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Galaxy rotation curves determined observationally out to a radius well beyond the galaxy cores can
provide a critical test of modified gravity models without dark matter. The predicted rotational velocity
curve obtained from scalar-vector-tensor gravity is in excellent agreement with data for the Milky Way
without a dark matter halo, with a mass of 5 × 1010M⊙. The velocity rotation curve predicted by modified
Newtonian dynamics does not agree with the data.
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I. INTRODUCTION

The scalar-tensor-vector gravity (STVG) or modified
gravitational (MOG) theory [1] has successfully explained
the rotation curves of galaxies [2,3] and the dynamics of
galactic clusters [4], and has described the growth of
structure, the matter power spectrum and the cosmic
microwave background acoustical power spectrum [5].
The modified Newtonian acceleration law obtained in
the theory in the weak-field, nonrelativistic approximation
to the field equations, reduces to Newtonian gravity for the
solar system describing solar system experiments in agree-
ment with general relativity.
Galaxies with observational data for rotational velocity

curves reaching out well beyond the galaxy cores can
provide a critical test of modified gravity theories without
dark matter as well as dark matter models. Observed
rotational velocity data has been obtained for the Milky
Way that extends as far as 200 kpc from the core [6].
The rotational velocity predicted by STVG asymptotically
becomes Kepler-Newtonian with an increased value for
the gravitational constant G ¼ G∞. On the other hand, the
modified Newtonian dynamics (MOND) prediction for the
rotational velocity curve becomes asymptotically constant
for a value of the critical acceleration a0 ∼ 10−8 cm s−2.
The Milky Way data can be fitted well by STVG but it
excludes MOND as a viable model that can fit galaxy
rotational velocity data.

II. MOG AND MOND ACCELERATION LAWS

The effective potential for an extended distribution of
matter in MOG in the weak-field approximation is given
by [3]

ΦeffðxÞ ¼ −GN

Z
ρðx0Þ
jx − x0j ½1þ α − αe−μjx−x0j�d3x0; ð1Þ

where GN is Newton’s gravitational constant, while μ and
G are scalar fields, the latter defined by α ¼ ðG −GNÞ=GN
using the notation given by Moffat and Toth [7].

The parameters α and μ are not constants in the general
case, but rather functions of the additional scalar fields that
are present in the theory. However, when the subject of the
investigation is a relatively compact source, treating α and
μ as approximately constant is justified [7].
The MOG acceleration of a test particle can be obtained

from the gradient of the potential, a ¼ −∇Φeff , yielding the
result

aðxÞ ¼ −GN

Z
ρðx0Þðx − x0Þ
jx − x0j3

× ½1þ α − αe−μjx−x0jð1þ μjx − x0jÞ�d3x0: ð2Þ
We note that MOG has a remarkable predictive power for
rotation curves of galaxies [3] and for the dynamics of
galaxy clusters [4]. The values of α and μ are not fitted
specifically to the Milky Way data; instead, they can be
obtained as functions of the mass of a point gravitational
source [7]. Alternatively, Moffat and Rahvar [3] used the
“universal” values of α ¼ 8.89 and μ ¼ 0.04 kpc−1 for
given values of the mass-to-light ratio ϒ ¼ M=L to fit the
rotation curves of several galaxies. In either case, the values
of α and μ allow for parameter-free fits to rotation curves
and to the isothermal mass profiles of galaxy clusters
without dark matter. The general Tully-Fisher scaling
relation for galaxies is well predicted by MOG.
To determine rotational velocity curves well beyond the

galaxy core, we can use the MOG point-particle accel-
eration law [1,7]:

aðrÞ ¼ GNM
r2

½1þ α − αð1þ μrÞe−μr�; ð3Þ

where the acceleration is in the direction of the source.
For rotational velocity curves well beyond the galaxy

core, we can use the MOND nonrelativistic acceleration
law given by [8]

aðrÞ ¼ aNðrÞ
μða=a0Þ

; ð4Þ
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where aNðrÞ is the Newtonian acceleration, aNðrÞ ¼
GNM=r2 and μðxÞ is the interpolation function [not to
be confused with the MOG μ parameter in Eq. (1)] whose
asymptotic values are μðxÞ ¼ 1 when a ≫ a0 and μðxÞ ¼
a=a0 when a ≪ a0. The quantity a0 is the critical accel-
eration below which the Newtonian gravity is no longer
valid. Studies have found that a0 ∼ 1.21 × 10−8 cm s−2
[9–11]. The interpolation function is usually given by

μðxÞ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p : ð5Þ

It is clear that there is a large family of μðxÞ functions which
are compatible with the asymptotic behaviors. An alter-
native example is [12]

μðxÞ ¼ x
1þ x

: ð6Þ

III. FITS TO ROTATIONAL VELOCITY CURVE
FOR THE GALAXY

In Ref. [6], high-quality observations of the rotation
curve of the Milky Way have been obtained to a radial
distance of 200 kpc using a heterogeneous set of objects
including globular clusters.
This rotation curve offers an opportunity to test various

gravitational theories, including MOG and MOND.
Furthermore, as we investigate rotation curves at signifi-
cantly larger radii than the central region of the galaxy
where nearly all baryonic mass resides, it is justifiable to
use a point-source approximation for any physical model
that does not involve an extended dark matter halo.
Accordingly, we obtained the rotational velocity curve

by using the circular velocity formula:

vcðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
aðrÞr

p
: ð7Þ

We investigated five scenarios: MOG using two differ-
ent sets of the parameters α and μ (one set obtained using
the solution in Ref. [7], and another set obtained by fitting
a series of disk galaxies [3]); MOND using the two
different interpolation functions given in Eqs. (5) and (6);
and for comparison, a point-source Newtonian fit using an
appropriately adjusted (but astrophysically unrealistic)
source mass.
In addition, we also included rotation-curve estimates

using a fitted dark matter halo [13]. For an extended halo, a
point-source approximation is clearly inappropriate.
Instead, we used the six-parameter formulation given in
Ref. [13], which expresses the circular velocity in terms of
contributions from the bulge, disk, and halo:

vcðrÞ2 ¼
GMb

ab

4

η
Bðr=abÞ2 þ

GMd

ad
Dðr=adÞ2

þ 4πGρ0h3½logð1þ r=hÞ þ r=ðrþ hÞ�
r

; ð8Þ

where the helper functions BðxÞ and DðxÞ are given by1

BðrÞ2 ¼ r−2
Z

r

0

y2
Z

∞

y

d
dt e

−κðt1=4−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − y2

p dtdy; ð9Þ

DðxÞ2 ¼ 1
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ð10Þ

where κ ≃ 7.6695 and Ik, Kk represent the modified Bessel
functions. In particular, BðxÞ is very well approximated
numerically by BðxÞ≃ ffiffiffiffiffiffiffiffiffiffi

2π=x
p ð1=xþ 1Þ−2=3. A least-

squares fitting procedure [13] yields the parameter values
Mb ¼ 1.652 × 1010M⊙, ab ¼ 0.522 kpc, Md ¼ 3.41×
1010M⊙, ad ¼ 3.19 kpc, ρ0 ¼ 1.06 × 107M⊙=kpc,
h ¼ 12.53 kpc.
The results, along with the data reported in Ref. [6] are

presented in Fig. 1 and discussed below.

FIG. 1 (color online). Fits to the observed rotational velocities
of the Milky Way galaxy using various theories. The data [6] are
represented with red crosses (β ¼ 0), blue hollow circles
(β ¼ 0.5) and green hollow squares (β ¼ 1.0). The solid red
line is the Newtonian fit with a central mass ofM ¼ 5 × 1011M⊙.
The blue medium dashed and green short dashed lines correspond
to MOG using the values of M ¼ 4 × 1010M⊙, α ¼ 15.01, μ ¼
0.0313 kpc−1, andM ¼ 5 × 1010M⊙, α ¼ 8.89, μ ¼ 0.04 kpc−1,
respectively, which correspond to the values calculated according
to Ref. [7], or given by Ref. [3]. The purple dash-dotted line and
the yellow dash-double-dot line correspond to fits using MOND,
the mass of M ¼ 5 × 1010M⊙, a0 ¼ 1.21 × 10−8 cm=s2, and the
interpolation functions given by Eqs. (5) and (6), respectively.
Finally, the black long-dashed line is the dark matter halo
prediction given in Ref. [13].

1The factor of 4=η in Eq. (8) appears to have been inadvert-
ently omitted from Ref. [13]; furthermore, in the same reference,
Eq. (9) appears to have the erroneous t2 − 1 instead of t2 − y2
under the square root in the denominator.
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IV. RESULTS AND DISCUSSION

Figure 1 contains data from Ref. [6] and predictions of
MOG, MOND, the dark matter halo and a Newtonian point
source with an appropriately chosen mass.
The data are rotational velocities from a heterogeneous

set of objects, as reported in Fig. 5 (lower right) in Ref. [6].
As these are nondisk objects, the rotational velocities are
adjusted by a factor of 1=

ffiffiffi
2

p
; this is discussed in Ref. [13].

Raw observations are converted into estimates of rotational
velocities using three different values of the anisotropy
parameter β.
As can be seen in Fig. 1, the MOG prediction is in

agreement with the data using either set of the parameters α
and μ. The source mass was chosen correspondingly: the
mass-dependent values of α ¼ 15.01, μ ¼ 0.0313 kpc−1
were obtained for a source mass of M ¼ 4 × 1010M⊙,
whereas the “universal” values of α ¼ 8.89 and μ ¼
0.04 kpc−1 offered a good fit with M ¼ 5 × 1010M⊙.
The Newtonian point-source rotation curve, with a

source mass of M ¼ 5 × 1011M⊙, clearly corresponds to
an unrealistic ϒ in the absence of dark matter. Nonetheless,
the shape of this rotation curve calls attention to the fact that
the actual rotation curve is not flat. The Milky Way rotation
curve does follow the Keplerian prediction at large radii,
being proportional to the inverse square root of the radial
distance.
In contrast, MOND predicts a flat rotation curve, just as it

is designed to do, and regardless of the choice of the
interpolation function. The only way to force MOND to
yield a Keplerian rotation curve would be by reducing the
value of the MOND acceleration parameter a0 to such an
extent that the MOND prediction becomes indistinguishable
from the Newtonian prediction, and requires an equally
unrealistic value of ϒ. One possible way to reconcile the

tension between theMOND prediction and the data might be
the introduction of a variable anisotropy parameter βðrÞ,
dependent on radial distance; however, as can be discerned
by comparing the data points that correspond to the
assumption of β ¼ 0 vs β ¼ 1 in Fig. 1, even a drastically
varying βðrÞ would offer at best marginal agreement
between MOND and the data set.
As anticipated, the dark matter halo profile fits the data

well; this is hardly surprising, given that this profile has as
many as six independently fitted parameters characterizing
the bulge, the disk and the halo.

V. CONCLUSIONS

Extended rotation curve observations of the Milky Way
galaxy up to a radial distance of 200 kpc show Keplerian
behavior, with rotational velocities being proportional to
the inverse square root of the radial distance. These data are
strongly incompatible with the predictions of the MOND
paradigm, as they show a Keplerian dependence of the
rotational velocity on radial distance. In contrast, STVG,
also known as MOG theory, can be used to fit the new data
easily, with no changes to the previously established
parameters of the theory; in contrast, the extended dark
matter halo is a fitted model with as many as six parameters
that are independently adjusted to match observations.
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