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We study moduli fields that arise in string/supergravity models in the context of the inflationary scenario.
The early time cosmological dynamics involves generation of density perturbations by quantum
fluctuations of the inflaton; the late time dynamics involves a modulus field dominating the energy
density of the Universe and then its decay. We derive a relation which relates the modulus mass,
inflationary observables and broad features of the reheating epoch. When viewed along with generic
expectations regarding reheating and the initial field displacement of the modulus after inflation, this gives
a bound on the modulus mass. For a large class of models, the bound is much stronger than the
cosmological moduli problem bound.
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I. INTRODUCTION

The hot big bang model together with the inflationary
paradigm provides a highly attractive framework for
cosmology. Typically, it is assumed that after inflation
the visible sector degrees of freedom reheat and have
evolved adiabatically since then. In spite of the impressive
successes of the models based on this assumption, it is
important to keep in mind that from the point of view of
supergravity and string models late time entropy production
is very well motivated.
At tree level, string vacua usually contain massless scalar

fields (the moduli) which interact only via Planck sup-
pressed interactions. Moduli fields acquire masses from
subleading effects in the effective action; their masses are
expected to be well below the string scale. If the postinfla-
tionary mass of a modulus is below the Hubble scale during
inflation (we will refer to such moduli as light moduli), it
can dominate the energy density of the Universe at late
times and then decay producing significant entropy (as we
will briefly review in Sec. II). The modulus has to decay
prior to nucleosynthesis in order to account for the success
of big bang theory in predicting the abundances of light
elements. This gives a bound on the mass of the modulus
[1]—the cosmological moduli problem (CMP) bound;
mφ ≳ 30 TeV. At present, this is the strongest available
bound on moduli masses and serves as an extremely useful
guide for string model building. In this paper, we provide a
new bound on moduli masses in string/supergravity models
based on precision cosmic microwave background (CMB)
data (as in the CMP bound our focus shall be on moduli
which decay via Planck suppressed interactions).
If quantum fluctuations of the inflaton are responsible for

the observed density perturbations, then the energy density
at the time of horizon exit of the pivot mode can be obtained
from CMB data via determination of the primordial scalar
amplitude ðAsÞ and the tensor to scalar ratio ðrÞ. Any

history we ascribe to the Universe between the time of
horizon exit of the pivot mode and today should be
consistent with the fact that the energy density at horizon
exit has evolved to the observed energy density today. We
find that in the context of cosmologies in which a modulus
dominates the energy density at late times, this consistency
condition implies that an increase in the number of
e-foldings of modulus domination must be compensated
by a decrease in the number of e-foldings during inflation.
Thus there is a tension between having a very light modulus
(which lives very long and leads to a large number of
e-foldings of modulus domination) and having the number
of e-foldings during inflation as determined from precision
CMB data for a given inflationary model. Our bound is a
manifestation of this tension.
For a large class of inflationary models the bound can be

much stronger than the CMP bound. It is likely to have
broad implications for moduli stabilization, supersymmetry
breaking and inflationary model building in string theory.

II. LATE TIME MODULUS DOMINATED
COSMOLOGY

At the end of inflation, the expectation value of a light
modulus differs from the value of the field at the minimum
of its postinflationary potential. This “initial displacement”
φin can take place due to quantum/thermal effects [2]
and/or explicit dependence of the modulus potential on the
inflaton expectation value [3], and is expected to be of the
order of Mpl. At this stage, the modulus vacuum expect-
ation value remains frozen at φin due to the large friction
induced by the large value of the Hubble constant. With
reheating, the energy associated with the inflaton gets
converted to radiation; the Hubble constant decreases as
the Universe expands. When the Hubble constant drops
below the mass of the modulus, the friction term becomes
irrelevant. The modulus begins to oscillate about the
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minimum of its potential. Subsequently, the energy density
associated with the field begins to redshift like matter, at a
rate much slower than that of radiation—the energy
associated with the modulus can quickly dominate the
energy density of the Universe. Eventually the modulus
decays reheating the Universe. The last modulus to decay
provides a set of “initial conditions” for cosmological
evolution.
Properties such as dark matter density and baryon

asymmetry are determined by the branching ratio of the
various decay products. The phenomenology of such sce-
narios is an active area of study; see [4] and references
therein. Late time modulus dominated cosmology has
emerged as the preferred cosmological scenario in various
string constructions; M-theory models [5,6] and large
volume compactifications in type II B [7,8]. It has also
been suggested to be a generic prediction of string theory [9].

III. INFLATIONARY CONSTRAINTS ON THE
MASS OF LIGHT MODULI

Our working assumption will be that quantum fluctua-
tions of the inflaton are solely responsible for the observed
density perturbations. The history of the Universe will be
taken to be as described in Sec. II. We will be explicitly
including only one modulus in our analysis. Comments on
the multiple modulus case (which can be considered
generic in string compactifications) will be made in the
text.
There are two phases of reheating (production of

relativistic particles)—the one after inflation and one after
the decay of the modulus. Each of these epochs can be
characterized by the number of e-foldings in the epoch and
the effective equation of state. We will denote the number
of e-foldings during the reheating epoch (from decay of
inflaton) after inflation by Nre and the effective equation of
state during this epoch by wre. For the epoch of reheating
after the decay of the modulus, the number of e-foldings
will be denoted by Nre2, and the effective equation of state
by wre2. To streamline our discussion, we present the
derivation for an instantaneous second reheating phase
ðNre2 ¼ 0Þ first. Later, we will discuss the effects of the
second reheating phase and will see that the associated
effects do not alter our conclusions at all; see Eq. (17). For
the reheating phase after inflation we will be sensitive to
only the broad characteristics Nre and wre; given this we
hope to capture not only the transfer of energy from the
inflaton to radiation but also of the decay of very heavy
moduli (which decay much earlier) by this reheating phase.
We begin the derivation of our relation by writing the

condition which determines the exit of a mode of comoving
wave number k from the horizon k ¼ akHk as

k ¼ ak
aend

:
aend
are

:
are
aeq

:
aeq
adecay

:adecayHk; ð1Þ

where the subscripts end, re, eq and decay indicate the end
of inflation, end of reheating after inflation, equality of
energy density between matter (in this case modulus energy
density) and radiation, and decay of the modulus. Taking
the logarithm of (1), one obtains

Nmatdom ¼ −Nk − Nre − Nrad − ln kþ lnðadecayÞ þ lnHk;

ð2Þ
where Nmatdom is the number of e-foldings in the matter
(modulus) dominated era, Nk the number of e-foldings
between the horizon exit of the pivot mode and end of
inflation, Nre the number of e-foldings during the period of
reheating after inflation and Nrad the number of e-foldings
in the radiation dominated era.
Next, we obtain another expression for Nmatdom based on

the evolution of energy density. We begin by writing1

−Nmatdom ¼ 1

3
lnðρmatter

decay =ρ
matter
eq Þ: ð3Þ

The energy density at the time of decay of the modulus can
be expressed in terms of the reheat temperature Tre2 (after
the decay of the modulus) and the effective number of light
species gre2 at the time of reheating

ρmatter
decay ≈ ρdecay ¼ ðπ2=30Þgre2T4

re2; ð4Þ
and the reheat temperature can be related to the observed
temperature of the CMB today (assuming no entropy
production at a later stage) by

Tre2 ¼ ð43=11gs;re2Þ1=3ða0=adecayÞT0; ð5Þ

where gs;re2 is the effective number of light species for
entropy. Combining Eqs. (4) and (5) and expressing
ln ρmatter

eq as

lnðρmatter
eq Þ ¼ lnðρradiationeq =ρreÞ þ lnðρre=ρendÞ þ lnðρendÞ;

ð6Þ

Eq. (3) yields (we take ρradiationre ≃ ρre)

−
3

4
Nmatdom ¼ 1

4
ln ðπ2gre2=30Þ þ

1

3
lnð43=11gs;re2Þ

þ lnða0T0=adecayÞ þ Nrad −
1

4
lnðρendÞ

þ 3

4
ð1þ wreÞNre: ð7Þ

Adding (2) and (7) the dependence on both Nrad and adecay
drops out; we obtain

1An energy density ρ with a superscript will denote the energy
density in a given form; ρmatter

decay is the energy density in the form of
matter at the time of modulus decay.
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1

4
Nmatdom ¼ 1

4
ln ðπ2gre2=30Þ þ

1

3
lnð43=11gs;re2Þ

− Nk − lnðk=a0T0Þ þ lnHk

−
1

4
lnðρendÞ −

1

4
ð1 − 3wreÞNre: ð8Þ

We note that the above equation can be thought of as a
generalization of the formula which gives the total number
of e-foldings in inflationary models (see e.g. [10]).
Now, Nmatdom can be expressed in terms of the modulus

mass and lifetime by using the explicit form of the scale
factor as a function of time. Recall that if the equation of
state is w the evolution of the scale factor between times t1
and t2 is given by

ðaðt2Þ=aðt1ÞÞ32ð1þwÞ ¼ 1þ 3

2
ð1þ wÞHðt1Þðt2 − t1Þ: ð9Þ

By demanding that the time elapsed between the end of
inflation and the decay of the modulus is the lifetime of
the modulus (and assuming Nmatdom ≫ 1;Nre; Nrad > 1),
we obtain

Nmatdom ≈
2

3
log

�
3

2
Heqτmod

�
; ð10Þ

where τmod is the lifetime of the modulus. It can easily be
checked that the above (approximate) expression is also
correct in the regime Nmatdom ≫ 1 and Nre; Nrad ≪ 1. Heq

can be obtained by computing the energy density at
equality. Recall that the modulus begins to oscillate about
its minimum when the Hubble constant becomes of the
order of its mass; this implies (making the usual assumption
of radiation domination at this time) ρradiationðtoscÞ ¼
3m2

φM2
pl. Also, the matter density at this time ρmatterðtoscÞ ¼

1
2
m2

φφ
2
in. From this one obtains

ρeq ¼ m2
φφ

2
inðφ2

in=6M
2
plÞ3: ð11Þ

Using the value of Heq derived from (11) in (10) and
parametrizing the initial displacement as φin ¼ YMpl, we
obtain

Nmatdom ¼ −
2

3
ln 3 −

5

3
ln 2þ 2

3
lnmφτmod þ

8

3
lnY: ð12Þ

Equating the two expressions for Nmatdom given by (3) and
(8), and making use of the slow-roll expression for the
Hubble constant, H2

k ¼ ρk=3M2
pl ¼ 1

2
π2M2

plAsr, one finds

1

6
lnmφτmod þ

1

4
ð1 − 3wreÞNre þ

2

3
lnY

¼ 1

4
ln ðπ2gre2=30Þþ

1

3
lnð43=11gs;re2Þþ

1

12
lnð4=3Þ−Nk

− lnðk=a0T0Þ −
1

4
ln ðρend=ρkÞ þ

1

4
ln ðπ2rAsÞ: ð13Þ

The characteristic lifetime of a modulus field in string/
supergravity models can be obtained from some generic
considerations. Moduli fields are uncharged under the
standard model (or any hidden sector) gauge groups.
Their decay occurs via nonrenormalizable interactions;
for a large class of moduli fields the decays occur by
Planck suppressed interactions primarily to radiation, in
which case the lifetime is (see e.g [6,9,11])

τmod ≈
16πM2

pl

m3
φ

: ð14Þ

Although, there can be interesting exceptions to this. In the
case of brane world constructions the ultraviolet scale Λ
which suppresses the interaction strength can be different
from the Planck scale for some of themoduli (it can be lower
or higher; see e.g. [12]). Also, the above lifetime is for the
case when the decay is primarily to massless radiation; its
functional form changes can be different if the decay to
massive products dominates. For now, we proceed by taking
the decay width to be as given by (14) since it is used in
arriving at the CMP bound [1] described in the introduction
(we will discuss the effects of having the strength of moduli
interactions suppressed by a scale different fromMpl and the
case of decay primarily to massive particles later).
The dependence on the number of degrees of freedom

appears as lnðg1=4re2 =g
1=3
s;re2Þ, and hence is quite mild. We use

gre2 ≈ gs;re2 ≈ 100. We use Planck data [10] for quantities
that have already been observed with accuracy; the pri-
mordial scalar amplitude As ¼ 2.20 × 10−9 at the pivot
scale k ¼ 0.05 Mpc−1 and T0 ¼ 2.725 K. Plugging in all
this, we find

1

6
ln

�
16πM2

Pl

m2
φ

�
þ 1

4
ð1 − 3wreÞNre þ

2

3
lnY

¼ 55.43 − Nk þ
1

4
ln rþ 1

4
ln

�
ρk
ρend

�
: ð15Þ

The above equation is our main result.
There are strong reasons to believe (supported by both

analytic and numerical work) that the equation of state
during reheating satisfies wre < 1=3; see e.g. [10,13] for
discussions. Guided by this we will take (for now)
wre < 1=3; this makes the second term on the right-hand
side of (15) positive definite. Equation (15) then gives a
bound on the mass of the modulus

mφ ≳
ffiffiffiffiffiffiffiffi
16π

p
MplY2e−3ð55.43−Nkþ1

4
lnð ρk

ρend
Þþ1

4
ln rÞ: ð16Þ
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Recall that Y is the initial field displacement of the light
modulus in Planck units. As discussed in Sec. II, the
generic expectation for the initial displacement is of the
order of Mpl [2,3]. Thus Y cannot affect the value of
the right-hand side of (16) significantly.2 The effect of
including a reheating phase after the decay of the modulus
field is a new term in (15) which depends on the number of
e-foldings ðNre2Þ and equation of state ðwre2Þ of this
reheating phase and has exactly the same form as the
second term on the left-hand side of (15); it gets modified to

1

6
ln

�
16πM2

Pl

m2
φ

�
þ 1

4
ð1 − 3wreÞNre þ

2

3
lnY

þ 1

4
ð1 − 3wre2ÞNre2 ¼ 55.43 − Nk þ

1

4
ln r

þ 1

4
ln

�
ρk
ρend

�
: ð17Þ

Following the above arguments, the bound is unchanged.
Note that the larger the number of e-foldings during

inflation, the stronger the bound. The second parameter in
the exponent, 1

4
lnðρk=ρendÞ, is positive definite; on the other

hand the third parameter 1
4
ln r is negative definite.

We briefly comment on the multiple modulus case. As
mentioned earlier, given the general parametrization of the
reheating phase, the dynamics of heavier moduli which
decay very early on should be captured in the reheating
phase. The relevant dynamics involves epochs of matter
domination and radiation domination, and should satisfy
the bound wre < 1=3. If there are N moduli at the same
mass scale (with a diagonal Kahler metric or if we make the
assumption that the Kahler metric is generic as in [14]) then
the energy density at equality (11) scales as N4 (for fixed
φin); the bound becomes stronger by a factor of N.
We note that even for an exotic reheating phase with

wre > 1=3, (13) predicts values mφ to be quite large for
Nk ≈ 50, as long as the number of e-foldings during
reheating is not comparable to the number of e-foldings
of modulus domination (as is expected for a light modulus).
We will discuss this later; focus on (16) for now.
To get a better understanding of the bound, we examine it

in detail in the context of small field and large field models.
Small field models: For these models the potential is

plateaulike and the change in energy density between
horizon exit and the end of inflation is small. It is
reasonable to drop the term involving the logarithm of
the two energy densities in the exponent of (16). Taking
r ¼ 0.01, we get

mφ ≳
ffiffiffiffiffiffiffiffi
16π

p
MplY2e−3ð54.28−NkÞ: ð18Þ

To get a feel for the numbers, Nk ¼ 50 and taking Y ¼
1=10 (in what follows, we will always take Y ¼ 1=10while
quoting numbers) we get

mφ ≳ 4.5 × 108 TeV; ð19Þ
which is well above the CMP bound ðmφ ≳ 30 TeVÞ.
From the point of view of scalar field potentials that drive

inflation,

Nk ≈
β

1 − ns
; ð20Þ

with β being a model dependent constant. A survey of the
values of β associated with various models is given in [15];
for most models β ≈ 2. Planck gives the value of ns at 1σ as
ns ¼ 0.9603� 0.0073. For β ≈ 2, at the central value of ns,
Nk ≈ 50. The bound ismφ ≳ 4.5 × 108 TeV. The functional
formof the boundmakes it highly sensitive to thevalue ofns;
the Planck upper limit (at 1σ) gives mφ > Mpl (ruling out
late time modulus cosmology for small field models with
β ¼ 2, r ¼ 0.01) while the lower limit givesmφ ≳ 0.1 TeV.
This sensitivity implies that future experiments [16] will
play an important role (the uncertainty in ns will be reduced
by one order of magnitude and this will bring uncertainty in
the mass to just two orders of magnitude). Theoretically, the
exponential sensitivity of the bound toNk implies that 1=Nk
corrections to (20) can be relevant in some models.
Large Field Models: As prototypes of the large fields

models, we consider models where the inflation potential is
a monomial Vχ ¼ 1

2
m4−αχα (keeping the“m2χ2”model [17]

and axion monodromy [18] models in mind). Given the
uncertainty in the measurements of r, we will take α as a
model building parameter and take observational input only
from ns. The bound (16) simplifies to

mφ ≳
ffiffiffiffiffiffiffiffi
16π

p
MplY2e−3ð55.85−

ð2þαÞ
2ð1−nsÞþ

α
8
ln 2þ1

8
ðα−2Þ lnð 2þα

αð1−nsÞÞÞ: ð21Þ

For the 1
2
m2χ2 model and ns at the central value of Planck

the bound is mφ ≳ 107 TeV, one order of magnitude below
(19). On the other hand for α ¼ 1 and ns at the same value
ðNk ≈ 40Þ the bound becomes mφ ≳ 10−10 TeV, which is
completely irrelevant.
In summary, the larger the number of e-foldings during

inflation, the stronger the bound. For β ≈ 2 (which corre-
sponds to Nk ≈ 50 for the central value of Planck data) the
bound is strong.
For the nongeneric case of exotic reheating with

wre > 1=3, it is useful to parametrize the duration of
reheating by a parameter λ; Nreð1 − 3wreÞ ¼ −λNmatdom.
Even for λ ¼ 1=3 (which corresponds to a rather long
phase of exotic reheating) direct use of (13) gives
(for Nk ≈ 50) mφ ≈ 106 TeV, which is, again, well above
the CMP bound.
As discussed earlier, we have taken moduli interactions

to be Planck suppressed in obtaining (16). In string

2We note in passing that in deriving the CMP bound one also
makes use of the fact that Y is not expected to be significantly less
than one.

KOUSHIK DUTTA AND ANSHUMAN MAHARANA PHYSICAL REVIEW D 91, 043503 (2015)

043503-4



constructions of brane world models there can be moduli
whose interactions are not Planck suppressed but by a
scale3 Λ. If such a modulus ðχÞ is the last to decay the CMP
bound [1] gets modified to the reheat temperature after the
decay of a modulus is given by Treheat ∼

ffiffiffiffiffiffiffiffiffiffi
ΓMpl

p
, where Γ is

the width of the modulus. The characteristic width of a
modulus χ whose interactions in the four-dimensional
effective action are suppressed by a scale Λ is given by

ΓΛ ≈
16πm3

χ

Λ2
: ð22Þ

Combining the above with the requirement of a sufficiently
high reheat temperature for nucleosynthesis, one arrives at
a generalization of the CMP bound [1] discussed in the
introduction,

mχ ≳ η2=3:30 TeV; ð23Þ

where η ¼ Λ=Mpl.
Following the same steps as in the earlier part of this

section [while using the lifetime of the modulus as given by
(22)], one can obtain the modification of our bound,

mφ ≳
ffiffiffiffiffiffiffiffi
16π

p
MplηY2e−3ð55.43−Nkþ1

4
lnð ρk

ρend
Þþ1

4
ln rÞ: ð24Þ

We note that both (23) and (24) scale as a positive power of
η. Carrying out an analysis as above, one easily sees that
our bound is stronger in a large range of the phenomeno-
logically interesting parameter space.
Finally, we briefly discuss the cases in which the

modulus primarily decays to massive particles. Such decay
products can be superpartners of standard model particles
or additional Higgs bosons. For models in which the
primary mode of decay is to massive particles and the
lifetime scales asmp

φ with p ≤ −1 our analysis will provide
a lower bound on moduli masses. The bound might involve
the mass of the decay products [expression for the bound
will in general be different from that given in Eqs. (18) and
(21)]. In a large number of situations, the lifetime has the
same form as (14) or has the form (see e.g [8,19])

~τ ≈
16πM2

pl

mφ ~m2
ð25Þ

(i.e. p ¼ −1) where ~m is the mass of the decay products.
Again, following the same steps as in the earlier part of the
section one obtains a bound on the mass of the decay
products [in the case that the lifetime takes the form (25)] or
a bound on the modulus mass [in the case that the lifetime
takes the same form as (14)]. But a bound on the mass of
the decay products translates to a bound on the mass of the
modulus, as the mass of the modulus has to be heavier than
the mass of the decay products. Thus, the bound (16)
applies equally well for these situations (with p ¼ −1). On
the other hand, for p > −1 our analysis will provide an
upper bound for moduli masses (in terms of the mass of the
decay products). This can be very interesting, although
such models are not generic. We leave the detailed study of
specific models for future work.

IV. CONCLUSIONS

We have considered cosmologies in which density
perturbations are generated by quantum fluctuations of
the inflaton at early times; the late time dynamics involves a
modulus which first dominates the energy density of the
Universe and then decays to reheat the visible sector.
Making use of generic expectations regarding reheating
(wre ≤ 1=3) and initial displacement of the modulus at the
end of inflation ðφin ∼MplÞ, taking the decay properties of
the modulus to be same as in the CMP bound [1] and using
CMB data as input, we arrived at a bound on the minimum
mass of the modulus; see Eq. (16). For values of the number
of e-foldings during Nk ≳ 50, the bound is much stronger
than the CMP bound. In the case of instantaneous reheat-
ing, the bound becomes an equality and gives a prediction
for the mass of the modulus.
The bound should have broad implications for string and

supergravity models where it is typical to have scalars
interacting with Planck suppressed interactions. It can shed
light on the scale of supersymmetry breaking in the context
of gravity mediated breaking, where the scale of soft
masses can be tied to the moduli masses. The bound is
exponentially sensitive to the number of e-foldings during
inflation and hence provides a new motivation for precision
measurements of the spectral tilt.
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3The scale Λ can be lower than the Planck scale for the
modulus which parametrizes the size of the cycle that the branes
wrap. In this case Λ is the string scale (see e.g. [12]). We note that
there is a large difference between the string and Planck scale
only if the volume of the compactification is large.
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