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The generation of large-scale magnetic fields in inflationary cosmology is explored, in particular,
in a kind of moduli inflation motivated by racetrack inflation in the context of the type IIB string theory. In
this model, the conformal invariance of the hypercharge electromagnetic fields is broken thanks to the
coupling of both the scalar and pseudoscalar fields to the hypercharge electromagnetic fields. The
following three cosmological observable quantities are first evaluated: the current magnetic field strength
on the Hubble horizon scale, which is much smaller than the upper limit from the backreaction problem,
local non-Gaussianity of the curvature perturbations due to the existence of the massive gauge fields, and
the tensor-to-scalar ratio. It is explicitly demonstrated that the resultant values of local non-Gaussianity and
the tensor-to-scalar ratio are consistent with the Planck data.
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I. INTRODUCTION

It is observationally confirmed that there are galactic
magnetic fields on a 1-10 kpc scale with the strength of
~107° G, and that also in clusters of galaxies, there exist
the magnetic fields on 10 kpc—1 Mpc scale with their
amplitude of 10~7-107% G. The origins of cosmic magnetic
fields, particularly, such large-scale magnetic fields in
clusters of galaxies have not yet been established (for
reviews, see, e.g., [1]). There have been proposed various
generation mechanisms such as the plasma instability [2,3],
cosmological electroweak and quark-hadron phase transi-
tions [4], cosmic string [5], primordial density perturbations
[6], and the secondary dynamo amplification mechanism
[7]. However, it is difficult for these mechanisms to produce
the large-scale magnetic fields.

It is known that electromagnetic quantum fluctuations
generated during inflation are the most natural origin of
large-scale magnetic fields [8], because the coherent scale
of magnetic fields can be extended larger than the Hubble
horizon at the inflationary stage [9]. The Maxwell theory
has its conformal invariance. Moreover, the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric, which
describes the homogeneous and isotropic universe consis-
tent with observations, is conformally flat.' Hence, at the
inflationary stage, the conformal invariance of the electro-
magnetic fields has to be broken so that the quantum
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For the breaking mechanisms of the conformal flatness, see,
for example, [10-12].
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fluctuations of the electromagnetic fields can be generated
[13] and eventually result in the large-scale magnetic fields
at the present time [9,14]. There are several well-known
ideas of the breaking mechanism: e.g., (i) a nonminimal
coupling between the scalar curvature and the electromag-
netic fields produced by a one-loop vacuum-polarization
effect in quantum electrodynamics in the curved space-time
[15], (ii) a coupling of a scalar field to the electromagnetic
fields [16-20], and (iii) the trace anomaly [21].

In this paper, we investigate the generation of large-scale
magnetic fields from a kind of moduli inflation inspired by
racetrack inflation [22] in the framework of the type 1IB
string theory with the so-called Kachru-Kallosh-Linde-
Trivedi volume stabilization mechanism [23]. In this model,
the conformal invariance of the hypercharge electromag-
netic fields is broken through their coupling to both a scalar
field and an axionlike pseudoscalar one. It should be noted
that our model is still a toy model motivated by racetrack
inflation or so-called axion inflation, where the axion plays
a role of the inflaton. The main purpose of this work is that
by using a simple model, we reveal cosmological conse-
quences in racetrack (or axion) inflation.” In Refs. [33,34], it
has been indicated that a coupling of the pseudoscalar
inflaton field to the electromagnetic fields can generate non-
Gaussianity [35,36] of the power spectrum of the curvature
perturbations coming from the quantum fluctuations of the
inflaton field. Thus, we analyze non-Gaussianity of the
curvature perturbations in the present scenario by following

Various cosmological results in axion inflation [24-27]
including the generation of large-scale magnetic fields
[19,28,29] or primordial black holes [30] and observational
constraints on axion inflation [31] have also been explored
(for a recent review on inflation driven by axion, see [32]).
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the procedure in Refs. [31,37].* Moreover, we study the so-
called tensor-to-scalar ratio defined by the ratio of scalar
modes of the curvature perturbations to their tensor modes
(namely, the primordial gravitational waves) [24,25]. We
show that if the magnetic fields on the Hubble horizon scale
with their current strength compatible with the backreaction
problem are generated, local non-Gaussianity and the
tensor-to-scalar ratio in the cosmic microwave background
(CMB) radiation with those values smaller than the limits
from the Planck satellite [39] can be produced.4 The most
important result of this work is that the explicit values of
three cosmological observable quantities, i.e., the large-
scale magnetic fields, local non-Gaussianity, and the tensor-
to-scalar ratio are first derived. Furthermore, we should
emphasize the novelty of our present model in comparison
with the other recent works on non-Gaussianity of the
curvature perturbations and the tensor-to-scalar ratio in a
kind of axion inflation [30,31,33,34,37]. In our model, a
scalar field as well as the axionlike pseudoscalar field couple
to the hypercharge electromagnetic field, whereas in the
other past models, only the pseudoscalar field couples to the
hypercharge electromagnetic field. The existence of such a
scalar field coupling to the (hypercharge) electromagnetic
field is suggested by the Kaluza-Klein compactification
mechanism [41] for the fundamental higher-dimensional
space-time theories including string theories. In fact, both
couplings appear in the framework of racetrack inflation.
Thus, the setting of our model is closer to the realistic one
than that in the past related works, although it is a toy model.
In addition, there is one more significant advantage of the fact
that thanks to the coupling of the scalar field to the
hypercharge electromagnetic field, in principle, the large-
scale magnetic fields with the current strength are enough to
explain the observations without any secondary amplifica-
tion mechanism like the galactic dynamo. This point cannot
be realized in the past models.

The observational test of this model is the severest; there-
fore, it is very difficult for the model to be viable, because we
use the three independent observations of the large-scale
magnetic fields, local non-Gaussianity, and tensor-to-scalar
ratio. Furthermore, this model is the most general within the
fundamental theories which we are considering. Thus, we
develop the generic discussions in order not only to extend the
theoretical possibility but also to strictly constrain the freedom
of the theory. We use the units kg = ¢ = # = 1 and describe
the Newton’s constant by G = 1/M3, where Mp = 2.43 x
10'® GeV is the reduced Planck mass. In terms of electro-
magnetism, we adopt Heaviside-Lorentz units.

The paper is organized as follows. In Sec. II, we explain our
model action and derive the basic equations. In Sec. III, we
investigate the evolution of each field and estimate the current

3For non-Gaussianity from magnetic fields, see [38].
*The recent BICEP? result [40] on the tensor-to-scalar ratio is
also mentioned in Sec. IV C.
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strength of the large-scale magnetic fields. In Sec. IV, we
explore the power spectrum of the curvature perturbations,
non-Gaussianity, and the tensor-to-scalar ratio. In Sec. V,
conclusions are presented. In Appendix A, we examine the
large-scale magnetic fields, non-Gaussianity, and the tensor-
to-scalar ratio for the axion (monodromy) inflation, and
compare these results with the ones for a kind of moduli
inflation motivated by racetrack inflation in the previous
sections. In Appendix B, the issues of the backreaction and
the strong coupling are stated. In Appendix C, the observa-
tional constraints on the field strength of magnetic fields are
summarized. Cosmological implications related to this work
are also stated in Appendix D.

II. MODEL

Our model Lagrangian is given by5

p-Mp Yyp pu 1 Y
T Ty 49y

1 1
~59"9,20,% — U(®) =2 ¢4"0,Y0,Y = V(Y),

(2.1)
X =exp (—ﬂ%) , (2.2)
V(Y) zV—%mzYz, (2.3)

where R is the Ricci scalar, gy, is a dimensionless coupling
constant, ® is the canonically normalized field of the scalar
field X with the normalization constant 4, Y is a canonical
pseudoscalar field, and M is a constant with the dimension
of mass corresponding to the decay constant of Y.
Furthermore, F,, = V,F,—V, F, is the field strength of
the U(1), hypercharge gauge field F,, where V, is the

covariant derivative and F* are the dual field strength of
F,. While we do not specify the exact form of scalar
potentials U(X = X(®)), ¥ would be expected to have a
potential, given by Eq. (2.3) with a normalization factor V
and the mass m of the pseudoscalar Y. The pseudoscalar
field Y couples to the dual of the field strength, and hence it
acts as an axion. Throughout our analysis, we assume that
inflation is driven by the potential energy of Y as in the so-
called natural inflation or axion inflation [29,44,45]. We
take the flat FLRW space-time

ds* = —dt* + a*(t)dx?, (2.4)

>Such a kind of the action in Eqg. (2.1) has also been studied for
a baryogenesis scenario due to the anomaly [42,43].
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with a the scale factor. In this background, the field
equations of ® (i.e., X) and Y read’

du(®) 0
do

) . dv(Y)
V4 3HY +—2 =0,
+3HY +—

b+ 3HD +
(2.5)

where H = a/a is the Hubble parameter and the dot
denotes the derivative with respect to the cosmic time t.
Using the Coulomb gauge Fy(¢,x) = 0 and 9,F/(t,x) = 0,
we find that the field equation of F, is described as

y X\ . 1
Fl(t,x> + <H +}>Fl(t,x) —;ajajF,(t,x)
a1

v ik _
M aX e (?ij(t,x) —O,

(2.6)
where the second term within the round bracket () and the
fourth term originate from the breaking of the conformal
invariance of the hypercharge electromagnetic fields.

III. CURRENT STRENGTH OF LARGE-SCALE
MAGNETIC FIELDS

In this section, we explore the evolutions of the U(1),
gauge field, the scalar field X, and the pseudoscalar field Y,
and estimate the strength of large-scale magnetic fields at
the present time.

A. Scalar and pseudoscalar fields

We suppose that inflation is basically driven by the
potential of Y. In the FLRW background (2.4), the
equation 3MpH? = [(1/2)V?+
V(Y)]. If the so-called slow-roll approximation ¥?/2 <
V(Y) is satisfied, we have H ~ H;,; = constant with H;¢
the Hubble parameter during inflation, so that the expo-
nential inflation can be realized. In this case, the scale factor
a(t) can be expressed as a(r) = ay exp [Hiy (7 — #;)] with
ay = a(ty), where 1, is the time when a comoving wave-
length 27z/k of the U(1), gauge field first crosses the
horizon at the inflationary stage, and thus k/(a,H;ys) = 1 is
met. The analytic solution of Eq. (2.5) is given by [19]

2m \?
1 Ho(f —
" <3Hinf) ] e tk)}’

(3.1)

Friedmann becomes

3
Y=Y,exp {5 [—1 +

with Y, = Y(#;). In the following, we use this solution. In
particular, without generality, we take the “+” sign on the

6Here, we have used the fact that the contribution of the
hypercharge electromagnetic field is negligible because it exists
as a quantum fluctuation during inflation and the amplitude is so
small that its squared can be neglected.
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right-hand side of this solution. On the other hand,
regarding X, we study the case that the concrete dynamics
of X during inflation does not influence on the results and
only the difference between the initial and final values
during inflation is important.

B. U(1), gauge field

1. Quantization

First, we quantize the U(1), gauge field F,(z,x). It
follows from the hypercharge electromagnetic part of the
action constructed by the Lagrangian (2.1); we find that the
canonical momenta conjugate to F,(¢,x) read 7y = 0 and
7; = XaF;(1,x). The canonical commutation relation
between F;(t,x) and 7z;(¢,x) is imposed as

3
Fi(tx),m,(1,y)] = i / (zi)’g R[5, — (kik; /).

(3.2)

Here, k is the comoving wave number and its amplitude is
expressed as k = |k|. This relation leads to the description
of F;(t,x) as

Fi(t.x)= / ﬁ[l?(k)F J(t.J)e® b (k) Fr (1. )e %],

(3.3)

where b(k) and b'(k) are the annihilation and creation

operators, respectively. These operators obey the
relations
[b(k). b (k)] = & (k = I'),
[b(k), b(K')) = [ (k). b* (k)] = 0. (3.4)
We also have the normalization condition as
. . X i kik;
F,'(k, I)F]<k, t) - F](k, t)Fi (k, t) == X_a 51']' - 7 .
(3.5)

2. Setup

We set the x* axis to lie along the direction of the spatial
momentum k and express the transverse directions as x!
and x*>. By using Eq. (2.6) and defining the circular
polarizations F_(k,t) = Fy(k,t) £ iF,(k,t) with the
Fourier modes F(k,t) and F,(k,t) of the U(1), gauge
field, we acquire
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Fy(k,t)+ <Hinf +§> Fy(k,1)

+ [1 i%% (S)_l] (S)ZFi(k, =0 (3.6)

During inflation, we numerically solve this equation by
following the procedure in Ref. [42], because it is very hard
to acquire the analytic solution of Eq. (3.6). For the
subhorizon scale k/(aH) > 1, the F_(k,t) corresponds
to the decaying mode, and therefore we only examine the
evolution of F_ (k,1).

An approximate amplitude F(k,t = 1) at the horizon

crossing, where k/(aH;;) =1, 1is represented as
29,3334 F.(k, 1) = (1/V2K)(1/ /X (1)) (2) 7/ *x

exp (&, — 24/2&;) with & = £(r = 1;,). Here,

Clgyl ¥

= MXH,

(3.7)

This amplification comes from the tachyonic instability.
Thus, when we numerically calculate Eq. (3.6), we take
into account the above amplification factor in the initial
conditions. We define the following amplification factor as

Fy (k1)

kD= )

(3.8)

We estimate the initial amplitude of F,(k,1), i.e.,
F(k,t;), by matching with the solution for subhorizon
scales k/(aH)> 1 at the horizon exit [42]. Here, we
assume that in the short-wavelength limit of kK — oo, the

amplitude of F,(k,f) is described by |Fi" (k1) =
(1/+/2k)(1/+/X(t)), where the coefficients of modes have
been chosen so that the vacuum can be reduced to the one in

the Minkowski space-time in the short-wavelength limit
(the so-called Bunch-Davies vacuum [46]).

3. Numerical analysis

We derive the strength of large-scale magnetic fields,
provided that during inflation, X can approximately be
regarded as a constant. This means that a dynamical
quantity to the hypercharge electromagnetic fields is only
the pseudoscalar field Y. Such a case has been explored in
Refs. [19,24,32-34]. Indeed, the field strength of the large-
scale magnetic fields can be amplified in our model, where
the hypercharge electromagnetic fields couple to the scalar
field X. In other words, the important quantity to character-
ize the amplification of the magnetic fields is the ratio of the
final value of X to the initial one at inflationary stage. The
ordinary theory of the electromagnetic fields, where X = 1,
has to be recovered by the epoch of the big bang
nucleosynthesis (BBN). Accordingly, we suppose that X
stays almost constant during inflation, and after inflation it
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FIG. 1 (color online). C,(k,t) as a function of Hj,t for
X(t,) = exp(yx) with y; = —0.940, H;p;=1.0x10""GeV, m =
2.44 x 10° GeV, Y, =7.70 x 1072Mp = 1.87 x 10'7 GeV,
M =1.0x10""Mp =243 x 10" GeV, V =5.07 x 1077 M3},
& = 2.5590616, and gps = 1.0 [the case (b) in Table I]. The
solid line shows the case including the dynamics of Y, whereas
the dotted line depicts that without it, namely, ¥ = 0 in Eq. (3.6).

quickly reaches X(# = rz) = 1 at the reheating stage ty
owing to an appropriate form of V(®).

In Fig. 1, we depict the evolution of C,(k,) during
inflation with the solid line for X(z;) = exp(y;) with y; =
—0.940, Hyy = 1.0 x 10" GeV, m = 2.44 x 10° GeV,
M=1.0x10""Mp=2.43x10"GeV, V=5.07x10""M},
& = 2.5590616, and g, = 1.0. This is the case (b) in
Table I shown later. We have numerically solved Eq. (3.6)
for the k = a;H;,; mode for the exponential inflation from
the initial time at t = 1, = H;,}, when we set C, (k, 1) = 1.
We define the values of these parameters by the Cosmic
Background Explorer (COBE) [47] normalization and
Planck data [48] on the CMB radiation. For comparison,
we have also plotted the numerical results for the case
that ¥ =0 in Eq. (3.6) with the dotted line. Here, the
behavior for ¥ # 0 is quite similar to that for ¥ =0,
because the pseudoscalar field Y rolls down its potential
very slowly.

From Fig. 1, we see that C,(k,7) asymptotically
approaches a constant within about 10 Hubble expansion
time after the horizon crossing during inflation. This is an
important feature of evolution of C,(k,1); that is, the
amplitude becomes a finite value and does not decay. It
contributes to the resultant strength of the large-scale
magnetic fields. Such a behavior of C,(k,) does not
depend on the model parameters. This result is also
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TABLE L.

Current strength of magnetic fields on the Hubble horizon scale and 1 Mpc scale for X(t,) = exp(y) with y; =

PHYSICAL REVIEW D 91, 043509 (2015)
—-0.940,

M =1.0x10""Mp = 2.43 x 10'7 GeV, g,, = 1.0, & = 2.5590616, and k = 27/(2997.9h~") Mpc~! with h = 0.673. For the cases (i)

(i=a, b, c, d e f), we have Tg[GeV]= (1.02x 10'%,3.22 x 10'3,3.22 x 10'2,3.22 x 10'!,3.22 x 10'°,3.22 x 10°) and
V/M} = (5.07 x 10715,5.07 x 10717,5.07 x 1072!,5.07 x 10725,5.07 x 107%,5.07 x 10733).

B(Hy'. 1) [G] B(1 Mpc, 1) [G] Hiy [GeV] m [GeV] Y /Mp C..(k, 1g)
() 7.15 x 107 1.42 x 107%¢ 1.0 x 10" 2.44 x 1010 7.70 x 1072 0.528
(b) 7.15 x 107¢4 1.42 x 107 1.0 x 1010 2.44 % 10° 7.70 x 1072 0.528
(c) 2.33 x 107% 4.62 x 10757 1.0 x 108 1.0 x 107 1.62 x 10! 0.172
(d) 2.33 x 10764 4.62 x 10757 1.0 x 10° 1.0 x 10° 1.62 x 10! 0.172
(e) 2.85 x 10764 5.66 x 10757 1.0 x 10* 8.0 x 102 2.23 x 10! 0.211
) 2.85 x 10764 5.66 x 10757 1.0 x 102 8.0 2.23 x 10! 0.211

consistent with that in Ref. [33]. The way of determining
the values of m and Y, are explained in the last paragraph of
Sec. IVA.

C. Current magnetic field strength

Next, we evaluate the magnetic field strength at the
present time. The proper hypermagnetic and hyperelectric
fields are represented with the comoving hypermagnetic
fields By,(t,x) and hyperelectric ones Ey;(t,x), respec-
tively, as [16]

¢ T l
By} (1,x) = ;Bn(f,x) = — €0 F(t.x), (3.9)

B (13) = By (1x) = =~ Fix), (3.10)
where ¢;;; is the totally antisymmetric tensor (€153 = 1).
Multiplying the energy density of the proper hypermag-
netic field in the Fourier space pg, (k. f) by the phase-space
density 4zk?/(2x)3, we obtain the energy density of the
proper hypermagnetic field in the physical space

k3 T r
P, (Lo 1) = 5 [IByE™ (k) + | By (k, 1) 7] X
(3.11)
Here, |By}(k,1)|> = (1/a*)(k/a)*|F.(k,1)|*>, which

follows from Eq. (3.9), and L = 2z /k is a comoving scale.

The instantaneous reheating at ¢ = fg after inflation
occurs much earlier than the electroweak phase transition
(EWPT) at Tgw ~ 100 GeV. The conductivity of the
Universe o, should be very small at the inflationary stage,
because few particle present. In the reheating process,
charged particles are created, and therefore o, increases
and would become large enough as (7 > R). Hence, when
o. > H, the hyperelectric fields dissipate by accelerating
the charged particles. In the following radiation- and matter-
dominated stages (¢ > R ), we have By « a2[16,18]. Thus,
at a later time after the EWPT when X reached the true
minimum of X = 1, the energy density of the hypermagnetic

fields pp, (L.t) reduces to that of the magnetic fields
pe(L, t). The expression of pg(L, t) is given by [42]

I 1
87T2 X(lk)

Fexp [2(r&, —2+/28,)] < ) |Cy (k. 1)
(3.12)

pp(L.t) =

’

where we have imposed X(fg) =1 and neglected the
different coefficient factor between the magnetic field of
U(1), and that of U(1),,, because it is order of unity.

We estimate the current strength of the large-scale
magnetic fields. We identify a k-mode as the present
horizon scale Hy! by setting k=2x/(2997.9h~")Mpc~!
with & = 0.673 [49]. In this case, the Hubble parameter at
the inflationary stage is written as

L,
Hio(tg — 1) = 45 + In| —%_
mt(tR tk) 5 + n([MpC])

30/ (72 gp)]"/ "2 (p1")
* ln{ 1073 [GeV]

’

(tR))l/4}

(3.13)

under the assumption of instantaneous reheating after
inflation [50]. Here, p¥)(tz) is the energy density of Y
at t = tg. In Table I, we list the parameter sets to generate
the current strength of magnetic fields of B(H!', 1) =
O(107%*) G at the Hubble horizon scale, for X(t;) =
exp(yx) with y; =—0.940 and g,, = 1.0. We find that
for the wide range of Hi,c and m, C (k, tg) is O(0.1). For
the clear comparison with the results in the literature, we also
calculate the current field strength of the magnetic fields at
1 Mpc scale. We note that the most important parameter to
determine the magnetic field strength is y;. The essence is
that the amplitude of quantum fluctuations of the U(1),
fields generated inside the Hubble horizon can be a factor of
1/+/X(t;) larger than that in the ordinary Maxwell theory.
Thus, the energy density of the (hypercharge) magnetic
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fields can be amplified by the factor of the ratio of the final
value of X(zg) =1 at the inflationary stage to the initial
value of X(#;).

One of the important properties in this model is that the
smaller X(#;) is, the larger the strength of the current
magnetic fields B(Hy',1;) on the Hubble horizon scale
becomes. For all the cases (a)—(f) in Table I, the results are
compatible with the observational constraints on non-
Gaussianity [39] and the tensor-to-scalar ratio [48] obtained
from the Planck satellite, which are explained in the next
section.

We discuss the case of the noninstantaneous reheating and
consider the sensitivity of the results on the duration of the
reheating stage and the dependence of the results on the final
reheating temperature. For the noninstantaneous reheating,
the stage of oscillation of the inflaton should be taken into
account, in which the energy density of the inflaton field
evolves as being proportional to a~>, namely, it behaves as
matter. According to Ref. [51], in which the evolution of the
magnetic fields during preheating has been examined, if the
conductivity of the Universe o, is much larger than the
Hubble expansion rate at the reheating stage, the amplifi-
cation of the resultant magnetic fields does not occur. Thus,
in our scenario, provided that 6, < H at the reheating stage,
the quantitative results could not differ very much from
those for the instantaneous reheating stage. Moreover, when
the final reheating temperature is lower, the value of the
Hubble parameter at the end of the reheating stage is also
smaller, and therefore, from Table I, it is seen that the current
strength of the magnetic fields becomes weaker.

IV. POWER SPECTRUM, NON-GAUSSIANITY,
AND TENSOR-TO-SCALAR RATIO OF THE
CURVATURE PERTURBATIONS

In this section, we study the power spectrum of the
curvature perturbations and estimate non-Gaussianity and
the tensor-to-scalar ratio, provided that the curvature per-
turbations generated during inflation originate from only the
quantum fluctuations of Y, the inflaton field, and the
contribution of the scalar field X is negligible because we
consider the case in which the energy density of the potential
of Y is much larger than that of X at the inflationary stage.

A. Power spectrum of the curvature perturbations

First, we explore the power spectrum of the curvature
perturbations originating from the quantum fluctuations of
Y corresponding to the inflaton field. It is known that the
coupling term between Y and F M,,F"” can lead to the
quantum fluctuations §Y(z,x) in terms of Y. These fluc-
tuations satisfy the following equation [29,33,34,52]:

o 2
0*8Y (t,x) +3H 08Y (t,x) B VEsY (t.x) 9ps

or? ot a? Fu B,

=%,
(4.1)
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The generic solution consists of two parts. One is the
solution of the homogeneous equation, namely, the ordinary
vacuum fluctuations at the inflationary stage. The other is
the particular solution coming from the source term. The
origin of the latter is considered to be the inverse decay of
two quanta of the gauge field to the quantum fluctuation of
Y. These two terms are independent of each other. The power
spectrum of scalar modes of the curvature perturbations on
hypersurfaces of the uniform density R = —(H/Y)8Y is
defined by the two-point correlation function in the Fourier
space [34] as (R Ry) = (27%/k*) P (k)6 (k + k'). Thus,
the resultant power spectrum becomes [31,33,34]

Pt =83 (1) 01+ kss@ e ). @42

*

Hy\ 2 HE
AR = (=2) o, 4.3
b () (@3)
75 x 107376 for £ 1,
fs(f) g { 554 (44)
3.0x 107262 for2 < &£ 3.
Here, k, = 0.002 Mpc~!. In addition, we have
. 3 2m \?
Y =—|-1 1 H. Y
) 2 [ T <3Hinf> ] e
3 2m \?
— -1 1 -1
confy [y (i) Jo=)
(4.5)

with N the number of e-folds, where in deriving Eq. (4.5),
we have used Eq. (3.1). Moreover, the spectral index n, of
scalar modes of the curvature perturbations is given by
[31,53]

ng=1—6¢+ 2, (4.6)
_ Mg (VI(V)\?

=5 () w7
il s

where the prime denotes the derivative with respect to ¥ of
0/0Y, and € and 7 are the so-called slow-roll parameters in
terms of the potential V(Y). According to the Planck result
[48], by using the Planck and Wilkinson Microwave
Anisotropy Probe (WMAP) data, the value of the spectral
index is estimated as n, = 0.9603 £ 0.0073 (95% C.L.).
With the COBE [47] normalization for the power spectrum
of the curvature perturbation A% (k) =2.4x 107 at k =
k, = 0.002 Mpc~!, which is consistent with the nine-year

043509-6



GENERATION OF LARGE-SCALE MAGNETIC FIELDS, ...

1l

Ci(k1)

Hinft

FIG. 2 (color online). C,(k,f) as a function of H;r. The
legend is the same as in Fig. | except H;,; = 1.0 x 10'* GeV and
m = 2.44 x 10'? GeV [the case (A) in Tables II and IV].

WMAP result [53], and the Planck result of n, = 0.9603, for
Hiy =1.0x 10 GeV and V =507x10"""M} in
Eq. (2.3), from Eq. (4.2) for k = 27/(2997.9h~") Mpc~!
with 7 =0.673 and Eq. (4.6), we acquire m = 2.44x
102 GeV and Y, =7.70 x 1072Mp = 1.87 x 10'7 GeV.
By using Egs. (4.9) and (4.10), the values of m and Y,
can be derived for other various values of H;,, e.g., those in
Table I.

In Fig. 2, we display the evolution of C_(k,?) during
inflation with the solid line for X(#;) =exp(y;) with
2 = —0.940, H,;=1.0x108GeV, M=1.0x10""Mp=
243x107GeV, m=244x10"” GeV, V =5.07x
1071 M3, Y, =770 x 1072Mp = 1.87 x 10'7 GeV, and
gps = 1.0. This is the case (A) in Tables IT and IV presented
later. The procedure of the numerical calculation is the
same as the one used to derive the results in Fig. 1. The
qualitative features of the evolution of C, (k, ) are equiv-
alent to those shown in Fig. 1, namely, C, (k, ) becomes a
constant around the 10 Hubble expansion time after the first
horizon crossing during inflation. Even for different values
of H,y, the evolution of C, (k, t) is the same as that in the

TABLE II.

PHYSICAL REVIEW D 91, 043509 (2015)

case described above. Namely, the value of C, (k1)
asymptotically approaches a constant whose value
is O(0.1).

It follows from the values of the COBE normalization
and Planck data that

25 )
fs(&) exp (4n&) = Ta1 10°, (4.9)
M ‘7 ‘—/ 1/2
Y=+— |4 1+ 12— 1],
VST [ M2 " Mg
(4.10)
with
—(ng—1
p= % (4.11)

Since Y slowly rolls during inflation, £ can be considered to
be a constant at the inflationary stage. Therefore, we use
E=& = (gpsY (1)) / 2MX (1) Hing) = [3Y 1/ (AMX(1;))]x

{=1+ /14 [2m/ 3Hn) "} = [Yi/ (6MX (1))} (m*/ H3p),
where the last approximate equality can be met for
m/Hy; < 1. Hence, if the values of ng, V, and H,, are
given, we can determine those of m and Y. Here, V and M
can be regarded as free parameters. We take the value of V
derived from the relation V = 3H2 M3, which corresponds

to the Friedmann equation with ¥ =0 at ¥ =0. In
this case, in Eq. (4.10), we find V/(Mjm?p~2) =
3H2,/(m*p~2). We also get the values of m and Y, with
Egs. (4.9) and (4.10). In addition, since the values of m and
Y, are real numbers, the values within the square root in
Egs. (4.9) and (4.10) have to be larger than or equal to zero.
Thus, we obtain the constraint on V as V > 2yH¢ ;. In what
follows, we take the “+” sign in front of the right-hand side
of Y, in Eq. (4.10). Consequently, for m/H;; < 1, such
cases are reasonable during inflation, and we have

M
m= \/6§k — X(tx)Hin (4.12)
Mp
Hinf Ml2J
Y, VoM = 4.13
(% VoM m  §EX(t)M (4.13)

Local-type non-Gaussianity of the curvature perturbations. Legend is the same as in Table I with AN, = 1.0. The value

of V is determined by using the relation V = 3H2:M3 as V = 5.07 x 107" M} for the case (A) and V = 5.07 x 10713 M}, for the case

inf

(B). The value of C (k, t) is [the case (A), the case (B)] = (0.528,0.528). Moreover, the current field strength of the magnetic fields on
1 Mpc scale B(1 Mpc, t,) [G] is [the case (A), the case (B)] = (1.42 x 107, 1.42 x 107°).

N g? Hiy [GeV] m [GeV] Yy /Mp B(Hy', 1)) [G]
(A) 2.70 1.13 x 1073 1.0 x 1013 2.44 x 1012 7.70 x 1072 7.15 x 1074
B) 2.12 x 108 1.0x 107! 1.0 x 102 2.44 x 1011 7.70 x 1072 7.15 x 1074
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TABLE III
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Local-type non-Gaussianity of the curvature perturbations. Legend for the case (C) is the same as the case (B) in Table II

except M = 1.0 x 1072Mp = 2.43 x 10'® GeV. In the case (C), we obtain C_(k, tg) = 0.423. Furthermore, the current field strength of
the magnetic fields on the 1 Mpc scale is B(1 Mpc, #y) [G] = 3.59 x 107%7.

N q? Hipe [GeV]

m [GeV]

Y/ Mp Xk B(H;', 1) [G]

(©) 2.12 x 108 1.0 x 107! 1.0 x 1012

2.44 x 10!

7.70 x 1072 1.36 1.81 x 10764

where in deriving the last equality in Eq. (4.13), we have
used Eq. (4.12). As a result, with the value of &; from
Eq. (4.9) and substituting it into Eqgs. (4.12) and (4.13), we
obtain the approximate values of m and Y. Indeed, from
the lower relation for 2 < £ <3 in Eq. (4.4), we numeri-
cally find that a solution of Eq. (4.9) is £, = 2.5590616. In
the following, we evaluate the value of m with Eq. (4.12)
and that of Y; with Eq. (4.10).

B. Non-Gaussianity

We suppose that the U(1), gauge field couples to
another scalar field, e.g., the Higgs-like field ¢. In this
case, the covariant derivative for ¢ is defined by
D, =0, +ig'F,, where ¢ is the gauge coupling, and thus
the kinetic term of ¢ becomes |D¢|? [31]. We consider the
case that the gauge field obtains its mass through the Higgs
mechanism in terms of ¢. The quantum fluctuations of the
gauge field mass are produced by the quantum fluctuations
of ¢. Eventually, the quantum fluctuations yield in the
amount of quanta of the generated gauge field. As a result,
the generation of the gauge field leads to the perturbations
of the number of e-folds of inflation 6N. This produces the
local-type non-Gaussinanity in the anisotropy of the CMB
radiation. Non-Gaussianity can be calculated by using the
ON formalism [54-56] and deriving the curvature pertur-
bations originating from the quantum fluctuations of ¢.
When we consider the inflationary model in Ref. [37], by
using the COBE [47] normalization for the power spectrum
of the curvature perturbations A% (k)=2.4x10" at
k =k, =0.002 Mpc~!, the local-type non-Gaussianity
flocal i expressed as [31]

g/4 m2
Y

inf

flocal 1.0 x 10" AN3 .« (4.14)

Here, AN, is the maximum value of an extra numbers of
e-folds, and & is defined by Eq. (3.7) with Y in Eq. (4.5).

The reason why in the previous sections, the coupling
between F, and ¢ through the covariant derivative of D, is
as follows. Such a coupling might lead to the amplification

"For the model in Ref. [33,34], the equilateral-type non-
Gaussianity appears. Since the constraints on the local-type
non-Gaussianity from the Planck data [39] are stronger than
those on the equilateral-type on the local-type non-Gaussianity, in
this work we examine the local-type on the local-type non-
Gaussianity.

of the U(1), hypercharge gauge field F, during the
reheating stage because the conformal invariance of the
hypercharge electromagnetic fields is broken through this
coupling. However, it has been indicated in Ref. [51] that if
the conductivity of the Universe is much larger than the
Hubble parameter during the reheating stage, such a
amplification cannot be realized. Therefore, when we
estimate the resultant field strength of the large-scale
magnetic fields, it is not necessary to take into consid-
eration this coupling. On the other hand, the physical
motivation why we consider the existence of the additional
scalar field ¢ and introduce it is the following. It is known
that in string theories, the gauge symmetry is broken
spontaneously, and the gauge fields obtain their mass.
Hence, by introducing the coupling of F, to ¢, which
evolves to its vacuum expectation value like a Higgs field,
we investigate the cosmological consequence of the spon-
taneous symmetry breaking. In such a case, the number of
e-folds N during inflation could be changed by the
perturbations of ¢, so that the curvature perturbations
can be generated through the perturbations of ¢ [31]. As
a result, the local-type non-Gaussianity in terms of the
curvature perturbations is produced.

In Table II, we display the numerical results of the local
non-Gaussianity f%\?fal of the curvature perturbations by
taking  ANp =10, M =1.0x10"'Mp =2.43x
10'7 GeV, V =5.07x10"""M} (5.07 x 10713M}) for
the case (A) [the case (B)], gy =10, and k=
27/(2997.9h~") Mpc~! with h = 0.673. Here, we have
used the absolute value of C,(k,7z) to estimate the
resultant strength of magnetic fields as in Eq. (3.12).
According to the Planck satellite [39], the constraint on
flocal §s given by £l = 2.7 +5.8 (68% C.L.). This has
been improved very much in comparison with the seven-
year WMAP analysis —10 < 3¢ < 74 (95% C.L.) [57].
From Table II, we find that for the case (A), the values of

local can be compatible with the Planck data, whereas for
the case (B), that of 1@ is much larger. The upper limit on

local of less than or equal to O(1) makes the space for our
model parameters very small. However, there exists a
viable room for the parameters such as the case (A)
displayed in Table II. The constraint on £} can be met
by other close values of the parameters.

We also demonstrate the case (C) of Table III, in which
AN axs V. g%, gps» and k are the same as those in the case
(B) of Table II, while the value of M is smaller than that in
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Table II. Even though the value of M is larger, the value of
flocal js not changed. Since the upper limit of £} is less
than or equal to O(1), we see that the case (C) is not
consistent with the observations. Thus, for a region of
our model parameters, non-Gaussianity for the spectrum of
the curvature perturbations can be compatible with the
constraint from the Planck result.

We emphasize that the main feature of our model is the
presence of term of X(#;), which can make the large-scale
magnetic field stronger. The contribution of this factor to
non-Gaussianity 1% in Eq. (4.14) is included through ¢ in
Eq. (3.7), m in Eq. (4.12), and Y} in Eq. (4.13).

C. Tensor-to-scalar ratio

In addition to the scalar modes of the curvature pertur-
bations, the tensor modes, namely, gravitational waves,
can be generated. The tensor-to-scalar ratio r is defined
by the ratio of the amplitude of the tensor modes to that of
the scalar modes. In the context of the present scenario, r
reads [34]

16¢(t for £ < 3,
_ { (1) ¢ (4.15)
7.2¢*(t;) for € - oo,
2MEm*Y?
) =———— s, 4.16
€( k) (ZV _ mzyk)Q ( )

where e(t;) = e(t = 1) in Eq. (4.7), and we have used
Egs. (2.3) and (3.1).

We show the estimations of the tensor-to-scalar ratio r
in Tables IV and V. The cases (A) and (B) are the same as
those in Table II; that is, the values of H;;, M, m, Y;, and
i are the same. Similarly, the case (C) is equivalent to
that in Table III. We remark that since the values of H,,
and the ratio of m to H;,; in the case (C) are the same as
those in the case (B), the value of r in the case (C) is also
equal to that in the case (B). The upper limit from the
Planck data is estimated as r < 0.11 (95% C.L.)[48]. It is
expected that future/current experiments for the polariza-
tion of the CMB radiation such as POLARBEAR [58] and

TABLE IV. Tensor-to-scalar ratio of the curvature perturbations
for the cases (A) and (B). Legend is the same as Table II.

r H,; [GeV] m [GeV] Y./ Mp
(A) 1.87x107°  1.0x10% 244x10% 7.70x 1072
(B) 187x1075 1.0x10? 244x10'" 7.70x 1072

TABLE V. Tensor-to-scalar ratio of the curvature perturbations
for the case (C). Legend is the same as Table III.

r Hinf [GeV]
(©) 187x107 1.0 x 10"2

m [GeV]
2.44 x 10"

Yi/Mp
7.70 x 1072

PHYSICAL REVIEW D 91, 043509 (2015)

LiteBIRD [59] can detect r < 0.01, and the future plan of
LiteBIRD can observe r < 0.001 [59]. As a result, when
the magnetic fields on the Hubble horizon scale without
the backreaction problem are generated at the present time,
both the local non-Gaussianity and tensor-to-scalar ratio of
the CMB radiation meeting the constraints from the
Planck satellite can be produced in a region of the
parameters.

In order to check the effect of the dynamics of
the X field, we have also investigated a toy model
with the dynamical X field, in which the potential of
X =exp(—A®/Mp) is given by UX)=U(P)=
Uexp (—A®/Mp) with A a dimensionless constant and U
a constant. As a consequence, we have acquired qualita-
tively similar results on the current field strength of the
large-scale magnetic fields, non-Gaussianity fio¢d! in
Eq. (4.14), and the tensor-to-scalar ratio r in Eq. (4.15).

In addition, we mention that the BICEP2 experiment has
recently observed the B-mode polarization of the CMB
radiation with r = 0.207097 (68% C.L.)[40]. There are
discussions on the way of subtracting the foreground data
[60,61]. Our investigations related to the BICEP2 result on
r are described in Appendix A.

In comparison with the past works, the important
property of our model is that there exists the term of
X(t;) leading to the strong magnetic fields. This term
contributes to the tensor-to-scalar ratio r in Eq. (4.15) with
e(ty) in Eq. (4.16) via m in Eq. (4.12) and Y, in
Eq. (4.13). In our model, in principle, thanks to the factor
of X(t;), the large-scale magnetic fields with their strong
amplitude account for the observational values only
through the adiabatic compression without the dynamo
mechanism. The reason why we only have small values of
the magnetic field strength in Tables I-III is that in this
work, we attempt to simultaneously explain three obser-
vational quantities, namely, large-scale magnetic fields,
non-Gaussianity of the curvature perturbations, and the
tensor-to-scalar ratio. This point is the crucial advantage of
our model.

V. CONCLUSIONS

In the present paper, we have explored the generation of
large-scale magnetic fields in a toy model of the so-called
moduli inflation. In this model, the conformal invariance of
the hypercharge electromagnetic fields are broken due to
their coupling to both the scalar and pseudoscalar fields
appearing in the framework of string theories. We have
studied the current strength of the magnetic fields on the
Hubble horizon scale, local non-Gaussianity of the curva-
ture perturbations originating from the existence of the
massive gauge fields, and the tensor-to-scalar ratio. As a
consequence, it has been shown that in addition to the
magnetic fields on the Hubble horizon scale, whose current
field strength is compatible with the backreaction problem,
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local non-Gaussianity and the tensor-to-scalar ratio of the
power spectrum of the CMB radiation can be generated, the
values of which are consistent with the constraints observed
by the Planck satellite, i.e., fio = O(1) and r < 0.11
(95% C.L.)[48].

It should be remarked that one of the most important
achievement of this work is to derive the explicit values of
three cosmological observables such as the large-scale
magnetic fields, local non-Gaussianity, and the tensor-to-
scalar ratio for the first time.
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APPENDIX A: AXION MONODROMY
INFLATION

The tensor-to-scalar ratio r in moduli inflation is much
smaller than the BICEP2 result,® although it is still
consistent with the Planck data. In this appendix, we
explore axion monodromy inflation and derive the value

¥There have been proposed scalar field models of inflation to
realize the BICEP2 result on r, e.g., in Refs. [62-64].

PHYSICAL REVIEW D 91, 043509 (2015)

of r in order to compare it with that in moduli inflation. We
explore the following potential [64]:

V(Y) =AY, qg=1, (A1)
with A a constant. In axion monodromy inflation, there is
only the pseudoscalar field Y, and therefore the scalar field
®, i.e., the scalar quantity X = 1 in Eq. (2.2), does not exist.
Hence, the total Lagrangian becomes £ in Eq. (2.1) with
X =1 (namely, ® =0) and V(Y) in Eq. (Al) instead of
that in Eq. (2.3). We note that as the other form of the
potential, we can consider V(Y) = (1/2)m?Y?, which
follows from the limit Y/f <« 1 of the potential V(Y) =
(1 = cos (Y/f)) analyzed in Refs. [33,34].

For the potential V(Y) in Eq. (A1), the slow-roll inflation
is supposed to be realized, the solution of Eq. (2.5) is
given by

_ - A
Y =1Y1, Y =— . (A2)
3I{inf
The field equation of F, in Eq. (2.6) becomes
.. . 1
Fi(t,x) + HFi(t,x> - —za]a]Fl(t,x)
a
gps1 A ik
IS Gk F = A
Ma3Hmf€ 0;F(t,x) =0, (A3)

where we have used Eq. (A2). Moreover, with Eq. (A2), &
in Eq. (3.7) reads

(A4)

Clearly, this is not a dynamical quantity but a constant.
By using Egs. (4.3) with the COBE normalization
A% (k) =2.4 x 107 and (4.6)—(4.8) with the Planck data

ng = 0.9603 and assuming that t ~ H;} during inflation,

inf
we find € = 6.62 x 10 and A = [3/(4V/67)] x 10°H3 .
This value of e is realized if H;,; = 6.51 x 10! GeV.
Moreover, it follows from Eq. (A4) that if M = 3.55x%
10" GeV, g,s = 1.0, and H;¢ = 6.51 x 10" GeV, we get
|| = 2.98. From Eq. (A4), we obtain r = 16¢ = 0.106.
This is the same order of the BICEP2 result. Thus, in axion
monodromy inflation, the tensor-to-scalar ratio compatible
with the BICEP2 result can be produced.

APPENDIX B: ISSUES OF THE BACKREACTION
AND THE STRONG COUPLING

In this appendix, we explain the issues of the back-
reaction and the strong coupling. The backreaction problem
by the generation of electromagnetic fields during inflation
has been found [10,65-69] (for more recent related works
on the relation between the generated gauge fields and
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inflation, see [70-75]). It has been pointed out [65] that the
amplitude of the current magnetic fields on O(1) Mpc scale
should be less than 107? G. In such a case, the dynamics of
inflation is not disturbed by the backreaction originating
from the generation of electromagnetic fields. This means
that the strength of the magnetic fields on the Hubble
horizon scale should be less than 1073 G, which can be
derived by B(k,t) « (k/H;L)*3 [65]. Throughout this
paper, we take parameter sets (for a given coherence scale
o k71) in which the current magnetic field strength can
satisfy this constraint.

In addition, the strong coupling problem (that the very
strong gauge coupling is necessary to amplify the gauge
fields during inflation) has been indicated in Ref. [65].
Recently, as a solution for this problem, the so-called
sawtooth model for the coupling between a scalar field and
the U(1), fields has been proposed in Ref. [76]. In this
scenario, the behavior of the scalar field is a sawtooth path.
As a result, the magnetic field strength of about 10~'° G on
1 Mpc scale at the present time can be generated without
facing the strong coupling problem as well as the back-
reaction problem. Furthermore, according to the updated
analysis in Ref. [77] with the recent data from the BICEP2
experiment [40], the magnetic field strength on 1 Mpc scale
should be less than 1073° G. It is quite interesting to apply
our analysis on the generation of large-scale magnetic fields
and the estimation of the power spectrum, non-Gaussianity,
and the tensor-to-scalar ratio of the curvature perturbations
to more realistic moduli inflation models such as the
racetrack inflation model.

The strong coupling problem could be solved in the
sawtooth scenario [76,77]. Moreover, in Ref. [78], it has
been pointed out that thanks to the inverse cascade
mechanism, the constraints obtained in Ref. [65] can be
evaded. Thus, it is important to study whether the sawtooth-
like evolution of the dilaton field leading to the large-scale
magnetic fields with their sufficient strength can be realized
in moduli inflation or not. It may be useful to investigate the
racetrack inflation model with positive exponent potential
terms, because they induce a quite high potential wall for a
large value of the dilaton field [79].

APPENDIX C: CONSTRAINTS ON THE
STRENGTH OF COSMIC MAGNETIC FIELDS

In this appendix, we present the upper bounds of the
magnetic field strength. The observations of the CMB
radiation imply that the upper limit on the magnetic field
strength on 1 Mpc scale is ~10™° G [80,81] and that on the
magnetic field strength on the scale larger than the present
Hubble horizon is 4.8 x 10~ G [82]. In Ref. [83], by using
the data of the polarized radiation imaging and spectros-
copy mission (PRISM) [84], it has been indicated that the
magnetic fields with ~107 G can be detected.

PHYSICAL REVIEW D 91, 043509 (2015)

Moreover, there are other methods, such as the 21 cm
fluctuations of the neutral hydrogen [85], the parameter oy
for the density perturbation of matter [86], the correlation
of the curvature perturbations with the magnetic fields [87],
the data of the fifth science (S5) run from the Laser
Interferometer Gravitational-wave Observatory (LIGO)
[88], the X-ray galaxy cluster survey by Chandra, the
Sunyaev-Zel’divich (S-Z) survey [89], and primordial
gravitational waves, namely, the tensor modes of the
curvature perturbations, generated during inflation [90].
The upper limits from these observations are compatible
with or weaker than those estimated by using the CMB
radiation data. Generic investigations on the spectrum of
the large-scale magnetic fields from inflation have been
executed in Refs. [91,92]. With the observations of a blazar,
the lower bounds on the cosmic magnetic fields in void
regions have also been estimated in Ref. [93].

On the other hand, for the magnetic fields on smaller
scales, there are the upper bounds from the BBN. The upper
limit of the magnetic field strength on the Hubble horizon
scale at the BBN epoch ~9.8 x 10°A~! Mpc with h =
0.673 [49], is less than 10™° G [94].

Incidentally, various issues related to the cosmic mag-
netic fields have been discussed: intergalactic magnetic
fields [95], the relation between cosmological magnetic
fields and blazars [96], the influence of decay of the cosmic
magnetic fields on the CMB radiation [97], and the
secondary anisotropies of the CMB radiation originating
from stochastic magnetic fields [98]. Moreover, constraints
on the primordial magnetic fields have been proposed from
the conversion between the CMB photon and graviton [99],
the interaction of the CMB radiation with an axion [100]
in the context of the axiverse [101], the trispectrum of the
CMB radiation [102], and the measurement of the Faraday
rotation [103].

APPENDIX D: COSMOLOGICAL
IMPLICATIONS

In this appendix, we state cosmological implications
obtained from this work. There exists the possibility of
baryogenesis coming from the large-scale magnetic fields
generated from inflation. These magnetic fields can yield
gravitational waves because the space-time is distorted by
the existence of the magnetic fields, and eventually the
magnetic helicity can be produced [104]. Moreover, the
relation between the magnetic helicity and the cosmic
chiral asymmetry has been investigated in detail [105]. If
the magnetic helicity exists before the EWPT, baryon
numbers can be produced through the effect of the quantum
anomaly [106,107]. The coupling of the electromagnetic
fields to the pseudoscalar field can lead to the magnetic
helicity, and thus moduli inflation driven by an axionlike
pseudoscalar field can generate not only the large-scale
magnetic fields but also the baryon asymmetry of the
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Universe (for trial scenarios, see, e.g., [42,43]). It is
meaningful to build a concrete inflationary model, in which
both cosmic magnetic fields and baryons can be generated
in the framework of fundamental theories such as string
theories describing the physics in the early universe. In
addition, a leptogenesis scenario due to the existence of the
primordial magnetic fields has been proposed in Ref. [108].
In Ref. [109], the idea that the component of dark
energy may be nonlinear electromagnetic fields has been
proposed.

We also state the detectability of cosmic magnetic
fields. Current and/or future experiments on the polar-
izations of the CMB radiation, for example, Planck [48,49],
QUIET [110-112], POLARBEAR [58], B-Pol [113], and
LiteBIRD [59] can detect the large-scale magnetic fields

PHYSICAL REVIEW D 91, 043509 (2015)

with the current strength ~4 x 107''-10710 G [104,114].
For the magnetic fields with the left-handed magnetic
helicity, the field strength ~10~'* G on ~10 Mpc scale
can be observed [115]. Further theoretical investigations on
the properties of B-mode polarization of the CMB radiation
have recently been examined in Ref. [116]. Furthermore,
there have appeared various ideas to detect primordial
magnetic fields such as future observations for a low-
medium redshift [117] and the bias of the magnification of
lensing effects [118]. Since there are a number of ways of
detecting the cosmic magnetic fields, it is possible to
examine the physics in both the early- and late-time
universes through the detections of the primordial large-
scale magnetic fields, especially, in the void structures or
the intergalactic region.
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