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This article proposes a comprehensive analysis of light propagation in an anisotropic and spatially
homogeneous Bianchi I universe. After recalling that null geodesics are easily determined in such a
spacetime, we derive the expressions of the redshift and direction drifts of light sources; by solving
analytically the Sachs equation, we then obtain an explicit expression of the Jacobi matrix describing the
propagation of narrow light beams. As a by-product, we recover the old formula by Saunders for the
angular diameter distance in a Bianchi I spacetime, but our derivation goes further since it also provides
the optical shear and rotation. These results pave the way to the analysis of both supernovae data and weak
lensing by the large-scale structure in Bianchi universes.
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I. INTRODUCTION

The standard cosmological model relies heavily on the
assumption that on the large scale it is well described by a
spacetime with homogeneous and isotropic spatial sections.
All cosmological observations tend to agree with this
geometrical assumption, and to back up the predictions
of the ΛCDM model with a primordial inflationary phase.
A lot of efforts are invested in order to determine whether

the source of the acceleration of the expansion of the
Universe is due to a cosmological constant or has a
dynamical origin (new matter fields dubbed dark energy
or gravity beyond general relativity); see e.g. Refs. [1,2].
It has also revived the importance of testing the validity of
the Copernican principle.
While a primordial shear decays if it is not sourced,

late-time anisotropy appears in many phenomenological
models of dark energy [3–7] and is a generic prediction of
bigravity models [8] and backreaction [9]. Contrary to the
former [10–14], the latter remains weakly constrained
by the observation of the cosmic microwave background
temperature field; this naturally stimulated analyses based,
e.g. on the observation of supernovae [15–27], or using
low-redshift galaxies [28,29]. Besides the strict detection
of anisotropy, drawing quantitative conclusions from such
analyses requires one to understand how light propagates
through an anisotropic universe. This issue has been
addressed since the late sixties [30–33], in particular, a
remarkably simple expression of the angular diameter
distance in Bianchi I models was found by Saunders
[30,31] using observational coordinates [34], and recently
rederived in Ref. [16].

The purpose of this article is to provide a complete
analytical study of light propagation in Bianchi I space-
times. On the one hand, the integration of the null geodesic
equation (though already well known) allows us to derive
the expressions of the redshift, redshift drift and position
drift of an arbitrary light source. More importantly, on the
other hand, we solve the Sachs equation governing the
geometry of geodesic bundles. From the resulting Jacobi
matrix, we not only recover Saunders’ formula for the
angular diameter distance, but also characterize the whole
lensing properties generated by anisotropy. These results
pave the way to the computation of the lensing B-mode
signal induced in an anisotropic universe—as predicted in
Ref. [35]—since it provides the background result for the
general computation in perturbed Bianchi models.
The article is organized as follows. After summarizing

the main geometrical properties of a Bianchi I universe
in Sec. II, and the laws of geometric optics in curved
spacetime in Sec. III, we solve the null geodesic equation
and derive the expressions of the redshift and direction
drifts in Sec. IV. One technical key point of our con-
struction is the use of a conformal transformation, whose
dictionary is detailed in Sec. V. The heart of our derivation
is then exposed in Secs. VI and VII, in which, respectively,
we construct the Sachs basis and obtain the expression of
the Jacobi matrix—see in particular Eq. (7.8). An algo-
rithmic way of using our results is proposed in Sec. VIII.
Finally, in the Appendix we give a proof of the result of
Ref. [31].

II. THE BIANCHI I SPACETIME

The classification of spatially anisotropic and homo-
geneous spacetimes [36] is based on the Bianchi’s classi-
fication of homogeneous but not necessarily isotropic
three-dimensional spaces [37]. The spatial sections of these
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spacetimes are Bianchi spaces characterized by their
Riemann tensor (more precisely the Riemann tensor of
the induced metric on the spatial sections), and the full
geometry is then determined from the extrinsic curvature
of the spatial sections. The simplest of these spacetimes is
Bianchi I, which enjoys Euclidean spatial sections, that is
with a vanishing Riemann tensor of the induced 3-metric.
Its metric reads simply

ds2 ¼ gμνdxμdxν ¼ −dt2 þ a2ðtÞγijdxidxj; ð2:1Þ

where the spatial metric is given by

γij ¼ e2βiðtÞδij ð2:2Þ

with the constraint

X3
i¼1

βi ¼ 0: ð2:3Þ

The inverse spatial metric is γij ¼ e−2βiðtÞδij, such that
γikγ

kj ¼ δji . With this choice of the metric parametrization,
the volume expansion is encoded in the scale factor aðtÞ,
while the evolution of γij is volume preserving, thanks to
the condition (2.3). The conformal time η is defined from
cosmic time t by the usual relation dt ¼ adη.
The conformal shear (rate) tensor σij is defined by

σij ≡ 1

2
ðγijÞ0 ¼ βi

0γij; ð2:4Þ

where a prime denotes a derivative with respect to con-
formal time η. Its geometrical interpretation is simple as
it is directly related to the traceless part of the extrinsic
curvature of space sections, whose components are just
a2σij. The indices of σij are respectively raised and lowered
by γij and γij. Note that γikγkj ¼ δji implies

σij ¼ β0iγ
ij ¼ −

1

2
ðγijÞ0; σji ¼ β0iδ

j
i : ð2:5Þ

Since the spatial sections are homogeneous, there
exists a class of preferred observers—called fundamental
observers—for which space indeed looks homogeneous.
They are comoving with respect to the Cartesian coordinate
system introduced in Eq. (2.1), and cosmic time t represents
their proper time, so that the four-velocity of fundamental
observers reads uμ ¼ ð∂tÞμ.
For a universe filled by a homogeneous fluid, the stress-

energy tensor is

Tμν ¼ ρuμuν þ Pðgμν þ uμuνÞ þ Πμν; ð2:6Þ

with ρ and P being the energy density and the isotropic
pressure, and where Πμν the anisotropic stress. This latter
symmetric tensor is traceless and spatial, in the sense that

uμΠμν ¼ 0 ¼ Πμ
μ. We further define the conformal aniso-

tropic pressure by πij ≡ Πij=a2 and πij ≡ Πija2 such that
the indices of πij are respectively raised and lowered by γij
and γij, as is the case for σij.
The Einstein field equations then read

H2 ¼ 8πG
3

a2ρþ σ2

6
; ð2:7Þ

H0 ¼ −
4πG
3

a2ðρþ 3PÞ − σ2

3
; ð2:8Þ

ðσijÞ0 ¼ −2Hσij þ 8πGa2πij; ð2:9Þ

where H≡ a0=a is the conformal expansion rate, and

σ2 ≡ σijσij ¼
X3
i¼1

ðβi0Þ2: ð2:10Þ

III. GEOMETRIC OPTICS IN A GENERAL
CURVED SPACETIME

This section briefly reviews the essential equations
governing light propagation in curved spacetime, its main
purpose being to fix the notations. For further details, we
refer the reader e.g. to the textbook [38] or the review [39]
and our previous papers [40–42].

A. Light rays

Electromagnetic waves, described by Maxwell electro-
dynamics and identified to light rays in the eikonal
approximation, are shown to follow null geodesics [43].
If v denotes an affine parameter along such a geodesic,
its tangent vector kμ ¼ dxμ=dv—which is also the wave
four-vector of the electromagnetic signal—is a null vector
(kμkμ ¼ 0) that satisfies the geodesic equation

Dkμ

dv
≡ kν∇νkμ ¼ 0; ð3:1Þ

where ∇μ denotes the covariant derivative associated to the
metric gμν.
An observer whose worldline intersects the ray can

naturally define the notions of pulsation (or energy) ω,
and spatial direction of observation dμ, by performing a
3þ 1 decomposition of kμ with respect to his own four-
velocity uμ, as

kμ ¼ ωðuμ − dμÞ; ð3:2Þ

where ω≡ −uμkμ, and dμ is a unit spatial vector, i.e.
uμdμ ¼ 0 and dμdμ ¼ 1.
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B. Light beams

A (narrow) light beam is a collection of neighboring light
rays, i.e. an infinitesimal bundle of null geodesics. The
behavior of any such geodesic, with respect to an arbitrary
reference one, is described by the separation (or connect-
ing) vector ξμ. If all the rays converge at a given event
O—the observation event “here and now” denoted with the
index “o” in the following—then ξμðvoÞ ¼ 0. The evolu-
tion of ξμðvÞ along the beam is governed by the geodesic
deviation equation [43]

D2ξμ

dv2
¼ Rμ

νρσkνkρξσ; ð3:3Þ

where Rμνρσ denotes the Riemann tensor.

C. Sachs basis

For any observer whose worldline intersects the light
beam at an event different from O, the beam has a nonzero
extension since a priori ξμ ≠ 0. The observer can thus
project it on a screen to characterize its size and shape.
This screen is by essence a two-dimensional spacelike
plane chosen to be orthogonal to the local line-of-sight dμ.
Thus, if ðsμAÞA¼1;2 is an orthonormal basis of the screen,
then

sμAuμ ¼ sμAdμ ¼ 0;

sμAsBμ ¼ δAB: ð3:4Þ
Note that, by virtue of Eq. (3.2), we also have sμAkμ ¼ 0.
Now, consider a flow of observers lying all along the

beam [defining a four-velocity field uμðvÞ] who want to
compare the size, shape, and orientation of the pattern they
observe on their respective screen. To avoid any spurious
rotation of this pattern, one has to further impose that the
basis vectors ðsμAÞA¼1;2 are Fermi-Walker transported along
the beam,

Sμν
DsνA
dv

¼ 0; ð3:5Þ

where

Sμν ≡ δABsμAs
ν
B ¼ gμν þ uμuν − dμdν ð3:6Þ

is the screen projector. The transport rule (3.5) must be
understood as: sμA is parallel transported as much as
possible while keeping it orthogonal to uμ and dμ.
The set of vectors ðsμAÞA¼1;2 satisfying Eqs. (3.4) and

(3.5) is known as the Sachs basis.

D. Jacobi matrix

The screen projection of the connecting vector, ξA≡
sμAξμ, represents the relative position on the screen of
the two light spots associated with two rays separated

by ξμ. Similarly, and if we set by convention ωo ¼ 1, θA ≡
−ðdξA=dvÞo represents the angular separation of those
rays, as observed from O. The matrix relating ξAðvÞ to
θA via

ξAðvÞ ¼ DABðv←voÞθB ð3:7Þ

is known as the Jacobi matrix. The equation governing
its evolution along the beam derives from the geodesic
deviation equation (3.3), and reads

d2DAB

dv2
¼ RACDCB; ð3:8Þ

where RAB ¼ −Rμνρσs
μ
Ak

νsρBk
σ is called the optical tidal

matrix. Note that the position of the screen indices
A;B;C;… does not matter, since they are raised and
lowered by δAB. The initial conditions for Eq. (3.8) are

DABðvo←voÞ ¼ 0; ð3:9Þ

d2DAB

dv
vðvo←voÞ ¼ −δAB: ð3:10Þ

By definition (3.7), the Jacobi matrix relates the size
and shape of the beam to its observed angular aperture. It is
thus naturally related to the angular diameter distance DA,
linked to the ratio of the area d2As of a (small) light source
to its observed angular size d2Ωo,

DA ≡
ffiffiffiffiffiffiffiffiffiffi
d2As

d2Ωo

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detDðvs←voÞ

p
: ð3:11Þ

More generally, the Jacobi matrix encodes all the
information about the deformation of a light beam with
its propagation through a curved spacetime, i.e. gravita-
tional lensing. A canonical decomposition1 ofD that makes
such effects explicit is

1Although the authors have never seen this decomposition
used in the literature so far, they advocate that it is more
meaningful than the standard one

D ¼ DFL
A

�
1 − κ − γ1 γ2 − ω
γ2 þ ω 1 − κ þ γ1

�
; ð3:12Þ

which explicitly makes use of the angular distance in a
Friedmann-Lemaître (FL) spacetime,DFL

A , and the “convergence”
κ, “shear” γ1;2, and “rotation” ω with respect to it. Additionally to
the fact that such a decomposition relies on the choice of a
specific background (namely FL), the quantities κ, γ1;2, and ω
lose their geometrical meaning for finite (noninfinitesimal)
lensing effects. This is why, for instance, γ appears in the
expression of the magnification. It is not the case for the
decomposition proposed in Eq. (3.13).
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D ¼ DA

�
cosψ sinψ
− sinψ cosψ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rotation

exp

�
−Γ1 Γ2

Γ2 Γ1

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

shear

: ð3:13Þ

According to this decomposition, the real size and shape
of a light source is obtained from its image by performing
the following transformations: (i) an area-preserving shear,
(ii) a global rotation, (iii) a global scaling.

IV. GEODESIC MOTION IN BIANCHI I

There is a simple and elegant way to determine geodesics
in a spacetime with spatial homogeneity, without explicitly
solving the geodesic equation (3.1). It relies on the basic
fact [44] that for any Killing vector ζμ of the metric, the
scalar kμζμ is constant along the geodesic whose tangent
vector is kμ (whether it is null or not).

A. Light rays

Since ∂i is a Killing vector of the Bianchi I spacetime,
the quantity gð∂i; kÞ ¼ ki is a constant of geodesic motion.
Moreover, since k is a null vector, ω2 ≡ ðktÞ2 ¼ gijkikj and
the wave four-vector thus reads

ki ¼ cst; ki ¼ a−2γijkj ≠ cst; ð4:1Þ

ω ¼ ~ω

a
; ð4:2Þ

where

~ω≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

ðe−βi kiÞ2
vuut : ð4:3Þ

The components of the direction of observation vector dμ

are, by definition,

di ¼ −ki=ω; di ¼ −ki=ω: ð4:4Þ
From now on, we set by convention aðtoÞ ¼ 1 and
βiðtoÞ ¼ 0 at O (t ¼ to), hence the redshift is given by

1þ z≡ ωs

ωo
¼ 1

aðtsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

½e−βiðtsÞki�2
vuut : ð4:5Þ

The constants of motion ki are directly related to the
direction in which the observer at O needs to look to detect
the light signal. Indeed, with the conventions specified
above, at the observation event ðgijÞo ¼ δij, moreover we
have used the remaining freedom to set ωo ¼ 1, so that
−ki ¼ ðdiÞo is a unitary Euclidean three-vector.

B. Parentheses: On timelike geodesics

The previous reasonings also apply to timelike geo-
desics. Consider a general observer, whose four-velocity vμ

can be decomposed with respect to the four-velocity uμ of
the fundamental (comoving) observers as

vμ ¼ Euμ þ pμ ð4:6Þ
with uμpμ ¼ 0 and uμuμ ¼ −1. Since vμvμ ¼ −1, we have
pμpμ ¼ −1þ E2. Now the constancy of pi implies that
E2 ¼ 1þ a−2γijpipj → 1 as t increases (in an expanding
universe), so that the worldline of the observer tends to
align with the worldline of the fundamental observers,
i.e. the Hubble flow, exactly as in Friedmann-Lemaître
spacetimes [45].

C. Redshift and direction drifts

1. Redshift drift

As originally pointed out by Sandage and McVittie
[46,47] a consequence of the expansion of the Universe
is the existence of a drift of the cosmological redshifts.
This effect is thought to be observationally accessible
[48,49] in the standard cosmological framework [50–53].
Consider a photon received at to þ δto, corresponding to

the emission time ts þ δts; by definition of the redshift,

1þzþδz≡ωðtsþδtsÞ
ωðtoþδtoÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gijðtsþδtsÞkikj
gijðtoþδtoÞkikj

s
: ð4:7Þ

We can expand the above formula at first order in δto and
δts using gij ¼ γij=a2, which leads to

δz
1þz

¼δto
ao

ðHþσijdidjÞo−
δts
as

ðHþσijdidjÞs: ð4:8Þ

Since moreover δts=δto ¼ 1=ð1þ zÞ, we finally get the
redshift drift _zo ≡ δz=δto observed by O:

_zo ¼ ð1þ zÞH‖
o −H‖

s ; ð4:9Þ
where

H‖ðz; diÞ≡ 1

a
ðHþ σijdidjÞ: ð4:10Þ

It is interesting to notice that Eq. (4.9) is identical to the
one obtained in a Lemaître-Tolman-Bondi universe [51],
and indeed reduces to the Sandage formula [46,47] in the
isotropic case.

2. Direction drift

A consequence of anisotropic expansion is that, besides
redshift drift, the position of a comoving light source on the
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observer’s celestial sphere also changes with time. Let us
compute the velocity of this direction drift. The position xis
of the source is obtained by integrating the wave vector ki

with respect to the affine parameter,

xis ¼
Z

vs

vo

kidv ¼
�Z

vs

vo

a−2e−2βidv

�
dio; ð4:11Þ

where we used ki ¼ cst ¼ dio. Like for redshift drift, we
can evaluate the above relation at a later observation time
to þ δto corresponding to an emission time ts þ δts. If the
source is comoving, then xis remains unchanged, so that�Z

vðtsÞ

vðtoÞ
a−2e−2βidv

�
dio

¼
�Z

vðtsþδtsÞ

vðtoþδtoÞ
a−2e−2βidv

�
ðdio þ δdioÞ: ð4:12Þ

The direction drift velocity d_io ≡ δdio=δto is finally
obtained by performing a first-order expansion of
Eq. (4.12), using in particular vðtþ δtÞ ¼ vðtÞ þ δt=ω,
and the result is

d_io ¼
�Z

vs

vo

a−2e−2βidv

�
−1
�
dio −

dis
1þ z

�
: ð4:13Þ

V. THE CONFORMAL DICTIONARY

The determination of the Jacobi matrix in a Bianchi I
spacetime is greatly simplified by using the fact that two
conformal spacetimes have the same light cone.2 Let the
conformal metric ~gμν be defined by

gμν ¼ a2 ~gμν: ð5:1Þ

Property.—Any null geodesic for gμν, affinely parametrized
by v, is also a null geodesic for ~gμν, affinely parametrized
by ~v with dv ¼ a2d~v. The associated wave four-vectors
then read ~kμ ¼ a2kμ.
As a consequence, the covariant components of k are

unchanged by the conformal transformation, indeed

~kμ ¼ ~gμν ~k
ν ¼ a−2gμνa2kμ ¼ kμ: ð5:2Þ

The four-velocities of comoving observers for both geom-
etries are respectively u ¼ ∂t and ~u ¼ ∂η, so that ~uμ ¼ auμ,
thus

ω≡ gμνuμkν ¼ a−1 ~gμν ~uμ ~k
ν ¼ ~ω=a: ð5:3Þ

The 3þ 1 decomposition of ~kμ is therefore

~kμ ¼ ~ωð ~uμ − ~dμÞ ð5:4Þ

with ~dμ ≡ adμ implying ~dμ ¼ dμ=a.
The Sachs basis ð~sμAÞA¼1;2 for the conformal geometry is

related to the original one by

~sμA ¼ asμA: ð5:5Þ

One can indeed check that, with Eq. (5.5), the usual
orthonormality and Fermi-Walker transport conditions
are preserved by the conformal transformation,3 i.e.8>>>>><

>>>>>:

sμAuμ ¼ 0;

sμAdμ ¼ 0;

sμAsBμ ¼ δAB;

Sνμkρ∇ρsνA ¼ 0.

⇔

8>>>>><
>>>>>:

~sμA ~uμ ¼ 0;

~sμA ~dμ ¼ 0;

~sμA ~sBμ ¼ δAB;

~Sνμ ~k
ρ ~∇ρ ~sνA ¼ 0:

ð5:7Þ

In these relations, Sμν is the screen projector defined in
Eq. (3.6) and we have an analogous definition for the
conformal geometry, which implies Sμν ¼ a2 ~Sμν.
The separation four-vector ξμ between two neighboring

geodesics is defined by comparing events only, independ-
ently from any metric. It is therefore invariant under
conformal transformations. However, its projection over
the Sachs basis changes (since the Sachs basis itself
changes), indeed

ξA ≡ sμAξμ ¼ a−1 ~sμAa
2 ~ξμ ¼ a~ξA: ð5:8Þ

The above relation allows us to relate the Jacobi matrices
calculated in both geometries, and the result is

DABðs←oÞ ¼ as ~DABðs←oÞ; ð5:9Þ

which, by virtue of Eq. (3.11), implies

DA ¼ as ~DA: ð5:10Þ

VI. SACHS BASIS IN A CONFORMAL
BIANCHI I GEOMETRY

Important remark.—In this section, all the calculations
are performed in the conformal geometry ~gμν. Since only
intermediary results are at stake, we temporarily drop all

2In four dimensions, this result can be related to the conformal
invariance of Maxwell theory. However, this property of the null
geodesics holds even in higher dimensions whilst Maxwell theory
is no more conformal invariant. From the physical point of view,
this is due to the fact that in the eikonal approximation all the
terms which are not conformally invariant are subdominant. It
follows that geometric optics enjoys more symmetries than the
microscopic theory it derives from.

3The connections ~∇ and ∇ are related by

~∇μVν ¼ ∇μVν − Vα½2δαðμ∇νÞ ln a − gμνgαβ∇β ln a�: ð5:6Þ
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the tildes on the vectors ~dμ, ~sμA to alleviate notation.
However, we do not drop the tilde on ~ω because it could
lead to ambiguities.
By definition, the Sachs basis is purely spatial, so

uμs
μ
A ¼ 0: ð6:1Þ

The evolution of the nonzero spatial part of sμA follows from
the Fermi-Walker transport (3.5), which takes the form

ðsiAÞ0 þ Sijσ
j
ks

k
A ¼ 0; ð6:2Þ

where Sij ¼ δij − didj (since ui ¼ 0) and we used that the
only nonvanishing Christoffel coefficients are

~Γi
0j ¼ σij; ~Γ0

ij ¼ σij: ð6:3Þ

A. General solution of the transport equation

Let ðnμAÞA¼1;2 be an arbitrary orthonormal basis of the
screen space (i.e. orthogonal to both uμ and dμ), not
necessarily Fermi-Walker transported along the light beam.
Explicit examples of such a basis will be given in Sec. VI C.
The Sachs basis ðsμAÞA¼1;2 being also an orthonormal basis
of the same space, the two basis are related by a rotation

�
sμ1 ¼ cos ϑnμ1 þ sinϑnμ2;

sμ2 ¼ − sin ϑnμ1 þ cosϑnμ2:
ð6:4Þ

Hence, provided the basis ðnμAÞA¼1;2 is known, the Sachs
basis is entirely determined by the angle ϑ.
In order to determine the evolution of this angle, it is

convenient to rewrite Eq. (6.2) in terms of the components
of sA over a tetrad basis ðeaÞa¼1…3 rather than over the
coordinate basis ð∂iÞi¼1…3. The choice eia ¼ expð−βiÞδia
and eai ¼ expðβiÞδai implies that the components saA ≡
gðsA; eaÞ read

ðsaAÞ0 þ daðdbÞ0sbA ¼ 0; ð6:5Þ

thus

ðcosϑÞ0 ¼ ðn1asa1Þ0 ¼ ðn1aÞ0sa1 − n1ada|fflffl{zfflffl}
¼ 0

ðdbÞ0sb1: ð6:6Þ

Since n1 is normalized, ðn1aÞ0na1 ¼ 0, so ðn1aÞ0 ¼
ðn1bÞ0nb2n2a þ ðn1bÞ0dbda, therefore

ðcosϑÞ0 ¼ ðn1bÞ0nb2n2asa1 ¼ ðn1bÞ0nb2 sinϑ; ð6:7Þ

which finally reduces to

ϑ0 ¼ −ðn1aÞ0na2 ¼ ðn2aÞ0na1: ð6:8Þ

Summarizing, if a basis ðnμ1; nμ2Þ can be found, then the
Sachs basis is completely determined by Eq. (6.4) with ϑ
given by the integral of ðn2aÞ0na1 .

B. Evolution matrix

Let E be the 2 × 2 matrix that relates the components siA
of the Sachs basis to their values at O, ðsiAÞo ≡ siAðηoÞ,

siAðηÞ ¼ EABðη←ηoÞðsiBÞo: ð6:9Þ
It is straightforward to show that this evolution matrix is the
solution of

E0
AB þ σACECB ¼ 0; ð6:10Þ

EABðηo←ηoÞ ¼ δAB; ð6:11Þ

where σAB ≡ siAs
j
Bσij. Note that, by definition (6.9),

EABðη←ηoÞ ¼ siAðηÞsBiðηoÞ: ð6:12Þ
Note also that the position of i does matter in the above
relation, because the vectors sAðηÞ and sAðηoÞ do not live in
the same tangent spaces of the spacetime manifoldM. The
former live in TηðMÞ, their indices are raised and lowered
by γijðηÞ, while the latter live in TηoðMÞ, their indices are
raised and lowered by γijðηoÞ ¼ δij.
In fact, inverting the position of the i indices in Eq. (6.12)

leads to the transposed inverse ðE−1ÞT of the evolution
matrix, because

sAiðηÞsiBðηoÞ ¼ sAiðηÞEBCðηo←ηÞsiCðηÞ
¼ EBAðηo←ηÞ
¼ E−1

BAðη←ηoÞ: ð6:13Þ

It is straightforward to check that ðE−1ÞT satisfies a
differential equation almost identical to Eq. (6.10), except
for a minus sign before σAC,

ðE−1
BAÞ0 − σACE−1

BC ¼ 0: ð6:14Þ

Using the general solution for the Sachs basis con-
structed in Sec. VI A, the evolution matrix and its trans-
posed inverse take the form

E¼
�
cosϑ sinϑ

−sinϑ cosϑ

��
ni1ðs1iÞo ni1ðs2iÞo
ni2ðs1iÞo ni2ðs2iÞo

�
; ð6:15Þ

ðE−1ÞT ¼
�
cosϑ sinϑ

−sinϑ cosϑ

��
n1iðsi1Þo n1iðsi2Þo
n2iðsi1Þo n2iðsi2Þo

�
; ð6:16Þ

with the angle ϑ given by Eq. (6.26).
Let us close this subsection by showing that the

determinant of E has a remarkably simple expression.
Indeed
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ðdetEÞ0 ¼ TrðE−1E0Þ detE
¼ −TrðE−1σEÞ detE
¼ −Trσ detE; ð6:17Þ

where σ≡ ðσABÞ is the projection of σij on the Sachs basis,
as defined below Eq. (6.11); its trace reads

Trσ ¼ σAA ¼ σijSij ¼ σii − σijdidj; ð6:18Þ

but, on the one hand, remember that Eq. (2.3) implies

σii ¼
X3
i¼1

βi
0 ¼ 0; ð6:19Þ

and, on the other hand,

σijdidj ¼
σijkikj
~ω2

¼ ð−γijkikjÞ0
2 ~ω2

¼ −
~ω0

~ω
; ð6:20Þ

so that finally

ðdetEÞ0 ¼ −
~ω0

~ω
detE whence detE ¼ 1

~ω
: ð6:21Þ

We shall see in Sec. VII that the evolution matrix is a key
ingredient in the expression of the Jacobi matrix.

C. Explicit examples

This subsection provides three explicit examples of
orthonormal basis ðn1; n2Þ which can be used for the
construction described in Sec. VI A, and the associated
rotation angle ϑ. For the last example, we also give the
expression of the evolution matrix.

1. Frenet basis

Since dμ it is easy to construct a vector orthogonal to it
from its own derivative. Here again, calculations are easier
if one works with the components over the tetrad basis
ðeaÞa¼1…3. We thus define

na1 ≡ ðdaÞ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdbÞ0ðdbÞ0

p ; ð6:22Þ

and complete it by na2 ≡ εabcdbnc1. In terms of components
over the coordinate basis ð∂iÞ, we have

ni1 ¼
�
σijd

j þ ~ω0

~ω
di
�
ðdiσijSjkσkldlÞ−1=2; ð6:23Þ

ni2 ¼ εijkdjnk1: ð6:24Þ
The equation (6.8) for the evolution angle ϑ then reads

ϑ0 ¼ ðn2aÞ0na1 ¼
εabcdaðdbÞ0ðdcÞ00

ðdaÞ0ðdaÞ0
; ð6:25Þ

which, in terms of components over the coordinate basis,
becomes

ϑ0 ¼ εijkdiβ0jdj½ðβ0kÞ2dk − β00kdk�
diσijS

j
kσ

k
ld

l
: ð6:26Þ

Interestingly, the two terms in the numerator of Eq. (6.26)
are sourced by distinct geometrical properties of the
Bianchi I spacetime. On the one hand, the term in ðβ0kÞ2
is essentially a Vandermonde determinant,

εijkdiβ0jdjðβ0kÞ2dk ¼ d1d2d3
Y
i>j

ðβ0i − β0jÞ: ð6:27Þ

It depends on the triaxiality of the Bianchi spacetime, and
vanishes for an axisymmetric Bianchi I since two β0i are
equal. On the other hand, the term in β00k in Eq. (6.26) can be
rewritten in terms of matter’s anisotropic stress. Indeed,
using Eq. (2.9) and σji ¼ β0iδ

j
i (without summation), we get

εijkdiβ0jdjβ
00
kdk ¼ 8πGa2εijkdiσlj dlπ

m
k dm: ð6:28Þ

Thus, with the choice of Eqs. (6.23)–(6.24) for ðn1; n2Þ, the
angle ϑ is ruled by an equation of the form

ϑ0 ¼ ϑ0tri þ ϑ0stress; ð6:29Þ

where ϑ0tri and ϑ0stress vanish in, respectively, an axisym-
metric and anisotropic-stress-free Bianchi I model.
Though having interesting properties, the Frenet basis

presented in this paragraph suffers from singularities: for a
beam propagating along a principal axis of the Bianchi
spacetime, da ¼ cst, so that n1 cannot be defined. The next
two examples will be free from such problems.

2. Initial basis

Another way of constructing vectors which keep
orthogonal to dμ is to use that ki are constants of motion
[see Eq. (4.1)], which implies that the covariant vector
di ¼ ~ω−1ki always points towards the same direction.
Thus, the Sachs basis ðsiAÞo at O remains orthogonal to
diðηÞ at any time:

∀η diðηÞðsiAÞo ¼ 0: ð6:30Þ

This motivates the following definitions,

(
ni1 ≡ ðsi

1
Þoffiffiffiffiffi
γ
∘
11

p

ni2 ≡εijkdjnk1;
ð6:31Þ

with γ
∘
11ðηÞ≡ γijðηÞðsi1sj1Þo. Note that ni2 cannot be con-

structed from ðsi2Þo in the same way as ni1 is from ðsi1Þo,
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because then n1 and n2 would not be orthogonal to
each other.
In this example, the angle ϑ reads

ϑ0 ¼ ðn2aÞ0na1 ¼ −σijni1n
j
2 ¼

−εijkdiσklðsj1sl1Þo
γijðsi1sj1Þo

: ð6:32Þ

All these quantities are well behaved, as long as γ∘ 11 ≠ 0.

3. Symmetrized initial basis

The construction of the previous example can be slightly
improved in order to be more symmetric. As mentioned
above, if we define

vi1 ≡ ðsi1Þoffiffiffiffiffiffi
γ
∘
11

q ; vi2 ≡ ðsi2Þoffiffiffiffiffiffi
γ
∘
22

q ; ð6:33Þ

with

γ
∘
ABðηÞ≡ γijðηÞðsiAsjBÞo ð6:34Þ

as in Eq. (6.31), then viA is normalized and diviA ¼ 0, but v1
and v2 are not orthogonal to each other. Let us call δðηÞ the
angle expressing their departure from orthogonality,

cos

�
π

2
þ δ

�
¼ − sin δ≡ γijvi1v

j
2 ¼

γ
∘
12ffiffiffiffiffiffiffiffiffiffiffiffi

γ
∘
11γ

∘
22

q : ð6:35Þ

Albeit not orthogonal itself, ðv1; v2Þ can easily be used to
obtain an orthonormal basis. Like for any couple of unit
vectors, v1 þ v2 is orthogonal to v1 − v2, which encourages
us to define

ni� ≡ vi1 � vi2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∓2 sin δ

p : ð6:36Þ

This could be used as the orthonormal basis of this last
example, however we will prefer its rotation by π=4,

ni1 ≡ 1ffiffiffi
2

p ðniþ þ ni−Þ; ni2 ≡ 1ffiffiffi
2

p ðniþ − ni−Þ; ð6:37Þ

so that ðniAÞo ¼ ðsiAÞo, i.e. ϑo ¼ 0. In this case, and after a
few calculations, we obtain that the angle ϑ reads

ϑ0 ¼ ðn2aÞ0na1 ¼ ðnþaÞ0na− ð6:38Þ

¼ 1

4
tan δ

�
ln

�
γ
∘
22

γ
∘
11

��0
; ð6:39Þ

that can also be written ðtan δÞσijðvi2vj2 − vi1v
j
1Þ=2.

Finally, let us also give the (transposed inverse) evolution
matrix which, in the present example, enjoys the relatively
simple expression

ðE−1ÞT ¼
�

cosϑ sin ϑ

− sin ϑ cosϑ

��
cosðδ=2Þ sinðδ=2Þ
sinðδ=2Þ cosðδ=2Þ

�

·

2
64

ffiffiffiffiffiffi
γ
∘
11

q
0

0

ffiffiffiffiffiffi
γ
∘
22

q
3
75: ð6:40Þ

Note that the second matrix of Eq. (6.40) is not a rotation
matrix. From this result one can deduce the interesting
relation

~ω¼detE−1¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γ
∘
11γ

∘
22

q
cosδ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ
∘
11γ

∘
22−γ

∘ 2
12

q
; ð6:41Þ

which can also be checked by brute-force calculation.

VII. JACOBI MATRIX IN A CONFORMAL
BIANCHI I GEOMETRY

As in the previous one, all the calculations of this section
are performed in the conformal geometry ~gμν. However,
all the tildes will here be carefully written, because non-
intermediary results are derived.

A. General solution for the Jacobi matrix

Let us now solve the Jacobi matrix equation

d2 ~DAB

d ~v2
¼ ~RAC

~DCB; ð7:1Þ

where we recall that the optical tidal matrix is defined by

~RAB ≡ − ~Rμνρσ
~kμ ~sνA ~k

ρ ~sσB: ð7:2Þ

The nonzero components of the Riemann tensor for the
conformal Bianchi I geometry being

~R0i0j ¼ σki σkj − σ0ij; ~Rijkl ¼ 2σk½iσj�l: ð7:3Þ

A straightforward calculation, using in particular Eqs. (6.2)
and (6.20), then leads to

~RAB ¼ ~ω2

�
ðσABÞ0 þ σACσCB þ ~ω0

~ω
σAB

�
: ð7:4Þ

Therefore, since d=d ~v ¼ ~ωd=dη, Eq. (7.1) reads

~D00
AB þ ~ω0

~ω
~D0
AB ¼

�
ðσACÞ0 þ σADσDC þ ~ω0

~ω
σAC

�
~DCB: ð7:5Þ

Now notice that if a matrix MAB is solution of
M0

AB ¼ σACMCB, then it is also solution of Eq. (7.5).
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Comparing with Eq. (6.14), we deduce that the transposed
inverse ðE−1ÞT of the evolution matrix is such a solution.
However, it is not the Jacobi matrix, because it does not
satisfy the right initial conditions (3.9) and (3.10), but
rather

ðE−1ÞBAðηo←ηoÞ ¼ δAB; ð7:6Þ

dðE−1ÞTAB
dv

ðηo←ηoÞ ¼ ðσABÞo: ð7:7Þ

From this particular solution, one can obtain the Jacobi
matrix by use, for instance, of the method of the “variation
of the constant” to get

~Dðηs←ηoÞ ¼ ðE−1ÞT
Z

ηo

ηs

~ω−1ETEdη: ð7:8Þ

This formula is the main result of our article. Since

EABðηs←ηoÞ ¼ ~siAðηsÞ~sBiðηoÞ; ð7:9Þ

ðE−1ÞTABðηs←ηoÞ ¼ ~sAiðηsÞ~siBðηoÞ; ð7:10Þ

it can also be rewritten in terms of the components of the
Sachs basis as

~DABðηs←ηoÞ ¼ ð~sAiÞsð~siC ~sCjÞo
×

�Z
ηo

ηs

~ω−1 ~Sjkdη

�
ð~sBkÞo: ð7:11Þ

This form of the Jacobi matrix, entirely determined by
the Sachs basis, reminds us about the recent results of
Refs. [54,55], based on the geodesic-light-cone coordinates
[56]. The connection between the two formalisms is left
for further studies.

B. An explicit expression

Of course, Eq. (7.8) cannot be considered explicit as
long as one does not have an expression for E, which was
precisely the purpose of Sec. VI. Here, we choose to use the
results of our third example (Sec. VI C 3): plugging the
expression (6.40) of E into Eq. (7.8), we obtain

~Dðηs←ηoÞ ¼
�

cosϑs sin ϑs
− sin ϑs cosϑs

��
cosðδs=2Þ sinðδs=2Þ
sinðδs=2Þ cosðδs=2Þ

�

·

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ
∘
11ðηsÞ

q
0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ
∘
22ðηsÞ

q
3
75

×
Z

ηo

ηs

dη
~ω3

"
γ
∘
22 γ

∘
12

γ
∘
12 γ

∘
11

#
; ð7:12Þ

where the various quantities are defined in Sec. VI C 3, and
things ≡ thingðηsÞ. In particular,

ϑs ¼
1

4

Z
ηo

ηs

γ
∘
12

~ω

�
ln

�
γ
∘
22

γ
∘
11

��0
dη: ð7:13Þ

C. Angular diameter distance

The angular diameter distance is related to the Jacobi
matrix via Eq. (3.11), that is here

~DA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detE−1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

Z
ηo

ηs

~ω−1ETEdη

s
: ð7:14Þ

We have already seen at the end of Sec. VI B that the
determinant of E−1 is ~ω, see Eq. (6.21), so that

~DA ¼
ffiffiffiffiffiffiffi
~ωΔ

p
; ð7:15Þ

where Δ denotes the second determinant involved in
Eq. (7.14). As originally found by Saunders in Ref. [31],
this determinant admits the remarkably simple expression

Δ ¼
X
i≠j≠l

IiIjk2l ð7:16Þ

with

Ii ≡
Z

ηo

ηs

~ω−3e2βidη: ð7:17Þ

It is however surprising that the author of Ref. [31] gives this
nontrivial expression of Δ with no derivation. Since we did
not find any elsewhere in the literature, we propose one in
the Appendix. Note that, by computing directly the deter-
minant of the explicit expression (7.12), one can obtain an
alternative form—though mathematically equivalent—of
Saunders’ determinant

Δ ¼ I11I22 − I2
12; ð7:18Þ

with

IAB ≡
Z

ηo

ηs

~ω−3γ
∘
ABdη: ð7:19Þ

D. The weak shear regime

Our solution for the Jacobi matrix is completely general,
which means that it remains valid even for very anisotropic
Bianchi I spacetimes [with βi ¼ Oð1Þ]. However, because
cosmological observations suggest that our Universe is
extremely close to isotropic, it can be interesting in practice
to study the weak-shear behavior of our solution. We now
perform such an expansion of the Jacobi matrix—and the
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related quantities—at first order in βi ≪ 1, in the conformal
Bianchi I geometry.
In this regime, the cyclic frequency of the photons and

the evolution matrix of the Sachs basis respectively read

~ω ¼ 1 − B þOðβ2i Þ; ð7:20Þ

EAB ¼ δAB þ BAB þOðβ2i Þ; ð7:21Þ

where we have defined the first order quantities

BABðηÞ≡
X3
i¼1

βiðηÞðsiAsiBÞo; ð7:22Þ

BðηÞ≡X3
i¼1

βiðηÞk2i ¼ −TrðBABÞ: ð7:23Þ

Note that, in terms of the notations of Sec. VI C,
γ
∘
AB ¼ δAB þ 2BAB þOðβ2i Þ. The expression of the
Jacobi matrix is then easily found to be

~DABðηs←ηoÞ ¼ δAB

�
ðηs − ηoÞ þ

Z
ηo

ηs

Bdη
�

þ ðηs − ηoÞBABðηsÞ − 2

×
Z

ηo

ηs

BABdηþOðβ2i Þ: ð7:24Þ

Note that, at this order, the Jacobi matrix remains
symmetric. In terms of the decomposition of Eq. (3.13),
it means that the rotation angle vanishes ψ ¼ Oðβ2i Þ. The
angular diameter distance is obtained by computing the
(square root of the) determinant of (7.24), which leads to

~DA¼
�
1−

Bs

2

�
ðηo−ηsÞþ2

Z
ηo

ηs

BdηþOðβ2i Þ: ð7:25Þ

Finally, the optical shear, encoded into the exponential
matrix of Eq. (3.13) is at this order equal to the traceless
part of the Jacobi matrix ~DhABi,

�−Γ1 Γ2

Γ2 Γ1

�
¼ ðηs − ηoÞBhABiðηsÞ

− 2

Z
ηo

ηs

BhABidηþOðβ2i Þ; ð7:26Þ

where hABi means the traceless part with respect to δAB;
in particular BhABi ¼ BAB − BδAB=2. Note that the above
shear does not need to be tilded, because ~D ∝ D so
that ð ~Γ1; ~Γ2Þ ¼ ðΓ1;Γ2Þ.

VIII. SUMMARY

Before concluding, let us summarize the main results of
this paper, under the form of a recipe for the reader who
would like to use them in practice. It is also the occasion to
recover the untilded quantities from the tilded ones using
the dictionary of Sec. V.
(1) Solve for the cosmology (Sec. II) to determine the

scale factor aðηÞ, and the functions βiðηÞ character-
izing the spatial conformal metric γij. Set by con-
vention aðηoÞ ¼ 1 and βiðηoÞ so that ðgμνÞo ¼ ημν.
Note that, by virtue of the dictionary of Sec. V,
all conformal (tilded) quantities are equal to their
untilded counterpart at η ¼ ηo. An example of such
dynamics can be found in Ref. [11].

(2) Pick a direction of observation dio on the sky and an
initial Sachs basis ðsiAÞo orthogonal to it. A possible
choice using spherical coordinates ðθo;φoÞ is

ðdiÞo ¼ ðsin θo cosφo; sin θo sinφo; cos θoÞ; ð8:1Þ

ðsi1Þo ¼ ðcos θo cosφo; cos θo sinφo;− sin θoÞ;
ð8:2Þ

ðsi2Þo ¼ ð− sinφo; cosφo; 0Þ: ð8:3Þ
(3) Set by convention ωo ¼ 1. The wave four-vector of

the photon is then characterized at any time by ki ¼
cst ¼ dio and kt ¼ ω ¼ ~ω=a where ~ω is given by
Eq. (4.3). This is enough to compute the redshift
z≡ 1=ω − 1, the redshift drift (4.9), the direction
drift (4.13), and the angular diameter distance
DA ¼ a ~DA ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
a3ωΔ

p
, where Δ is given by

Eqs. (7.16) and (7.17). In the weak shear regime,
use the expression (7.25) for ~DA.

(4) In order to get the full Jacobi matrix D, first
determine the evolution matrix E using the method
described in Sec. VI, then plug it into Eq. (7.8) to
obtain ~D. An example of this procedure had been
given in Sec. VII B. Apply finally the conformal
dictionary relation D ¼ a ~D.

(5) Quantities such as optical shear and optical rotation
are obtained by performing the canonical decom-
position (3.13) of the obtained Jacobi matrix. Their
weak-shear expressions are the ones obtained in
Sec. VII D.

IX. CONCLUSION

This article detailed an analytic integration of all the
equations governing light propagation in a Bianchi I
spacetime. From a technical point of view, the symmetries
of the problem were central in our derivations. First, in
Sec. IV, the invariance of the metric under spatial trans-
lation allowed us to solve the null geodesic equation
without any calculation. Second, the invariance of the

PIERRE FLEURY, CYRIL PITROU, AND JEAN-PHILIPPE UZAN PHYSICAL REVIEW D 91, 043511 (2015)

043511-10



equations governing light propagation under conformal
transformations allowed us to greatly simplify the calcu-
lation of the Jacobi matrix in Sec. VII.
As a first output, we obtained formulas for the redshift

and direction drift in a Bianchi I universe, which are
comparable to former papers generally restricted to
Lemaître-Tolman-Bondi spacetimes [51,53]. As a second
output and sanity check, we recovered the already known
[16,30,31] expression of the angular diameter distance.
However, we emphasize that our results are more powerful,
because they also give access to the complete lensing
behavior of Bianchi I, including optical shear and rotation.
This new step will be the starting point of a deeper analysis
of light propagation in a perturbed Bianchi I spacetime,
which would allow us to evaluate the amplitude of the
comic shear B-mode signal associated with a violation of
local isotropy, as predicted by Ref. [35].
Our study can therefore be used to set constraints on the

spatial isotropy of the Hubble flow from the analysis of the
Hubble diagram, but also from possible future observation
such as the redshift drift [48,49] (see e.g. Ref. [52] for a
review of the observational possibilities concerning both
the time and direction drifts). Together with weak lensing
[35], this offers a set of tools to constrain any late-time
anisotropy of cosmic expansion.
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APPENDIX: DERIVATION OF
SAUNDERS’ FORMULA

Let us calculate Saunders’ determinant [31], defined as

Δ≡ det
Z

ηo

ηs

~ω−1ETEdη ðA1Þ

¼ det½ðsAiÞoI ijðsBjÞo�; ðA2Þ

where we have denoted

I ij ≡
Z

ηo

ηs

~ω−1 ~Sijdη; ðA3Þ

so that the quantityΔ is the determinant of the restriction of
I ≡ ðI ijÞ on the 2-plane spanned by ½ðsAiÞo�A¼1;2. It turns
out that this restriction actually encodes the whole matrix
I . Indeed, since I ijki ¼ 0 (ki being a constant, it can safely
enter into the integral), it is easy to check that

I ij ¼ ½ðsAkÞoIklðsBlÞo�ðsiAsjBÞo; ðA4Þ

in other words, written in the basis ½ki; ðsi1Þo; ðsi2Þo�, the
matrix I reads

I ¼

2
64
0 0 0

0 ðs1iÞoI ijðs1jÞo ðs1iÞoI ijðs2jÞo
0 ðs2iÞoI ijðs1jÞo ðs2iÞoI ijðs2jÞo

3
75: ðA5Þ

We conclude that if ð0; Iþ; I−Þ denote the three eigenval-
ues of I , then Δ ¼ IþI− is the product of the last two.
Let us now calculate this product.
The characteristic polynomial of I reads

χI ðXÞ≡ detðI − X13Þ ðA6Þ

¼ −
X
2
½ðTrIÞ2 − TrðI 2Þ� þ X2TrI − X3 ðA7Þ

¼ −XIþI− þ X2ðIþ þ I−Þ − X3; ðA8Þ

where we have used that detI ¼ 0, and the fact that the
roots of χI are ð0; Iþ; I−Þ; thus

Δ ¼ IþI− ¼ 1

2
½ðTrIÞ2 − TrðI 2Þ�: ðA9Þ

Written explicitly, the expression above is

Δ ¼ I11I22 þ I11I33 þ I22I33

− ðI13Þ2 − ðI12Þ2 − ðI23Þ2; ðA10Þ

but it can be further simplified using again that I ijki ¼ 0,
which implies

I11 ¼ −
k2
k1

I12 −
k3
k1

I13; ðA11Þ

I22 ¼ −
k1
k2

I12 −
k3
k2

I23; ðA12Þ

I33 ¼ −
k2
k3

I23 −
k1
k3

I13: ðA13Þ

Plugging these relations in Eq. (A10) indeed leads to

Δ ¼ k1I12I13 þ k2I12I23 þ k3I13I23

k1k2k3
: ðA14Þ

Finally, with the definitions

I1≡−
I23

k2k3
; I2≡−

I13

k1k3
; I3≡−

I12

k1k2
; ðA15Þ

we recover Saunders’ formula
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Δ ¼ k21I2I3 þ k22I1I3 þ k23I1I2: ðA16Þ

Of course, we also have to check that the Iis defined in
Eq. (A15) agree with the expressions given in Eq. (7.17).
Consider for instance I1, starting from

I1 ≡ −
I23

k2k3
¼ −

1

k2k3

Z
ηo

ηs

~ω−1 ~S23dη: ðA17Þ

Because ~S23 ¼ γ23 − ~d2 ~d3, and ðγijÞ is diagonal, we have

− ~S23 ¼ ~d2 ~d3

¼ e−2β2e−2β3 ~d2 ~d3

¼ e2β1ð ~ω−1 ~k2Þð ~ω−1 ~k3Þ ðA18Þ

¼ e2β1 ~ω−2k2k3; ðA19Þ

whence

I1 ¼
Z

ηo

ηs

~ω−3e2β1dη: ðA20Þ

In Eq. (A18) we have used that
P

3
i¼1 βi ¼ 0, and in

Eq. (A19) the relation ~ki ¼ ki established in Sec. V.
Equation (A20) agrees with Eq. (7.17), and it is clear that
the same calculation can be done for I2; I3.
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