of the σ interactions
to a minimum. Hence, our effective parametric domain will
be controlled by fλ; mσ; mψg.
We focus on a particular parametric region of

fλ; mσ; mψg such that σ only assists in generating large
scale density perturbations of ψ , and the density perturba-
tions and the relic abundance from the σ particles vanish or
are suppressed compared to those from the ψ particles. For
example, requiring that the correlator hσσijt� relevant for
the isocurvature perturbations not be suppressed gives the
condition mσ=Hðt�Þ < 1 where t� is the time at which
the fermion production ends. This implies mσ < mψ is the
relevant parameter region. Furthermore, in order to prevent
any large isocurvature perturbations and relic abundance of
σ, we assume that the σ particles decay before σ becomes an
important fluid component of the evolution of the universe
(e.g., before matter-radiation equality). Note, however, that
this restriction is a matter of simplicity. In general, we note
that a weakly interacting and stable σ may also be
phenomenologically allowed without problems regarding
the relic abundance and the isocurvature from σ. Moreover,
for simplicity, we restrict λ such that (1) σσ → ψ̄ψ via the
Yukawa interactions is suppressed compared to the gravi-
tational process in producing ψ̄ψ , and (2) any σ þ
gravity → ψ̄ψ processes are estimated to be unimportant.
This restriction is approximately equivalent to being in a
parametric region where tree-level propagator neglecting
resumption of the Yukawa interactions is valid.
In addition, in order to detach our model from the details

of the inflationary model of ϕ, we focus on the light
fermion ψ , such that mψ < He, where He is the Hubble
scale at the end of inflation. This is because the gravita-
tional particles production is generally sensitive to how the
inflation ends in such a way that an extra suppression factor
exp ð−cm2

ψ=H2
eÞ (where c is a number depending on how

4Although we have not investigated the suppression for the
tensor perturbation interactions with a full computation, we
expect a similar suppression of the tensor perturbation inter-
actions.

5Note that this introduction of a light scalar is not particularly
attractive from a model building perspective since we provide no
explicit mechanism to protect its light mass. We defer the
challenge of building an attractive model to a future work since
the purpose of this paper is to demonstrate the basic physics
mechanism.

6For now, we will consider this as a tuning and will not address
serious model building issues in this paper. It is plausible that this
kind of scenario can be realized in the context of the supersym-
metry hidden sector.

7Our metric convention is ð−;þ;þ;þÞ.
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the inflation connected with the post inflationary era)
appears in the estimation of the gravitationally produced
particle number density nψ. (Throughout the paper, we will
sometimes distinguish He from Hinf which is defined to be
the expansion rate during inflation.) On the other hand, if
mψ < He, the factor becomes simply an Oð1Þ number, and
particularly, for fermions we can estimate the number
density nψðt�Þ as Oð0.1Þm3

ψ at Hðt�Þ ∼mψ regardless of
how the inflation ends [51]. The physics of this universality
is tied to the conformal symmetry of the fermions in the
massless limit.
At this point, we emphasize that our model is different

from other fermionic (e.g., gravitino) isocurvature models
in literature (e.g., [49,74,75]). We explicitly predict the
amplitudes of fermion density perturbations from a joint
effect of the gravitational particle production and σ modu-
lation on mψ via the matter loop diagrams. In contrast, in
Refs. [49,74,75] the fermions are produced from the on-
shell inflatons and/or curvatons (the latter has the closest
identification in our model with σ) after the end of inflation.
A sharp observable contrast of our model with these other
models is that our scenario predicts an uncorrelated type of
isocurvature (i.e. curvature-isocurvature cross-correlation is
negligible) while these other models purportedly generate a
correlated type of isocurvature. This is a consequence of the
fact that these other models do not describe any fermionic
fluctuations during inflation while in our model, the
expansion during inflation imparts work to virtual fer-
mionic fluctuations to put them on shell.

III. OPERATOR FOR ISOCURVATURE
PERTURBATION

Recall that the scalar perturbation of the metric is
parametrized as

δgðSÞμν ¼
� −E aF;i

aF;i a2½Aδij þ B;ij�

�
: ð7Þ

The gauge-invariant variables are constructed by combin-
ing metric perturbations and other perturbations, such as
density perturbations. For example, the conventional first-
order gauge-invariant perturbation associated with the
energy density of a fluid a is defined (see, e.g., [76] and
references therein) by

ζa ≡ A
2
−H

δρa
_̄ρa

: ð8Þ

In particular, we define the conventional curvature
perturbation as

ζ ≡ A
2
−H

δρtot
_̄ρtot

; ð9Þ

where

δρtot ¼
X
i

δρi; ρ̄tot ¼
X
i

ρ̄i: ð10Þ

This quantity ζ is conserved when modes are stretched out
of the horizon even through the reheating era as long as it is
set by the adiabatic initial condition, i.e., ζ ¼ ζa for any
fluid a. Furthermore, if perturbations are generated solely
by inflaton during inflation, such as the single field
inflation, superhorizon perturbations automatically satisfy
the adiabatic initial condition and the perturbations are
conserved so that we can match them with those during the
early radiation dominated (RD) era, ζϕðtinfÞ ¼ ζγðtRDÞ ¼
ζmðtRDÞ ¼ � � �.
On the other hand, an isocurvature perturbation is

defined by a relative density perturbation between two
different fluids

δSij ≡ 3ðζi − ζjÞ ¼ −3H
�
δρi
_̄ρi
−
δρj
_̄ρj

�
: ð11Þ

In general, it may arise during inflation if there are more
than one degree of freedom. Although their mixing with
perturbations of different fluids can lead to the failure of the
conservation of the curvature perturbation ζ, such effects
are negligible as for any species i whose ρ̄i þ P̄i is
sufficiently smaller than ρ̄tot þ P̄tot until the universe
reaches radiation domination. Particularly, for gravitation-
ally produced fermions, we have

ρ̄ψ þ P̄ψ

ρ̄tot þ P̄tot

				
t�

∼
ρ̄ψ
ρ̄tot

				
t�

∼
m2

ψ

M2
p
≪ Δ2

ζ ; ð12Þ

where t� is the time that the gravitational fermion produc-
tion ends, Hðt�Þ ∼mψ . Hence, we expect the superhorizon
curvature perturbation to be approximately conserved
through the reheating, ζðtRDÞ ≈ ζϕðtinfÞ.
The dominant fraction of the produced fermions are

nonrelativistic.8 Then the fermion energy density behaves
as9

d
dt

ρ̄ψðtÞ ≈ −3Hρ̄ψ for t > t�; ð13Þ

and from Eq. (11) a general CDM isocurvature is
written as

8This is a valid assumption because gravitationally excited
fermion modes that contribute to the energy density are less
than the fermion mass, i.e., jβkj2 for k=a ≲mψ , where βk is
the Bogoliubov coefficient. See Appendix B for details.

9One can find that ρ̄ψ ∝ a−3ðtÞ for t > t� if ρ̄ψ is renormalized
by the adiabatic subtraction. See Appendix B and Ref. [54]. Then
we can treat ψ as a pressure less matter.
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δS ¼
δρCDM
ρ̄CDM

−
3

4

δργ
ρ̄γ

: ð14Þ

As discussed in Sec. II, the CDM may include decay
products of the inflaton ϕ. Thus the CDM density pertur-
bation is generally expressed as

δρCDM
ρ̄CDM

¼ ωψ
δρψ
ρ̄ψ

þ ð1 − ωψÞ
δρm
ρ̄m

; ð15Þ

where the subscript m denotes the CDM component
associated with the inflaton decay products (such as
WIMPs of minimal supersymmetric models), and

ωψ ≡ ρ̄ψ=ðρ̄ψ þ ρ̄mÞ: ð16Þ

In particular, in the comoving gauge (δρϕ= _̄ρϕ ¼ δρm= _̄ρm ¼
δργ= _̄ργ ¼ 0), the CDM isocurvature becomes

δðCÞS ≈ ωψ
δρðCÞψ

ρ̄ψ
; ð17Þ

where the superscript denotes the gauge choice.
Under the nonrelativistic assumption, we also approxi-

mate the fermion mass term mψ ψ̄ψ as its energy density10

ρψ ≈mψ ψ̄ψ ; ð18Þ

and then the fermion isocurvature perturbation becomes

δðCÞS ≈ ωψ
ρψ − hρψi

hρψi
¼ ωψ

ψ̄ψ − hψ̄ψi
hψ̄ψi : ð19Þ

Notice that as it is a quantum composite operator, we
renormalize it with regulators and counterterms invariant
under the underlying gauge symmetry, diffeomorphism in
this case. In the following subsection, we present the
technical detail of the composite operator renormalization.
From now on, we will use the comoving gauge in

calculating the correlation function and drop the superscript
ðCÞ for convenience.

A. Regularization and renormalization
for isocurvature perturbation

In this subsection,we explain our regularization procedure
and renormalization scheme that determines the counter-
terms. The most crucial renormalization condition that the
isocurvature perturbations are sensitive to is Eq. (38).
For the convenience of preserving covariance and

incorporating the adiabatic vacuum boundary condition,
we use Pauli-Villars (PV) regularization [77]. This involves
the replacements

ψ → ψ þ
X
n

ψn; σ → σ þ
X
n

σn; ð20Þ

and the addition of the Pauli-Villars part in the free
Lagrangian

LPV ¼
X
n¼1

Cn

�
−
1

2
gμν∂νσn∂νσn −

1

2
M2

nσ
2
n

�
ð21Þ

þ
X
n¼1

Dnψ̄nðiγa∇a −mnÞψn: ð22Þ

For notational simplicity, we let C0 ¼ 1, M0 ¼ mσ and
D0 ¼ 1, m0 ¼ mψ , and let index N ¼ 0; 1;…, and
n ¼ 1; 2;…. We require the following constraints for scalar
regulators:X
N

C−1
N ¼0;

X
N

C−1
N M2

N¼0;
X
N

C−1
N M4

N¼0;… ð23Þ

and the following constraints for fermion regulators:X
N

D−1
N ¼0;

X
N

D−1
N mN¼0;

X
N

D−1
N m2

N¼0;…; ð24Þ

where we need to introduce sufficient numbers of PV fields
and constraints to cancel all the divergences. Notice the
additional constraints in the fermions with odd powers
of mN .
With the operator dimension and the symmetry consid-

ered, the renormalized operator is written as

ðψ̄ψÞx;r ¼ ðψ̄xÞrðψxÞrð1þ δZ1Þþ δZ2ðσx;rÞ3þ δZ3ðσx;rÞ2
þ δZ4σx;rþ δZ5þ δZ6□σx;rþ δZ7Rþ δZ8Rσx;r;

ð25Þ

where each field operator should be understood as includ-
ing a sum of the PV fields as in Eq. (20). Then we give the
renormalization conditions to determine the counterterms.
For δZi which are not coupled to R, Rμν, Rα

βμν, and their
derivatives, we can go to the Minkowski space and impose

10Using the adiabatic vacuum prescription, the renormalized
energy density is approximated in the nonrelativistic case as

hðρψ Þri ≈mψ hNψ i ¼ 2mψ

Z
d3k
ð2π3Þ

1

a3
jβkj2;

where Nψ is a fermion number operator, and the subscript r
denotes that the operator is a renormalized composite operator.
This quantity is in accord with

mψ hðψ̄ψÞri ¼ 2mψ

Z
d3k
ð2π3Þ

mψ

ωp
jβkj2 ≈ 2mψ

Z
d3k
ð2π3Þ jβkj

2:

In particular, ðψ̄ψÞ has an advantage in constructing gauge-
invariant variables because it is manifestly 4-scalar, but Nψ .
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the renormalization conditions there. (Of course, we do not
need to separate the curved space contribution and the flat
space contribution with two computations, but we present it
here this way here for clarity in the physical partition.) We
define the renormalized operator ψ̄ψ at one-loop order,
such that it measures the number density of the fermion
particles. First, we require its expectation value in the flat
space vacuum to vanish:

hvacjψ̄ψðxÞjvaciflat þ
X
n¼1

hvacjψ̄nψnðxÞjvaciflat þ δZ5 ¼ 0

ð26Þ

⇒ −
Z

d4p
ð2πÞ4

X
N

D−1
N Tr

�
1

i
−pþmN

p2 þm2
N − iϵ

�
þ δZ5 ¼ 0:

ð27Þ

This corresponds to the evaluation of Fig. 1(a).
Next, we impose the renormalization condition consis-

tent with the fact that as far as the fermion sector is
concerned, a shift of σ by a constant in the tree-level action
is equivalent to a shift in the mass of the fermion. More
explicitly, we demand that if σ is shifted as σ → σ þ c, the
one-point function satisfies

hvacjðψ̄ψÞx;rjvaciflat ¼ hvacj½ðψ̄ψÞx;r þ Δðψ̄ψÞx;r�jvaciflat;
LI ¼ −λcψ̄yψy; ð28Þ

where Δðψ̄ψÞx;r corresponds to a shift in the σ dependent
composite operator counterterms and LI corresponds to the
c dependent mass shift Lagrangian term. This leads to the

diagrams in Figs. 1(c)–1(e) with the external σ propagators
truncated and fixes δZ2, δZ3, δZ4:

− ð−iλÞ3
Z

d4k
ð2πÞ4 Tr

��X
M

D−1
M

1

i
−kþmM

k2 þm2
M − iϵ

�
4
�

þ δZ2 ¼ 0; ð29Þ

− ð−iλÞ2
Z

d4k
ð2πÞ4 Tr

��X
M

D−1
M

1

i
−kþmM

k2 þm2
M − iϵ

�
3
�

þ δZ3 ¼ 0; ð30Þ

and

−iλ
Z

d4yhðψ̄ψÞxðψ̄ψÞyi þ δZ4 ¼ 0 ð31Þ

⇒ − iλ
Z

d4k
ð2πÞ4 ð−ÞTr

��X
M

D−1
M

1

i
−kþmM

k2 þm2
M − iϵ

�
2
�

þ δZ4 ¼ 0: ð32Þ

Furthermore, we require ψ̄ψ to have no loop corrections
when contracted with on-shell fermion. This leads to
Fig. 1(b) (where we have set the composite operator
momentum to be 0 for convenience) and fixes δZ1:

δZ1 þ ðiλÞ2
Z

d4k
ð2πÞ4

X
L;M;N

C−1
L D−1

M D−1
N

1

i
1

k2 þM2
L − iϵ

×
1

i
½−k − pþmM�

ðkþ pÞ2 þm2
M − iϵ

×
1

i
½−k − pþmN �

ðkþ pÞ2 þm2
N − iϵ

¼ 0:

ð33Þ

Similarly, we demand ψ̄ψ to have no loop corrections when
contracted with on-shell scalar line. Explicitly, the diagram
corresponds to Fig. 1(e) determining δZ6:

−iλ
Z

d4yhðψ̄ψÞxðψ̄ψÞyieip·y þ δZ4 − p2δZ6 ¼ 0 ð34Þ

⇒ iλ
Z

d4k
ð2πÞ4Tr

�X
M

D−1
M
1

i
−kþmM

k2þm2
M − iϵ

×
X
N

D−1
N
1

i
−k−pþmN

ðkþpÞ2þm2
N − iϵ

�
þ δZ4−p2δZ6 ¼ 0;

ð35Þ
where p2 ¼ −m2

σ .
For δZi that depend on curved spacetime nature, we

match the renormalized result to that from the adiabatic
subtraction. In order to fix δZ7, we impose the number
density hinjðψ̄ψÞr;xjini to be the density defined by the
adiabatic prescription (see, e.g., [29,51,52,54,78–80]):

FIG. 1. Diagrams determining the counter-terms where the
solid line corresponds to the fermion line and the dashed lines
corresponds to σ lines. Diagram (a) determines δZ5 and δZ7, and
Diagram (e) does δZ4, δZ6 and δZ8. Diagrams (b), (c), and (d) fix
δZ1, δZ2, and δZ3, respectively. It is convenient to truncate the
external σ legs on diagrams (c), (d), and (e) with zero momentum
insertion, making these mass insertions.
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nψ ≡hinjψ̄ψðxÞjiniþ
X
n¼1

hinjψ̄nψðxÞnjiniþδZ5þδZ7RðxÞ

ð36Þ

¼ hinjψ̄ψðxÞjini − hWKB; vac; txjψ̄ψðxÞjWKB; vactxi;
ð37Þ

where jWKB; vac; txi is the WKB vacuum defined at tx by
the adiabatic prescription. The diagram of interest is shown
in Fig. 1(a), and the divergent part of δZ7 determined this
way is linear in the fermion mass.
In order to determine δZ8, we repeat the consideration

analogous to Eq. (32) on a background field σðxÞ ¼ c,
where c is an infinitesimal constant. Since a constant σ shift
is equivalent to a shift of the fermion mass, we want to
choose δZ8 to get

λ∂mnψðxÞ

¼−iλ
Z
CTP

ðdyÞ
X
N;M

hinjPfψ̄MðxÞψNðxÞψ̄NðyÞψMðyÞgjiniconn

þ δZ4þ δZ8RðxÞ; ð38Þ

where the subscript CTP denotes closed-time path, and P is
the path-ordering operator for an “in-in” exception value.
(For example, see Refs. [81,82].) Note that the diagram of
interest corresponds to Fig. 1(e). As we will see later, this
renormalization condition plays a crucial role in determin-
ing the isocurvature correlator. The solution for all the δZi
can be expressed in terms of Feynman parameter integrals.
However, such explicit expressions are not relevant to
determine the isocurvature correlation function. In contrast
the left hand side of Eq. (38) is important.
To summarize, we have given a prescription to regularize

and renormalize the composite operator ψ̄ψ. The renorm-
alization conditions ensure that hinjðψ̄ψÞr;xjini agrees with
that defined by the adiabatic prescription in curved space-
time, and they also ensure that a constant shift in σ is
equivalent to a constant shift in the fermion mass. Note that
because the gravitational production of fermions is still in
flux when mψ < H, we evaluate the number density nψ
later than t�, where Hðt�Þ ∼mψ , as far as the renormaliza-
tion conditions are concerned.

IV. SCENARIO CONSTRAINTS
ON SCALAR FIELD σ

In this section, we explain the constraints on the Yukawa
coupling λ that comes from requiring σ to behave as an
unscreened long range force carrier whose on-shell particle
states do not significantly participate in ψ production.
We will find that the hσσijt� power spectrum relevant for

the isocurvature perturbations is not suppressed if
mσ=Hðt�Þ< 1 where t� is the time at which Hðt�Þ ¼ mψ

(i.e. t� is the time at which the fermionþ antifermion
number freezes [51]). This impliesmσ < mψ is the relevant
parameter region for the scenario of this paper.
Furthermore, in order to prevent any large isocurvature
perturbations and a relic abundance of σ, we assume that
hσi ¼ 0 and the σ particles decay before σ becomes an
important fluid component of the evolution of the universe
(e.g., before matter-radiation equality). Note, however, that
this restriction is a matter of simplicity. There exist
parameter regions in ðmσ; λÞ such that σ survives as a
long-lived weakly interacting particle (i.e. a dark matter).
However, in such cases, the constraints from the relic
abundance and the isocurvature of σ restrict the σ mass to
be very small, e.g., mσ ≲ 10−6 eV for Hinf ∼ 1013 GeV.
(See, e.g., [72,83–85] for the parametric bounds for the
QCD axion produced by inflation.) In principle, it is
possible to build a model that has such small mσ with
the help of some underlying symmetry, such as a shift
symmetry.
Although we assume that mσ < mψ , σ would generally

acquire a plasma mass correction through interactions with
an ensemble of ψ particles. Thus we consider the effect of
the produced ψ on the σ correlator and show that the effect
is negligible. We expect the fermions do not affect scalar
modes before the horizon exit because the mass correction
by the fermion is still small compared to the Hubble friction
during inflation. After the scalar mode exits the horizon, the
fermions exert a tiny computable drag on σ. The equation of
motion of σ from the action (6)11 is written as

0 ¼ hinj½ð□ −m2
σÞσx − λψ̄ψx þ δZ0 þ δZRRx þ δZσ□σx

− δm2
σσx þ δZξRxσx�½� � ��jini ð39Þ

¼ ð□x−m2
σÞhσx½� � ��iþ iλ2

Z
x
ðdzÞh½ψ̄ψx; ψ̄ψ z�ihσz½� � ��i

þ ðδZσ□x− δm2
σ þ δZξRxÞhσx½� � ��i

þ ðδZ0þ δZRRx− λhψ̄ψxiÞh½� � ��iþOðλ3; yÞ; ð40Þ

where ½� � �� denotes any quantum operators in the
correlation function. We choose the counterterms δZ0

and δZR such that the tadpole hσi vanishes, i.e.,
ðδZ0 þ δZRR − λhψ̄ψiÞ ¼ 0, where the PV regulator is
assumed. Moreover, when σ varies very slowly outside
the horizon, we factor hσz½� � ��i out of the integral in
Eq. (40), and we renormalize the integral using the
counterterms ðδZσ□x − δm2

σ þ δZξRxÞhσx½� � ��i such that

11The counterterms appearing in the action includes

Sc:t:∋
Z
ðdxÞ



−
1

2
δZσð∂σÞ2−1

2
δm2

σσ
2þδZ0σþδZRRσþδZξRσ2

�
:

Note that the linear σ terms exist in the action because the action
does not preserve the Z2 symmetry due to the Yukawa coupling.
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the result is consistent with that obtained by the adiabatic
subtraction12:

iλ2
Z

x
ðdzÞh½ψ̄ψx; ψ̄ψ z�iþ ð−δm2

σ þ δZξRxÞ ¼−λ2
�∂nψ
∂mψ

�
;

ð41Þ

where nψ is the renormalized fermion number density
defined by Eq. (37), and we have used Eq. (38) in the
derivation. Therefore, we find the effective mass of σ when
it slowly varies (i.e., k=a ≪ H and mσ ≪ H)

meff
σ ¼ m2

σ þ Δm2
σðtÞ ≈m2

σ þ λ2
∂nψðtÞ
∂mψ

: ð42Þ

Because we estimate nψ ≲Oð0.1ÞðmψHÞ3=2 when
mψ ≲H,13 based on dimensional analysis, we expect that
the mass correction by the ψ loop is

Δm2
σðtÞ ≈ λ2

∂nψ ðtÞ
∂mψ

∼
�
Oð0.1 or lessÞλ2m1=2

ψ H3=2 for mψ < HðtÞ
Oð0.1Þλ2m2

ψ for mψ > HðtÞ
:

ð43Þ

Therefore, in general, before the fermion production ends
mψ < H, this scalar mass correction Δm2

σ does not ruin the
stability of our scenario m2

σ þ Δm2
σðtÞ < m2

ψ < H2ðtÞ as
long as m2

σ < m2
ψ .

Next, we ask the question of which parametric region
would be consistent with the simplifying assumption that ψ
particles are primarily produced gravitationally and not
by σ. To this end, we first consider the annihilation
σσ → ψ̄ψ . The annihilation is the most significant at the
end of inflation because ψ particles produced from σ before
the end of inflation are diluted, and σσ → ψ̄ψ after the end
of inflation is also limited because the allowed kinematic

phase space is redshifted. Thus we compare the number
density of the produced ψ from σ at the end of inflation,
nσ→ψ with that of gravitationally produced ψ , nψðt�Þ ∼m3

ψ ,
and we require their ratio to be small:

�
ae

aðt�Þ
�

3nσ→ψ ðteÞ
nψðt�Þ

∼
�

ae
aðt�Þ

�
3nσΓðσσ→ψψÞΔtjte

nψðt�Þ
ð44Þ

∼
�
Hðt�Þ
He

�
2H3

e · λ4

16π2
He · 1

He

H3ðt�Þ

∼
λ4

16π2
He

mψ
≲ 1; ð45Þ

where the subscript e means a variable is evaluated at the
end of inflation te.
Even though mσ < mψ , the decay production of ψ

through σ → ψ̄ψ may still be possible if σ is sufficiently
off shell due to its interactions with finite density of ψ in the
subhorizon region [the subhorizon physics here is different
from the superhorizon physics considered in Eq. (42)]. To
turn off this channel, we require that the σ mass corrections
from the fermion number density at the time of the end of
inflation be small. This requires

λκ
He=ð2πÞ

mψ
≲ 1; ð46Þ

where κ ≳Oð1Þ. To see how κ ≳Oð1Þ can come about,
consider the following estimate of the subhorizon thermal
effect. The maximum effective number density of fermions
at the end of inflation is

nψ ðteÞ≲ 4mψ

�
He

2π

�
2

: ð47Þ

The energy density associated with these fermions is

ΔV ∼ nψ ðteÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
He

2π

�
2

þ λ2σ2

s
; ð48Þ

where we neglected mσ ≪ He=ð2πÞ. This leads to an
effective mσ correction of

Δm2
σ ∼ nψðteÞ

λ2

He=ð2πÞ
≲ 4λ2mψ

�
He

2π

�
: ð49Þ

Kinematically blocking the σ decay into ψ , we find

4λ2
�
He

2π

�
< mψ ; ð50Þ

which corresponds to κ ¼ 2. Note that this condition is
more restrictive than Eq. (45).

12In other words, we identify −δm2
σ and δZξ with δZ4 and δZ8

in Eq. (38), and δZσ□ is neglected since σ is slowly varying.
13Note that the adiabatic prescription to determine the number

density nψ does not apply for modes mψ < k=a <
ffiffiffiffiffiffiffiffiffiffiffi
mψH

p
when

mψ < H because vacuum varies nonadiabatically, i.e., the adia-

baticity parameter ϵk ≡ mψkpH
ωk

≳ 1, where kp ¼ k=a and ωk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

ψ

q
. See Appendix B for details. However, we can

estimate the upper bound of the number density as

nψ ðtÞ ¼
Z

d3kp
ð2πÞ3 jβkj

2

≲
Z ffiffiffiffiffiffiffiffi

mψH
p

d3kp
ð2πÞ3

1

2
∼Oð0.1ÞðmψHÞ3=2 for t < t�:
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In sum, requiring σ to behave as an unscreened long
range force carrier whose on-shell particle states do not
significantly participate in ψ production gives a constraint
on λ. The strongest condition is given by Eq. (46)
with κ ≳Oð1Þ.

V. ISOCURVATURE TWO-POINT FUNCTION

In this section, we evaluate the two-point function of the
renormalized isocurvature operator δS, given by Eq. (19).
The average number density was computed in [51], the
result is summarized in Appendix B. We only need to
evaluate hðψ̄ψÞx;rðψ̄ψÞy;ric. Since we want to use the
quantum computation to set the initial condition for the
subsequent classical fluid evolution, we will choose
the time of the evaluation such that both the quantum
and the classical fluid descriptions apply. We take x0 ¼
y0 ¼ ηf at a time after the particle production ends, since
the fluid description cannot describe the particle production
process. We will take the separation j~x − ~yj to be large
enough such that the intersection of their past light cone
I−ðxÞ ∩ I−ðyÞ lives deep within the inflationary era. This
ensures that the contributions from late-time short distance
physics (e.g., reheating, phase transition) are minimized.
The relevant diagrams for hðψ̄ψÞx;rðψ̄ψÞy;ric are given in
Fig. 2. The crossed dot represents ðψ̄ψÞx;r insertion, the
solid dot represents the Yukawa interaction vertex, the
dashed line represents the scalar σ propagator, and the solid
line represents the fermion propagator.

A. Leading order result

We first consider the leading order diagram in Fig. 2(a).
The diagram is explicitly written as

hψ̄ψxψ̄ψyiðaÞ ¼ −Tr½hψxψ̄yihψyψ̄xi�
¼
X
i;j

V̄i;xUj;xŪj;yVi;y: ð51Þ

Using a contour integration technique, we can evaluate the
mode-sum analytically. The details are given in
Appendix C. The result14 is

hψ̄ψxψ̄ψyiLO

¼
( 1

π4a6xj~x−~yj6 ð1þO½ðmψ

Hinf
Þ2�Þ ðmψ ≪ HinfÞ

1
π4a6xj~x−~yj6 ð4πÞð

mψ

Hinf
Þ3 expð−2π mψ

Hinf
Þ ðmψ ≫ HinfÞ

;

ð52Þ

where Hinf is the expansion rate during inflation. We can
understand this result by backtracking the two points x, y to
the time when they were deep inside the horizon and seeing
what happened as they grew apart.
In the heavy mass case (mψ ≫ Hinf ), the Compton radius

m−1
ψ is smaller than the horizon radius H−1

inf . The physical
separation rphys will first grow to the Compton wavelength
and trigger the exponential suppression factor
expð−2mψrphysÞ in the correlator,

hψ̄ψxψ̄ψyiflat;mψ rphys>1 ∼
m3

ψ

4π3r3phys
expð−2mψrphysÞ: ð53Þ

As the physical separation rphys grows further to exceed the
horizon radius H−1

inf , the correlator would freeze and start
decreasing as ðar=aηÞ6, where ar ¼ 1=ðHinfrÞ denote the
scale factor at the horizon crossing. Substituting ar ¼ 1

Hinfr

and rphys ¼ H−1
inf , we recover the heavy mass formula:

�
ar
aη

�
6 m3

ψ

4π3r3phys
expð−2mψrphysÞ

∼
1

a6xr6

�
mψ

Hinf

�
3

exp

�
−2

mψ

Hinf

�
: ð54Þ

In the light mass case (mψ ≪ Hinf ), the physical distance
will cross the horizon radius first, without the exponential
suppression of expð−2mψrphysÞ. From the flat space UV
limit result 1

r6phys
,

(a) (b)

(c) (d) (e)

x

x x x

xy

y y y

y

z w

z

z

z

w

w

w

FIG. 2. The leading order diagram (a) and the next leading
order diagrams (b), (c), (d), and (e) contributing to hψ̄ψxψ̄ψyi,
where the cross-dot vertices corresponds to ψ̄ψ insertion.
Comparing the large r (r≡ jx⃗ − y⃗j) behavior of the equal-time
correlator of the fermion and the scalar field, we show that
diagram (b) dominates in the limit r → ∞.

14Note that we do not consider the heavy mass case, mψ ≫
Hinf where Hinf is the expansion rate during inflation, for the
isocurvature because the estimation of the particle production
depends on how the inflation ends as described in Sec. II.
However, we provide the leading order of the two-point function
to develop better intuition for the behavior of super horizon
modes of ψ .
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hψ̄ψxψ̄ψyiflat;mrphys<1 ∼
1

r6phys
; ð55Þ

we use ar ¼ 1
Hinfr

and rphys ¼ H−1
inf to obtain

�
ar
aη

�
6 1

r6phys
∼

1

a6xr6
: ð56Þ

Thus we recover the light mass result.
Unfortunately, the fractional relic density fluctuation at

the CMB scale15 is too small

hδρxδρyi
hρ̄ψi2

∼
m2

ψ=ðπ4a6r6CMBÞ
m2

ψm6
ψða6�=a6Þ

∼
�

1

a�mψrCMB

�
6

; ð57Þ

where rCMB is the comoving distance for the typical CMB
observation scale and the subscript � denotes the time when
fermion production ends. Let aCMB denote the scale factor
when the CMB scale exits the horizon, and then we have

r−1CMB ∼ aCMBHinf : ð58Þ

Assuming the fermion production ends during reheating
when mψ ¼ Hðt�Þ, and H ∝ a−α during reheating, then we
have

aeHinf

a�mψ
∼
aeHe

a�H�
∼
�
ae
a�

�
1−α

∼
�
He

H�

�
1−1

α

: ð59Þ

Assuming that inflation ends 50 e-folds after the CMB
scale exits the horizon and a reheating effectively like a
matter dominated period, i.e., α ¼ 3=2, then we have

hδρxδρyi
hρ̄ψi2

∼
�
aCMBHinf

a�mψ

�
6

∼
�
aCMB

ae

aeHinf

a�mψ

�
6

∼ e−300
�
He

mψ

�
2

: ð60Þ

Using the fermion relic abundance formula (for TRH ¼
109 GeV and g� ¼ 100 cases) ωψ ∼ ðmψ=1010 GeVÞ2, we
obtain

hδρxδρyi
ρ2tot

∼ ω2
ψ
hδρxδρyi
hρ̄ψ i2

∼ e−300
�

He

1010 GeV

�
2

: ð61Þ

We thus find that generically the pure fermion isocurvature
is very small on scales relevant for the CMB.

B. Next leading order result

We consider the diagrams in Figs. 2(b)–2(e), which
contain the effects of the Yukawa interaction to the fermion
production. We can perturbatively compute the diagrams
using the “in-in” formalism (e.g., see Refs. [86,87] and
references therein).
First, we estimate which diagram gives the largest

contribution when x and y have large spatial separations.
From the fact that equal-time correlator hσxσyi scales as
r2ν−3 where ν2 ¼ 9=4 −m2

σ=H2 from Eq. (A13) and
hψxψ̄yi scales as r−3, we expect that diagrams that have
fewer fermion lines stretched between x and y decrease
slower as r → ∞. Thus, we conclude diagram 2(b) gives
the dominant contribution to the two-point function.
For diagram 2(b), we expand it using commutators

Ibðx; yÞ ¼ hðψ̄ψÞx;rðψ̄ψÞy;ric;diagðbÞ ð62Þ

¼ 4ðiλÞ2
Z

x
ðdzÞ

Z
y
ðdwÞhψ̄ψ ½xψ̄ψ z�ihψ̄ψ ½yψ̄ψw�ihσfzσwgi

þ 4ðiλÞ2
Z

x
ðdzÞ

Z
y
ðdwÞhψ̄ψfxψ̄ψ zgihψ̄ψ ½yψ̄ψw�ihσ½wσz�iΘðw0 − z0Þ

þ 4ðiλÞ2
Z

xðdzÞ
Z

yðdwÞhψ̄ψ ½xψ̄ψ z�ihψ̄ψfyψ̄ψwgihσ½zσw�iΘðz0 − w0Þ ð63Þ

≈ ðiλÞ2
Z

x
ðdzÞ

Z
y
ðdwÞh½ψ̄ψx; ψ̄ψ z�ih½ψ̄ψy; ψ̄ψw�ihσfzσwgi; ð64Þ

where ðdzÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

p
d4z, ½� � �� means antisymmetri-

zation and f� � �g means symmetrization, and we have
implicitly assumed the PV regulator. From the scalar and

fermion mode functions in de Sitter spacetime, we know
h½σx1 ; σx2 �i is suppressed by a−2ν relative to hfσx1 ; σx2gi,
whereas h½ψ̄ψx1 ; ψ̄ψx2 �i is suppressed by a−1 relative to
hfψ̄ψx1 ; ψ̄ψx2gi. The last line is obtained by keeping only
the dominant contribution.
Since the fermion particle production ends at t� and the

previously produced particles have been diluted away, we

15Since hδρδρi is frozen as long as the two points are outside of
the horizon, we can extrapolate this large spatial separation result
obtained at the end of inflation to the recombination time.

DANIEL J. H. CHUNG, HOJIN YOO, AND PENG ZHOU PHYSICAL REVIEW D 91, 043516 (2015)

043516-10



expect the z and w integrals to peak around the time t�.
For late time and large spatial separations, the scalar
correlator hσfzσwgi is slowly varying with respect to
changes in z and w. Thus we may approximately take
hσfzσwgi ¼ hσfz0σw0gi, where z0 ¼ ðt�; ~xÞ and w0 ¼ ðt�; ~yÞ,
and factor it outside of the z, w integral:

Ibðx; yÞ ≈ ðiλÞ2hσfz0σw0gi

Z

xðdzÞh½ψ̄ψx; ψ̄ψ z�i
�

×


Z
y
ðdwÞh½ψ̄ψy; ψ̄ψw�i

�
: ð65Þ

The remaining fermion integral
R
xðdzÞh½ψ̄ψx; ψ̄ψ z�i is

quadratically divergent. The counterterms δZ4σ þ δZ8Rσ
in ðψ̄ψÞr are in place to cancel such divergences.
Furthermore, our choice of the renormalization conditions
given in Sec. III A ensures that a constant shift in σ is
equivalent to a shift of the fermion mass [see Eq. (38)]. An
explicit computation of the fermion loop integral using the
adiabatic subtraction is given in Appendix D. Thus we have

hðδSÞr;xðδSÞr;yiNLO ≈ ω2
ψλ

2½∂m ln nψ jx�½∂m ln nψ jy�
× hσfð~x;t�Þσð~y;t�Þgi; ð66Þ

where t� is the time when fermion production ends [i.e.
mψ ∼Hðt�Þ] and ∂m denotes the derivative with respect to
mψ . Note that hðδSÞr;xðδSÞr;yiNLO freezes for t > t� since
∂mnψ and nψ behave as a−3 after the fermion production
ends. We will discuss the numerical implications of this
result below.
To summarize, we computed the isocurvature correlation

function to the next leading order, as in Eq. (66). Intuitively,
the light scalar’s quantum fluctuation modulates the fer-
mion’s mass, which affects the fermion relic abundance. In
the same line of thought, we may extrapolate this result to
estimate higher order corrections

hðδSÞr;xðδSÞr;yifull
≈ ω2

ψ
hnψ ðmψ þ λσð~x; t�ÞÞnψðmψ þ λσð~y; t�ÞÞiσ

n2ψ
; ð67Þ

where we have treated nψ to be a function of its mass and
the expectation value is taken with respect to the σ field.

C. Isocurvature power spectrum

In the long wavelength limit, which corresponds to the
low multipoles in the angular CMB anisotropy, the temper-
ature fluctuations dominantly come from the Sach-Wolfe
term [18], which is expressed as

ΔT
T

¼ −
1

5
ζ −

2

5
δS: ð68Þ

Then the power spectrum of the temperature fluctuations

Δ2
ΔT
T
ðkÞ≡ k3

2π2

Z
d3x

�
ΔT
T

ðt; ~xÞΔT
T

ðt; ~0Þ
�
e−i~k·~x

¼ 1

25
Δ2

ζðkÞ þ
4

25
Δ2

δS
ðkÞ; ð69Þ

Δ2
ζðkÞ≡ k3

2π2

Z
d3xhζðt; ~xÞζðt; ~0Þie−i~k·~x; ð70Þ

Δ2
δS
ðkÞ≡ k3

2π2

Z
d3xhδSðt; ~xÞδSðt; ~0Þie−i~k·~x; ð71Þ

where the cross-correlation contribution hζδSi has been
neglected because of the reason explained in Sec. VII.
When the leading term approximation (66) is valid,
Eq. (66) yields the isocurvature power spectrum

Δ2
δS
ðt;kÞ¼ω2

ψðtÞλ2
�∂mnψðmψÞ

nψ

�
2

Δ2
σðt�;kÞþOðλ4Þ; ð72Þ

which includes the extra factor ω2
ψ due to the thermal relics.

Furthermore, when the mass of scalar field σ is sufficiently
light such that σ does not start its coherent oscillation
until the fermion particle production ends, i.e.,
mσ < Hðt�Þ < Hinf , the power spectrum for σ is

Δ2
σðt�; kÞ ≈

H2ðtkÞ
4π2

; ð73Þ

where tk is the time when the scale k exits the horizon. Note
that we have already shown that the correction ofmσ due to
the fermion loop is negligible in Sec. IV. Therefore, the
isocurvature power spectrum becomes

Δ2
δS
ðkÞ ≈ ω2

ψλ
2

�∂mnψ ðmψ Þ
nψ

�
2H2ðtkÞ

4π2
: ð74Þ

The currently known parametric bounds for this isocurva-
ture power spectrum is presented in Sec. VI A.

VI. RESULT AND DISCUSSION

A. Parameter bounds

In this subsection, we present the allowed parameter
region in the fermion isocurvature model from the obser-
vational constraints using the dark matter relic abundance
and the CDM isocurvature power spectrum. In this sce-
nario, there are five independent parameters: mψ , Hinf , λ,
TRH, and mσ, where Hinf is the Hubble scale during
inflation and TRH is the reheating temperature. We assume
Hinf and TRH are free parameters governed entirely by the
inflaton and the reheating sector. As discussed in Sec. II, as
long as mσ ≪ mψ , the exact value of the scalar mass mσ is
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numerically unimportant in this model. Therefore, we are
basically left with two parameters, namely λ and mψ .

16

For the light fermion, mψ < Hinf , the fermion particle
number freezes when Hðt�Þ ∼mψ as reviewed in
Appendix B. In particular, the Yukawa coupling works
effectively as a mass shift in our scenario meff ¼
jmψ þ λσðt�Þj. The fermion relic abundance (B3) becomes

Ωψh2 ∼ 3r

�
meff

1011 GeV

�
2
�

TRH

109 GeV

�
; ð75Þ

where the extra factor r comes from the difference in the
effective masses at t� and later time, at which the energy
density of ψ is not negligible, such as the matter dominated
(MD) era. For example, if σ is treated as a Gaussian random
variable with

ffiffiffiffiffiffiffiffiffi
hσ2i

p
∼Hinf=2π, we can approximate r ≈

mψ=hmeffi and write

Ωψh2 ∼

8<
:
�

mψ

1011 GeV


2
�

TRH
109 GeV


if mψ > λHinf=2π

2πmψ

λHinf

�
λHinf

1011 GeV


2
�

TRH
109 GeV


if mψ < λHinf=2π

;

ð76Þ

where Oð1Þ factors are neglected.
Furthermore, from the result (74) in Sec. V C, the

fractional isocurvature amplitude [88] becomes

αS ≡
Δ2

δS

Δ2
ζ þ Δ2

δS

∼
λ2

2

�
mψ

104 GeV

�
2
�

H
1013 GeV

�
2
�

TRH

109 GeV

�
2

; ð77Þ

where we have used

∂mnψ
nψ

∼
�
m−1

ψ for mψ > λHinf=2π

2πλ−1H−1
inf for mψ < λHinf=2π

; ð78Þ

because the number density nψ at the time t� is determined
by only one dimensionful scale meff ∼Hðt�Þ. The current
observational bound [1,89,90] of the isocurvature for the
uncorrelated case, i.e. hζδSi ¼ 0, is αS < 0.016 (95% C.L.)
from the PlanckþWP9 combined data, which yield the
constraints on the parameters λ and mψ . Combining the
above considerations, we have the parameter plot shown in
Fig. 3. We emphasize that the parameter region beyond the

(left diagonal) bound from the σ annihilation, Eq. (50), is
not necessarily excluded. Because of the uncertainty of the
σ annihilation effect, we provide it as a conservative bound
of this model.
The case that mψ < λHinf=ð2πÞ (which we will refer to

as the large mass correction regime) is potentially the most
interesting case because the fermion number density nψ
depends on jmψ þ λσj, not mψ þ λσ as the sign of the
fermion mass is irrelevant for particle production.17 This
may lead to interesting features such as large non-
Gaussianities when the effective mass varies from negative
to positive depending on the local Hubble patches at t�.
However, this parametric region has a couple of problems:
(1) the perturbative calculation of nψ may be unsuitable
since we are not resuming the large mass corrections; and
(2) Eq. (46) may not be satisfied. Hence, for the rest of this
section, we primarily focus on the case that
mψ > λHinf=ð2πÞ, which we will refer to as the small
mass correction regime.

B. Non-Gaussianities

In this subsection, we compute the bispectrum
BSð~p1; ~p2; ~p3Þ defined by

FIG. 3 (color online). Bounds on the fermion mass and Yukawa
coupling for various inflationary Hubble scales. The vertical
bound corresponds to the total dark matter relic density con-
straint, and the right diagonal one corresponds to the constraints
from the CDM isocurvature, respectively. The left diagonal one is
a conservative bound from the σ annihilation of this model,
Eq. (50), which may be relaxed. The splitting dashed lines in each
region separates the small mass and large mass correction
regimes. In this plot, we set TRH ¼ 109 GeV.

16Note that we implicitly assume that if mψ and TRH are such
that the dark matter relic abundance is not saturated by the ψ
energy density, the other CDM sector in Eq. (6) is adjusted to
provide the rest of the dark matter. Note that when the ψ dark
matter abundance is small, no large tuning is needed to make this
occur since the well known WIMP miracle can saturate the dark
matter abundance.

17The sign of the fermion mass changes under a chiral
transformation.

DANIEL J. H. CHUNG, HOJIN YOO, AND PENG ZHOU PHYSICAL REVIEW D 91, 043516 (2015)

043516-12



ð2πÞ3δð3Þ
�X

i

~pi

�
BSð~p1; ~p2; ~p3Þ

¼
Z

d3x1d3x2d3x3e
−i
P

i
~pi· ~xihδSð~x1ÞδSð~x2ÞδSð~x3Þi:

ð79Þ

The fermion density fluctuation is intrinsically non-
Gaussian since nψ is the nonlinear function of σ, which
is treated as a Gaussian random variable. When the
effective mass fluctuation due to λσ is small, we can
Taylor expand the number density with respect to λσ,

nψðmψ þ λσÞ ¼ nψðmψÞ þ λð∂mψ
nψðmψÞÞσ

þ 1

2
λ2ð∂2

mψ
nψðmψÞÞσ2 þOðλ3Þ: ð80Þ

Then the bispectrum is written as

BSð~p1; ~p2; ~p3Þ

¼ λ4ω3
ψ
ð∂mnψÞ2ð∂2

mnψ Þ
n3ψ

½Δ2
σðp1ÞΔ2

σðp2Þ þ 2 perms�

þOðλ6Þ; ð81Þ

which is shown diagrammatically in Fig. 4. Now we
compare this with the observational non-Gaussianities
using the conventional non-Gaussian parameter fNL
defined by

Bζð~p1; ~p2; ~p3Þ≡ 6

5
fNL½Δ2

ζðp1ÞΔ2
ζðp2Þ þ 2 perms�: ð82Þ

Identifying Bζ as the bispectrum of the temperature
fluctuation using Eq. (68) and comparing it with BS, we
find in the squeezed triangle limit

fSNL ¼
8BS

BζjfNL¼1

¼ 8
5

6
λ4ω3

ψ
ð∂mnψÞ2ð∂2

mnψÞ
n3ψ

Δ2
σðp1ÞΔ2

σðp2Þ þ 2 perms
Δ2

ζðp1ÞΔ2
ζðp2Þ þ 2 perms

:

ð83Þ

The factor of 8 arises because the radiation transfer function
for isocurvature is twice larger than that for adiabatic
perturbation for the low multipoles of the CMB anisotropy
as shown in Eq. (68). Although the isocurvature non-
Gaussianities parameter fSNL should not be compared
directly with fNL defined by the curvature perturbation
[91], this can be done with the extra Oð1Þ correction factor
[31,34,74,92–94]. The reason why ∂2

mnψ appears instead of
a first derivative is because the squeezed triangle limit
allows the short distance propagator to become important.
Furthermore, subhorizon physics via the Yukawa interac-
tion, in principle, gives rise to the non-Gaussianities of
other types, e.g., the equilateral type. We postpone this
study for future work.
In order to obtain the functional structure of nψðm;H; tÞ,

which relies on the background behavior, we specialize to
the case of the inflaton coherent oscillation reheating
scenarios, in which the total fermion number freezes during
the reheating. During the early stage of the reheating when
the inflaton field oscillates coherently, the equation of state
of the inflaton is zero and the background behaves like the
MD era. After approximating the early stage of the
reheating to the MD-like era (i.e. inflaton coherent oscil-
lations period), we get [see Eq. (B2)]

nψðtÞ ∼
m3

ψ

3π2

�
aðtmÞ
at

�
3

∼mψH2
e

�
ae
at

�
3

: ð84Þ

However, this leading order result gives ∂2
mψ
nψ ¼ 0 which

renders fSNL ¼ 0 via Eq. (83).
To find the nonzero result of fSNL, we need to study the

mass dependence of nψ in more detail, which in turn
requires the knowledge of jβkðt;mÞj2. To this point,
we have approximated our spectrum by jβkðt;mÞj2 ∼
1=2Θðk� − kÞ, where k� ¼ aðt�Þm and t� is the time when
m ¼ H. However, in general the spectrum should contain
more than one characteristic scale, such as ke ¼ aðteÞHe
where te marks the end of inflation. Thus, in general, the
number density should contain a correction factor fðmHe

Þ, i.e.

nψ ∼mψH2
e

�
ae
at

�
3

f

�
mψ

He

�
ð85Þ

and fð0Þ ¼ 1. This higher order correction to nψ would
render ∂2

mnψ ≠ 0 for the MD-like reheating scenario.
For simplicity, if we assume that fðxÞ ¼ 1þ a1x,

18 then
in the limit where Δ2

σ , Δ2
ζ , and Δ2

δS
are scale invariant, we

find

FIG. 4. The leading order diagrams to 3-point function hδSδSδSi
is shown. The cross-dotted vertices corresponds to ψ̄ψ=nψ
insertions.

18On very general grounds, nψ cuts off exponentially at very
large masses, mψ ≳He, as shown in Appendix B and
Refs. [30,31,51,52,78]. From this, we qualitatively estimate
the correction factor f from this exponential cutoff, which gives
an Oð1Þ value for a1.
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fSNL ∼ a1

�
αSðλ; mψ ; He; TRHÞ

0.02

�
2
�
Ωψh2ðmψ ; TRHÞ

10−7

�−1

×

�
mψ=He

10−1

�
: ð86Þ

Although we would naively guess a1 ∼Oð1Þ, the justifi-
cation of the Taylor expansion for fðxÞ and the estimation
of the coefficient a1 will be left for future work since the
main thrust of this work is the computation of isocurvature
perturbations and not the non-Gaussianities. The maximum
fNL for the mψ ≳ λHinf=ð2πÞ case (consistent with the
small mass correction case) is achieved when this inequal-
ity is saturated and αS is at its phenomenological maximum.
We find this maximum to be at

fSNL;max ∼Oð100Þa1
mψ

Hinf=ð2πÞ
: ð87Þ

Recall that our scenario assumes that 2πmψ=Hinf < 1.
Hence, although fSNL cannot be made arbitrarily large,
there may exist a parametric regime in which fSNL is
observable depending on a1. Note that this extremum
value corresponds to making the inhomogeneities
Oð1Þ while staying consistent with phenomenology
through the ωψ dilution factor: i.e. at this parametric
point, the fermion abundance is Ωψh2 ≈ 10−6 while most
of the CDM is made up of assumed dark matter different
from ψ .

VII. NATURAL SUPPRESSION
OF GRAVITATIONAL COUPLING

TO THE INFLATON

As briefly discussed in Sec. II, the gravity induced
coupling of the fermion to the inflaton gives a suppressed
contribution to the isocurvature correlation function.
We would like to consider this in more detail in this
section. In addition, the argument below also shows that
hψ̄ψζi cross-correlation is negligible, justifying the clas-
sification of these fermionic isocurvature perturbations as
uncorrelated.
First, consider the ζψψ interaction given by Eq. (F17)

following the argument given in Ref. [53]. In this case, the
most important coupling term is a2ζδijT

ij
ψ ∈ Hint because

the other interactions are derivatively suppressed, and it
decays asOð1=a2Þ or faster. Since ζ also freezes outside the
horizon, using the similar argument given surrounding
Eq. (65) we can factor the ζ correlation function out of the
dominantly contributing integral, which corresponds to the
diagram (b) in Fig. 2. Then we have

Iζψψ ðx; yÞ

≈ ðiÞ2hζfz0ζw0gi

Z

t

tr

dtz

Z
d3za3ðtzÞh½ψ̄ψx; Ti

ψiðzÞ�i
�

×


Z
t

tr

dtw

Z
d3wa3ðtwÞh½ψ̄ψy; Ti

ψiðwÞ�i
�

þO

�
a2ðtrÞ
a2ðtÞ

�
; ð88Þ

where z0 ¼ ðt�; ~xÞ, w0 ¼ ðt�; ~yÞ, t ¼ x0 ¼ y0, and tr
denotes the time that the comoving distance r ¼ j~x − ~yj
crosses the horizon during inflation. In the integral, we have
assumed the PV regulator. Note that λ

R ðdzÞTi
ψi is a

generator of the spatial dilatation, xi → ð1þ λÞxi which
is an element of diffeomorphism. Thus, we haveZ

t

−∞
dtz

Z
d3za3ðtzÞh½ψ̄ψx; Ti

ψiðzÞ�i ¼ 0 ð89Þ

because ψ̄ψ is a diffeomorphism invariant scalar. Indeed,
this is a Ward identity similar to that of Ref. [53]. Although
the integral in Eq. (88) does not completely vanish (because
of the time integral limit being tr and not −∞), the mode
function of ψ decays as 1=a3 (as shown in Appendix C)
because of the classical conformal symmetry characterizing
the massless fermionic sector,19and we have

Z
t

tr

dtz

Z
d3za3ðtzÞh½ψ̄ψx; Ti

ψiðzÞ�i ∼O

�
a3ðtrÞ
a3ðtÞ

�
: ð90Þ

In a similar manner, we can have

hζxðψ̄ψÞyi ∼O

�
a2ðtrÞ
a2ðtÞ

�
: ð91Þ

Therefore, we can conclude that large scale density
perturbations of ψ particles generated by ζ interaction
and the curvature and isocurvature cross-correlation via the
ζψ̄ψ are negligible.

VIII. SUMMARY AND CONCLUSION

In this work, we have presented a fermionic isocurvature
scenario which contains fermionic field fluctuation infor-
mation during inflation. To our knowledge, this is the first
work that describes isocurvature inhomogeneities of

19Thus, the result is different for a scalar case, which is
minimally coupled to gravity. In particular, the cross-correlation
for the light scalar case is computed in Ref. [53] and is

hζðt; ~xÞσ2ðt; ~yÞi ∼O

��
aðtrÞ
aðtÞ

�
3−2ν

;

�
aðtrÞ
aðtÞ

�
2
�
;

where ν≡
ffiffiffiffiffiffiffiffiffiffiffiffi
9
4
− m2

σ

H2

q
.
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fermionic fields during inflation. Because massless free
fermions have a tree-level conformal symmetry, such
isocurvature models must couple to a conformal symmetry
breaking sector. Because the ζ sector coupling to fermion ψ
is suppressed due to the dilatation symmetry, an additional
scalar sector σ is coupled to ψ (with mass mψ ) through a
Yukawa coupling with strength λ. Composite operator
renormalization in curved spacetime plays an important
role in determining the isocurvature perturbations. We have
computed the fermion isocurvature two point correlation
function which has its dominant contribution in the long
wavelength limit coming at one-loop 1PI level. We have
also estimated the local non-Gaussianity and found a value
that is promising for observability for a particular corner of
the parameter space.
As far as the existence proof inspired “minimal” model

of this paper is concerned, a large phenomenologically
viable parameter region spanned by fλ; mψg exists for
various inflationary models controlled by fHinf ; TRHg. The
large λ parameter region is bounded either by current CMB
constraints on isocurvature perturbations or by the con-
straint of σ not decaying to ψ . The large mψ region is
constrained by the relic abundance nonoverclosure. The
small mψ region is constrained by requiring that σ not
decay to ψ (for a fixed λ and Hinf ). The large non-
Gaussianity parametric region is associated with the largest
λ consistent with isocurvature bounds and the simplifying
assumption mψ ≳ λHinf=ð2πÞ. This intuitively corresponds
to a large fermion inhomogeneity [i.e. δρψ=ρ̄ψ ∼Oð1Þ]
with a tiny ρ̄ψ=ðρ̄ψ þ ρ̄mÞ where ρ̄m corresponds to an
adiabatic cold dark matter component that helps saturate
the phenomenologically measured cold dark matter
abundance.
Our results regarding the gravitational fermion produc-

tion give good dynamical intuition on many models with
dynamical fermions existing during inflation. One short-
coming of the explicit model used in the current work is the
tuning of the σ sector imposed to keep it light and to prevent
any σ decay into ψ . In addition to model building issues, it
would be interesting to consider in the future non-
Gaussianities from such models more completely and
carefully beyond the estimation presented in this work.
It may also be interesting to see what UV model fermionic
sector built independently of cosmological motivation can
be constrained using the analysis presented in this paper.

ACKNOWLEDGMENTS

This work was supported in part by the DOE through
Grant No. DE-FG02-95ER40896, Wisconsin Alumni
Research Foundation, and National Science Foundation
under Grant No. NSF PHY11-25915. We thank KIAS,
where part of this work was accomplished, for the hospital-
ity and support.

APPENDIX A: SCALAR AND SPINOR FIELDS
IN CURVED SPACETIME

First we list the relevant results about scalar field.
Consider the following action:

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
−
1

2
gαβ∂αϕ∂βϕ −

1

2
m2ϕ2 −

1

2
ξRϕ2

�
:

ðA1Þ

This gives rises to equation of motion

1ffiffiffiffiffijgjp ∂μðgμν
ffiffiffiffiffi
jgj

p ∂νϕÞ − ðm2 þ ξRÞϕ ¼ 0: ðA2Þ

The scalar product between two solutions is defined as

ðϕ1;ϕ2Þ ¼ −i
Z
Σ
½ϕ1∂μϕ

�
2 − ϕ2∂μϕ

�
1�

ffiffiffiffiffiffiffiffi
jgΣj

p
dΣμ; ðA3Þ

where Σ is a spacelike hypersurface.
For the FRW metric, we can use mode decomposition

ϕðxÞ ¼
Z

d3kðc~ku~kðxÞ þ c†~ku
�
~k
ðxÞÞ ðA4Þ

with the normalization condition

½c~k; c†~p� ¼ δ3ð~k − ~pÞ; ðA5Þ

ðu~k; u~pÞ ¼ δ3ð~k − ~pÞ: ðA6Þ

The mode functions can be written explicitly as

u~kðxÞ ¼
ei~k·~x

ð2πÞ3=2aðηÞ fkðηÞ; ðA7Þ

fk∂ηf�k − f�k∂ηfk ¼ i: ðA8Þ

The time part of the mode function obeys the differential
equation

d2

dη2
fk;ηþ

�
k2þa2η



m2þ

�
ξ−

1

6
RðηÞ

���
fk;η ¼ 0; ðA9Þ

where RðηÞ ¼ 6a−1∂2
ηa, and η is the conformal time. For de

Sitter spacetime, the mode solution for a minimally coupled
scalar ðξ ¼ 0Þ is

fkðηÞ ¼
1ffiffiffiffiffi
2k

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2

�
k
aH

�s
ei

π
2
ðνþ1

2
ÞHð1Þ

ν

�
k
aH

�
; ðA10Þ

where ν2 ¼ 9
4
− m2

H2.

FERMIONIC ISOCURVATURE PERTURBATIONS PHYSICAL REVIEW D 91, 043516 (2015)

043516-15



The following relations of the first kind of Hankel
functions are useful:

Hð1Þ
ν ðzÞ → −i

ΓðνÞ
π

�
2

z

�
ν

ðz → 0Þ; ðA11Þ

Hð1Þ
ν ðzÞ →

ffiffiffiffiffi
2

πz

r
e−i

π
2
ðνþ1

2
Þeiz ðz → ∞Þ: ðA12Þ

From the mode expansion, we may construct the equal-
time correlator in dS spacetime. In particular, we are
interested in the large separation limit. For light scalar,
when ν is real, we have

hσxσyi ≈
H2

8π

Γð3
2
− νÞ

Γð3
2
ÞΓð1 − νÞ sinðνπÞ ðaHrÞ2ν−3: ðA13Þ

For heavy scalar, when ν ¼ iα and if α ∼ m
H ≫ 1, then

hσxσyi ≈
H3=2m1=2

π3=2
e−

m
Hπ sin



2
m
H
lnðaHrÞ − 1

4
π

�
ðaHrÞ−3:

ðA14Þ

Next, we give the result for the spinor field. Consider the
free Dirac field ψ action

S ¼
Z

ðdxÞðiψ̄γμ∇μψ −mψ̄ψÞ; ðA15Þ

where ðdxÞ ¼ d4x
ffiffiffiffiffiffiffijgxj

p
and γμ ≡ γaeμa with vierbein eμa.

The covariant derivatives for ψ are defined by

∇μψ ¼ ∂μψ þ 1

2
ωab
μ Σabψ ; ðA16Þ

the spin-connection is defined by

ωab
μ ¼ eaν∇μebν; ðA17Þ

and the Lorentz generator on the spinor field is given by

Σab ¼ −
1

4
½γa; γb�; ðA18Þ

where the γ matrices satisfy fγa; γbg ¼ −2ηab with
η≡ diagð−1; 1; 1; 1Þ. Note that the sign convention is
chosen such that ½Σ12;Σ23� ¼ Σ13.
Extremizing the action with respect to δψ̄ and δψ yields

the equations of motion:

ðiγμ∇μ −mÞψ ¼ 0; ∇μψ̄ð−iγμÞ − ψ̄m ¼ 0: ðA19Þ

The solution space can be endowed with a scalar product as

ðψ1;ψ2ÞΣ ¼
Z

dΣnμψ̄1γ
μψ2 ðA20Þ

in which Σ is an arbitrary spacelike hypersurface, dΣ is the
volume 3-form on this hypersurface computed with the
induced metric, and nμ is the future-pointing timelike unit
vector normal to Σ. The current conservation condition

∇μðψ̄1γ
μψ2Þ ¼ 0 ðA21Þ

implies the integral in the scalar product is independent of
the choice of Σ.
If we adopt the Dirac basis for the γ matrices, i.e.

γ0 ¼
�
I 0

0 −I
�
; γi ¼

�
0 σi

−σi 0

�
; ðA22Þ

the mode functions can be written as

U~k;rðxÞ ¼
1

a3=2x

ei~k·~x

ð2πÞ3=2
�

uA;k;x0

ruB;k;x0

�
⊗ hk̂;r; ðA23Þ

V~k;rðxÞ ¼ −iγ2U�
~k;r
ðxÞ

¼ 1

a3=2x

e−i~k·~x

ð2πÞ3=2
� ru�B;k;x0
−u�A;k;x0

�
⊗ ð−iσ2Þh�k̂;r; ðA24Þ

where hk̂;r is the eigenvector of k̂ · ~σ. The normalization
conditions require

h†
k̂;r
hk̂;s ¼ δrs; ðA25Þ

juA;k;ηj2 þ juB;k;ηj2 ¼ 1: ðA26Þ

The time dependent parts of the mode functions obey the
following equation:

i
d
dη

�
uA
uB

�
¼
�
am k

k −am

��
uA
uB

�
: ðA27Þ

In the special case of the de Sitter background with the
Bunch-Davies boundary condition, we have

�
uA
uB

�in

k;η

¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
π
4
ð k
aHe

Þ
q

ei
π
2
ð1−i mHe

ÞHð1Þ
1
2
−i mHe

ð k
aHÞffiffiffiffiffiffiffiffiffiffiffiffiffi

π
4
ð k
aHe

Þ
q

ei
π
2
ð1þimHÞHð1Þ

1
2
þi mHe

ð k
aHÞ

1
CA ðA28Þ

ifjkx0j≪ 1⟶

 1ffiffiffiffi
2π

p e
π
2
m
He−imðt−teÞþimH lnð2k=aeHÞΓð1

2
− imHÞ

1ffiffiffiffi
2π

p e−
π
2
m
Heþimðt−teÞ−imH lnð2k=aeHÞΓð1

2
þ i mHÞ

!
:

ðA29Þ
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Since the interaction picture operator ψðxÞ obeys the
same classical equations, Eq. (A19), we can expand the
operator using fUi; Vig as the basis,

ψðxÞ ¼
X
i

aiUiðxÞ þ b†i ViðxÞ; ðA30Þ

and the normalization conditions on Ui; Vi give the usual
canonical anticommutation relations of the creation and
annihilation operators.
The first order WKB approximation is defined as

�
uA
uB

�WKB

k;η

¼
 ffiffiffiffiffiffiffiffiffiffi

ωþam
2ω

q
ffiffiffiffiffiffiffiffiffi
ω−am
2ω

p
!
e−i
R

η
ωdη0 : ðA31Þ

In the following, when we talk about the fermion particle,
we are implicitly referring to the WKB mode.
Thus one can introduce the time-dependent Bogoliubov

coefficients fαk;η; βk;ηg between the in modes and WKB
modes:

�
uA
uB

�in

k;η

¼ αk;η

�
uA
uB

�WKB

k;η

þ βk;η

�
u�B
−u�A

�WKB

: ðA32Þ

Clearly, ðα; βÞ → ð1; 0Þ as η → −∞. We may also note that
the Bogoliubov coefficients obey the normalization con-
dition as

jαk;ηj2 þ jβk;ηj2 ¼ 1 ðA33Þ

in agreement with fermion statistics.
Using Eqs. (A32), (A31), and (A27), we can derive the

evolution equation for the Bogoliubov coefficients, as
shown in Eq. (B1).

APPENDIX B: REVIEW OF FERMION
PARTICLE PRODUCTION

In this section, we give a brief review of the main result
about fermion production during inflation [51]. The fer-
mion number density can be obtained by solving these
equations of Bogoliubov coefficients

∂η

�
αk;η

βk;η

�
¼ a2mkH

2ω2

�
0 e2i

R
η
ωdη0

−e−i
R

η
ωdη0

0

��
αk;η

βk;η

�
:

ðB1Þ

We define the nonadiabaticity for a mode k as ϵk;η ¼ mkpH
ω3
p
,

where subscript p stand for “physical,” ωp ¼ ω=a, etc. As
the system evolves from an initial vacuum condition of
ðαk;ηβk;η

Þ ¼ ð1
0
Þ, βk;η will only increase significantly when

ϵk;η ∼Oð1Þ. This implies the following results:
(1) In the heavy mass limit (mψ ≫ Hinf ), ϵk;η is always

suppressed by H
mψ
, and we get jβk;ηj2 ∼

exp½−C mψ

HðηkÞ� ≪ 1, where C is some order one
constant and HðηkÞ is the Hubble rate at the most
nonadiabatic moment for mode k.

(2) In the light mass limit (mψ ≪ Hinf ), ϵk;η is largest
when kp ∼mψ , and we call this time ηk. If
mψ < HðηkÞ, we have jβkj2 ∼ 1

2
; otherwise it is

suppressed by exp½−C mψ

HðηkÞ� as well.
Since the heavy fermion production is always exponen-
tially suppressed by the mψ=H ratio, we focus on the light
fermion case. The energy density at time t is given by

ρðtÞ ∼ m4
ψ

3π2

�
aðt�Þ
aðtÞ

�
3

; ðB2Þ

where t� is the time when HðtÞ ¼ mψ . If t� occurs during
reheating, one gets the relic abundance today time as

Ωψh2 ∼ 3

�
mψ

1011 GeV

�
2
�

TRH

109 GeV

�
: ðB3Þ

APPENDIX C: ASYMPTOTIC BEHAVIOR
OF hψxψ̄yi AT LARGE r

In this section we derive the result about the leading
order contribution to hnψ ;xnψ ;yi, i.e. Eq. (52). By Wick
contraction, this reduces to computing the field correlator
hψxψ̄yi. The standard way to compute the correlator is to
plug in the mode decomposition Eq. (A30) and compute
the mode functions fUi; Vig. The difficulties lie in how to
obtain the mode functions on a curved spacetime. For
inflationary background spacetime, one can use the de
Sitter spacetime as an approximation and obtain exact
analytic solutions. However, it is unclear how these mode
solutions evolve after inflation ends. Such postinflationary
solutions are relevant for our computation because the
particle production freezes out after the end of inflation.
Here we give an approach that answers this question.
First, we plug in the mode decomposition to the equal-

time correlator:

hψxψ̄yi ¼
Z

d3k
1

a3x

ei~k·~r

ð2πÞ3
� juA;k;x0 j2 ⊗ I2 −uA;k;x0u�B;k;x0 ⊗ ðk̂ · ~σÞ
uB;k;x0u

�
A;k;x0 ⊗ ðk̂ · ~σÞ −juB;k;x0 j2 ⊗ I2

�
; ðC1Þ
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where we have performed the spin sum in the last step.
SinceZ

d3k
ei~k·~r

ð2πÞ3 juA;k;x0 j
2¼
Z

d3k
ei~k·~r

ð2πÞ3ð1− juB;k;x0 j2Þ ðC2Þ

¼ δ3ð~rÞ −
Z

d3k
ei~k·~r

ð2πÞ3 juB;k;x0 j
2 ðC3Þ

and ~r ≠ 0, we see the diagonal elements are the same. Then
we perform the angular integral d2k̂. Recall that

Z
d3kei~k·~rfðkÞ ¼

Z
4πk2dk

sinðkrÞ
kr

fðkÞ; ðC4Þ

Z
d3kei~k·~rk̂ifðkÞ ¼ ð−ir̂i∂rÞ

Z
4πk2dk

sinðkrÞ
kr

fðkÞ
k

:

ðC5Þ

After the angular integral, we have

hψxψ̄yi ¼
Z

4πk2dk
ð2πÞ3

�
A B

B� C

�
; ðC6Þ

A ¼ juA;k;ηj2 ·
sinðkrÞ
kr

; ðC7Þ

B ¼ ðir̂ · ~σÞuA;k;ηu�B;k;η · ∂r
sinðkrÞ
kr

1

k
; ðC8Þ

C ¼ −juB;k;ηj2 ·
sinðkrÞ
kr

: ðC9Þ

It is sufficient to study these two integrals for the diagonal
and off-diagonal elements,

I11 ¼ I22 ¼
Z

∞

0

4πk2dk
ð2πÞ3 juA;k;ηj2 ·

sinðkrÞ
kr

; ðC10Þ

I12 ¼ I�21 ¼ ∂r

Z
∞

0

4πk2dk
ð2πÞ3 uA;k;ηu�B;k;η

sinðkrÞ
kr

1

k
: ðC11Þ

Now, we only need to find the mode function uA; uB, and
perform the mode sum.
Let us consider the mode functions first. Since we are

interested in evaluating the fermion field correlator at a time
when the fermion production has ended, i.e. when m ≫
Hðx0Þ and is in the limit r → ∞, we can make the
following approximations about the mode functions
fuA;k;x0 ; uB;k;x0g. First, since the particle production has

stopped, the nonadiabatic parameter is suppressed by HðtÞ
m ,

and thus we can approximately replace the Bogoliubov
coefficients by their late time asymptotic values, i.e.

αk;x0 ≈ αk; βk;x0 ≈ βk: ðC12Þ

Second, since we want to capture the particle production
effect on the correlator and the produced particles are
nonrelativistic at the time of production, by the time x0

which is sufficiently long after the production has ended,
we may approximate the produced modes that all have
k ≪ aðx0Þm. Thus, the WKB modes can be approximated
by

�
uA
uB

�WKB

k;η;IR

¼
 ffiffiffiffiffiffiffiffiffiffi

ωþam
2ω

q
ffiffiffiffiffiffiffiffiffi
ω−am
2ω

p
!
e−i
R

η
ωdη0 →

� 1ffiffi
2

p

0

�
e−i
R

η
ωdη0 :

ðC13Þ

Combining these two approximations, we have

�
uA
uB

�in

k;η;IR

≈

 
αk

1ffiffi
2

p e−i
R

η
ωdη0

−βk 1ffiffi
2

p ei
R

η
ωdη0

!
: ðC14Þ

Thus we can easily evaluate I11; I12:

2π2I11;IR ¼ 1

r
Im
Z

∞

0

kdk
1

2
½1 − nðkÞ� · eikr: ðC15Þ

We note that for the contribution from 1 vanishes

1

r
Im
Z

∞

0

kdk½1� · eikr ¼ 1

r
Im
Z

∞

0

ðisÞids½1� · e−sr ¼ 0:

ðC16Þ

For the contribution from nðkÞ, we may assume it to be a
real analytic function on Rþ and can be analytically
continuated to the upper-right quadrant of the complex k
plane. The location of the singularity of nðkÞ determines the
contour of k. For example, we may consider the nðkÞ for the
heavy fermion case (m > Hinf ):

nðkÞheavy ¼ exp



−
4ðk=anadÞ2

mH
−
4m
H

�
; ðC17Þ

where anad is at the nonadiabatic time point. In this case, the
nonadiabatic time is the transition from the de Sitter era to
the reheating era, i.e. anad ¼ ae. One can apply the steepest
descent to find that

2π2I11;heavy;IR ≈ −
1

r
exp



−
4m
H

−
1

16
mHr2

�
ða2emHÞ

× Im



−i

1

4

ffiffiffiffiffiffiffiffi
mH

p
aer

1

2

ffiffiffi
π

p �
ðC18Þ
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¼ 1

8

ffiffiffi
π

p
a3eðmHÞ32 exp



−
4m
H

−
1

16
a2emHr2

�
: ðC19Þ

For the light fermion, we may approximate the number
density spectrum as

nðkÞlight ¼
1

1þ expð k2

ðanadmÞ2Þ
; ðC20Þ

where the nonadiabatic point occurs when H drops below
m, i.e. anad ¼ aðη�Þ ¼ a�. This ansatz is only used to
mimic the cutoff of the spectrum at k ∼ anadm. The
singularity lies at

k2

a2�m2
¼ ð2nþ 1Þπi; n ¼ 0; 1; 2;…; ðC21Þ

or k�;n ¼ a�m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þπp

e
π
4
i. Again, one can perform the

steepest descent around the n ¼ 0 singularity
k� ¼ a�m

ffiffiffi
π

p
e
π
4
i. Let δ ¼ ðk − k�Þ=a�m, and we have

2π2I11;light;IR ¼ πa3�
m2

a�r
exp



−

ffiffiffi
π

2

r
a�mr

�
cos

� ffiffiffi
π

2

r
a�mr

�
:

ðC22Þ

For both the heavy and the light fermion cases,
I11 ∝ expð−a�MrÞ, where a�M is the scale that nðkÞ cuts
off. We should also remind ourselves that the UV vacuum
contributions also exist, which scales as

I11;UV ∝ exp½−aηmr� ðC23Þ
due to the singularity at k ¼ aηm in the mode functions
uWKB
A ; uWKB

B . Thus we have shown that the diagonal
element of Eq. (C6) is always exponentially suppressed.
Next, we turn to look at the off diagonal element I12.

Unlike the I11 case, whose integrand juAj2 has a constant
asymptotic value in the IR region, the I12’s IR contribution

uA;k;ηu�B;k;η ¼ αkβ
�
ke

−2i
R

η
ωdη0 ðC24Þ

contains e−2imt time dependence. Physically, if we decom-
pose the in state into the WKB vacuum and excitation state

jin; vaci ¼ ∼jWKB; vaci þ ∼jWKB; 2-particlesi
þ ∼jWKB; 4-particlesi; ðC25Þ

then this term comes from the interference term

hWKB; vacjψxψ̄yjWKB; 2-particlesi
∈ hin; vacjψxψ̄yjin; vaci: ðC26Þ

If we care about r large enough, for example corresponding
to the CMB observation scale at recombination, we may

assume the relevant k scale exits the horizon and becomes
nonrelativistic during inflation. Thus we may safely use the
dS mode function to evaluate I12;IR;CMB.
Recall that during the dS era, we have Eq. (A28), where

we choose the end of inflation time te as the reference point.
Thus

uA;k;ηu�B;k;η ¼
1

2π
e−2imðt−teÞþ2imH lnð2k=aeHÞΓ2

�
1

2
− i

m
H

�
:

ðC27Þ

Performing the integral using the steepest descent, we find
the leading contribution comes from the k ∼ 0 singularity in
uA;k;ηu�B;k;η. We note that the k dependent phase factor

e2i
m
H lnð2k=HÞ cannot be absorbed by a redefinition of the

mode functions uA;k;η; uB;k;η, since this phase factor
depends on the relative phase of uA;k;η; uB;k;η which is
fixed by the Bunch-Davies initial condition.
Plugging in Eq. (C11), we have

2π2I12;IR¼−e−2imðt−tðrÞÞþiϕðmHÞr−3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πm
H

sinhð2πm
HÞ
�
1þ
�
m
H

�
2
�s
;

ðC28Þ

where ϕðmHÞ ¼ ArgðΓð2þ ixÞΓð1
2
− ixÞÞ and tðrÞ is the time

when aðtrÞHr ¼ 4. We may consider the light mass limit

2π2I12;IR;light ≈ −e−2imðt−tðrÞÞr−3 ðC29Þ

and the heavy mass limit

2π2I12;IR;heavy ≈ −ð4πÞ12
�
m
H

�3
2

exp

�
−π

m
H

�
e−2imðt−tðrÞÞr−3:

ðC30Þ

We may also consider the effect of having an IR cutoff
kIR, which is the scale that exits the horizon at the
beginning of inflation. Such an IR cutoff will introduce
a expð−kIRrÞ type of exponential suppression factor.
However, for an observable universe with comoving radius
Robs, as long as kIRRobs ≪ 1, we may ignore this suppres-
sion factor.
After evaluating the matrix element for the fermion

correlators, we find that
(1) For the light fermion case, i.e.m ≪ Hinf , in the limit

r → ∞

hψxψ̄yi ≈
1

a3x

1

2π2

�
A B

B� A

�
; ðC31Þ

where
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A ¼ 1

2
πa3�

m2

a�r
exp



−

ffiffiffi
π

2

r
a�mr

�
cos

� ffiffiffi
π

2

r
a�mr

�
;

ðC32Þ

B ¼ −ir̂ · ~σe−2imðt−trÞr−3; ðC33Þ

where a� is evaluated at η�.
(2) For the heavy fermion case, i.e. m ≫ Hinf , in the

limit r → ∞, we find in Eq. (C31)

A ¼ 1

16

ffiffiffi
π

p
a3eðmHeÞ32 exp



−
4m
He

−
1

16
a2emHer2

�
;

ðC34Þ

B¼−ir̂ · ~σð4πÞ12
�
m
He

�3
2

exp

�
−π

m
He

�
e−2imðt−tðrÞÞr−3;

ðC35Þ
and ae is evaluated at the end of inflation.

Finally, we plug in the field correlator to hnψ ;xnψ ;yi and
drop the terms that are exponentially suppressed when
r → ∞, to get Eq. (52).

APPENDIX D: RELATIVE SUPPRESSION
OF COMMUTATORS

In this subsection, we want to compare the dependence
on the scale factor aðtÞ between hinj½Ox;Oy�jini and
hinjfOx;Oygjini, where Ox is a bosonic Hermitian oper-
ator and x; y are spacetime points located near the end of
inflation. For simplicity, we take H as a constant. In
particular, we are interested in the cases where
O ¼ σ; ψ̄ψ ; ζ. We want to show that the commutator of
O suffers from an additional suppression factor compared
to the anticommutator.
In general, the diagonal matrix elements of products of

the Hermitian operator obeys

ðhinjOxOyjiniÞ� ¼ hinjOyOxjini; ðD1Þ

therefore

hinj½Ox;Oy�jini ¼ 2iImhinjOxOyjini; ðD2Þ

hinjfOx;Oygjini ¼ 2RehinjOxOyjini: ðD3Þ

We can just study hinjOxOyjini. We may use the mode
expansion of the field operator to evaluate such an
expression and focus on modes that are outside of the
horizon at both times ηx; ηy.
We shall first take O ¼ σ, and we assume that the scalar

is light, i.e. mσ < 3
2
H, such that ν is real:

hinjσxσyjini ¼
Z

4πk2dk
½R d2k̂ei~k·ð~x−~yÞ�
ð2πÞ3a3=2x a3=2y

1

H
π

4

× ½JxJy þ YxYy þ iðYxJy − JxYyÞ�; ðD4Þ

where Jx ¼ Jνð k
axH

Þ; Yx ¼ Yνð k
axH

Þ are the first and second

kinds of Bessel functions with real values. The d2k̂ is the
angular integral with normalization

R
d2k̂ ¼ 1, andR

d2k̂ei~k·ð~x−~yÞ ¼ sinðkrÞ=kr is real. If we focus on the k
modes that are outside of the horizon, i.e. k=aH ≪ 1, we
may use the small argument expansion of the Bessel
function, i.e. when (0 < z <

ffiffiffiffiffiffiffiffiffiffiffi
1þ ν

p
)

JνðzÞ ≈
1

Γðαþ 1Þ
�
z
2

�
ν

; ðD5Þ

YνðzÞ ≈ −
ΓðαÞ
π

�
2

z

�
ν

: ðD6Þ

Then, under the common scaling of ax → λax; ay → λay,
with λ increasing, we see the various terms in the correlator
scales as

a−3=2x a−3=2y JxJy ∝ λ−2ν−3; ðD7Þ

a−3=2x a−3=2y YxYy ∝ λ2ν−3; ðD8Þ

a−3=2x a−3=2y ðYxJy − JxYyÞ ∝ λ−3: ðD9Þ

Thus, we see under this common scaling, the IR contri-
bution to the two point functions are

hinjfσx;σygjiniIR ¼ 2

Z
IR
4πk2dk

½R d2k̂ei~k·ð~x−~yÞ�
ð2πÞ3a3=2x a3=2y

×
1

H
π

4
ðJxJyþYxYyÞ∝ λ2ν−3; ðD10Þ

hinj½σx; σy�jiniIR ¼ 2i
Z
IR
4πk2dk

½R d2k̂ei~k·ð~x−~yÞ�
ð2πÞ3a3=2x a3=2y

×
1

H
π

4
ðYxJy − JxYyÞ ∝ λ−3: ðD11Þ

Thus, we have shown under the scaling a → λa, the
commutator of σ is suppressed by the λ−2ν factor relative
to its anticommutator. For the small mass scalar,

λ−2ν ≈ λ−3þ
2m2

3H2 .
For the case of O ¼ ζ, we have similar statements as the

scalar case with ν ¼ 3
2
, i.e. h½ζx; ζy�iIR is suppressed by λ−3

relative to hfζx; ζygiIR under the scaling of a → λa.
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Next, we consider the case of O ¼ ψ̄ψ . Using the mode
decomposition Eq. (A30) and mode functions Eqs. (A23)
and (A24), we have

hψ̄ψxψ̄ψyi ¼
X
i;j

1

a3xa3y

eið~kiþ~kjÞ·ð~x−~yÞ

ð2πÞ6 ½hTi ðiσ2Þhj�

× ½h†jð−iσ2Þh�i �Fij;xF�
ij;y; ðD12Þ

where

Fij;x ¼ riuB;i;xuA;j;x þ ði ↔ jÞ; ðD13Þ

Fij;xF�
ij;y ¼ 2½riuB;i;xuA;j;x þ ði ↔ jÞ�ðriu�B;i;yu�A;j;yÞ

ðD14Þ

¼ 2½uB;i;xuA;j;xu�B;i;yu�A;j;y
þ rirjuB;i;xuA;j;xu�B;j;yu

�
A;i;y�: ðD15Þ

We note that in Eq. (D12), the factor eið~kiþ~kjÞ·ð~x−~yÞ
after the angular average is real, and the factor

½hTi ðiσ2Þhj�½h†jð−iσ2Þh�i � ¼ j½hTi ðiσ2Þhj�j2 is also real; thus
the imaginary and real parts of Fij;xF�

ij;y correspond to the
commutator and anticommutator, respectively.
Next, we consider the two terms in Eq. (D15) one by

one, using the explicit expression of Eq. (A29) to get

uB;i;xuA;j;xu�B;i;yu
�
A;j;y ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
π

4

ki
axH

s ffiffiffiffiffiffiffiffiffiffiffiffi
π

4

kj
axH

s ffiffiffiffiffiffiffiffiffiffiffiffi
π

4

ki
ayH

s ffiffiffiffiffiffiffiffiffiffiffiffi
π

4

kj
ayH

s

× ðJþ;i;x þ iYþ;i;xÞ
× ðJ−;j;x þ iY−;j;xÞðJ−;i;y − iY−;i;yÞ
× ðJþ;j;y − iYþ;j;yÞ; ðD16Þ

where

J�;i;x ¼ J1
2
�imH

�
ki
axH

�
; Y�;i;x ¼ Y1

2
�imH

�
ki
axH

�
: ðD17Þ

Using the small z expansion of the Bessel function again,
where ReðνÞ ¼ 1

2
in all the cases, we can extract its scaling

behavior under a → λa,

ðJþ;i;x þ iYþ;i;xÞðJ−;j;x þ iY−;j;xÞðJ−;i;y − iY−;i;yÞðJþ;j;y − iYþ;j;yÞ
¼ Yþ;i;xY−;j;xY−;i;yYþ;j;y � � � � � � ∝ λ2; real

− iJþ;i;xY−;j;xY−;i;yYþ;j;y − iYþ;i;xJ−;j;xY−;i;yYþ;j;y � � � � � � ∝ λ1; imaginary

þ iYþ;i;xY−;j;xJ−;i;yYþ;j;y þ iYþ;i;xY−;j;xY−;i;yJþ;j;y � � � � � � ∝ λ1; imaginary

þ terms subdominant in λ expansion: ðD18Þ

Thus the imaginary part is suppressed by λ−1 relative to the
real part. We can do a similar analysis on the second part
rirjuB;i;xuA;j;xu�B;j;yu

�
A;i;y in Eq. (D15) and find the same

behavior. Thus, for the ψ̄ψ operator, we have the following
scaling law:

hfψ̄ψx; ψ̄ψygiIR ∝ λ−6; ðD19Þ

h½ψ̄ψx; ψ̄ψy�iIR ∝ λ−7: ðD20Þ

Thus, we see the commutator for ψ̄ψ gives additional
suppression of the a−1 factor compared with the anticom-
mutator, whereas the commutator for σ and ζ gives addi-
tional suppression o the a−3 factor.

APPENDIX E: EXPLICIT CHECK OF THE MASS
INSERTION FORMULA

In this section, we show that the particle production part
of the following equation holds using the adiabatic sub-
traction:

−i
Z

y
ðdwÞh½ψ̄ψx; ψ̄ψ z�i ¼ ∂mhψ̄ψxi ¼ ∂mnΨðxÞ: ðE1Þ

Expressing both sides of Eq. (E1) using the mode sum,
we see the left hand side is

−i
Z

yðdwÞh½ψ̄ψx; ψ̄ψw�i ¼
16

a3x

Z
y0

dw0aw

Z
d3k
ð2πÞ3

× Im½ðuA;kuB;kÞxðuA;kuB;kÞ�w�
ðE2Þ

and the right hand side is

∂mhψ̄ψxi ¼
2

a3x

Z
d3k
ð2πÞ3 ∂mðjuBj2 − juAj2Þ: ðE3Þ

Thus, we only need to check for each given k, and the
following equation is right:
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∂mðjuBj2− juAj2Þ¼8

Z
y0

dw0awIm½ðuA;kuB;kÞxðuA;kuB;kÞ�w�:

ðE4Þ

From the left hand side, we have

∂mðjuBj2 − juAj2Þ ¼ −2Re


ð u�Au�B Þσ3

∂
∂m
�
uA
uB

�
k;x

�
;

ðE5Þ

and upon expressing the mode function at time x0 in terms
of the volution operator acting on the initial value, we have

∂
∂m
�
uA
uB

�
k;x

¼ −i
Z

x0

ηi

dz0Uðx0←z0Þ ∂
∂m
�
am k

k −am

�

×Uðz0←ηiÞ
�
uA
uB

�
k;i

: ðE6Þ

Combining these two expressions, we can obtain the
desired result after some algebra.
However, the remaining d3k integrals in Eqs. (E2) and

(E3) are UV divergent. To make them finite, we express
both sides in terms of Bogoliubov coefficients and drop the
pure vacuum contribution to get

− i
Z

x0

ðdwÞh½ψ̄ψx; ψ̄ψw�i

≈ 16

Z
d3k

ð2πaxÞ3
�
am
ωk

�
x

×
Z

x
dηwaw

�
am
ω

�
w
Im½ðαβÞxðαβÞ�w�; ðE7Þ

∂mhψ̄ψxi ≈
2

a3x

Z
d3k
ð2πÞ3 ∂m



2jβk;xj2

axm
ωk;x

�

≈
4

a3x

Z
d3k
ð2πÞ3

�
axm
ωk;x

�
∂mjβk;xj2: ðE8Þ

Now, we only need to check

∂mjβk;xj2 ¼ 4

Z
x
dηwaw

�
am
ω

�
w
Im½ðαβÞxðαβÞ�w�: ðE9Þ

Suppose x0 is late enough such that βk;x is constant and
equals its value at asymptotic future βk; then we get

∂mjβkj2 ¼ 4

Z
x0

ηi

dz0az
am
ω

ImðαkβkÞxðαβÞ�z : ðE10Þ

Thus, Eq. (E1) is compatible with the Bogoliubov
projection.

APPENDIX F: GRAVITATIONAL INTERACTION

Here we derive the gravitational interaction. Consider the
action

S ¼ SEH þ Sϕ þ Sσ þ Sψ ðF1Þ

¼
Z

ðdxÞ
�
1

2
M2

pRþ


−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�

þ


−
1

2
gμν∂μσ∂νσ −

1

2
m2

σσ
2

�

þ ψ̄ðiγμ∇μ −mψÞψ − λσψ̄ψ

�
; ðF2Þ

where M2
p ¼ 1

8πG ¼ 1. The metric is given in Arnowitt-
Deser-Misner formalism20 [95] by

gμν ¼
�−N2 þ hijNiNj hijNj

hijNj hij

�
;

gμν ¼
�

−N−2 NiN−2

NiN−2 hij − NiNjN−2

�
; ðF3Þ

where hij is the metric tensor on the constant time hyper-
surface, and hij is the inverse metric. We use Latin indices
i; j;…, for objects on the three-dimensional constant time
hypersurface, and we use hij and hij to raise and lower the
indices. Then we use the Hamiltonian and the momentum
constraints to determine the lapse function N and the shift
vector Ni:

0 ¼ 1

N



Rð3Þ −

1

N2
ðEijEij − E2Þ

�
− 2NT00; ðF4Þ

0 ¼ 2

N
∇ð3Þ

i



1

N
ðEij − EhijÞ

�
þ 2NjT00 þ 2T0j; ðF5Þ

where Tμν is the total matter stress tensor, Rð3Þ is the Ricci
scalar calculated with the three-metric hij, and

Eij ¼
1

2
ð _hij −∇ð3Þ

i Nj −∇ð3Þ
j NiÞ; ðF6Þ

E ¼ Eijhij: ðF7Þ

In order to consider the perturbation around the
background configuration

20We use ð−þþþÞ sign convention for the metric, and
physical time t.
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ϕð0Þ ¼ ϕ̄ðtÞ; σð0Þ ¼ 0; gð0Þμν ¼
�−1 0

0 a2ðtÞδij

�
;

ðF8Þ

where the background fields satisfy the background equa-
tions of motion

3H2 ¼ 1

2
_̄ϕ
2 þ Vðϕ̄Þ; ðF9Þ

_H ¼ −
1

2
_̄ϕ
2
; ðF10Þ

̈ϕ̄þ 3H _̄ϕþ V 0ðϕ̄Þ ¼ 0; ðF11Þ

we choose the comoving gauge, defined by21

δϕ ¼ 0; γii ¼ 0; ∂iγij ¼ 0; ðF12Þ

where

hij ¼ a2ðtÞ½eΓ�ij; Γij ¼ 2ζδij þ γij: ðF13Þ

Then we solve the constraint equations (F4) and (F5)
perturbatively using ζ and γ, and putting their solutions for
N and Ni back into the action, we can get the perturbed
action

SðCÞ ¼ SðCÞζζ þ SðCÞσσ þ SðCÞψψ þ SðCÞγγ þ SðCÞζζζ

þ SðCÞζσσ þ SðCÞζψψ þ SðCÞζσσ � � � : ðF14Þ

For the interaction terms SðCÞζσσ and SðCÞζψψ , we need the
solutions of N and Ni up to linear order in ζ,

Nð1;CÞ ¼ 1þ
_ζ

H
; Nð1;CÞ

i ¼ ∂i



−

ζ

H
þ ϵ

a2

∇2
_ζ

�
; ðF15Þ

where ϵ≡ _H=H2. Hence, the metric perturbations become

δgðCÞμν ¼
 

−2 _ζ
H ð− ζ

H þ ϵ a2

∇2
_ζÞ;i

ð− ζ
H þ ϵ a2

∇2
_ζÞ;i a2ðδij2ζ þ γijÞ

!
; ðF16Þ

and we have the ζ-matter cubic interaction action

SðCÞζσσ þ SðCÞζψψ ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðTμν
σ þ Tμν

ψ ÞδgðCÞμν ; ðF17Þ

where Tμν
σ and Tμν

ψ are the stress energy tensors for σ and ψ ,
respectively, which are written as

Tμν
σ ¼ gμαgνβ∂ασ∂βσ þ gμνLσ; ðF18Þ

Tμν
ψ ¼ −

i
2
½ψ̄γðμ∇νÞψ −∇ðμðψ̄ÞγνÞψ � þ gμνReðLψÞ: ðF19Þ

Particularly, up to the cubic interaction, Lint ¼ −Hint.

Thus SðCÞζσσ þ SðCÞζψψ ¼ −
R
dtHζσσðtÞ þHζψψðtÞ.
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