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We analyze the consequences of a disformal interaction between a massless scalar and matter particles in
the context of atomic physics. We focus on the displacement of the atomic energy levels that it induces, and
in particular the change in the Lamb shift between the 2s and 2p states. We find that the correction to the
Lamb shift depends on the mass of the fermion orbiting around the nucleus, implying a larger effect for
muonic atoms. Taking the cutoff scale describing the effective scalar field theory close to the QCD scale,
we find that the disformal interaction can account for the observed difference in the proton radius of muonic
versus electronic hydrogen. Explaining the proton radius puzzle is only possible when the scalar field is
embedded in nonlinear theories which alleviate constraints from collider and stellar physics. Short distance
properties of the Galileon where nonperturbative effects in vacuum are present ensure that unitarity is
preserved in high-energy particle collisions. In matter, the chameleon mechanism alleviates the constraints
on disformal interactions coming from the burning rates for stellar objects. We show how to combine these
two properties in a single model which renders the proposed explanation of the proton radius puzzle viable.
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I. INTRODUCTION

The Lamb shift is one of the most precisely studied effect
in atomic physics. Its relevance has been recently enhanced
by the discovery that the Lamb shift behaves differently
when muonic atoms are considered, compared to their
electronic siblings. The Lamb shift can be used to deduce
the value of the proton radius and muonic versus electronic
discrepancies imply that the proton radius is lower by four
percent in muonic experiments. The combined discrepancy
between the proton radius as inferred from muonic hydro-
gen and that inferred from electronic hydrogen now stands
at 7σ. While the muonic results currently only come from
one group at Paul Scherrer Institute no systematic uncer-
tainty has been identified that could explain the size of the
discrepancy [1].1 This is the proton radius puzzle which has
resisted explanation with standard model physics [3].
Could this be an indication of the need for new physics?
Current attempts to explain the proton radius anomaly with
new physics have introduced new force carriers with
masses in the 1–100 MeV range, which may have non-
universal couplings [4–7]; however, these are difficult to
reconcile with existing constraints on dark forces. New
forces deduced from hidden photons or conformally
coupled scalars have also been invoked with limited
success [8,9]. In this work we take a different approach,
introducing a nearly massless scalar degree of freedom

which interacts with matter species through a universal
disformal coupling.
The existence of nearly massless scalar fields is strongly

suggested by the acceleration of the Universe, as they could
act as dark energy or arise in theories of massive gravity as
the scalar polarization of a low-mass graviton. This seems
far removed from the proton radius puzzle, but in this work
we will show that these two motivations for considering
new physics can be connected. When conformally coupled
to matter, new light scalars are severely constrained by the
Cassini probe [10] and tests of the strong equivalence
principle such as the lunar ranging experiment [11]. This
results in a strong bound on the coupling between the scalar
and matter, β, that can, however, be alleviated when
screening mechanisms are invoked as nontrivial self-
interactions of the field can naturally reduce the strength
of the force to observationally undetectable levels in
experimental environments. They do this by allowing the
properties of the scalar field to vary with the environment.
For example; in the chameleon model [12,13] the mass of
the scalar field increases in dense environments, in the
Galileon model [14], the prefactor of the kinetic term
becomes large in the vicinity of dense sources. Even for
models with screening mechanisms, however, suitably
chosen laboratory tests of theories with screening mech-
anisms can still be constraining; for models such as
chameleons, the conformal coupling to matter could be
tested in neutron experiments where the energy levels of the
neutron in the terrestrial gravitational field are measured
[15,16]. In this article, we will investigate new tests at the
atomic level, due to a disformal coupling between matter
and scalars, and we will rely on a screening mechanism to
alleviate constraints from higher density environments such
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as stellar interiors. Doing so, our theory can be embedded
in a dark energy/modified gravity model such as fðRÞ in the
large curvature regime which satisfies all the local gravi-
tational tests thanks to the chameleon mechanism. For these
models, gravity is modified on cosmological scales by the
scalar field which is nearly massless while being heavy
enough in stellar media. In the atomic environment, the
scalar field is also nearly massless.
Bekenstein has shown [17] that the most general metric

that can be constructed from gμν and a scalar field that
respects causality and the weak equivalence principle is;

~gμν ¼ Aðϕ; XÞgμν þ Bðϕ; XÞ∂μϕ∂νϕ; ð1:1Þ

where the first term gives rise to conformal couplings
between the scalar field and matter, and the second term is
the disformal coupling. Here X ¼ ð1=2Þgμν∂μϕ∂νϕ. The
conformal coupling gives rise to Lagrangian interaction
terms of the form

L ⊃ Aðϕ; XÞTμ
Jμ ð1:2Þ

and the disformal interactions give rise to Lagrangian
interaction terms of the form

L ⊃
Bðϕ; XÞ

2
∂μϕ∂νϕT

μν
J ; ð1:3Þ

where Tμν
J is the energy-momentum tensor of matter

fields in the Jordan frame, defined by the metric
gJμν ¼ Aðϕ; XÞgμν. The conformal coupling gives rise to
Yukawa-type long range forces between matter fields. The
disformal coupling has no influence on static configura-
tions of matter as no disformal interaction between static
nonrelativistic objects is generated. This follows from the
vanishing of the coupling (1.3) when the only nonvanishing
component of Tμν

J is T00
J and ϕ is static. This can be

extended to all the higher-order terms involving more than
two derivatives of ϕ obtained by expanding the matter
Lagrangian in perturbations of Bðϕ; XÞ∂μϕ∂νϕ. This
means that constraints on disformal couplings are much
weaker than on their conformal counterparts. The leading
disformal interaction between two static bodies is a
quantum effect at one loop [18–20] which appears at the
1=M8 ¼ B2ðϕ0; 0Þ level where the loop has been calculated
in a uniform scalar background ϕ0. This gives rise to a
potential of the form 1=M8r7, which will be analyzed and
tested here.
We will find that the proton radius puzzle can be

explained using the mass dependent disformal potential
generated at one loop in 1=M8r7 when M lies close to the
QCD scale M ¼ ΛQCD ≈ 220 MeV. This is appropriate for
a model which we only require to be valid at low energies,
below the QCD phase transition where free quarks and
gluons confine into hadrons and which takes place at a

temperature around ΛQCD, and after big bang nucleosyn-
thesis (BBN) in cosmology. This choice of coupling scale
would also lead to small anomalous radii for the deuteron
[21] and the He nucleus [22]. With new experimental
results for deuterons and He nuclei to be soon published,
this is a prediction of our model which will be soon
tested [23].
In Sec. II we recall salient properties of disformally

coupled scalars. In Sec. III we apply these results to the
proton radius puzzle, determine the required value of the
coupling constantM and predict the ensuing deviations for
helium and the deuteron. The disformal coupling, viewed
as a higher-order operator, would lead to a violation of
unitarity at high energy. It would also increase the burning
of stars. In Sec. IV we show that the constraints on
disformal couplings coming from the burning of stars
can be alleviated in nonlinear models for which the
chameleon mechanism, whereby the mass of the scalar
becomes large in dense environments, prevents the creation
of scalars in stellar media. In Sec. V we turn to the strong
constraints which spring from the absence of any violation
of unitarity in particle collision at high energy. This is
alleviated by embedding the disformal coupling in Galileon
models which pass these tests by a novel mechanism
whereby classical configurations akin to black holes in
trans-Planckian scattering are formed. We also show how
the chameleon mechanism, which is effective in dense
environments, and the Galileon, which applies in vacuum
such as the ones of atomic and particle physics, are
compatible. We then conclude in Sec. VI.

II. LIGHT SCALAR FIELDS

We consider a scalar field coupled to matter defined by
the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πGN
−
1

2
ð∂ϕÞ2

�
þ Smðψ i; ~gμνÞ;

ð2:1Þ

where the metric governing the interactions between the
scalar and matter is given by

~gμν ¼ AðϕÞgμν þ BðXÞ∂μϕ∂νϕ: ð2:2Þ

This is not the most general scalar metric as given by
Bekenstein in Eq. (1.1); however, it describes all the
leading-order effects of the disformal and conformal
couplings.
The metric ~gμν is the metric with respect to which matter

is conserved. We impose that the conformal coupling
function AðϕÞ is the only source of (soft) breaking of
the shift symmetry ϕ → ϕþ c, which forces the coupling
BðXÞ to be independent of ϕ. We take a conformal coupling
to matter of the form
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AðϕÞ ¼ 1þ βϕ

mPl
; ð2:3Þ

which is the lowest-order breaking of the shift symmetry,
and we assume that the disformal coupling function can be
expanded as

BðXÞ ¼ 1

M4

�
1þ

X
n≥1

an
Xn

M4n

�
: ð2:4Þ

AsM will be the lowest-energy scale in the disformal sector
of our theory, we take the cutoff scale, that defines the
model as an effective theory at low energy, to lie just above
the scale M. We assume a hierarchy between the scales M
and mPl=β. As we will find that M is of the order the QCD
scale, and assuming that β ∼Oð1Þ, protecting these scales
is similar to the hierarchy problem of the Standard Model.
We have nothing to add to the solutions of this problem
except to note that hierarchies between disformal and
conformal coupling scales arise naturally in theories of
massive gravity [24]. When β ∼Oð1Þ in laboratory inter-
actions the conformal coupling is so weak that it can be
safely neglected. The disformal coupling scale M appears
as a one-loop interaction. For matter sources of masses m1,
m2 separated by a distance r the potential interaction
mediated by the disformal scalars is [19,20]

VðrÞ ¼ −
3m1m2

32π3r7M8
; ð2:5Þ

when the scalar is canonically normalized. The coupling
scale M is in principle unknown and should be fixed by
observations. Here we will focus on theories where this
scale is close to the QCD scale

M ∼ ΛQCD; ð2:6Þ

where ΛQCD ¼ 217þ25
−23 MeV is the strong interaction scale

of quantum chromodynamics (QCD). This phenomeno-
logical choice is compatible with the desire to view our
disformal scalars as a low- energy description of some
unknown physics which should appear for scales larger
than M. Below the scale M, the physics only involves
matter particles which are the electrons, the protons and
the neutrons as formed during big bang nucleosynthesis
(BBN). We take this scaleM to be close to the confinement
scale where the QCD phase transition takes places and
which is estimated to be close to ΛQCD. At higher energies,
the model must either be completed by some new Ultra
Violet (UV) physics, or as we shall see with the example of
the Galileon, enter a new phase of the model where
perturbative calculations fail and nonperturbative phenom-
ena should be taken into account.
Experimental constraints on disformal couplings have

been extensively studied in [20] and these are reproduced
in Table I. We will discuss in later sections how to make
our requirement for M ∼ ΛQCD compatible with all current
constraints.
In what follows we will restrict ourselves to the leading

order effects of the disformal coupling between the scalar
field and matter. Therefore we calculate only to leading
order in 1=M4, implying the action can be expanded as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πGN
−
1

2
ð∂ϕÞ2 þ 1

M4
∂μϕ∂νϕT

μν
J

�
þ Smðψ i; AðϕÞgμνÞ; ð2:7Þ

where we have introduced the Jordan frame energy-
momentum tensor

TABLE I. Summary of the constraints on the disformal coupling scale M derived in [20]. Lab. vac. means the
constraint derives from an experiment conducted in a laboratory vacuum on Earth. Horizontal branch means the
constraint derives from observations of horizontal branch stars, and similarly for constraints labeled Sun and
Supernova SN1987a.

Source of bound Lower bound on M in GeV Environment

Unitarity at the LHC 30 Lab. vac.
CMS mono-lepton 120 Lab. vac.
CMS mono-photon 490 Lab. vac.
Torsion Balance 7 × 10−5 Lab. vac.
Casimir effect 0.1 Lab. vac.
Hydrogen spectroscopy 0.2 Lab. vac.
Neutron scattering 0.03 Lab. vac.
Bremsstrahlung 4 × 10−2 Sun

0.18 Horizontal Branch
Compton Scattering 0.24 Sun

0.81 Horizontal Branch
Primakov 4 × 10−2 Sun

0.35 Horizontal Branch
Pion exchange ∼92 SN1987a
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Tμν
J ¼ 2ffiffiffiffiffiffiffiffi−gJ

p δSm
δgJμν

: ð2:8Þ

Notice that this last action is written in the Einstein frame
and involves the coupling between the Jordan frame
energy-momentum tensor TJ and the scalar derivatives.

III. MICROSCOPIC EFFECTS

It has been shown that the disformal coupling to matter
induces a one loop potential between matter particles
[19,20]. This potential is highly sensitive to short distances
as it scales as 1=r7. Atomic physics experiments are
therefore ideal settings to test the influence of the disformal
coupling on the properties of matter. As the conformal
coupling scale is OðmPlÞ it can be safely neglected over
atomic distance scales. In previous work we have shown
that the strongest constraints on M from such experiments
comes from precision spectroscopy of hydrogen atoms
and constrains the scale M ≳ 200 MeV. In this section we
will determine whether disformal couplings satisfying this
bound can explain the proton radius anomaly. This requires
determining disformal corrections to the Lamb shift in
hydrogen from which the proton radius can be inferred. We
will find that the disformal Lamb shift is sensitive to the
mass of the particle orbiting around the atomic nucleus,
hence inducing different effects in muonic compared to
electronic atoms.

A. Lamb shift and proton radius

The scalar interaction due to the one loop effect of the
disformal coupling to matter acts as a perturbation of the
Coulombic interaction in hydrogenlike atoms

VðrÞ ¼ −
e2

r
−
3m1m2

M8

1

32π3r7
: ð3:1Þ

In first order perturbation theory, the atomic levels are
perturbed by

δE ¼ −
3mfmN

32π3M8

D
Ej 1

r7
jE
E
; ð3:2Þ

where jEi is the unperturbed wave function of a given
energy level. Let us focus on hydrogenlike atoms and
consider the 2s and 2p levels, as used to calculate the Lamb
shift. In each case the perturbed energy levels are sensitive
to the small r parts of the wave function, r ≪ a0 where a0 is
the Bohr radius and read

ψ2sðrÞ ≈
1

2
ffiffiffiffiffiffi
2π

p
�
Z
a0

�
3=2

; ;

ψ2pðrÞ ≈
1ffiffiffi
π

p
�

Z
2a0

�
5=2

r cos θ; ;

resulting in the perturbation of the 2s and 2p levels given by

δE2s ¼ −
3

248π3

�
Z
a0

�
3 mNmf

M8r4N
; ; ð3:3Þ

and

δE2p ¼ −
1

29π3

�
Z
a0

�
5 mNmf

M8r2N
; ð3:4Þ

where the interaction has been cutoff at the nuclear radius
rN as below this scale the internal structure of the nucleus
becomes relevant. This leads to a contribution to the Lamb
shift δE2s−2p ¼ δE2p − δE2s, which is given by

δE2s−2p ¼ 3

248π3

�
Z
a0

�
3mNmf

M8r4N

�
1 −

1

6

�
Z
a0

�
2

r2N

�
: ð3:5Þ

The Lamb shift can be used to infer the proton radius
rN ¼ rp in atoms where the nucleus reduces to a single
proton. The phenomenological parametrization of the
Lamb shift in terms of QED and nuclear physics effects
and their dependence on the radius rp is given by [1]

ΔE2s−2p

meV
¼ 210 − 5.23

�
rp
fm

�
2

þ 0.035

�
rp
fm

�
3

: ð3:6Þ

A new interaction, such as the disformal one, would lead to
a change in the Lamb shift δE2s−2p, which would be read as
a corresponding change in the proton radius δrp:

δE2s−2p

meV
¼ −10.31

δrp
rp

: ð3:7Þ

Experimentally, the proton radius deduced from electronic
hydrogen measurements is given by rp ¼ 0.8758ð77Þfm,
and this agrees with the charge radius obtained in electron
scattering experiments at low energy [3]. The same
measurements of the Lamb shift can be conducted for
muonic atoms, and surprisingly the proton radius appears to
be significantly lower; rp ¼ 0.84087ð39Þfm, [1], represent-
ing a decrease of approximately four percent.
Reinterpreting the disformal contribution to the Lamb

shift as a change in the proton radius for muonic hydrogen
gives

�
δrp
rp

�
¼ −0.90

�
217 MeV

M

�
8

; ð3:8Þ

where we have taken rN to be the unperturbed proton
radius. The electron contribution is suppressed compared to
the muonic contribution by the ratio of electron to muon
masses. Therefore to account for a four percent shift in the
proton radius in muonic hydrogen we must choose
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M ¼ 320 MeV; ð3:9Þ

which lies close to the QCD scale. This is compatible with
constraints from measurements of hydrogen spectroscopy
which require M ≳ 200 MeV. It is possible to explain the
proton radius puzzle because muons orbit closer to the
nucleus of an atom than electrons and the disformal force
strengthens rapidly with decreases in distance.
One could ask why should the value ofM lie close to the

QCD scale? We can only give a plausibility argument: we
want to describe low-energy physics in the late universe. As
we are not sensitive to internal nuclear structure it makes
sense to cut off the physical description around ΛQCD, the
scale below which confinement of the quarks and gluons
takes place to form hadronic matter. We also should not be
sensitive to physics in the early universe. The averaged
density of the earth, around 5 gcm−3, corresponds to the
densities during BBN. In this environment where the
density is similar to the density of the Universe during
BBN, it is likely that the cutoff scale M should be close to
the cutoff scale of the particle physics model during BBN,
i.e. ΛQCD.

B. The helium radius

We can extend our study to He ions carrying one muon
compared to those with one electron. In this case the Lamb
shift is related to the Helium radius as [22]

ΔE2s−2p

meV
¼ 1670.37 − 105.322

�
rHe
fm

�
2

þ 1.529

�
rHe
fm

�
3

:

ð3:10Þ

The disformal interaction would induce a change in the
Lamb shift, which is connected to a change in the He radius
in the following way:

δE2s−2p

meV
¼ −573.5

δrHe
rHe

: ð3:11Þ

Using a value of M determined in Eq. (3.9), rHe ¼
1.681 fm with mHe ¼ 3.728 GeV and Z ¼ 2 for the two
protons in the He nucleus, we find that the disformal
coupling would induce a change in the Helium radius

δrHe
rHe

¼ 0.2%: ð3:12Þ

This is smaller than the uncertainty in the Helium radius
coming from e scattering experiments, which is of order
0.3%, and therefore is not currently a detectable effect.

C. The deuterium

New experiments will also give their results on the
deuteron’s radius as inferred from the Lamb shift in muonic

deuterium. The deuteron has a radius of rd ¼ 2.1402 fm
and a mass md ¼ 1.875 GeV. This leads to a shift in the
muonic case of the energy levels

δE2s−2p ¼ 0.023 meV: ð3:13Þ

This is a prediction of our model which should be
compared with future experimental results.

IV. STELLAR BURNING CONSTRAINTS

A. Constraints from stars

We have just seen that the proton radius puzzle seems to
indicate that the scaleM ∼ ΛQCD. This is a low-energy scale
and one may wonder if the disformal interaction may not
have an influence on the burning rate of stars, as is the case
for axions and axion-like particles. These constraints are
summarized in Table I. For disformally coupled scalar
fields the light particles could be emitted by processes such
as Compton scattering, bremsstrahlung or Primakov proc-
esses in stars of the main sequence and on the horizontal
branch of the Hertzsprung-Russell diagram. Two scalars
would also be emitted by nuclear processes involving the
pion exchange in supernovae. The latter process gives the
most severe constraints but suffers from theoretical uncer-
tainties due to the fact that the pion exchange diagram
between two nuclei is a strongly coupled effect treated at
tree level, although higher-order effects could alter the
result drastically. In addition the maximal emissivity of
supernovae ϵSN ≲ 1019 erg=g · s as deduced from the
SN1987A explosion is only a rough estimate [25]. The
constraints from these processes have been presented in
[20] and it was shown that for the sun we must impose that
M ≳ 240 MeV, for horizontal branch stars M ≳ 810 MeV
and for supernovae M ≳ 92 GeV. The solar constraint is
always satisfied if we take M ∼ 320 MeV. The horizontal
branch and supernovae constraints need to be analyzed
carefully as they rule out, at face value, a disformal
explanation of the proton radius puzzle.

B. Alleviating the burning constraints with chameleons

We now embed the disformally coupled scalar field in a
chameleon model [26]. The chameleon effect applies to
many more models than the original chameleon model.
In particular, we shall focus on fðRÞ theories in the large
curvature regime below. These models are scalar field
theories where a potential term VðϕÞ is added to the
Lagrangian,

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πGN
−
1

2
ð∂ϕÞ2−VðϕÞ

�
þSmðψ i; ~gμνÞ:

ð4:1Þ

Working to leading order in the disformal coupling, this
becomes the effective action
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πGN
−
1

2
ð∂ϕÞ2 − VðϕÞ

þ 1

M4
∂μϕ∂νϕT

μν
J

�
þ Smðψ i; AðϕÞgμνÞ: ð4:2Þ

One of the salient features of these scalar-tensor models is
that, in the presence of nonrelativistic matter with a density
ρ, the dynamics of the scalar field are governed by the
effective potential

VeffðϕÞ ¼ VðϕÞ þ ðAðϕÞ − 1Þρ; ð4:3Þ

which appears in the Klein-Gordon equation,

□ϕ −
2

M4
Dμð∂νT

μν
J Þ ¼ ∂ϕVeffðϕÞ

∂ϕ : ð4:4Þ

When the matter density is constant inside a dense region
of the Universe, the field settles at the minimum of the
effective potential ϕðρÞ satisfying

∂ϕVeffðϕÞ
∂ϕ

����
ϕðρÞ

¼ 0; ð4:5Þ

when it exists, e.g. for decreasing potentials VðϕÞ and
increasing coupling functions AðϕÞ. When the mass of the
scalar field, defined as

m2ðρÞ≡ ∂2
ϕVeffðϕÞ
∂ϕ2

����
ϕðρÞ

; ð4:6Þ

increases with the matter density ρ, the model is a
chameleon theory which evades gravitational tests on scalar
fifth forces when the scalar interaction range λðρÞ¼m−1ðρÞ
becomes small enough in dense environments.
Chameleon models are fully characterized by their mass

as a function of the density ρ and the coupling β. One prime
family of examples is provided by the large curvature fðRÞ
models where

fðRÞ ¼ Cþ R −
fR0

n
Rnþ1
0

Rn ; ð4:7Þ

where n is a positive index and fR0
a parameter constrained

to be less than 10−6 by local tests of gravity. The scalar field
ϕ can be identified via

df
dR

¼ e−2βϕ=mPl ; ð4:8Þ

where β ¼ 1ffiffi
6

p is the coupling to matter and

VðϕÞ ¼ m2
Pl

R df
dR − f

2ðdfdRÞ2
ð4:9Þ

is implicitly defined. The expression for the mass mðρÞ is
known [26,27] and reads

mðρÞ ∼m0

�
ρ

ρ0

�ðnþ2Þ=2
: ð4:10Þ

The density ρ0 is the matter density in the Universe now.
Local tests of gravity require that

m0 ≳ 103H0 ∼ 10−30 eV; ð4:11Þ

which is a very low mass; i.e., the scalar is nearly massless
in vacuum. The derivation of this result is given in Sec. IVC
of [26] in terms of the scale factor a related to the matter
density by ρ ¼ ρ0=a3, (see Eqs. (168) and (169) of [26]).
For these models, all the tests of gravity are satisfied thanks
to the chameleon mechanism. We can also verify that our
original assumption in calculating the one loop potential
induced by the disformal coupling is not upset by the
chameleon mechanism. Indeed, inside a muonic atom, the
muon is a pointlike particle with no internal structure while
the nucleus can also be seen as a point-like particle when
one considers the long range interaction between the
nucleus and the muon. In this case, the vacuum between
the two particles is the cosmological one filled by the
residual dark matter fluid. In this vacuum, the mass of the
scalar field is m0 which is of cosmological size and
therefore irrelevant for atomic interactions. In stars such
as the ones on the horizontal branch or supernovae, the
scalar field settles at its minimum due to the matter density
ρ where ρ=ρ0 ∼ 1033 and ρ=ρ0 ∼ 1043 respectively. Taking
n ¼ 1 for instance, we find that the mass of the scalar field
in these environments far exceed the temperature and
therefore scalars are not created inside stars simply for
kinematical reason [28]. Hence disformal scalar fields that
possess a chameleon mechanism evade the constraints on
the disformal coupling coming from the burning rate of
stars. Moreover they can be identified with the scalar field
responsible for the acceleration of the Universe in models
such as fðRÞ in the large curvature regime.

V. COLLIDER PHYSICS CONSTRAINTS

A. Unitarity constraint

Strong constraints on the scale M can also be obtained
from particle physics. Indeed the disformal coupling is
nothing but an irrelevant operator of higher order whose
presence jeopardizes the UV behavior of the model. We
can evaluate when this breakdown occurs and above
which scale the effective field description must be altered,
by analyzing the unitarity of scattering processes. We focus
on high-energy physics experiments and consider that
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M ≈ 320 MeV, as suggested by proton radius measure-
ments. A typical scattering experiment will involve the
creation of two scalars from the annihilation of two
fermions ff̄ → ϕϕ. The disformal matrix element for this
process becomes

M ¼ 2
ffiffiffi
2

p
mfE3

M4
ð5:1Þ

in terms of the energy of the incoming particles in the
center of mass frame. Perturbative unitarity is preserved
when M ≤ 16π implying an energy bound

E ≤ Emax ¼
�
8πM4ffiffiffi
2

p
mf

�
1=3

: ð5:2Þ

Unitarity has been precisely tested in the standard model
with LEP where mf ¼ me and we find

Emax ∼ 7 GeV: ð5:3Þ

Hence unitarity would have been violated at LEP, which
reached beam energies of 200 GeV, if we extrapolate the
disformal coupling between scalars and matter to such high
energies. However, if we expect the cutoff to lie just above
the scale M then we are not able to naively extrapolate the
theory to such high energies. There are two possible ways
to proceed. The first is that, for energies larger than Emax,
the model must be UV completed in the Wilsonian sense,
and the disformal interaction replaced by another inter-
action between new degrees of freedom, replacing the low-
energy field ϕ, and unitarity is restored. However, in this
case we can make no statement about whether our model is
compatible with collider measurements. The second, more
predictive, alternative is to use the classicalization property
of Galileon models [29], which we will describe in the
following section.

B. Galileons

We embed the disformally coupled scalar field in a
Galileon model [14]. These are scalar field theories which
have equations of motion that are at most second order in
derivatives, despite the presence of nontrivial derivative
self-interactions. In flat space the theory also respects the
symmetry ϕ → ϕþ bμxμ þ c for constant bμ and c. We
work with this simplest form of the theory, the cubic
Galileon, which has the following Lagrangian:

L ¼ −
1

2
ð∂ϕÞ2 − 1

Λ3
□ϕð∂ϕÞ2 þ βϕ

mPl
T þ 1

M4
∂μ∂νTμν:

ð5:4Þ

In addition to the coupling scales mPl=β and M, the theory
is determined by Λ, a suppression scale which controls the

derivative self-interactions that define the Galileon. Around
a spherically symmetric source of mass m the scalar field
profile is

dϕ
dr

¼ −
Λ3r
4

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
R�
r

�
3

s !
; ð5:5Þ

and the nonlinearities dominate the evolution of the scalar
within the Vainshtein radius

R� ¼
1

Λ

�
βm

2πmPl

�
1=3

: ð5:6Þ

Within this radius the nonlinearities act to suppress the
scalar force, Fϕ, compared to that of Newtonian gravity,
FN , so that

Fϕ

FN
¼ β2

�
r
R�

�
3=2

: ð5:7Þ

Outside the Vainshtein radius, the nonlinearities in the
kinetic terms become irrelevant and the dominant kinetic
term reduces to −ð∂ϕÞ2=2. Inside the Vainshtein radius,
any perturbations around the background of Eq. (5.5)
inherit a wave function renormalization such that the

kinetic terms of the perturbations read Z ð∂δϕÞ2
2

where we
have

jZj ∼ 1þ ϕ0

rΛ3
; ð5:8Þ

and a prime denotes a derivative with respect to radius.
Therefore inside the Vainshtein radius Z can be large.
The Galileon models rely on high-mass dimension

operators and therefore are sensitive to quantum corrections
at short distance. At the quantum level, the Galileon models
receive corrections which preserve the Galilean symmetry.
Many operators which are not present at tree level appear,
and the effective action calculated using the one-particle
irreducible diagrams for the Galileon models can be
organized in an infinite series which depends only on
the effective cutoff scale

ΛZ ¼
ffiffiffiffi
Z

p
Λ; ð5:9Þ

and its derivative. This follows from the fact that expanding
ϕ ¼ ϕ0 þ δϕ and canonically normalizing the field δϕ, the
only dimensionful quantities controlling self-interactions of
the field are ΛZ and the effective mass of δϕ which depends
only on ∂ΛZ and its derivatives. As a result, the quantum
corrections are given by

δL ¼ Λ4
ZF
�∂iΛZ

Λiþ1
Z

�
; ð5:10Þ
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where the function F depends on the multiple derivatives
of ΛZ. The overall factor Λ4

Z appears for dimensional
reason. For instance, at one loop, the mass term behaves
like mϕ ∼

∂ΛZ
ΛZ

and the Coleman-Weinberg potential reads

δV ∼m4
ϕ which corresponds to FðxÞ ¼ x4 where x ¼ ∂ΛZ

Λ2
Z
.

This result has important consequences. Firstly, the
conformal coupling determined by β and the disformal
coupling scale M are not renormalized by Galileon fluc-
tuations [30]. Secondly, the structure of δL implies that the
Galileon interactions are not renormalized, the corrections
appearing with at least one more derivative at the same
order in the ϕ expansion. The higher-order terms from δL
are therefore small compared to the Galileon terms pro-

vided that ∂iΛZ

Λiþ1
Z

≲ 1. Inside the Vainshtein radius the

dependence of ΛZ on r is a power law and therefore this
condition is met provided

rΛZ ≳ 1: ð5:11Þ

For the cubic Galileon, we have inside an object and up to
its surface

ΛZ ∼
�
βρ̄Λ
mPl

�
1=4

; ð5:12Þ

for an object of averaged density ρ̄. This scale is indepen-
dent of r and guarantees that one can trust the Vainshtein
solution as long as

r≳ rE ∼
�
mPl

βρ̄Λ

�
1=4

; ð5:13Þ

We have used a free scalar field model down to the nuclear
scale in the disformal calculation of the Lamb shift, so we
must impose that rNΛZ ≳ 1. Taking ρ̄ ∼ r−4N for nuclear
matter, we find that rE ≫ rN for Λ ≪ mPl and β ¼ Oð1Þ.
This would prevent us from trusting our loop calculation of
the Lamb shift. The only possibility is to impose that the
Vainshtein radius of nucleons is smaller than their size,
implying that the Galileon theory is weakly coupled down
to nuclear scales. This requires that

Λ≳ 1

rN

�
βmN

mPl

�
1=3

∼ 0.2 keV: ð5:14Þ

C. Nonperturbative effects

In some models, the perturbative assumption that single
particle states are created from annihilation processes is no
longer valid in high-energy collisions. This happens when
nonperturbative effects occur at high energy due to the
nonlinearities of the theory. In particular, classical lumps
can be created in some scalar models that would be akin to
the creation of black holes at Planck scale energies. This

phenomenon alleviates the perturbative unitarity bound as
the growth of the scattering cross section with the energy is
modified. Let us illustrate this with the Galileon models
which offer the possibility of annulling the constraint from
perturbative unitarity.
The Vainshtein radius plays an important role in particle

scattering experiments. Take, for instance, the case of a
two fermion annihilation process previously discussed. On
shell, the trace of the energy-momentum tensor of massive
fermions is

T ¼ −mFψ̄ψ ; ð5:15Þ

corresponding to a nonvanishing energy density which is
highly concentrated and can be modeled as

T00 ¼ ffiffiffi
s

p
δð3Þ; ð5:16Þ

in the center of mass frame, with s ¼ −p2 where p is the
total incoming 4-momentum. This is a peaked energy
density ρ of order

ffiffiffi
s

p
over a region of size R ∼ 1ffiffi

s
p during

a time interval of order Δt ∼ 1ffiffi
s

p . During the time interval of

the collision when the energy density ρ is nonvanishing,
the scalar field can be modeled as a solution of the time
independent Klein-Gordon equation sourced by T00. In this
frame the tree level contribution from the disformal term
vanishes as the source is static and the scalar field profile is
determined by the same equation as the one used to analyze
the Vainshtein screening in Galileon models. The scalar
profile becomes a scalar lump with its energy concentrated
inside the Vainshtein radius. The nonlinearities dominate
inside the Vainshtein radius and are important for scattering
experiments provided the source term lies inside its own
Vainshtein radius R≲ R⋆. This is the analogue of the
criterion for the formations of black holes, i.e. the require-
ment that the size of the interaction region must be within
its Schwarzschild radius.
Being dominated by the creation of a classical lump, the

scattering process has a total cross section which is of the
order of the Vainshtein radius squared,

σT ∼ R2⋆: ð5:17Þ

After the time interval Δt, the energy density drops to zero
and the scalar lump cannot be maintained any more. This
triggers the classical decay of the scalar configuration, and
the solution becomes time dependent. We do not study the
details of this decay here; however, one expects the energy
of the initial lump to spread out in space and decay
classically. During this process, one also expect that
quantum phenomena take place with the emission of on
shell particle states.
For the Galileons, a source of mass

ffiffiffi
s

p
and size

R ¼ 1=
ffiffiffi
s

p
has a Vainshtein radius
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R⋆ðsÞ ¼
1

Λ

�
β
ffiffiffi
s

p
2πmPl

�
1=3

; ð5:18Þ

and the Vainshtein criterion R≲ R⋆ðsÞ is satisfied provided

s≳ s⋆ ≡
�
2πΛ3mPl

β

�
1=2

; ð5:19Þ

where β ¼ Oð1Þ. The high-energy behavior above s⋆
determined here must resolve the breaking of pertur-
bative unitarity implying that s⋆ ≤ E2

max ∼ ð7 GeVÞ2 and,
therefore,

Λ3 ≤
βE4

max

2πmPl
; ð5:20Þ

which corresponds to Λ ≤ 6 keV. Unitarity must also
be respected in the scalar sector of the theory where the
ϕþ ϕ → ϕþ ϕ process leads to a scattering amplitude at
tree level M ∼ s3

Λ6 in a terrestrial environment. At higher
energy, one must resum all the ladder diagrams involving
the three-point vertex of Galileon models with an amplitude
of the form M ∼ s3

Λ6 ð1þ α s3

Λ6Þ−1 where α is a numerical
factor. This resummation renders the amplitude bounded at
large s guaranteeing that unitarity is not violated.
While this classicalization process alleviates the unitarity

bounds on the disformal coupling, the decay of the scalar
lumps must still be compatible with collider observations.
At energies higher than

ffiffiffi
s

p
⋆, fermion annihilation includ-

ing those at LEP and the LHC would not create two particle
scalar states but classical Galileon configurations. These
Galileons would then decay classically and quantum
mechanically into a few multiparticle states coming from
the coupling of the scalar field to matter fields. A full
calculation of this process is beyond the scope of this work;
however, as the coupling between the scalar and matter
particles is suppressed by β=mPl for the conformal coupling
and by loop suppression factors for the disformal coupling,
we expect observable signatures of this process to be very
difficult to detect.

D. Combining the chameleon and Galileon effects

We have seen that the unitarity bound from particle
physics can be alleviated provided Λ≲ 6 keV. We have
also found that the calculation of the disformal Lamb shift
can be trusted provided that Λ≳ 0.2 keV. This gives a
narrow band of values for Λ ∼ 1 keV. For these values of Λ,
the Vainshtein radius of stars of the main sequence and on
the horizontal branch are extremely small compared to their
sizes. For supernovae, the Vainshtein radius is of the order
of the radius of the core. We have used the chameleon
mechanism to tackle the burning rate problem for stars.
How can we make the chameleon and Galileon compatible?
We consider the full model defined by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πGN
−
1

2
ð∂ϕÞ2 − 1

Λ3
□ϕð∂ϕÞ2

− VðϕÞ þ 1

M4
∂μϕ∂νϕT

μν
J

�
þ Smðψ i; AðϕÞgμνÞ;

ð5:21Þ

where VðϕÞ and AðϕÞ depend on the chameleon model.
Inside a dense body of almost uniform density, the field
settles at the minimum of the effective potential ϕðρÞ. This
is even true inside the would-be Vainshtein radius R⋆ of the
object as the source term in the Klein-Gordon for the spatial
variation of the field ∂Veff∂ϕ jϕðρÞ vanishes altogether. This
implies that the model behaves like a chameleon model
inside matter, and the burning rate bounds are evaded
provided the mass of the scalar field in dense media is large
enough. On the contrary, in the sparse environments of
atomic or particle physics experiments where the ambient
density is low, the scalar behaves like a nearly massless
field with a background value ϕ0 which minimizes the
effective potential. During the course of a high-energy
collision, the extreme densities reached in the center of
mass frame during a time Δt ∼ 1=

ffiffiffi
s

p
far exceed the

background density and act as a peaked source localized
in space. Expanding ϕ ¼ ϕ0 þ δϕ, the action reduces to the
one of a cubic Galileon model for a nearly massless field
sourced by the matter density coming from the particle
collision. As a result, the Galileon lumps can be created at
high-enough energy and unitarity is restored.
In conclusion, we have introduced a class of models

where the chameleon mechanism dominates in dense
environments where the scalar field is extremely massive
and cannot be produced by the particle reactions involving
the disformal coupling. This prevents the dramatic increase
of the burning rate of star that a disformal model with
M ∼ ΛQCD would entail. On the other hand, in (near)
vacuum situations where particle experiments take place,
the Galileon interactions become relevant at short
distance when the Galileon coupling is approximately
Λ ∼ 1 keV.

VI. CONCLUSION

We have considered the effects of a disformal coupling
between a massless scalar field and matter in the context of
atomic physics. We have shown that the proton radius
puzzle, i.e. a difference of four percent between the Lamb
shifts of electronic and muonic atoms, can be explained by
such a disformal coupling when the cutoff scale of the
model for experiments carried out in the terrestrial envi-
ronment is close to the QCD scale. This allows us to predict
that the disformal effect on the He radius should be below
the percent level. These results are only valid when the
scalar model is embedded in nonlinear models with the
chameleon screening mechanism in dense environments.
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This helps alleviate the constraints coming from stellar
burning rates as scalars are too heavy to be created in such
environments. At higher energy and in near vacuum, the
Vainshtein mechanisms of cubic Galileon models would
prevent the violation of unitarity by disformal interactions.
These models would be characterized by the production
and decay of classical lumps. The determination of sig-
natures for these events would certainly lead to promising
tests of the models presented here at the LHC. This is left
for future work.
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