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We investigate the slowly rotating general relativistic superfluid neutron stars including the entrainment
effect in a two-fluid model, where one fluid represents the superfluid neutrons and the other is the charge-
neutral fluid, called the proton fluid, made of protons and electrons. The equation of state and the
entrainment effect between the superfluid neutrons and the proton fluid are computed using a relativistic
mean field (RMF) model where baryon-baryon interaction is mediated by the exchange of σ, ω, and ρ
mesons, and scalar self-interactions are also included. The equations governing rotating neutron stars in the
slow rotation approximation are second order in rotational velocities of neutron and proton fluids. We
explore the effects of the isospin dependent entrainment and the relative rotation between two fluids on the
global properties of rotating superfluid neutron stars such as mass, shape, and the mass-shedding (Kepler)
limit within the RMF model with different parameter sets. It is observed that for the global properties of
rotating superfluid neutron stars in particular, the Kepler limit is modified compared with the case that does
not include the contribution of ρ mesons in the entrainment effect.
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I. INTRODUCTION

The study of superfluid dynamics in neutron stars has
gained momentum recently with the observation of fast
cooling of the neutron star in Cassiopeia A (Cas A) [1]. It
has been inferred that the rapid cooling in the neutron star
in Cas A might be the outcome of neutron superfluidity in
its interior [2]. The glitch phenomenon in neutron stars
might also be strong evidence of the superfluidity in the
crust and core of a neutron star [3–6]. There might be an
interplay between the superfluidity in neutron stars and
superfluidity studied in the laboratory. One important
aspect of the superfluidity is the entrainment effect, which
was found in a mixture of superfluid 3He and 4He in the
laboratory [7]. A similar effect might occur in superfluid
neutron stars when neutron and proton fluids pass through
each other. In this case, the two fluids are coupled because
the momentum of one fluid carries along with it some mass
current of the other fluid. This is known as the entrainment
effect.
The entrainment effect in superfluid neutron star matter

was calculated in relativistic mean field (RMF) models
[8,9]. Comer and Joynt exploited the σ-ω Walecka model
for this purpose. However, neutron star matter is highly
asymmetric, and the role of symmetry energy is very
important in determining the equation of state (EOS)
and the structures of neutron stars. It is expected that the
symmetry energy might also influence the entrainment
effect. Recently we investigated the entrainment effect in
the RMF model including ρ mesons [9]. We showed that
the symmetry energy significantly affected the entrainment
effect compared to the case without ρmesons [9]. It may be

worth mentioning here that the dependence of the entrain-
ment effect on the symmetry energy was also studied using
polytropic equations of state [10,11] as well as with
relativistic Fermi liquid theory [12–15].
The role of the entrainment effect in rotating neutron

stars was investigated in Newtonian as well as general
relativistic formulations by different groups [10,11,16]. In
some of those calculations, the dependence of the entrain-
ment effect on the symmetry energy was considered
through the polytropic EOS [10,11]. However, so far, there
is no calculation of rotating neutron stars based on the
isospin dependent entrainment effect derived from a real-
istic EOS.
In this paper, we are interested in the role of isospin

dependent entrainment on slowly rotating superfluid neu-
tron stars. Here we adopt the two-fluid formalism for
slowly rotating superfluid neutron stars as described in
Ref. [17]. The paper is organized in the following way.
In Sec. II we describe the formalism for calculating the
isospin dependent entrainment in a RMF model of dense
baryonic matter, and the application of Hartle’s slow
rotation approximation to Einstein’s field equations for
superfluid neutron stars. We discuss results in Sec. III.
Section IV gives the summary and conclusion.

II. METHODOLOGY

A. The superfluid formalism

Here we consider the superfluid formalism developed by
various groups [17–23]. The signature of the metric used
here is the same as in Ref. [8]. The master function (Λ) in
the superfluid formalism is a function of three scalars,
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n2 ¼ −nμnμ, p2 ¼ −pμpμ, and x2 ¼ −nμpμ, which are
constructed from neutron (nμ) and proton (pμ) number
density currents. It may be noted that −Λðn2; p2; x2Þ
corresponds to the total thermodynamic energy density
when neutron and proton fluids are comoving. The stress-
energy tensor is written as [8,16]

Tμ
ν ¼ Ψδμν þ nμμν þ pμχν ð1Þ

and the generalized pressure is given by

Ψ ¼ Λ − nρμρ − pρχρ: ð2Þ

The neutron and proton momentum covectors

μν ¼ Bnν þApν; ð3Þ

χν ¼ Anν þ Cpν; ð4Þ

are conjugate to nμ and pμ, respectively. It is manifestly
evident that neutron or proton momentum is a linear
combination of both number density currents, the magni-
tudes of which are chemical potentials of neutron and
proton fluids, respectively [8]. The charge-neutral proton
fluid is composed of protons and electrons, and it was
shown that the chemical potential of the proton fluid is the
sum of proton and electron chemical potentials [24,25].
The master function is independent of the entrainment

effect; i.e., x2 ¼ 0 when the coefficient A is zero. One
obtains the coefficients of Eqs. (3) and (4) from the master
function,

A ¼ −
∂Λ
∂x2 ; B ¼ −2

∂Λ
∂n2 ; C ¼ −2

∂Λ
∂p2

: ð5Þ

The field equations for neutrons and protons involve two
conservation equations as well as two Euler equations.
In the slow rotation approximation, the master function

is written in terms of x2 − np, which is small with respect
to np [8],

Λðn2; p2; x2Þ ¼
X∞
i¼0

γiðn2; p2Þðx2 − npÞi: ð6Þ

Using this form of master function, the coefficients A,
A0

0, etc., that determine the nonrotating background con-
figuration are calculated easily [8,16].
For the slow rotation approximation, we are interested in

terms up to second order in the rotational velocities of
neutrons and protons. This corresponds to the terms
proportional to x2 − np in the master function. It may
be noted that the following combinations appearing in the
field equations are dependent on γ1 when computed on the
background [16]:

Aþ n
∂A
∂n þ np

∂A
∂x2 ¼ −γ1 − n

∂γ1
∂n −

X∞
i¼2

�
γi þ n

∂γi
∂n
�
ðx2 − npÞi−1; ð7Þ

Aþ p
∂A
∂p þ np

∂A
∂x2 ¼ −γ1 − p

∂γ1
∂p −

X∞
i¼2

�
γi þ p

∂γi
∂p
�
ðx2 − npÞi−1: ð8Þ

The calculation of the master function in the RMF model was described in detail in Refs. [8,9]. Unlike the calculation of
Comer and Joynt [8], the role of symmetry energy on the master function and the entrainment effect was considered in
Ref. [9]. In the latter case, the relativistic σ-ω-ρmodel, including scalar meson self-interactions [26], was used to derive the
master function [9]. The Lagrangian density for nucleon-nucleon interaction has the form [27]

LB ¼
X
B¼n;p

Ψ̄Bðiγμ∂μ −mB þ gσBσ − gωBγμωμ − gρBγμtB · ρμÞΨB

þ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ − 1

3
bmðgσσÞ3 −

1

4
cðgσσÞ4

−
1

4
ωμνω

μν þ 1

2
m2

ωωμω
μ −

1

4
ρμν · ρμν þ

1

2
m2

ρρμ · ρμ: ð9Þ

The Dirac nucleon effective mass m� is defined as m� ¼ m − hgσσi where the nucleon mass (m) is taken as the average of
bare neutron (mn) and proton (mp) masses. The frame in which neutrons have zero spatial momentum and protons have a
wave vector kμ ¼ ðk0; 0; 0; KÞ [8] is chosen to solve the equations of motion for meson fields in the mean field
approximation [27].
The master function, generalized pressure, and chemical potentials of neutron and proton fluids in the limit K → 0 are

given by
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Λj0 ¼ −
c2ω
18π4

ðk3n þ k3pÞ2 −
c2ρ

72π4
ðk3p − k3nÞ2 −

1

4π2

�
k3n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2�j0

q
þ k3p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2�j0

q �
−
1

4
c−2σ ½ð2m −m�j0Þðm −m�j0Þ þm�j0ðbmc2σðm −m�j0Þ2 þ cc2σðm −m�j0Þ3Þ�

−
1

3
bmðm −m�j0Þ3 − −

1

4
cðm −m�j0Þ4 −

1

8π2

 
kp½2k2p þm2

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

e

q
−m4

eln

"
kp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

e

q
me

#!
; ð10Þ

μj0 ¼ −
π2

k2n

∂Λ
∂kn
����
0

¼ c2ω
3π2

ðk3n þ k3pÞ −
c2ρ

12π2
ðk3p − k3nÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2�j0

q
; ð11Þ

χj0 ¼ −
π2

k2p

∂Λ
∂kp
����
0

¼ c2ω
3π2

ðk3n þ k3pÞ þ
c2ρ

12π2
ðk3p − k3nÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2�j0

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

e

q
; ð12Þ

Ψj0 ¼ Λj0 þ
1

3π2
ðμj0k3n þ χj0k3pÞ; ð13Þ

where the subscript 0 stands for quantities calculated in the limit K → 0, c2σ ¼ ðgσ=mσÞ2, c2ω ¼ ðgω=mωÞ2, and
c2ρ ¼ ðgρ=mρÞ2, and

m�j0 ¼ m�ðkn; kp; 0Þ

¼ m −m�j0
c2σ
2π2

0
B@kn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2�j0

q
þ kp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2�j0

q
þ 1

2
m2�j0ln

"
−kn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2�j0

p
kn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2�j0

p
#

þ 1

2
m2�j0ln

2
64−kp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2�j0

q
kp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2�j0

q
3
75
1
CAþ bmc2σðm −m�Þ2 þ cc2σðm −m�Þ3: ð14Þ

It is to be noted here that electrons are treated as non-
interacting relativistic particles and are included in the
calculation of the master function and generalized pressure.
The values of the various coefficients Aj0, Bj0, Cj0, A0

0j0,
B0
0j0, and C00j0 that appear in the field equations are

provided in the Appendix.

B. Slowly rotating superfluid neutron stars

Andersson and Comer [17] extended Hartle’s slow
rotation formalism for the single fluid [28] to the case of
the two-fluid model in order to describe superfluid neutron
stars. They considered that the superfluid neutron and the
proton fluid are rotating with different rotational velocities.
However, they did not include the entrainment effect in
their calculation. Here we adopt the two-fluid formalism of
Andersson and Comer as described by Refs. [16,17] to
study stationary, axisymmetric, and asymptotically flat
configurations. Furthermore, we introduce the isospin
dependent entrainment in this calculation. In the slow
rotation approximation, rotational velocities of neutron
(Ωn) and proton (Ωp) fluids are considered as small so
that inequalities ΩnR ≪ c and ΩpR ≪ c are satisfied,
where c is the speed of light. The slow rotation acts as

the perturbation on nonrotating configurations. We retain
terms up to second order in the angular velocities of neutron
and proton fluids in field equations in the slow rotation
approximation. The metric used here has the following
structure [16,17,28]:

gμνdxμdxν ¼ −ðN2 − sin2θK½Nϕ�2Þdt2 þ Vd~r2

− 2KNϕsin2θdtdϕþ Kðdθ2 þ sin2θdϕ2Þ:
ð15Þ

The equations relevant for the metric variables in the two-
fluid model and the slow rotation approximation are same
as those of Hartle’s single-fluid model, and the metric
functions are expanded in powers of angular velocities
[16,17,28],

N ¼ eνð~rÞ=2ð1þ hð~r; θÞÞ;
V ¼ eλð~rÞð1þ 2vð~r; θÞÞ;
K ¼ ~r2ð1þ 2kð~r; θÞÞ;
Nϕ ¼ ωð~rÞ; ð16Þ
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where ω is a first-order quantity in the angular velocities,
and h, v, and k are second-order quantities. Further, h, v,
and k are decomposed into l ¼ 0 and l ¼ 2 terms after
expanding those in spherical harmonics,

h ¼ h0ð~rÞ þ h2ð~rÞP2ðcos θÞ;
v ¼ v0ð~rÞ þ v2ð~rÞP2ðcos θÞ;
k ¼ k2ð~rÞP2ðcos θÞ; ð17Þ

where P2ðcos θÞ ¼ ð3cos2θ − 1Þ=2.
Similarly, neutron (n) and proton (p) number densities

are expanded as

n ¼ n0ð~rÞð1þ ηð~r; θÞÞ; p ¼ p0ð~rÞð1þ Φð~r; θÞÞ;
ð18Þ

where terms η and Φ are of OðΩ2
n;pÞ,

η ¼ η0ð~rÞ þ η2ð~rÞP2ðcos θÞ;
Φ ¼ Φ0ð~rÞ þ Φ2ð~rÞP2ðcos θÞ: ð19Þ

A coordinate transformation ~r → rþ ξðr; θÞ is intro-
duced such that Λð~rðr; θÞ; θÞ ¼ Λ0ðrÞ [17]. Here the ξ
coordinate is also expanded in spherical harmonics
as ξ ¼ ξ0ðrÞ þ ξ2ðrÞP2ðcos θÞ.
With this prescription of the slow rotation approxima-

tion for metric functions, as well as neutron and proton
densities along with the coordinate transformation, the
fluid and Einstein field equations are reduced to four sets
of equations. The first set of equations corresponds to
nonrotating background configurations that are obtained
from the solutions of two background metric components,
λ and ν [16,17]. Those are given in terms of coefficients of
fluid equations,

A0
0j0p0

0 þ B0
0j0n00 þ

1

2
μj0ν0 ¼ 0;

C0
0j0p0

0 þ A0
0j0n00 þ

1

2
χj0ν0 ¼ 0; ð20Þ

where prime denotes differentiation with respect to ~r, and
A0
0j0, B0

0j0, and C0
0j0 coefficients are obtained from the

master function and are taken from Ref. [9]. The regularity
condition demands that λ, λ0, ν0, n00, and p0

0 vanish at the
origin. The total mass of this configuration is

M ¼ −4π
Z

R

0

Λ0ð~rÞ~r2d~r: ð21Þ

Next, the frame dragging ωðrÞ, which is first order in
angular velocities of neutron and proton fluids, is obtained
from the following equation [16,28]:

1

r4
d
dr

�
r4e−ðλþνÞ=2 d ~Ln

dr

�
− 16πeðλ−νÞ=2ðΨ0 − Λ0Þ ~Ln

¼ 16πeðλ−νÞ=2χ0p0ðΩn − ΩpÞ: ð22Þ

This equation has the same structure as that of the single
fluid except for the nonzero term on the right-hand side
[28]. Here we define ~Ln ¼ ω − Ωn and ~Lp ¼ ω − Ωp,
which represent the rotational frequencies as measured
by a distant observer. The boundary condition implies that
the interior solution of ωðrÞ matches with the vacuum
solution

~LnðRÞ ¼ −Ωn þ
2J
R3

; ð23Þ

where J is the total angular momentum of the system.
The derivative of the solution is also continuous at the
surface [16].
The neutron and proton angular momenta, Jn and Jp,

respectively, are given by [17]

Jn ¼ −
8π

3

Z
R

0

drr4eðλ−νÞ=2½μ0n0 ~Ln þ A0n0p0ðΩn −ΩpÞ�
ð24Þ

and

Jp ¼ −
8π

3

Z
R

0

drr4eðλ−νÞ=2½χ0p0
~Lp þ A0n0p0ðΩp −ΩnÞ�:

ð25Þ

The total angular momentum J is equal to Jn þ Jp.
The last two sets of equations are OðΩ2

n;pÞ equations.
One can obtain ξ0, η0, Φ0, h0, and v0 from l ¼ 0 second-
order equations; on the other hand, ξ2, η2,Φ2, h2, v2, and k2
follow from l ¼ 2 second-order equations. A detailed
discussion of l ¼ 0 and l ¼ 2 second-order equations
and numerical techniques to solve those equations can be
found in Refs. [16,17,28]. After obtaining a complete
solution in the slow rotation approximation, one can
calculate the quadruple moment of the configuration and
the rotationally induced change of mass as described in
Refs. [16,17]. Furthermore, the Kepler frequency of the
slowly rotating superfluid neutron star is obtained follow-
ing the prescription of Andersson and Comer [17],

ΩK ¼
ffiffiffiffiffiffi
M
R3

r
−
ĴΩp

R3
þ

ffiffiffiffiffiffi
M
R3

r �
δM̂
2M

þ ðRþ 3MÞð3R− 2MÞ
4R4M2

Ĵ2

−
3

4

2ξ̂0 − ξ̂2
R

þ αÂ

	
Ω2

p; ð26Þ

where scaling of J ¼ ĴΩp, δM ¼ δM̂Ω2
p, ξ0 ¼ ξ̂0Ω2

p, and
ξ2 ¼ ξ̂2Ω2

p with Ωp is made and
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α ¼ 3ðR3 − 2M3Þ
4M3

log

�
1 −

2M
R

�

þ 3R4 − 3R3M − 2R2M2 − 8RM3 þ 6M4

2RM2ðR − 2MÞ : ð27Þ

It is to be noted that the expression for the Kepler
frequency in Eq. (26) differs from that of Eq. (77) of
Ref. [17]. This difference originates from the factor at the
beginning of the third term within the second bracket and
the term involving ξ̂0 and ξ̂2 in both equations. We discuss
this issue further in the next section. It is worth mentioning
here that the model based on the slow rotation approxi-
mation is applicable for the fastest observed pulsar as noted
by others [10,17]. However, this approximation breaks
down near the Kepler limit [10].

III. RESULTS AND DISCUSSION

Now we discuss the results of slowly rotating superfluid
neutron stars. Nonrotating background configurations are
obtained by solving Eq. (20). In this context, we exploit the
RMF EOS which includes the isospin dependent entrain-
ment effect [9]. We use GL and NL3 parameter sets in this
calculation, both of which are listed in Table I. Central
neutron number density is an essential input for the
calculation of the background configurations. The proton
number density in the background model is no longer a free
parameter because the chemical equilibrium is imposed at
the center of the star, i.e., μj0 ¼ χj0 [24]. The chemical
equilibrium is established when both fluids are corotating.
However, the chemical equilibrium does not hold good for
different rotation rates of neutron and proton fluids [10,11].
Masses and radii corresponding to two nonrotating con-
figurations are also recorded in Table I. The chosen
background configurations are just below their maximum
masses [9]. Furthermore, we consider η0ð0Þ ¼ 0 and,
consequently, Φ0ð0Þ ¼ 0 in all cases.
As soon as we know the background configuration, we

can calculate the frame-dragging frequency from Eq. (22).
As we are dealing with the two-fluid system, the central
value of ~Ln and relative rotation rate Ωn=Ωp are needed to
solve Eq. (22) [17]. A rescaled Eq. (22) with the definition
of L̂nðrÞ ¼ ~Ln=Ωp is solved to determine the frame-
dragging frequency for different values of Ωp using a

fixed relative rotation rate. The boundary condition of the
problem demands that the interior solution matches with
the known vacuum solution given by Eq. (23). The frame-

dragging frequency, ωðrÞ
Ωp

, is plotted as a function of radial

distance (r=R) in Fig. 1 for three different relative rotation
rates. The left panel denotes the GL parameter set and the
right panel represents the NL3 set. The frame-dragging
frequency decreases monotonically from the center to the
surface of the star for three relative rotation rates in both
panels. This feature of the frame-dragging frequency is
quite similar to the standard single-fluid result [30]. Further
it is noted that the frame-dragging frequency is always
higher for larger values of relative rotation rate.
Now we discuss numerical solutions of different metric

functions of the superfluid neutron star in the slow rotation
approximation. First we solve the l ¼ 0 equations and
determine ξ0, η0, Φ0, h0, and v0 following the procedure
laid down by Andersson and Comer [17]. Metric functions
h0 and v0 match with the vacuum solutions at the surface.
The metric function v0ðrÞ as a function of radial distance is
displayed in Fig. 2 for three different relative rotation rates.
The left panel shows the results of the GL set and the right
panel corresponds to those of the NL3 set. It is noted that

TABLE I. Nucleon-meson coupling constants corresponding to the GL and NL3 sets are taken from Refs. [27,29]. The coupling
constants are obtained by reproducing the saturation properties of symmetric nuclear matter as detailed in Ref. [9]. All the coupling
constants are in fm2, except b and c, which are dimensionless. The background nonrotating configurations as computed by Kheto and
Bandyopadhyay [9] are used here. The central neutron wave number knð0Þ is given by fm−1. The mass ðMÞ and radius ðRÞ are in units of
M⊙ and km, respectively.

c2σ c2ω c2ρ b c νð0Þ knð0Þ xpð0Þ M R η0ð0Þ
GL 12.684 7.148 4.410 0.005610 −0.006 986 −2.387 99 2.71 0.24 2.37 11.09 0.0
NL3 15.739 10.530 5.324 0.002055 −0.002 650 −2.333 19 2.40 0.23 2.82 13.17 0.0
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FIG. 1. The frame-dragging frequency ωðrÞ is plotted as a
function of radial distance ðr=RÞ using the GL parameter set (left
panel) and the NL3 parameter set (right panel) for three different
relative rotation rates Ωn=Ωp.
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the metric function v0 increases monotonically to the
surface and matches smoothly with the exterior solution.
For the NL3 set, the value of this metric function at the
surface is always higher than that of the GL set. A new
metric function m0 is defined in terms of v0 and λ as
m0 ¼ rv0= expðλÞ. The radial profile of m0, which merges
with the exterior solution at the surface, is shown in Fig. 3
for different relative rotation rates.
We solve the l ¼ 2 equations in a similar way to that

used for solutions of l ¼ 0 equations [17]. A new variable,
k̄ ¼ k2 þ h2, is introduced to solve two coupled first-order
equations in h2 and k2 [28]. This leads to two coupled
differential equations in k̄ and h2, which are solved using
the method described by Hartle [28]. In Fig. 4, the metric
functions h0 and h2 are plotted as a function of radial

distance for different relative rotation rates. The results of
the GL and NL3 sets are shown in the left and right panels,
respectively. In both panels, the lower three curves denote
the metric function h0 and the upper three curves imply the
metric function h2. Figure 5 shows the radial profiles of
ξ0ðrÞ (upper curves) and ξ2ðrÞ (lower curves), and in Fig. 6,
we have k̄ ¼ k2 þ h2 versus r for the GL (left panel) and
NL3 (right panel) sets and three different relative rotation
rates. In Fig. 5, the magnitude of ξ2ðrÞ at the surface in the
right panel is quite large with respect to that of the left panel
when the relative rotation rate is larger than 1, and this
function is directly related to the deformation of the star due
to rotation.
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FIG. 4. The metric functions h0ðrÞ (three lower curves) and
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Figure 7 exhibits the variation of rotationally induced
corrections to the neutron number density n0η0 (three upper
curves) and n0η2 (three lower curves) with radius.
Similarly, Fig. 8 represents the variation of rotationally
induced corrections to the proton number density p0Φ0

(three upper curves) and p0Φ2 (three lower curves) with
radius. In both cases, the left panel denotes the results of the
GL set and the right panel corresponds to those of the NL3
set. We explore the role of symmetry energy on the
rotationally induced corrections to the proton number
density by comparing two cases with (left panel) and
without (right panel) ρ mesons for the GL set in Fig. 9.
For the case without ρ mesons, we consider a nonrotating
configuration that is just below the maximum mass neutron
star. The mass and radius of this neutron star is 2.33 M⊙

and 10.96 km. It is noted that the corrections to the proton
number density are significantly modified in the presence
of ρ mesons.
The deformation of a rotating star is obtained in terms of

the ratio of the polar and equatorial radii. For the slowly
rotating star, this is given by Rp

Re
≈ 1þ 3ξ2ðRÞ

2R . The ratio of
polar to equatorial radii as a function of relative rotation
rate is plotted in Fig. 10 for the GL (solid line) and NL3
(dashed line) sets. We consider the proton rotation rate to be
equal to that of the fastest rotating pulsar, having spin
frequency 716 Hz [31]. The nonrotating situation is
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achieved when the relative rotation rate approaches zero.
Furthermore we find that the rotationally induced defor-
mation of the star is larger for the NL3 case than the GL
case. This deformation increases with increasing relative
rotation rate.
As neutron and proton fluids may rotate at different rates,

one of them extends beyond the other at the equator. The
Kepler limit is obtained from the rotation rate of the outer
fluid. To determine the mass-shedding (Kepler) limit we
have to solve the quadratic equation (26) for Ωp. When
Ωn > Ωp, the Kepler frequency is determined by the
neutrons; for Ωp > Ωn, the Kepler frequency is determined
by the protons. We calculate the Kepler limit in the RMF
model including ρ mesons using the GL and NL3 param-
eter sets for the background configurations of Table I. The
mass-shedding (Kepler) limit ΩK as a function of relative
rotation rate is plotted in Fig. 11 for the GL set (left panel)
and the NL3 set (right panel). We use the radial profiles of
the entrainment effect in this calculation of Kepler fre-
quency. The results are qualitatively similar to the previous
investigation by Prix and collaborators [10], though the
authors in that case used some constant values of entrain-
ment. However, our results are different from those of
Comer [16]. For Ωn > Ωp, the Kepler frequency (solid
square) approaches a constant value with increasing Ωn.
When Ωn=Ωp < 1, the Kepler frequency (solid circle)
monotonically increases with decreasing relative rotation
rate, as evident from Fig. 11, whereas the opposite scenario
was found in the work of Comer [16]. On the other hand,
Prix et al. [10] found that the Kepler limit increased
monotonically as the relative rotation rate decreased.
This is quite similar to our results. The difference between
our results and those of Comer [16] may be due to different

expressions for ΩK that we have discussed in connection
with Eq. (26) in Sec. II. Furthermore, Comer [16] calcu-
lated the entrainment using the equation of state obtained in
the relativistic σ-ω model. Without ρ mesons, the effects of
symmetry energy on the entrainment was absent. On the
other hand, we exploit an isospin dependent entrainment
effect calculated in the σ-ω-ρ RMF model for the deter-
mination of the Kepler limit [9]. We compare the Kepler
limit calculated in the RMF model with and without ρ
mesons for the GL set in Fig. 12. In both cases, we consider
nonrotating configurations that are just below their
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maximum masses, as noted in Table I and discussed in
connection with Fig. 7. The solid line denotes the calcu-
lation without ρ mesons and the dashed line represents the
case with ρ mesons. Furthermore, solid squares and circles
correspond to allowed rotation rates of neutron and proton
fluids, respectively. It is noted that the two results differ, as
is evident from the highlighted part of Fig. 12.

IV. SUMMARY AND CONCLUSIONS

We have studied the role of the isospin dependent
entrainment and the relative rotation rates of neutron and
proton fluids on the global properties of slowly rotating
superfluid neutron stars, such as the structures and the
Kepler limit in the two-fluid formalism. The two-fluid
formalism of Andersson and Comer [16] is adopted in our
work. The effects of symmetry energy on the EOS and

entrainment are studied using the σ-ω-ρ RMF model. The
symmetry energy significantly influences the rotationally
induced corrections to the proton number density. It is
found that the Kepler limit obtained with the isospin
dependent entrainment effect is lower than that of the case
when the isospin term is neglected in the entrainment effect.
The behavior of the Kepler limit as a function of the relative
rotation rate in our case is qualitatively similar to the results
of Prix et al. [10] obtained using the polytropic EOS. The
calculation of slowly rotating superfluid neutron stars
including the isospin dependent entrainment effect in a
realistic EOS is the first of its kind.

APPENDIX

The values of some useful matter coefficients (see [9])
that are the inputs of field equations are the following
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