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We compare two holographic arguments that impose especially strong bounds on the amount of
inflation. One comes from the de Sitter equilibrium cosmology and the other from the work of Banks
and Fischler. We find that simple versions of these two approaches yield the same bound on the number of
e-foldings. A careful examination reveals that while these pictures are similar in spirit, they are not
necessarily identical prescriptions. We apply the two pictures to specific cosmologies which expose
potentially important differences and which also demonstrate ways these seemingly simple proposals can
be tricky to implement in practice.
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I. INTRODUCTION

There have been a number of attempts to apply notions
of holography toward constraints on inflation [1–3]. The
motivation is simple: holography implies an encoding of
bulk information in correlations on a boundary, while
inflation promotes quantum fluctuations to all scales and
(while it lasts) seems to a provide a fertile source for new
information. Where these notions come in conflict we can
look to place limits on the amount of inflation allowed; but
the strength and form of the limits will depend strongly on
the particular holographic approach adopted.
Holographic limits on inflation are of particular interest

in the context of “eternal inflation” [4–6], which uses
simple extrapolations within effective field theory (EFT) to
suggest that at some high level inflation continues forever,
giving birth to unbounded numbers of “pocket universes.”
Holographic limits may give hints about how a deeper
theory would lead to a breakdown of the EFT, and perhaps
dramatically alter the eternal inflation picture (and perhaps
resolve the notorious measure problems associated with
eternal inflation) [7,8].
One example of an inflation model limited by holo-

graphic arguments is the de Sitter equilibrium (dSE) picture
[1,8,9]. In that picture the universe is fundamentally finite,
with a maximum entropy associated with the asymptotic de
Sitter horizon at late times. Because of the finite Hilbert
space, the standard EFT description of inflation will fail if
asked to model a length of inflation producing enough
volume to exceed the universe’s maximum information
content. In [1] this bound manifests as a sharp prediction
for spatial curvature of our universe, as a function of initial
bubble curvature. In this paper we will show the bounds
achieved in dSE are identical to those found by Banks and
Fischler (BF) [3] despite a treatment that incorporates
holography differently. However, we show that specific
assumptions chosen by BF in addition to their maximum-
entropy method of deriving a bound on inflation are needed
together to enforce the same geometric principles used in

the dSE curvature prediction. As demonstrated in [10],
adjusting those assumptions to ones more representative of
our own universe can modify the prediction for a maximum
number of e-foldings of inflation. Although not immedi-
ately apparent, some of those modifications would result in
different physical pictures and indeed could produce differ-
ent bounds from the dSE case. Each picture has originally
been presented in fairly simple terms, and our work exposes
ways the simple definitions appear to be insufficient to
allow for a full implementation in all cases. This is how the
additional assumptions can become especially important.
It appears that a geometric interpretation of the holographic
principle along the lines of [1] is useful to clarify a number
of these issues.
Our paper is organized as follows. In Sec. II we quickly

present versions of each picture (BF1 and dSE) with many
simplifying cosmological assumptions and approximations.
As we show, these approximations cause the two pictures to
converge not only on each other, but also on cosmologies
with past histories similar to ours (thus suggesting that these
ideas are quite relevant to our universe). In Secs. III and IV
we study this apparent correspondence. In Sec. V we begin
to tease apart the two pictures by examining the assumptions
required for each. In the first step we simply ask what
additional clarifications are needed in each picture for
applications to more realistic and specific cosmologies. It
is generally possible to ensure that the BF and dSE pictures
return the same results, but the process of picking the
“correct” choice of assumptions to match the two begins
to look ad hoc. Finally we examine the two principles with

1We will repeatedly refer to the result found in the first half of
the paper by Banks and Fischler [3] as the BF picture. The project
of our paper is a comparison between the holographic principle
underlying this particular result and the one within the dSE
picture, and to that purpose we will add specifications, and reflect
upon assumptions and motivations for the “BF picture.” These
reflections and modifications are entirely those of this paper’s
authors and we do not mean to attribute them to Banks and
Fischler.
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cosmologies that are parametrically connected to ours but
substantially altered. In this manner we can better expose
conceptual differences between the two approaches when
pushed away from their convergence near our own relatively
simple cosmological history.

II. HOLOGRAPHY IN DSE AND BF

A. General discussion

In both the dSE and BF pictures, the future of our universe
is asymptotically de Sitter, with a fundamental cosmological
constant Λ. In both of these pictures the entropy 3π=Λ
associated with the de Sitter horizon represents the finite
amount of information associated with the entire universe.
In such a picture it is expected that physics can describe
semiclassical spacetimes with a maximum of one horizon
volume (although different observers can observe different
realizations of such a volume by swapping out information
encoded nonlocally at the de Sitter horizon with the interior).
Though the horizon entropy is important in the setup of

dSE cosmology, Banks and Fischler do not use it in their
calculation of the bound on the number of e-foldings.
Instead, the universe is modeled as a fluid-filled cavity the
size of the apparent horizon, and the entropy within that
cavity is used to obtain the bound.
It is important to distinguish between these holographic

principles and other variants that physically differ and
result in different (or no) bounds on the amount of inflation.
For example, the covariant Bousso entropy bound [11] is
formulated on the past light cone of an observer. Placing
such bounds on the past light cone does not restrict the
number of e-foldings of inflation [12]. In a similar manner
Kaloper et al. [13] interpret the BF bound as only placing
limitations on the number of e-foldings of inflation that will
ever be observable. In contrast, in the dSE picture the entire
universe is eventually observable so there is no distinction
to be made between observable and total e-foldings.
Numerous authors have proposed bounds on inflation

under a variety of assumptions. For example, Arkani-Hamed
et al. found a much less stringent bound ofNtotal < S (where
S is the entropy of the final asymptotic de Sitter space) by
demanding noneternal inflation [2]. Albrecht et al. also put
forward another holographic inflation bound by using the
slowly changing apparent horizon to estimate the entropy of
metric fluctuations expelled during the slow roll period of
inflation [14]. Bousso’s D-bound originates from the require-
ment that entropy not decrease during the transition to empty
de Sitter space and works by positing that the entropy gained
from the increased horizon area must exceed that of the
matter entropy that was lost [15]. Another approach to
quantum gravity is known as dS/CFT [16,17], and is a
proposed analog of the AdS/CFT correspondence relating a
de Sitter space in n dimensions to a conformal field theory in
n − 1 dimensions. The possible relationship of this approach
with its infinite dimensional Hilbert space to the BF picture

with its finite dimensional Hilbert space is explored in [18].
That relationship, should it exist at all, is certainly not a
trivial one. Other tools such as the Hartle-Hawking wave
function [19] and dS/dS [20] also seem not so closely related
to the two pictures we consider systematically here, which
makes the same sorts of comparisons difficult. An nice
overview of all these approaches to de Sitter space can be
found in [21].
These bounds each emerge from fundamentally different

holographic principles and we feel each is interesting in its
own right. Here we restrict our attention only to the bounds
from the dSE and BF pictures because they seem to admit
direct comparison.
Finally, for a given holographic principle it is important

to distinguish between an absolute bound on the length of
inflation for any universe (e.g. allowing for the most
extreme variations in reheating, matter fraction, etc. con-
sistent with some set of cosmological assumptions), and a
bound on inflation for a universe consistent with the one we
observe. The first bound is of more interest for exploring a
multiverse of cosmologies, either to understand the allow-
able regions within a theory or for making predictions
within a multiverse. Constructing the second type of bound
is more relevant for direct connections to observations. For
now we will restrict ourselves to simplifying assumptions
relevant for our universe, but later (in Sec. V) we will
expand our focus to a broader range of cosmologies.

B. dSE bound basics

In de Sitter Equilibrium, the universe originates as a
fluctuation from an equilibrium de Sitter state. This avoids
the problem of initial conditions since the universe would
have been always fluctuating about a de Sitter equilibrium,
with the big bang cosmology as a fluctuation that is just
now returning to equilibrium during cosmological constant
domination. In dSE, the universe has a finite entropy and a
finite Hilbert space, and ergodicity is assumed, so that
every microstate will be eventually realized in some
fluctuation over an extremely long recurrence time.2

Under the de Sitter Equilibrium picture’s assumption of
a finite universe whose size is set by a fundamental
cosmological constant [8], an observer near the universe’s
final approach toward de Sitter space should be able to see
essentially all that there is in the universe. Requiring the
past horizon3 of such a “maximal observer” to contain all

2In everyday equilibrium systems it would seem that fixing the
temperature (or total energy) of a system plays a role similar to
initial conditions, in that it selects one state from many possible
ones. In the dSE picture the temperature is set by the value of Λ,
which is assumed to be a more fundamental feature. In any
case the assumed ergodicity is among states consistent with the
specific value of Λ.

3The past horizon hP is the maximal distance from which
information can reach an observer at a given time, defined in
Eq. (15).
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scales produced by inflation puts a bound on the maximal
length of inflation, which could otherwise generate struc-
ture that grew to physical scales arbitrarily larger than the
universe’s size by the time of the maximal observer.

C. Banks Fischler bound basics

Banks and Fischler [3] follow the entropy to examine
how an ultimate size limit for the universe restricts the
length of inflation. They note a number of results restricting
the maximum entropy within a sphere for a noncollapsing
fluid with a given equation of state, and then demand that
the ultimate entropy of the universe be no larger than that
limit calculated for a sphere of the universe’s ultimate size,
for the appropriate fluid. As an initial patch inflates its
volume increases, so the limit on the length of inflation
arises by requiring that upon reheating the total entropy of
the entire inflated region does not exceed this calculated
fundamental limit.4

D. The connection between the two pictures

The BF and dSE pictures use holography-inspired
principles that are very similar and amount to restricting
the ultimate radius of the universe to approximately the de
Sitter radius. In both pictures, by the onset of de Sitter
domination we expect an observer to be able in principle to
observe everything produced during inflation, rather than
allowing some matter to remain forever out of reach. From
these two facts it appears as though the two approaches are
guaranteed to deliver essentially the same bounds on
inflation, and to a certain degree this is true. However,
as we will see in Sec. V, the pictures are not necessarily
physically identical, and can only be made so with the
buttressing of enough simplifying assumptions to force the
two pictures to describe identical scenarios. The logical
differences between the two remain of interest and inves-
tigating what is required to bring the two into alignment
helps to clarify both pictures.

E. Counting e-foldings in dSE: A geometrical picture

Figure 1 shows the evolution of the Hubble radius
RH ≡ cH−1. Also shown is hP, the past horizon of an
event late in the cosmological constant dominated regime.
Specifically, if the event is the observation of a photon
which travels freely before the observation, hP is the
distance between the photon and the observer prior to
observation. Owing to the formation of an event horizon as
we approach a de Sitter background, the past horizons of
events at any time in the de Sitter regime are much the
same. Any of these observers can see essentially as much

volume as any observer ever will. Even today (a ¼ a0) we
are not too far off from being such “maximal observers,”
since Λ is already quite dominant. The cosmological
parameters for the curves shown match our universe with
reasonably fast reheating assumed.
The formulation of dSE cosmology [1] requires the entire

universe to be contained within the past horizon of such a
maximal observer. If our classical description of inflation
begins earlier than shown in Fig. 1, there would be scales
which never re-entered the horizon of this maximal observer,
and which would represent physical scales larger than the
finite size (∼Λ−1=2) assumed for the universe. This require-
ment places a limit on the amount of inflation allowed in dSE.
The form of the dSE constraint leads to a particularly

simple connection with the cosmic curvature. Through most
of the universe’s history, the past horizon scale evolves ∼a.
Because the spatial curvature radius also evolves ∼a, one
can make a sharp prediction for today’s measured spatial
curvature density Ωk in terms of the spatial curvature of the
bubble that began inflation [1]. Due to the geometric nature
of this picture the details of reheating and the subsequent
evolution of the universe can modify the length of inflation,
but they do not change the prediction for the curvature. Thus
curvature is a more robust reflection of the dSE bound than
number of e-foldings. Nonetheless, one can apply this
geometric framework to derive bounds on the length of
inflation as well.5
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FIG. 1 (color online). The evolution of various length scales
with scale factor a plotted during inflation and the subsequent
standard big bang expansion (SBB) up to the dS scale for a simple
model of our universe. Plotted are the Hubble length (dot-dashed)
and the past horizon hP of an event late in the de Sitter era (solid).
The radiation-matter transition occurs at lnða=a0Þ ¼ −8.1 and
shows up as a very slight kink in the dot-dashed curve. Markers J,
K, L and M aid the discussion in the text.

4Though both dSE and BF may seem somewhat acausal, they
are not. In both cases, the number of e-foldings is restricted by the
dimensionality of the Hilbert space, which is a fundamental
parameter of the theory.

5Here we apply the ideas from [3] to FRW cosmologies with
nonzero curvature. While this is consistent with [3] (where
curvature is not mentioned explicitly), we note that those authors
have elsewhere explored a related direction in which the
curvature is required to be zero as a consequence of their
fundamental starting point [22–25].
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The geometric notions in dSE allow us to calculate the
bound on the length of inflation in the dSE picture because
the curvature prediction amounts to considering the geom-
etry of a plot such as Fig. 1. For simplicity we will
approximate the evolution of the physical photon distance
by two line segments (replacing the smooth transition
region near a ¼ a0 with a sharp corner). For the segment
representing past evolution, the distance evolution is
proportional to a, so its slope is unity in Fig. 1. We will
also assume that during inflation the Hubble parameter HI
is approximately constant and the subsequent reheating is
rapid. After reheating we treat the universe as a perfect fluid
with a single equation of state p ¼ wρ right up to the
beginning of the dS stage (which sets in with H ¼ HΛ at
scale factor aΛ). Thus we are also representing the RH
curve in Fig. 1 with straight line segments meeting at sharp
corners. Since most of the logarithmic range of a is in the
radiation era (vs matter era), and the slope of the RH curve
during the matter era is not that different from the radiation
case, one can achieve a good approximation to Fig. 1 by
taking w ¼ 1=3 in our linear approximation.
With these simplifications and the dSE assumption

fixing the beginning of inflation on the past horizon line,
the increase in the Hubble radius H−1 from inflation to dS
must equal the increase in the scale factor over the same

time: ln
H−1

Λ
H−1

I
¼ ln aΛ

aI
. On Fig. 1 this corresponds to setting the

lengths JM ¼ LM.
To find the number of e-foldings for inflation (JK), we

simply start with the e-fold increase in the Hubble length
(JM) and subtract off the e-folds of a “eaten up” during the
standard big bang expansion (SBB) of the fluid to the dS
scale (KM). Since H−1 ∼ ρ−1=2 and ρ ∼ a−3ð1þwÞ,
H−1 ∼ a3ð1þwÞ=2, which gives us the slope during SBB.
Thus the increase of a during SBB is given by 2

3ð1þwÞ ln
HI
HΛ
,

and the number of e-foldings Ne of inflation is

Ne ¼ JM − KM ð1Þ

Ne ¼ ln
HI

HΛ

�
1 −

2

3ð1þ wÞ
�

ð2Þ

¼ f ln
HI

HΛ
; f ≡ 1

3

�
3 −

2

ð1þ wÞ
�

ð3Þ

In the case of radiation (w ¼ 1=3), f ¼ 1=2 and the
universe’s history is evenly split: the magnitude of the
universe’s expansion during inflation equals that from
reheating through the start of Λ domination. For GUT-scale
HI ≈ 1040 s−1 and the observed HΛ ≈ 10−18 s−1, that gives
Ne ¼ 1

2
ln HI

HΛ
≈ 67 e-foldings. Decreasing HI will increase

RH during inflation, raising the horizontal line segment in
Fig. 1, and thus decreasing the bound on Ne, assuming the
other elements of the calculation are held fixed.

III. ENTROPY BOUNDS FOR FLUIDS SYSTEMS

A. Overview

Banks and Fischler’s holographic approach involves
counting the entropy in a cavity the size of the apparent
horizon. With this method of entropy counting, putting a
bound on inflation involves putting a bound on the entropy
within this cavity. Thus we will find it useful to discuss
bounds on the amount of entropy that can be contained
within a cavity of size R without it collapsing due to gravity.
Banks and Fischler examine a number of approaches to
bound the entropy of a fluid system. In each case the scaling
obtained for fluids with equation of state p ¼ wρ is of the
form

S ≤ β

�
R
lp

�
3− 2

1þw

; ð4Þ

where lp is the Planck length and β is a constant determined
by the thermodynamic relation for the entropy density of the
fluid, discussed in more detail in Sec. V C. For radiation,
β ¼ Oð1Þ in these units one Planck volume should contain
at most roughly one unit of entropy. The common form
[Eq. (4)] for these results formed the basis of the derivation
for the BF inflation bound. Banks and Fischler derived their
bound in a simple cosmology and we next reproduce their
argument in the remainder of this section.

B. Critical (flat) FRW universes without dark energy

We write the Friedmann equation as

H2 ¼ 8πG
3

ρtot −
k
a2

: ð5Þ

Using the thermodynamic relation for the entropy density

σ ¼ βρ
1

1þw ð6Þ

of a fluid with equation of state p ¼ wρ, we can calculate
the total entropy contained within a Hubble volumeH−3 for
a flat (k ¼ 0) universe:

S ¼ H−3σ ¼ βH−3ρ
1

1þw ¼ βH−3þ 2
1þw ð7Þ

The factor β is at mostOð1Þ for a single species (for σ and ρ
expressed in Planck units) but can be significantly smaller,
as discussed in Sec. V C.

C. Universes with Λ > 0

Similar results exist for certain cases in universes with a
cosmological constant [3]. Fischler et al. [26] consider how
much entropy can be stuffed into a region without it
collapsing by relating the energy density to the entropy
density using the thermodynamic relation (6), and then
solving the Friedmann equations. They point out that for
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static solutions in matter-dominated (w ¼ 0) universes,
there is a metric sign change at precisely the same entropy
bound given by Eq. (4). Fischler et al. show that violating
this bound in the collapsing phase of a universe with
positive Λ causes a big crunch [26].
In both dSE and the BF approach the finite size of the

universe places an upper limit on the radius of a fluid-filled
sphere. This maximum radius would then imply a maxi-
mum theoretical entropy for such a fluid-filled universe.
The repeated appearance of the relation (4) encouraged BF
[3] to ask what limitations on inflation could result if
one demands the global entropy produced during inflation
to remain less than this entropy bound evaluated at the
maximal radius

ffiffiffiffiffiffiffiffiffi
3=Λ

p
. Our paper seeks to compare the

resulting bound on inflation with related results within dSE.

D. BF e-fold counting

Banks and Fischler [3] arrived at a formula for e-foldings
identical to Eq. (1) in the first half of their paper.6 BF adopt a
holographically inspired view that functionally bounds space
within a cavity of radius Λ−1

2. As discussed in Sec. III B,
filling a cavity of this size with a fluid of equation of state
p ¼ ρw results in a maximum entropy S ≲ R3− 2

1þw. Their
approach is to assume that the inflaton reheats into a fluid
with state parameter w at a density ρi ∼H2

I, with an entropy

density σi ¼ βρ
1

1þw
i . At the reheating time there are e3Ne

Hubble patches. The goal is to ensure that if we sum all the
entropy in these patches, we do not exceed the limit

Smax ∼H
−ð3− 2

1þwÞ
Λ ð8Þ

for the asymptotic apparent horizon ∼H−1
Λ .

The entropy Si in a single Hubble volume after
reheating is

Si ¼ H−3
I σi ð9Þ

¼ H−3
I βρ

1
1þw
i ð10Þ

∼H
−ð3− 2

1þwÞ
I ð11Þ

where HI is the value of the Hubble constant at the end of
inflation and (as in [3]) we have suppressed prefactors such
as β. Thus the entire volume of e3Ne Hubble patches must
obey

e3NeSi ≤ Smax ð12Þ

e3NeH
−ð3− 2

1þwÞ
I ≤ H

−ð3− 2
1þwÞ

Λ ð13Þ

giving

Ne ≤
1

3

�
3 −

2

1þ w

�
ln

HI

HΛ
ð14Þ

which is identical to the dSE case [Eq. (1)].

IV. HOW THE BF AND DSE BOUNDS WIND
UP THE SAME

We would like to relate the BF result as closely as
possible to the dSE result. We can phrase the dSE bound
most simply as the requirement that the increase in physical
volume a3 from the beginning of inflation to the beginning
of the dS era equals the increase in Hubble volume over the
same period. At first glance the BF bound does not depend
on such geometric notions; it merely demands the global
entropy produced at reheating be no more than the
maximum allowed for a fluid that can fill a cavity the size
of the de Sitter horizon without collapse.
In order to connect the BF picture and the geometric

ideas from dSE one can follow a comoving region of space
through the evolution of the universe. We focus on the
region C bounded by the apparent horizon when inflation
starts. (The dashed line in Fig. 2 shows the size of region
C.) During inflation, C expands exponentially, but the size
of the apparent horizon A stays the same. After reheating
the resulting radiation dominated universe C expands too,
but the region that is contained within the apparent horizon
A expands faster. This is also the case during matter
domination. When we reach cosmological constant domi-
nation, both A and C have become very large and we put a
bound on inflation by requiring A to be contained within C at
all times.7 Since C describes a comoving region the entropy
in this region is conserved assuming adiabatic evolution.
Because the underlying restriction on the size of the

universe is the same in both approaches, it may seem that the
bounds on inflation are destined to be identical. But while
this restriction is explicit in the derivation for the dSE case, it
does not appear directly in the BF derivation. The assumed
adiabatic expansion of the universe is naturally tracked by
comoving volumes of constant entropy, and it is this trans-
lation to the language of comoving volumes that allows
contact with the geometric dSE picture. As wewill discuss in
Sec. V, adiabaticity is only one of several assumptions
required for the simplest version of BF to agree with dSE.
We will show that relaxing the simplifying assumptions

behind the BF bound can lead to a physically different
scenario with different limits on the length of inflation or
predictions for curvature. Only by explicitly requiring a
geometric statement of the holographic principle as part of

6With the addition of a “holographic gauge” condition, they
later produce a different estimate. As dSE cosmology does not
incorporate an analogous condition, we will restrict our com-
parison to the first estimate.

7Imposing this requirement at all times is implicit in the BF
analysis for simple cosmologies but in general represents an
additional assumption.
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the BF analysis do we ensure that it is actually imposing the
same constraint as in the dSE analysis.
In the next section, we will expand the investigation into

the assumptions required in order to match the BF and dSE
pictures. We will look at more complicated examples
consistent with our universe and also more general cases.
Considering these cases will reveal some issues that arise
when pursuing a rigorous holographic bound valid for all
cosmologies.

V. RE-EXAMINING ASSUMPTIONS FOR THE
BF AND DSE BOUNDS

A. Overview

Here we give a more detailed account of key assumptions
and simplifications that go into the BF and dSE bounds.
This will help us examine how these assumptions relate to
the equivalence (or not) of the BF and dSE bounds. First we
give a descriptive list of these assumptions and then
elaborate on each one in separate subsections.
Horizons: Both BF and dSE involve identifying hori-

zons, but there are subtleties in using these horizons that
need to be understood in order to make a sharp comparison.
Prefactor: The simple thermodynamic entropy scaling

relation of Eq. (6) has a prefactor that requires scrutiny.
Net equation of state: The BF picture relies on a fluid

with a single equation of state throughout the cosmic
evolution. There are choices involved in defining a single
effective equation of state for a realistic universe composed
of multiple fluids with different equations of state.
Adiabaticity of the fluid: We also need to account for

possibly substantial ordinary entropy production that does
not necessarily change the cosmological equation of state,
such as particle decays or stellar processes.
Black holes: Universes do form black holes, and we need

to examine the BF approach of excluding black hole entropy.
TOV equation: We will examine solutions of maximum

entropy permissible within a noncollapsing universe with
cosmological constant, represented by the Tolman-
Oppenheimer-Volkoff equation. This will allow us to
generalize beyond the homogeneous.
Alternate cosmologies: Wewill explore how well the two

pictures can describe noncollapsing cosmologies that
exhibit a loitering period of slow expansion, allowing
observation of an arbitrarily large volume of the universe.
A careful look at each of these issues will help us get a

better understanding of the challenges involved in formulat-
ing such types of holographic bounds, both for our universe,
and in general.

B. Choice of horizons

Banks and Fischler count the entropy at the exit of
inflation by modeling the universe as a fluid-filled sphere
with a size equivalent to the apparent horizon [3]. In dSE,
the past horizon is used, specifically

hPða1Þ≡ a1

Z
aΛ

a1

da
a2H

: ð15Þ

Figure 2 shows the evolution of both these horizons in a
way which allows us to visually express the bounds on the
number of e-foldings of inflation in both the dSE and BF
pictures.
We evaluate the BF bound by requiring that the entropy

always be less than the maximal entropy contained within
the fluid-filled cavity the size of the apparent horizon.
Assuming adiabaticity comoving regions contain constant
entropy and can be represented by R ∝ a lines in Fig. 5.
The heavy dashed line in Fig. 5 (also shown as a dashed
line in Fig. 2) indicates the largest comoving region ever
contained within the apparent horizon (solid curve), and is
thus the natural focus of the BF analysis. To calculate the
BF bound on the number of e-foldings geometrically we
follow the dashed line in Fig. 2 back to where it intersects
the apparent horizon in the inflationary epoch, which marks
the earliest allowed start to inflation in the BF picture. We
read off the bound on the number of e-foldings as the
horizontal distance between this intersection and the end of
inflation.
In the dSE picture the universe is bounded by the past

horizon which can be well approximated by hP ∝ a (the
dotted line in Fig. 4) for most of the evolution of the
universe. We can see how this approximation can be used to
picture the dSE bound in a similar way to how we just
described the BF bound: The earliest allowed start to
inflation in the dSE picture is given by where the dotted
line in Fig. 4 intersects the apparent horizon in the infla-
tionary epoch.
The hP ∝ a approximation breaks down at both early

and late times. In the late time era of cosmological constant
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FIG. 2 (color online). Evolution of length scales R with scale
factor a. Plotted are the size of the apparent horizon A (dot-
dashed) and the past horizon hP of an event late in the de Sitter era
(solid). The dashed line C tracks the comoving volume of space
with the maximal entropy that can be contained in the fluid cavity
of BF assuming adiabaticity. Zoomed versions of the boxed
regions are shown in Figs. 3 and 4. (In these zoomed figures the
differences between C and hp appear clearly).
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domination (shown in detail in Fig. 3), looking back from
a later time does not noticeably change the past horizon.
This is a nice feature since it means that it does not matter
when we choose to observe as long as it is during
cosmological constant domination. However the break-
down of the approximation at early times (detailed in
Fig. 4) presents some problems for constructing an accurate
prescription for a bound on inflation. The past horizon
approaches the apparent horizon at early times but never
crosses it, seemingly implying that there is no bound.
However, in the dSE picture we are inclined to say that the

deviation from the approximation at early times occurs at a
time where we expect new physics and the breakdown of
the effective field theory (EFT). Without a clear picture of
what lies beyond the EFT we simply use the intersection
of dotted line (the R ∝ a extrapolation of the past horizon)
with the dot-dashed curve (the apparent horizon) to indicate
the effective start to inflation.
The distinction between the two horizons seems like a

small technical difference, but as we will see in Sec. V H,
the distinction can become problematic for universes with
large curvature or periods of slow expansion.

C. Thermodynamic relation for entropy density

The expression for the entropy density of an adiabati-
cally expanding fluid, σ ¼ βρ

1
1þw, comes from statistical

mechanics. We would like to evaluate the proportionality
factor to make this relation more precise. For a particle
species in thermodynamic equilibrium,

ρ ¼ g
ð2πÞ3

Z
E

d3p

eðE−μÞ=T � 1
ð16Þ

P ¼ g
ð2πÞ3

Z
p2

3E
d3p

eðE−μÞ=T � 1
ð17Þ

σ ¼ ρþ P
T

; ð18Þ

where ρ is the energy density, P is the pressure, σ is the
entropy density, and g is the total number of internal
degrees of freedom. For example, in the case of relativistic
particles,

ρ ¼ g
π2

30

ðkTÞ4
ðℏcÞ3 ð19Þ
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FIG. 3 (color online). Close-up of Fig. 2 near the era of
cosmological constant domination. The dot-dashed curve is the
apparent horizon and the solid curves show past horizons for
events at a few different times in the de Sitter era. The feature that
these past horizons all approach each other at early times is due
their being defined relative to events in the de Sitter era. The
dashed line tracks the comoving volume of space with the
maximal entropy that can be contained in the fluid cavity of
BF assuming adiabaticity.
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FIG. 4 (color online). Close-up of Fig. 2 plotted near the
beginning of inflation. Plotted are the size of the apparent horizon
(dot-dashed) and the same hP curves shown in Figs. 2 and 3
(solid). The dashed line tracks the comoving volume of space
with the maximal entropy that can be contained in the fluid cavity
of BF assuming adiabaticity. The dotted line shows the approxi-
mation hP ∝ a. The difference between the dotted and dashed
lines corresponds to an extra 1.3 e-foldings of inflation more in
the dSE picture than in the BF picture.
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FIG. 5 (color online). Evolution of various length scales vs
scale factor a. Plotted are the size of the apparent horizon (solid)
and a few lines of constant entropy (dashed). The comoving
volume of space with the maximal entropy that can be contained
in the fluid cavity of BF assuming adiabaticity is the thick central
dashed line tangent to the solid curve.
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σ ¼ gk
2π2

45

�
kT
ℏc

�
3

ð20Þ

σ ≈ 1.0098g
1
4kðℏcÞ−3

4ρ
3
4; ð21Þ

where g ¼ gB þ 7
8
gF is the total effective number of internal

degrees of freedom, and gB and gF are the number of spin
states for bosons and fermions, respectively. We find that
the prefactor in this case is indeed of order one (as long as
the number of internal degrees of freedom is not extraor-
dinarily large). If we have a fluid of relativistic particles at
the Planck density in thermal equilibrium, it will be at
roughly Planck temperature and if it is contained in a
Planck volume, we see from the expression above that it
will have of order one unit of entropy as expected.
We will also look at what happens during the early

universe in a typical model where a thermal relic decouples
nonrelativistically. A typical scenario is that the inflaton
reheats into relativistic particles, some of which are massive
and will eventually cool and become nonrelativistic. The
nonrelativistic matter will then typically freeze out and as it
does so, asymptote to a constant comoving number density.
In general, nonrelativistic matter will possess less

entropy than radiation. If we trace the matter’s history
back to a time when its temperature was higher than its
mass, it had the same entropy per degree of freedom as the
relativistic case. However during its transition to a non-
relativistic fluid the matter’s comoving number density
(and entropy density) exhibits a characteristic drop as it
cools before asymptoting to a constant value again during
freeze-out (Fig. 6). The entropy from the annihilation of
particles is deposited in the radiation. The resulting
prefactor β can be many orders of magnitude smaller than
for relativistic matter.

The concept of thermal wavelength is a good way to see
the proportionality factors. A fluid in a box the size of the
thermal wavelength (not a box of Planck volume) should
have entropy of order one. For the same energy density,
matter will always have a larger thermal wavelength than
radiation.

D. Equation of state

A cosmology like our own universe is not dominated by
a single fluid equation of state from reheating until
cosmological constant domination. Even in the simplest
one-component case, the transition to an asymptotic de
Sitter state modifies the effective equation of state, round-
ing off the sharp corners in pictures like Fig. 1 and adjusting
the crudest estimates for inflation bounds. For example, the
simple entropy scaling of Eq. (6) will begin to fail around
the time the dominant fluid energy density drops to near ρΛ
(see Fig. 3). In addition, the important transition from
radiation to matter domination in our universe’s history sits
somewhat uncomfortably with the one fluid model of BF.
Perhaps the simplest resolution is to define an effective

equation of state for the entire universe’s history (in effect
drawing the straight line JL on Fig. 1) and then proceed
with the BF formulation. But there is something contrived
about this approach. It requires supplying the entire
subsequent evolution of the universe as an input to a
calculation formally made at the end of reheating. In fact
the motivation for this choice is an attempt to keep the BF
picture in compliance with a more geometric approach to
the holographic principle, along the lines of the dSE
picture. If we insisted on calculating the BF bound in
our universe using the radiation fluid that dominated after
reheating and through most of the expansion history of the
universe, we would calculate a larger maximum number of
e-foldings of inflation than if we input the actual effective
“mixed” equation of state.8 In Sec. V E we will see other
problematic examples involving changing fluid constitu-
ents. It should be pointed out that there is not an immediate
“correct” choice for equation of state; no matter how we
choose we are forced to decide which clarifications of
BF seem most reasonable (or least unappealing). This is a
pattern we will see again.

E. Adiabaticity assumptions

Our own universe’s early evolution was well approxi-
mated as adiabatic, but even with the exclusion of purely
gravitational entropy its subsequent history included sub-
stantial nonadiabaticity. And there is no requirement that0.001 0.01 0.1 1 10 100
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FIG. 6 (color online). The generic behavior of entropy density
as a function of time during freeze-out. As the universe cools, the
number of particles drops until the particles cannot find each
other to annihilate and freeze out. The solid line indicates the
equilibrium abundance, while the dotted line is the actual particle
abundance.

8Following [26,27] we note that the change from radiation to
matter domination is the reason the CMB entropy is less than the
maximalBFboundfor radiation.Wecanestimate theentropydensity
of the CMB radiation by using the value of ρr in Eq. (21). Since
ρ ∝ H2

Λ ¼ H2
0ΩΛ in the BF bound while ρr ∝ H2

0Ωr, the actual
CMB has less entropy than the BF bound by a factor of ðΩΛ

Ωr
Þ3=4.
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similar cosmologies be even as approximately entropy-
conserving as ours, as it is no great theoretical challenge
to come up with mechanisms to increase entropy. Moreover,
the BF bound was derived under the principle of maximizing
entropy that could be packed into a sphere without collaps-
ing. One might even wonder whether the maximal entropy
noncollapsing solutions indeed are the uniform density
solutions assumed so far. (We will further discuss this in
Sec. VG and conclude that the homogeneity assumption is
OK.) If the universe reheats into a state which does not have
maximal entropy (a realistic case), we are forced to decide
among multiple interpretations of the BF bound. A treatment
of increasing entropy in the Banks and Fischler picture could
alter the inflation bound in either direction, depending on
how one modifies the BF procedure.
One way to characterize adiabaticity (or the lack of it)

during a cosmology dominated by a single fluid is simply
by using the prefactor β in the expression σ ¼ βρ

1
1þw. In the

BF picture for a universe with a fixed effective equation of
state but substantial nonadiabaticity, deciding how to
handle this prefactor β is nontrivial.
A simple example of entropy production that is difficult

to handle in the BF picture is the production of light from
stars, and the subsequent thermalization of that light by
dust. This process converts high energy photons into many
lower energy ones. The energy density is conserved, yet the
temperature decreases. Using σ ¼ ρþP

T , we can see that here
the entropy will be greatly increased, yet the equation of
state remains the same.
For an extreme example of nonadiabaticity, a long period

of reheating can have an effective equation of state equivalent
to nonrelativistic matter, and subsequently upon final exit of
reheating gains the stiffer equation of state for radiation. At
constant energy densities, σ ¼ βρ

1
1þw increases enormously.A

hypothetical universe dominated by matter with a decay time
shorter than tΛ would be another such scenario. It is not so
obvious in either example exactly when one should calculate
the post-inflation entropy that is to be compared to the
entropy bound for the final state of matter. Whichever choice
one makes, any of the nonadiabatic scenarios will have a
lowered initial entropy compared to an analogous adiabatic
cosmology with similar final matter configuration.
Foran illustrationofhowthesechoices reflect trulydifferent

versions of the BF holographic picture, consider the above
example of a universe dominated by unstablematter followed
by a decay back to radiation. Inflation would end with

S ∼ e3NeH−3
I H

2
1þw
I ¼ e3NeH−1

I ; ð22Þ
whereas the bound would be9

S < H
−3þ 2

1þw
Λ ¼ H−3=2

Λ : ð23Þ
This allows

3Ne þ ð− lnHIÞ < ð−3=2Þ lnHΛ ð24Þ

Ne < ð3=2Þ ln
�
HΛ

HI

�
−1

þ ð1=6Þ lnH−1
I ; ð25Þ

a much larger bound than the one finds in the purely
radiation-dominated universe:

Ne < ð3=2Þ ln
�
HΛ

HI

�
−1
: ð26Þ

The result of the extra inflation in this calculation is that
some radiation produced after reheating never reenters
the apparent horizon by the time of Lambda domination,
since the subsequent evolution under matter domination
does not increase H−1 quickly enough to “catch” the
biggest scales produced at the start of inflation.
A universe with matter that never reenters the maximal

observer’s horizon is one that is physically different from
the one described by dSE. One could of course resolve the
difference by carefully formulating the BF bound so as to
anticipate the exact degree of non-adiabaticity within the
cosmological solution chosen. Or one could interpret the
larger bound on e-foldings in the BF picture as simply a
high estimate, less stringent than could be obtained with
more careful analysis. It is worth noting that as formulated
the dSE bound is not sensitive to these particular concerns
over entropy production. For this reason any attempt to
match the BF and dSE bounds more exactly in realistic
cosmologies will generally require clarifications or mod-
ifications to the setup of BF. There is no guarantee that such
modifications will be defensible without the guidance of
some organizing principle. We find the geometric ideas
within dSE offer a useful approach.
There is a further problem with accommodating entropy

production within the BF framework. We obtain the bound
on the e-foldings of inflation using only the entropy at
reheating. If we are to accept that entropy only present at a
later time can influence the evolution of the universe during
inflation, then we see no reason that all sources of future
entropy should not similarly affect inflation. These consid-
erations make the BF bound seem rather ad hoc. A geometric
picture such as dSE does not suffer from this problem
(neither does BF with the requirement of adiabaticity).

F. Black hole formation

In our universe, the dominant contribution to the entropy
is the de Sitter horizon, and after that, black holes [28].
If included in the BF calculation, the entropy of black hole
formation would completely invalidate the adiabatic
approximation, requiring either a very different approach

9There is entropy production in the decay of the matter, but it is
not clear whether it would be enough to saturate the bound for a
new equation of state. In particular, this relation assumes that all
the matter decayed to radiation, which is then in thermal
equilibrium.
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or resulting in a substantially weaker bound on the total
number of e-foldings. However, Banks and Fischler explic-
itly exclude black hole entropy, and the universe is treated
as if it were uniform density (effectively replacing the mass
in black holes with a contribution to the uniform cosmo-
logical energy and entropy density). But if we are to truly
ignore black hole entropy as being hidden behind the
horizon, then they would instead contribute no entropy at
all. Carefully implementing the BF prescription by properly
accounting for the hidden black hole matter will therefore
reduce the counted entropy of our universe with every
black hole formed. In any case, in our universe the mass
fraction of black holes is small, so this approximation
makes no practical difference in the comparison to the dSE
case.10 But the formal exclusion is a real effect on the
entropy counting and thus the calculation of entropy
bounds; in comparison, the large-scale geometric approach
of the dSE picture is unaffected by local replacement of
matter with black holes.

G. Tolman-Oppenheimer-Volkoff equation

We have discussed various methods for estimating the
maximum entropy of a homogeneous region with a
particular fluid equation of state, but Banks and Fischler
ask what bounds arise for the most general fluid configu-
ration, and use the Tolman-Oppenheimer-Volkoff (TOV)
equation to go beyond the homogeneous case. The TOV
equation determines the equilibrium solution which opti-
mizes the amount of entropy which may be stuffed within a
volume without collapsing to a black hole.11 Here we
further extend Banks and Fischler’s TOV work to the case
of a universe with a cosmological constant.
The TOV equation

dp
dr

¼ −
ðρþ pÞðGmðrÞ þ 4πGr3pÞ

rðr − 2GmðrÞÞ ð27Þ

has families of solutions with different central densities,
one of which is the homogeneous solution [33]. Including
the cosmological constant, the TOV equation becomes
the TOV-Λ equation, where p ¼ pþ pΛ and mðrÞ ¼R
r
0 4πr

02ρdr0 þ 4π=3ρΛr3.
Our universe is extremely homogeneous on the largest

scales, so any nonuniform TOV solution is a poor fit to our
universe. However, we would like to know if the BF bound
actually favors a different universe. Applying the dSE and
BF pictures in these universes may also better illuminate
differences between the two approaches.

The solutions to the TOV-Λ equation resemble an
Einstein static universe. They are closed static universes
of finite size which extend out to the apparent horizon and
have the average energy density in matter equal to roughly
twice the energy density of the cosmological constant.
Figure 7 shows some illustrative solutions.
We find that the inhomogeneity of the TOV solutions

does not significantly increase the entropy over the Einstein
static universe, so in the end there is no point in considering
the inhomogeneous case. Furthermore, the Einstein static
universe does not have an asymptotic de Sitter future so we
cannot directly apply either the BF or dSE bounds. As we
will discuss in the next section, we can however examine
“loitering universes” with slightly less matter content than
the Einstein static universe.

H. Other cosmologies

In other cosmologies, the discrepancy between the dSE
and BF bounds can become more pronounced. In the case
of a loitering universe (Fig. 8) the Hubble constant becomes
very small for an extended period of time before heading on
to de Sitter expansion. During the loitering phase of slow
expansion, these are approximately Einstein static uni-
verses and their large curvature causes the Hubble length to
deviate substantially from the apparent horizon. The slow
expansion causes the Hubble horizon and consequently
the past horizon to become very large, as shown in Fig. 9;
however, the apparent horizon is largely unaffected as
shown in Fig. 10.
If we fine tune the ratios of densities of fluid components

and the cosmological constant, an observer can see an
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FIG. 7 (color online). The variation of energy density as a
function of distance coordinate for several TOV-Λ universes.
Note how the energy density tends to oscillate around the fixed
value that would correspond to the Einstein Static universe. The
behavior of these curves is governed by the central density and
the equation of state parameter w of the fluid. Fluids with w → 0
oscillate more than fluids with w → 1. Shown are curves for a
fluid with w ¼ 0.3. The straight central line corresponds to the
Einstein static universe, which is a member of the family of
solutions. These plots are normalized by the energy density of
this Einstein static universe (ρES) and the apparent horizon of the
Einstein static universe (rES).

10We leave open the question of potentially substantial
differences in universes with a large black hole fraction.

11Although the TOVequation assumes spherical symmetry and
hydrostatic equilibrium, a series of papers [29–32] showed that
the TOV solutions are also the maximal entropy solutions for any
configuration of a fluid, independent of symmetry (in cases that
do not collapse).
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arbitrarily large volume of the universe within her past
horizon. This is troublesome for holographic ideas in
general, and especially we see that the dSE picture would
have an arbitrarily weak limit on e-foldings in an arbitrarily
fine-tuned loitering cosmology. Furthermore, the picture of
BF would still have a strong bound on e-foldings, in spite of
being able to observe an arbitrarily large region of space.
This would indicate an arbitrarily large observable
entropy,12 in spite of reaching an asymptotic de Sitter final
state. In our view neither the BF nor the dSE pictures as
currently described in the literature can be applied without

further elaboration to the loitering cosmologies. These
cosmologies, while they do not describe our universe,
are interesting and useful as test cases because they allow
much more entropy to be observed while still possessing
the same final asymptotic de Sitter state. And it is important
to note that even a small-curvature universe of the correct
sign has a little bit of this loitering behavior and the more
finely tuned solutions are smoothly connected to ours in
model parameters. Thus, in a systematic application of
these holographic principles to some ensemble of cosmol-
ogies the dSE and possibly also BF approaches could favor
the loitering direction.

VI. SHOULD THE BOUNDS BE SATURATED?

We have directed our analysis to the task of comparing
upper bounds on inflation that arise in the BF and dSE
pictures for cosmology. A separate question is: how close to
this bound should we expect a universe described by one of
these pictures to be? In the dSE picture there are some
reasons to expect a typical universe to be near the bound;
essentially, the mechanism starting inflation makes it more
likely to start high on the inflaton potential. In the BF
picture things are less clear. Its statement as a bound on
entropy encourages us to think about maximization because
of our experience with the second law of thermodynamics.
But we are also used to thinking of the universe as having
an extremely low entropy initial state. It is actually only
because BF exclude gravitational and horizon entropy that
we can even begin thinking about the universe as being near
a kind of entropy maximum. Without additional principles

1

t

a
a 0

FIG. 8 (color online). The evolution of the scale factor vs time
for a loitering universe. Because the expansion slows down
during the loitering phase, the Hubble length becomes very large.
Here a0 is set arbitrarily at the inflection point.
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FIG. 9 (color online). Evolution of length scales R for the
loitering universe shown in Fig. 8 vs a shown near the era of
cosmological constant domination. Plotted are the Hubble length
(dot-dashed) and the past horizon hP of an event late in the de Sitter
era (solid). The dotted line shows the approximation hP ∝ a.
Notice that the loitering phase causes the horizons to be larger,
allowing more of the universe to be observed. The upturns in the
curves of Hubble length and past horizon near a ¼ a0 depend on
the duration of the loitering phase, and can be increased arbitrarily
(though the level of fine tuning also increases similarly).
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FIG. 10 (color online). More information about the same
loitering universe shown in Fig. 9, also plotted vs scale factor
a and shown near the era of cosmological constant domination.
Plotted are the apparent horizon (dot-dashed) and the past horizon
of an event late in the de Sitter era (solid). The dashed line tracks
the comoving volume of space with the maximal entropy that can
be contained in the fluid cavity of BF assuming adiabaticity.
Increasing the duration of the loitering phase of this cosmology
increases the allowed e-foldings in dSE arbitrarily, while having
little effect on the BF bound. This illustrates how the BF and dSE
bounds can become arbitrarily different in a loitering universe.

12There would be negligible cosmological redshift within an
arbitrarily large observable region because of the slow expansion
during the loitering phase.
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(such as we have in the dSE case) we do not see a particular
reason that the BF bound need be near saturation.
A closely related question is: if we interpret observations

of our own universe within the BF or dSE picture, should we
expect the inflation experienced by our own universe to
saturate these bounds? The added wrinkle is that observations
have already established an effective floor on the number of
e-foldings. Thus the typical bound on inflation within the BF
picture or the dSE picture amounts to “just a few e-foldings
more than what we have observed”. This apparent coinci-
dence is really the coincidence that we are living at a time that
makes us nearly “maximal observers” so we can already see
most of what we will ever see. At least in the BF case, it is
observation-based priors that drive us close to saturating the
bound. More generally both of these models have the feature
that the bounds are not far above the minimum amount of
inflation we expect based on observations.

VII. CONCLUSIONS

We have shown that the entropy bound of Banks and
Fischler and that of dSE coincide for a very restrictive set of
assumptions and a simplified cosmology. Yet closer inves-
tigation reveals that even this result requires approxima-
tions within the models, and indeed the conceptual and
practical differences between them are minimized by the
choice of cosmology. Attempting to perform the compari-
son on a cosmology more closely resembling our own
(with its multiple equations of state or failures of

adiabaticity) raises many technical issues that in aggregate
call into question how fundamental the correspondence is
between these two approaches.
Examining even more exotic cosmologies as test cases

merely heightens these issues, and moreover shows that
the project of implementing either approach as a consistent,
rigorous principle across cosmologies is not quite as
straightforward as it might appear. While the phrasing of
the BF bound in terms of entropy sounds pleasingly
universal, the details of its implementation rely heavily on
the cosmological history of the universe to which it applies.
As we have seen while attempting this implementation, it is
roughly possible to map the BF picture onto the dSE picture
by carefully working backwards to entropy from geometric
notions in which the dSE picture is originally phrased.
Because these geometric ideas are more robust under
variations in cosmological history, we ultimately find them
a more practical and compelling basis for formulating a
predictive holographic principle for finite universes with
inflation. Moreover, the unexpected complexities arising
from examining unusual cosmologies such as the loitering
universes suggest a need to further sharpen such a principle.
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