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Gravitational-wave observations of inspiralling binary neutron-star systems can be used to measure the
neutron-star equation of state (EOS) through the tidally induced shift in the waveform phase that depends on
the tidal deformability parameter λ. Previous work has shown that λ, a function of the neutron-star EOS and
mass, is measurable by Advanced LIGO for a single event when including tidal information up to the merger
frequency. In this work, we describe a method for stacking measurements of λ from multiple inspiral events
to measure the EOS. We use Markov chain Monte Carlo simulations to estimate the parameters of a four-
parameter piecewise-polytrope EOS that matches theoretical EOS models to a few percent. We find that, for
“realistic” event rates (∼40 binary neutron-star inspiral events per year with signal-to-noise ratio >8 in a
single Advanced LIGO detector), combining a year of gravitational-wave data from a three-detector network
with the constraints from causality and recent high-mass neutron-star measurements, the EOS above nuclear
density can be measured to better than a factor of 2 in pressure in most cases. We also find that in the mass
range 1M⊙–2M⊙, the neutron-star radius can be measured to better than �1 km and the tidal deformability
can be measured to better than �1 × 1036 g cm2 s2 (10%–50% depending on the EOS and mass). The
overwhelming majority of this information comes from the loudest ∼5 events. Current uncertainties in the
post-Newtonian waveform model, however, lead to systematic errors in the EOS measurement that are as
large as the statistical errors, and more accurate waveform models are needed to minimize this error.
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I. INTRODUCTION

Observations of neutron stars (NSs), consisting of nuclear
matter in the ground state with densities up to several times
nuclear saturation density (ρnuc ∼ 2.8 × 1014 g=cm3), in
principle provide an ideal way to measure the nuclear
equation of state (EOS) that describes the pressure p as a
function of density ρ. At these densities, the most rigorous
EOS constraints from NSs have come from measurements
of high-mass pulsars in compact binary systems, and it is
now clear that the EOS must allow for NS masses ≳2M⊙
[1,2]. More precise information can be obtained if the NS
mass M and radius R are simultaneously measured, and
Lindblom demonstrated explicitly that there is a one-to-one
map between the relations RðMÞ and pðρÞ [3].
However, various calculations of the mass and radius

of NSs from available observations have produced only
marginally consistent results. For example, Özel, Baym,
and Güver used observations of thermonuclear bursts from
x-ray binaries to measure the NS mass and radius and
found, for the three systems considered, 95% confidence
intervals that were all in the range 9–12 km at 1.4M⊙ (from
Fig. 1 of Ref. [4] before stacking observations). Steiner,

Lattimer, and Brown also used mass and radius measure-
ments from three x-ray bursters as well as from three
quiescent low-mass x-ray binaries and found the NS radius
to be 10.7–12.5 km at 1.4M⊙ (from the range of 95%
confidence intervals in Tables 7 and 8 of Ref. [5]). Finally,
Guillot et al. measured the mass and radius for five
quiescent low-mass x-ray binaries and found that the NS
radius was 7.6–10.4 km (90% confidence) assuming the
radius was an approximately constant function of mass [6].
Gravitational-wave (GW) observations of NSs in inspir-

alling compact binaries, on the other hand, are sensitive
only to the density profile of NSs and are therefore free
of the model-dependent uncertainties in the emission and
absorption mechanisms that plague electromagnetic obser-
vations. In the next few years, observing runs will begin for
second-generation detectors, including the two Advanced
LIGO (aLIGO) detectors [7] and Advanced Virgo (aVirgo)
[8], and design sensitivity will likely be reached by the end
of the decade [9]. In addition, the second-generation
detectors KAGRA [10] and possibly LIGO-India [11] will
come online a few years later.
The EOS information provided by these detectors comes

mainly from tidal interactions during the inspiral of binary
neutron-star (BNS) and black-hole–neutron-star (BHNS)
systems that induce quadrupolar deformations in the NSs
[12]. In the quasistationary approximation, the quadrupole
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moment Qij of one star depends on the tidal field Eij
from the monopole of the other star through the relation
Qij ¼ −λEij. Here, λ is the EOS-dependent tidal deform-
ability and is related to the NS’s dimensionless Love number
k2, first calculated in Ref. [13], and radius R through the
relation λ ¼ 2

3G k2R
5, where G is the gravitational constant.

Because the tidal effect is a strong function of the mass
ratio, and observed BNS events are likely to be signifi-
cantly closer, this tidal interaction is likely to be seen for
only BNS systems [14]. Additional information may also
come from modes in the postmerger remnant of BNS
systems [15,16] as well as the damping of quasinormal
modes for low-mass, high-spin BHNS systems [17].
The measurability of tidal parameters in BNS systems

with aLIGO for GW frequencies below 450 Hz (prior to
the last ∼20 GW cycles before merger where higher-order
corrections to the tidal effect become important) was first
examined for polytropic EOSs in Ref. [12] and for
theoretical hadronic and quark matter EOSs in Ref. [18].
These studies found that, for a single aLIGO detector, tidal
interactions were only observable during this early inspiral
stage for stiff EOSs, NS masses below 1.4M⊙, and for rare,
nearby sources with signal-to-noise ratios (SNRs) ≳30.
Damour, Nagar, and Villain, however, found that, when
also including EOS information from the last ∼20 GW
cycles prior to contact, tidal parameters are in fact observ-
able even with more common SNRs of ∼16 [19].
These studies relied on the Fisher matrix approximation

for parameter estimation which assumes the distribution
of parameters follows a multivariate Gaussian. Recent
works using a fully Bayesian analysis for the three-detector
aLIGO-aVirgo network have confirmed that the tidal signal
is indeed measurable when including the entire inspiral up
to merger [20,21]. In particular Del Pozzo et al. used a
method to stack tens of observations of a large number of
BNS inspiral events to measure λðMÞ [20]. By parametriz-
ing λðMÞ with a linear fit, they found that λ could be
measured to�10% at 1.4M⊙, but the mass dependence of λ
could not be found. This was true even though they used an
unrealistically large NS mass range of 1M⊙–2M⊙ for their
simulated population.
In this paper we will demonstrate the advantages of

parameterizing the EOS instead of λðMÞ. The main benefit
comes from including prior knowledge of the EOS that
would be more difficult to incorporate into the λðMÞ fit. As
will be discussed in Sec. III, the requirements that the EOS
is monotonic and causal provide the simple constraint
that the slope of the EOS is in the range 0 ≤ dp=dϵ ≤ c2,
where ϵ is the energy density and c is the speed of light.
Additionally, the constraints from the observed 2M⊙ NSs
can be included by simply rejecting any EOS parameters
that lead to a maximum NS mass below 2M⊙. We will find
that incorporating this information allows us to make
significantly stronger statements about the EOS, radius,
and tidal deformability, and this is true for a narrower, more

realistic range of NS masses than simulated by Del Pozzo
et al. [20].
The BNS inspiral signal is almost exactly characterized

by the mass, spin, and tidal deformability of each NS and is
therefore free from the intrinsic variability and uncertainties
that bias electromagnetic measurements of the mass and
radius. Currently unknown terms in the post-Newtonian
(PN) waveform model, however, will lead to systematic
errors in recovering the tidal deformabilities. Using the
Fisher matrix approximation [22,23] as well as a Markov
chain Monte Carlo (MCMC) Bayesian analysis [21], it
was found that the systematic error in λ from waveform
uncertainties can be as large as the statistical error for a
single BNS inspiral observation. When stacking observa-
tions the problem becomes worse, as the statistical errors
decrease with more observations but the systematic errors
do not, and we will discuss how systematic errors impact
the recovery of the EOS.
We organize the paper as follows. We describe the BNS

waveform model in Sec. II and the EOS parameterization in
Sec. III. Our Bayesian method for estimating EOS param-
eters is derived in Sec. IV. We then show our results for a
range of observation scenarios in Sec. V and the impact
from waveform uncertainties in Sec. VI. Finally, we
summarize our results in Sec. VII.

II. THE BNS INSPIRAL SIGNAL

The strain h observed in a detector from a GW is related
to the two polarizations of the GW, hþ and h×, by the
detector’s antenna beam pattern response, Fþ and F×,
through the relation

h ¼ Fþhþ þ F×h×: ð1Þ
Fþ and F× depend on the sky position (given by the right
ascension α and declination δ) and GW polarization angle
ψ of the source.
For a BNS system in a quasicircular inspiral with an

inclination angle ι, comoving (transverse) distance d, and
component masses m1 and m2, the two polarizations of the
GW are

hþðtÞ ¼ −
4GηM
c2d

�
1þ cos2ι

2

�
xðtÞ cos ½2ΦðtÞ�; ð2Þ

h×ðtÞ ¼ −
4GηM
c2d

cos ιxðtÞ sin ½2ΦðtÞ�; ð3Þ

where we have restricted the amplitude to the leading order
and only keep the leading harmonic. Here, M ¼ m1 þm2

is the total mass, η ¼ m1m2=M2 is the symmetric mass
ratio, Φ is the orbital phase, and x is the standard PN order
parameter defined by x ¼ ðGMc3 dΦ

dt Þ2=3 ¼ ðπGMf
c3 Þ2=3, where f

is the source frame GW frequency of the leading harmonic.
The time evolution of ΦðtÞ and xðtÞ are evaluated from

the PN expressions for the energy E and luminosity L via
the energy balance requirement dE=dt ¼ −L:
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dΦðtÞ
dt

¼ c3x3=2

GM
; ð4Þ

dxðtÞ
dt

¼ −L
dE=dx

: ð5Þ

The energy and luminosity have the schematic form

E¼−
1

2
c2Mηx½1þePP-PNðx;ηÞþeTidalðx;η;Λ1;Λ2Þ�; ð6Þ

L ¼ 32

5

c5

G
η2x5½1þ lPP-PNðx; ηÞ þ lTidalðx; η;Λ1;Λ2Þ�; ð7Þ

where we write the tidal terms as functions of the
dimensionless quantities Λi ¼ Gλið c2

Gmi
Þ5.

The point-particle PN terms for nonspinning systems
depend only on η and x. The energy ePP-PN was recently
calculated to 4PN order [24,25], and the luminosity lPP-PN is
known to 3.5PN order [26]. For consistency with previous
works [20–23], we keep the point-particle PN corrections
to 3.5PN order.
The leading tidal terms begin at the same order as 5PN

point-particle terms, and although the tidal potential is
known to the next-to-next-to-leading-order term [27], we
only include the leading- and next-to-leading-order terms
for consistency with previous works [20–23]. These terms
are [28]

eTidal ¼ −
9η

2

h
ð1 − 3ηÞðΛ1 þ Λ2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ð1 − ηÞðΛ1 − Λ2Þ

i
x5

− 22η

��
1 − 4ηþ 19η2

8

�
ðΛ1 þ Λ2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p �
1 − 2ηþ 3η2

8

�
ðΛ1 − Λ2Þ

�
x6; ð8Þ

lTidal¼3
h
ð1−2η−4η2ÞðΛ1þΛ2Þþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−4η

p
ð1−2η2ÞðΛ1−Λ2Þ

i
x5

−
22

7

��
1−

15η

176
þ147η2

88
−
1547η3

44

�
ðΛ1þΛ2Þþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−4η

p �
1þ337η

176
þ15η2

2
−
1085η3

88

�
ðΛ1−Λ2Þ

�
x6; ð9Þ

where m1 ≥ m2.
As described in detail in Ref. [21], there are several

methods, first cataloged in Ref. [29], to determine the phase
evolution of the binary from the above expressions for its
energy and luminosity, and we will use three of them. In the
TaylorT1 method, one numerically integrates Eqs. (4) and
(5) to find ΦðtÞ and xðtÞ up to the time and phase constants
tc and ϕc. The TaylorT4 method is a slight variation where
one reexpands the ratio −L=E0 in Eq. (5) and then truncates
the series at the highest known PN order (here 3.5PN)
before numerically integrating. Finally in the TaylorF2
method, one approximates the Fourier transform of the
waveform

~hðfÞ ¼
Z þ∞

−∞
hðtÞe−2πiftdt ð10Þ

with the stationary phase approximation. The result, to
leading order in the amplitude, is

~hþðfÞ ¼
ffiffiffiffiffi
5

24

r
G2

c5
M5=6ðGf=c3Þ−7=6

π2=3d

�
1þ cos2ι

2

�
e−iΨðfÞ;

ð11Þ

~h×ðfÞ ¼ −i
ffiffiffiffiffi
5

24

r
G2

c5
M5=6ðGf=c3Þ−7=6

π2=3d
cos ιe−iΨðfÞ: ð12Þ

Here, M ¼ ðm1m2Þ3=5=M1=5 is the chirp mass, and, in the
TaylorF2 approach, the phase has the analytic form

ΨðfÞ ¼ 2πftc − 2ϕc −
π

4

þ 3

128ηx5=2
½1þ ψPP-PNðx;ηÞ þψTidalðx;η;Λ1;Λ2Þ�;

ð13Þ

where the point-particle terms ψPP-PN are provided in
Ref. [30]. As was demonstrated in Refs. [12,21,22], the
individual tidal parameters Λ1 and Λ2 are highly correlated,
so it is instead easier to reparameterize the tidal contribu-
tion to the phase ψTidal in terms of the linear combinations

~Λ ¼ 8

13
½ð1þ 7η − 31η2ÞðΛ1 þ Λ2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ð1þ 9η − 11η2ÞðΛ1 − Λ2Þ�; ð14Þ

δ ~Λ ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p �
1 −

13272

1319
ηþ 8944

1319
η2
�
ðΛ1 þ Λ2Þ

þ
�
1 −

15910

1319
ηþ 32850

1319
η2 þ 3380

1319
η3
�
ðΛ1 − Λ2Þ

�
:

ð15Þ

The tidal contribution then takes the simple form
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ψTidal ¼ −
39

2
~Λx5 þ

�
−
3115

64
~Λþ 6595

364

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
δ ~Λ

�
x6:

ð16Þ

The two terms containing ~Λ are significantly larger than
the term containing δ ~Λ, and, as was previously found, δ ~Λ is
not measurable with aLIGO [21]. This waveform model
can therefore be expressed in terms of the 11 parame-
ters ~θ ¼ fd; α; δ;ψ ; ι; tc;ϕc; m1; m2; ~Λ; δ ~Λg.
For all versions of the PN waveform, we cut off the

inspiral at the GW frequency corresponding to the
Schwarzschild innermost stable circular orbit (ISCO)
fISCO ¼ c3=ð63=2πGMÞ. However, for large NS radii cor-
responding to a stiff EOS, NSs can merge before reaching
fISCO. For simplicity, we also choose to examine non-
spinning BNS systems, although it has been shown that not
including spin parameters can noticeably bias parameter
estimation even for systems with relatively small spin
magnitudes [22]. A parallel investigation which studies
how the choice of high-frequency cutoffs and spin can
affect the estimation of tidal parameters is nearing com-
pletion [31].

III. THE EOS

Because the EOS can be calculated from the RðMÞ [3] or
λðMÞ relations [32,33], we can choose to parameterize
either RðMÞ, λðMÞ or pðρÞ if we want to reconstruct the
EOS. As Del Pozzo et al. found by parameterizing λðMÞ
with a linear fit, it is difficult to accurately measure λðMÞ
over a wide range of masses with BNS inspiral observations
[20]. Instead, they found that λ could only be accurately
measured for a specific fiducial mass which they chose to
be 1.4M⊙. This is because, when parameterizing the
function λðMÞ, there is little a priori information about
the allowed functional form of λðMÞ. Lattimer and Steiner
found similar results for mass and radius observations
(Sec. IV. A of Ref. [34]) when they parameterized RðMÞ
instead of the EOS. In contrast, it is much simpler to place
useful constraints on the functional form of the EOS fit, and
this allows one to make significantly stronger statements
about the EOS and the behavior of the λðMÞ and RðMÞ
curves.

A. Current EOS constraints

The a priori constraints on the EOS that we will use are
(1) The EOS can be considered known below a certain

density ρ0, and we use a fixed EOS below that
density.

(2) The EOS must be a monotonically increasing
function (dp=dϵ ≥ 0, where ϵ is the energy density)
to satisfy thermodynamic stability.

(3) The speed of sound vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dp=dϵ

p
must be less than

the speed of light, ensuring causality.

(4) The EOS must allow for a maximum NS mass
greater than observed masses. Recent pulsar mass
measurements in two neutron-star–white-dwarf
binaries have provided convincing evidence that
the maximum NS mass is ≳2M⊙. The pulsar
J1614-2230 was found to have a mass of 1.97�
0.04M⊙ (1σ confidence) [1], and the pulsar J0348þ
0432 was found to have a mass of 2.01� 0.04M⊙
(1σ confidence) [2]. Wewill take the 2σ lower bound
of 1.93M⊙ on the mass of J0348þ 0432 as a solid
lower bound on the maximum NS mass.

Although other constraints exist, such as the constraint that
the maximum mass-shedding (Kepler) frequency be greater
than observed spin frequencies, these turn out to be less
useful, so we will focus on the ones listed above. See
Ref. [35] for a discussion of other constraints.

B. Choice of parameterization

We seek a parameterized EOS that will satisfy the above
constraints and also have enough freedom to accurately fit
the true EOS. Several choices have been presented in the
literature. Read et al. examined various types of piecewise
polytropes, defined below, and found that a four-parameter
fit could adequately match a wide range of theoretical
models [35]. Steiner, Lattimer, and Brown used a model
with four nuclear parameters around nuclear saturation
density and an additional four parameters at higher den-
sities to define a two-piece polytrope with variable dividing
densities [5], and they also examined several variations
[36]. Finally, Lindblom constructed a spectral expansion of
γðϵÞ ¼ d logp=d log ϵ that appears to converge to tabulated
EOS models with fewer parameters than the four-parameter
piecewise polytrope constructed by Read et al. [37]. All
of these models can be made to satisfy the constraints in
Sec. III A. However, because the four-parameter piecewise
polytrope [35] has been more commonly used in the GW
literature, we will focus on it in this paper and leave a
detailed comparison of how the results depend on the
choice of parameterization to future work.
For each piece of a piecewise polytrope, the pressure

p in the rest-mass density interval ρi−1 < ρ < ρi is
defined by

pðρÞ ¼ Kiρ
Γi ; ð17Þ

where Γi is the adiabatic index and the constant Ki is
chosen such that p is continuous at the boundary ρi−1. For
the core of the star, we use three polytropes with adiabatic
indices Γ1, Γ2, and Γ3 separated by the fixed dividing
densities ρ1 ¼ 1014.7 g=cm3 and ρ2 ¼ 1015 g=cm3. These
fixed dividing densities were chosen to minimize the least-
squares error between the piecewise-polytrope fit and a
set of 34 tabulated theoretical EOSs [35]. In addition to
the three adiabatic indices, we also require an additional
parameter to determine the overall pressure scaling which
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we choose to be p1 ¼ pðρ1Þ, the pressure at the first
dividing density. We will therefore use as our four EOS
parameters ~E ¼ flogðp1Þ;Γ1;Γ2;Γ3g.
For the lower-density crust of the NS we use a four-piece

polytrope fit to the SLy EOS given by Table II of Ref. [35],1

and we note that the particular choice of the crust EOS
affects the results at less than a percent level. We join the
fixed crust EOS and parameterized core EOS together at
the density ρ0 where the two EOSs intersect. This usually
occurs below ρnuc, and we reject any set of EOS parameters
where the joining density is below the start of the last
polytrope piece for the crust at 2.63 × 1012 g=cm3, where
we consider the EOS to be known. Finally, given this EOS,
the energy density ϵ, used for solving the stellar structure
equations that determine the radius and tidal deformability,
can be evaluated by integrating the first law of thermody-
namics:

d
ϵ

ρ
¼ −pd

1

ρ
: ð18Þ

We note that for NSs around 1.4M⊙ found in BNS
systems, the central density is close to or just above the last
dividing density ρ2 ¼ 1015 g=cm3 for most EOS parame-
ters [35]. Information about Γ3 therefore cannot come from
BNS inspiral observations alone. However, when used in
conjunction with the priors from causality and high-mass
NS observations, the inspiral will help constrain Γ3 and the
EOS above ρ2.
In Fig. 1, we show the constraints placed on the

parameter space by the causality requirement and the
existence of a NS with a mass of at least 1.93M⊙.
Although the causality requirement must hold for all
densities, we have only assumed that the piecewise poly-
trope used here is a sufficiently good fit to the true EOS for
densities below ρc;max, the central density of the maximum
mass NS. Above this density the EOS could take some
other form that is not well described by the expression
p ¼ K3ρ

Γ3 . We have therefore used the weaker constraint
of excluding EOS parameters that result in vs > c below
ρc;max but accepting those parameters if vs > c above ρc;max
as discussed in Ref. [35]. Because most of the mass in a NS
at its maximum allowed mass is above ρ1, the maximum
mass and maximum speed of sound are mostly independent
of Γ1, the adiabatic index below ρ1. We therefore show the
constraint in the three-parameter flogðp1Þ;Γ2;Γ3g sub-
space with Γ1 ¼ 2.1, the value that restricts the other
parameters the least.
In our analysis below, we will also use the constraints

logðp1=ðdynecm−2ÞÞ∈ ½33.5;34.5�, Γ1∈ ½1.4;5�, Γ2∈ ½1;5�,
and Γ3 ∈ ½1; 5�. We also use the above requirement that

ρ0 ≥ 2.63 × 1012 g=cm3 which restricts small values of Γ1

when logðp1Þ is large as shown in Fig. 4 of Ref. [35]. These
boundaries are large enough to incorporate the 34 EOSs
considered in Ref. [35] and are also large enough that they
have a minimal impact on the results below.

C. Comparison between parameterized
and theoretical EOSs

The piecewise-polytrope fit was originally constructed
to match a wide range of theoretical EOSs whether or not
they satisfied the then-current constraints [35]. In this paper
we will examine the seven EOSs that satisfy the causality
constraint for densities up to ρc;max and also have maximum
masses above 2M⊙. We list these EOSs in Table I along
with the piecewise-polytrope parameters that minimize the
least-squares residual [35]. We also list several NS proper-
ties and the associated errors in reproducing them with the
fit. In Fig. 2, we compare the radius and tidal deformability
for these EOSs with their least-squares fits. The error in R
and λ above 1M⊙ for the EOS fits is usually less than 10%,
except for the ALF2 EOS.

IV. BAYESIAN INFERENCE
OF EOS PARAMETERS

A. Derivation

Given the GW model and EOS fit described in Secs. II
and III, we will describe here a method for estimating
the EOS parameters from a set of GW observations. We
want to find the posterior density function (PDF)
pð~E; ~θ1;…; ~θnjD;H; IÞ for the universal EOS parameters

FIG. 1 (color online). The joint constraint imposed by causality
and the existence of a 1.93M⊙ NS. In the dark shaded volume
outlined in black, the EOS parameters allow a NS to have vs > c
at some density below ρc;max and are therefore ruled out. In the
light shaded volume outlined in red, the EOS parameters are ruled
out because they do not allow a NS to have a maximummass of at
least 1.93M⊙. Also outlined in blue is the surface where the
maximum mass is 2.4M⊙. A hypothetical 2.4M⊙ NS observation
would rule out EOS parameters below this surface.

1The values for Ki in Table II of Ref. [35] incorrectly give the
pressure in mass-density units p=c2. The values of Ki in the table
should therefore be multiplied by c2.
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~E that are common to all NSs [39] and the waveform
parameters ~θi that are unique to each of the n BNS inspiral
events.2 The data D ¼ ~d1;…; ~dn are composed of the data
streams ~diðtÞ from the GW detector network for each of
the n inspiral events. H represents the waveform model,
chosen here to be the TaylorF2 waveform with parameters
~θ ¼ fd; α; δ;ψ ; ι; tc;ϕc; m1; m2; ~Λ; δ ~Λg, as well as the EOS
model, chosen to be the four-parameter piecewise polytrope
with parameters ~E ¼ flogðp1Þ;Γ1;Γ2;Γ3g. I represents
the background information for the waveform and EOS
parameters. The PDF is given by Bayes’ theorem

pð~E;~θ1;…; ~θnjD;H;IÞ

¼pð~E;~θ1;…; ~θnjH;IÞpðDj~E;~θ1;…; ~θn;H;IÞ
pðDjH;IÞ : ð19Þ

The quantity pð~E; ~θ1;…; ~θnjH; IÞ is the prior probability
density for the EOS and waveform parameters,

pðDj~E; ~θ1;…; ~θn;H; IÞ is the likelihood, and the normali-
zation constant pðDjH; IÞ, which we will not need to
calculate here, is the evidence. We will then want to
integrate over the waveform parameters to obtain a mar-
ginalized PDF for just the EOS parameters

pð~EjD;H;IÞ¼
Z

d~θ1…d~θnpð~E;~θ1;…; ~θnjD;H;IÞ: ð20Þ

This 11n-dimensional integral is not easily computed, so
we will decompose it into blocks and calculate it in a two-
step procedure using the method of Ref. [40]. In the first
step, we use an existing MCMC algorithm to sample the

posterior for the parameters ~θi of each BNS event and then

marginalize over the extrinsic and nuisance parameters
~θex ¼ fd; α; δ;ψ ; ι; tc;ϕc; δ ~Λg3 to obtain a quasilikelihood

[Eq. (25)] for the intrinsic parameters ~θin ¼ fm1; m2; ~Λg
that are relevant for measuring the EOS. In the second step,
we evaluate Eq. (20) by constructing a joint likelihood for
the n BNS events from the quasilikelihoods for each event,
then reexpress ~Λi in terms of the EOS parameters and
masses, and marginalize over the masses in Eq. (27) using
another MCMC algorithm. We obtain these expressions
from Bayes’ theorem [Eq. (19)] as follows.
The prior can be decomposed into EOS-parameter and

waveform-parameter parts using the product rule pð~x; ~yÞ ¼
pð~xÞpð~yj~xÞ as well as the fact that the n sets of waveform
parameters ~θi are independent:

pð~E;~θ1;…; ~θnjH;IÞ¼pð~EjH;IÞ
Yn
i¼1

pð~θij~E;H;IÞ: ð21Þ

The conditional prior for the waveform parameters of each
binary can be further decomposed with the product rule
and the fact that the intrinsic and extrinsic parameters are
independent:

pð~θij~E;H;IÞ ¼ pðm1i;m2ij~E;H;IÞpð ~Λijm1i;m2i; ~E;H;IÞ
×pðθex;ijH;IÞ: ð22Þ

Likewise, the likelihood for the n independent BNS
observations is

pðDj~E; ~θ1;…; ~θn;H; IÞ ¼
Yn
i¼1

pðdij~θi;H; IÞ; ð23Þ

and we have used the fact that the likelihood only
depends on the waveform parameters to write

TABLE I. Comparison between tabulated EOS models and their best fits. The parameters logðp1=ðdyne cm−2ÞÞ, Γ1, Γ2, and Γ3 are the
values that minimize the least-squares residual defined in Ref. [35]. Observables for the tabulated EOSs are also shown; vs;max (c) is the
maximum speed of sound below ρc;max, Mmax (M⊙) is the maximum mass, R1.4 (km) is the radius of a 1.4M⊙ NS, and λ1.4
(1036 g cm2 s2) is the tidal deformability of a 1.4M⊙ NS. The percent error for each observable when using the tabulated EOS ðOtabÞ
versus the best-fit parameterized EOS ðOfitÞ is also given by ðOfit=Otab − 1Þ100.
EOS logðp1Þ Γ1 Γ2 Γ3 Residual vs;max % Mmax % R1.4 % λ1.4 %

SLy 34.384 3.005 2.988 2.851 0.0020 0.989 1.41 2.049 0.02 11.736 −0.21 1.69 −1.10
ENG 34.437 3.514 3.130 3.168 0.015 1.000 10.71 2.240 −0.05 12.059 −0.69 2.20 −4.93
MPA1 34.495 3.446 3.572 2.887 0.0081 0.994 4.91 2.461 −0.16 12.473 −0.26 2.78 −2.47
MS1 34.858 3.224 3.033 1.325 0.019 0.888 12.44 2.767 −0.54 14.918 0.06 8.13 −4.17
MS1b 34.855 3.456 3.011 1.425 0.015 0.889 11.38 2.776 −1.03 14.583 −0.32 7.28 −4.69
H4 34.669 2.909 2.246 2.144 0.0028 0.685 4.52 2.032 −0.85 13.774 1.34 5.12 −5.40
ALF2 34.616 4.070 2.411 1.890 0.043 0.642 1.50 2.086 −5.26 13.188 −3.66 4.27 −24.34

2The EOS parameters are related to the waveform
parameters through the relations ~Λi ¼ ~Λðm1i; m2i; ~EÞ and
δ ~Λi ¼ δ ~Λðm1i; m2i; ~EÞ, and it would be possible to use the
EOS parameters instead of ~Λi and δ ~Λi as part of the waveform
parameters. However, it is simpler to not modify existing
parameter estimation codes and treat them as separate parameters
until Eq. (26).

3δ ~Λ is an intrinsic parameter that in principle provides addi-
tional EOS information. However, it is unmeasurable with aLIGO
[21], so we treat it as a nuisance parameter and group it with the
extrinsic parameters when we marginalize over them.
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pð~dij~θi; ~E;H; IÞ ¼ pð~dij~θi;H; IÞ. (The waveform signal
depends on ~E only through ~Λi which is already included as
a waveform parameter.)
The marginalized PDF [Eq. (20)] is now

pð~EjD;H;IÞ ¼ 1

pðDjH;IÞ
Z

d~θin;1…d~θin;n

× pð~EjH;IÞ
Yn
i¼1

½pðm1i;m2ij~E;H;IÞ

× pð ~Λijm1i;m2i; ~E;H;IÞLð~di; ~θin;i;H;IÞ�;
ð24Þ

where we have defined the quasilikelihood for the intrinsic
parameters as

Lð~di; ~θin;i;H;IÞ ¼
Z

d~θex;ipð~θex;ijH; IÞpð~dij~θi;H; IÞ:

ð25Þ

Because ~Λi is a deterministic function of m1i, m2i and the
EOS parameters,

pð ~Λijm1i; m2i; ~E;H; IÞ ¼ δð ~Λi − ~Λðm1i; m2i; ~EÞÞ: ð26Þ

The marginalized PDF finally becomes

pð~EjD;H; IÞ ¼ 1

pðDjH; IÞ
Z

dm11dm21…dm1ndm2n

× pð~EjH; IÞ
Yn
i¼1

½pðm1i; m2ij~E;H; IÞ

× Lð~di; ~θin;i;H; IÞj ~Λi¼ ~Λðm1i;m2i; ~EÞ�: ð27Þ

The problem has now been reduced to computing the
quasilikelihood [Eq. (25)] for each BNS event and then
computing Eq. (27).

B. Likelihood and signal-to-noise ratio

The final ingredient we need to evaluate the marginalized
PDF is an expression for the likelihood pð~dij~θi;H; IÞ for
each GWevent.4 In this paper we assume that each detector
in the network has stationary, Gaussian noise and that the
noise between detectors is uncorrelated. This means that
the power spectral density (PSD) SnðfÞa of the noise naðtÞ
in detector a is

h ~naðfÞ ~na�ðf0Þi ¼ 1

2
δðf − f0ÞSnðfÞa; ð28Þ

where ~naðfÞ is the Fourier transform of the noise of
detector a and h·i represents an ensemble average. For a
GW event with true parameters θ̂, resulting in the GW
signal haðt; θ̂Þ, the data stream of detector a will be

daðtÞ ¼ naðtÞ þ haðt; θ̂Þ: ð29Þ

For stationary, Gaussian noise, it is well known that the
probability of obtaining the noise time series nðtÞ is

pn½nðtÞ� ∝ e−ðn;nÞ=2; ð30Þ

where ða; bÞ is the usual inner product between two time
series aðtÞ and bðtÞ weighted by the PSD

ða; bÞ ¼ 4Re
Z

∞

0

~aðfÞ ~b�ðfÞ
SnðfÞ

df: ð31Þ

FIG. 2 (color online). Radius and tidal deformability of
tabulated EOS models (solid line) and the least-squares piece-
wise-polytrope fits (dashed line) to those tabulated models given
in Table I. The 20 vertical lines represent the most likely NS
masses of the ten known BNS systems [38]. Some of these
masses, however, have significant uncertainties. The overlapping
vertical bands represent the 1σ uncertainty in the masses of the
pulsars J1614-2230 (1.97� 0.04M⊙) [1] and J0348þ 0432
(2.01� 0.04M⊙) [2], both in neutron-star–white-dwarf binaries.

4In the following subsections, when we discuss the likelihood
for individual GW events, we omit the event index i for brevity.
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If we have a GW model mðt; ~θÞ that approximates the true
signal hðt; ~θÞ, then the likelihood of obtaining the data
daðtÞ given the GW model is

pðdaj~θ;H;IÞ ¼ pn½daðtÞ −mðt; ~θÞ�
∝ e−ðda−mð~θÞ;da−mð~θÞÞ=2: ð32Þ

If the model m differs from the true signal h, a systematic
error will be introduced in the recovered waveform param-
eters. For a network of independent detectors described by
the set of time series ~dðtÞ, the likelihood is then

pð~dj~θ;H; IÞ ¼
Y
a

pðdaj~θ;H; IÞ: ð33Þ

The observed SNR for the data daðtÞ from detector a is a
Gaussian random variable given by

ρa ¼ ðda;mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm;mÞp : ð34Þ

The SNR for a network of detectors is then
ρnet ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
aðρaÞ2

p
. This is a measure of the relative power

a given GW signal produces in a network of detectors.

C. Averaged likelihood

In order to determine the characteristic ability of GW
detectors to measure EOS parameters, we will want to
average our results for Eq. (27) over many realizations of
the detector noise. Reference [41] defined the averaged
likelihood as the geometric mean of an ensemble of M
identical detectors measuring the same GW event:

paveðdaj~θ;H; IÞ ¼
�YM
k¼1

pðdakj~θ;H; IÞ
�1=M

: ð35Þ

Taking M to be large, they found that this is equivalent to
setting the noise naðtÞ used to generate the data daðtÞ equal
to zero but still using the characteristic noise PSD in the
expression for the likelihood:

paveðdaj~θ;H; IÞ ∝ e−
1
2
ðmað~θÞ−haðθ̂Þjmað~θÞ−haðθ̂ÞÞ: ð36Þ

This zero-noise likelihood will allow us to examine
characteristic measurement uncertainties in the EOS
parameters independent of the particular noise realization.
It will also allow us in Sec. VI to separate the effects of
systematic errors due to uncertainties in the waveform
model from effects due to individual noise realizations.

D. Implementation

We evaluate Eq. (27) for the marginalized PDF in a
two-step procedure, similar to that described by Steiner,

Lattimer, and Brown [5], where we first evaluate the
quasilikelihood [Eq. (25)] for each of the n BNS systems
and then evaluate Eq. (27). In the first step where we

evaluate the quasilikelihood Lð~d; ~θin;H;IÞ, we use the
MCMC sampler LALINFERENCEMCMC included in the
LSC Algorithm Library [42] as implemented in Ref. [21]
and described in more detail in Ref. [43]. The prior for the

extrinsic parameters pð~θexjH; IÞ is given in Sec. II C of
Ref. [43] with the additional uniform prior on δ ~Λ of
−500 ≤ δ ~Λ ≤ 500. The priors for the intrinsic parameters
of interest fm1; m2; ~Λg are not contained in the quasilikeli-
hood, so we are required to use flat priors. In most cases we
used 1M⊙ ≤ m2 ≤ m1 ≤ 30M⊙ as in Ref. [43] and 0 ≤
~Λ ≤ 3000 as in Ref. [21]. However, when we injected BNS
systems with component masses of 1M⊙ in Sec. V C, we
used 0.5M⊙ ≤ m2 ≤ m1 ≤ 30M⊙ and 0 ≤ ~Λ ≤ 5000 so
that the posterior was minimally affected by the prior.

For the likelihood pð~dj~θ;H; IÞ, we always use the
TaylorF2 waveform as our GW model because it is the
fastest to generate. After running the MCMC sampler,

the marginalized distribution Lð~d; ~θin;H; IÞ is evaluated
from the chain of fm1; m2; ~Λg samples with a Gaussian
kernel density estimator.
In the second step, we sample the 4þ 2n parameter

integrand of Eq. (27) using the affine-invariant ensemble
sampler EMCEE [44]. For the prior on the EOS parameters

pð~EjH; IÞ, we use uniform distributions with boundaries
as described in Sec. III B and additional boundaries from
the 1.93M⊙ observation and causality constraints as
described in Secs. III A and III B. For the prior on the

masses pðm1i; m2ij~E;H; IÞ, we use uniform distributions
with 1M⊙ ≤ m2 ≤ m1 ≤ 3M⊙ or, when we examine 1M⊙
systems, 0.5M⊙ ≤ m2 ≤ m1 ≤ 3M⊙. The upper limit of
3M⊙ is sufficient to include NSs for all viable EOSs.
In general, the dominant cost comes from evaluating
~Λðm1i; m2i; ~EÞ for each BNS system at each iteration,
but this is sped up by precomputing the five-parameter

function Λðm; ~EÞ on a grid and interpolating. We perform
ten runs with random initial parameters and test for
convergence with the Gelman-Rubin diagnostic [45] before
joining the samples. The marginalized distribution
pð~EjD;H; IÞ is then given by a histogram of the samples

for ~E.
Evaluating the quasilikelihood [Eq. (25)] with

LALINFERENCEMCMC for all n events in a population
is very computationally expensive, so in some cases we
use the Fisher matrix approximation instead. In the large

SNR limit, the difference Δ~θ ¼ ~θ − θ̂ between the esti-

mated parameters ~θ and the true parameters θ̂ of the binary
system obeys a Gaussian distribution [46]. Specifically, for
N parameters, the likelihood is
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pðdaj~θ;H; IÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞN detðΣijÞ

q e−
1
2
Σ−1
ij ΔθiΔθj ; ð37Þ

where Σij is the covariance matrix, and it is given in terms
of the Fisher matrix

Γij ¼ ð∂ihðθ̂Þ; ∂jhðθ̂ÞÞ ð38Þ

by the relation Σij ¼ Γ−1
ij . In the large SNR limit, θ̂ will be

approximately given by the maximum likelihood. When we
use the Fisher matrix approximation we will use the mass
variables lnðMÞ and lnðηÞ instead of m1 and m2 and flat
priors for lnðMÞ and lnðηÞ. The quasilikelihood [Eq. (25)]
marginalized over the extrinsic parameters is simply given
by the submatrix of Σij containing the intrinsic parameters

flnðMÞ; lnðηÞ; ~Λg. However, when we estimate the EOS
parameters in Eq. (27), we always sample the posterior
with EMCEE.

V. RESULTS

In this section we characterize the ability of the aLIGO-
aVirgo network to measure the EOS from a population of
BNS inspiral events. For the two aLIGO detectors, we use
the zero detuned-high laser power (broadband) PSD [47]
which represents the design sensitivity that may be
achieved for the aLIGO detectors by 2019 [9]. For
aVirgo, which has higher high-frequency noise, we use
the PSD fit from Ref. [48] that may be achieved by 2021
[9]. We also use the TaylorF2 waveform as both the injected
GW signal hðt; θ̂Þ and the GW model mðt; ~θÞ used for
parameter estimation.

A. Baseline BNS population

We start with a BNS population that has a realistic
distribution of masses, number of events, and a moderate
EOS and then later examine how these choices affect the
results. We sample our population as follows:
(1) Masses.—NSs in most BNS systems are thought to

undergo little accretion after their formation and are
therefore found to be in the relatively narrow mass
range characteristic of nonaccreting NSs. The ten
currently known BNS systems [38] have most likely
NS masses in the range 1.04M⊙–1.53M⊙ (some of
these have significant uncertainties) and are shown
in Fig. 2. Özel et al. [49], for example, modeled the
mass distribution of the known BNS systems as a
Gaussian and found the most likely values for the
mean and standard deviation to be 1.33M⊙ and
0.06M⊙, respectively. They also found that the mass
ratios of the known BNS systems are consistent with
each NS being drawn from this distribution inde-
pendent of its companion. For simplicity, we draw
the mass of each NS independent of its companion

from a uniform distribution between 1.2M⊙
and 1.6M⊙.

(2) Events.—Significant uncertainty exists in the BNS
inspiral event rate. Reference [50] compiled rate
estimates from several population-synthesis models
and observations (Table 6 of Ref. [50]) and sum-
marized the results as follows: a lower 95%
confidence bound of one event per Milky Way
equivalent galaxy per Myr (MWEG−1 Myr−1), a
most likely “realistic” value of
100 MWEG−1Myr−1, and an upper 95% confi-
dence bound of 1000 MWEG−1Myr−1. This corre-
sponds to GW detection rates of 0.4, 40, and
400 y−1, respectively, for a single aLIGO interfer-
ometer, using the broadband PSD with a threshold
SNR > 8, averaging over sky location and orienta-
tion, with NS masses of 1.4M⊙, and a density of
0.0116 MWEGMpc−3 [50].
We simulated a year of GW data using the realistic

event rate above. Specifically, we calculated the
event rate in a volume large enough to contain all
detectable BNS events. Because inspiral events are a
Poisson process, we sampled the actual number of
events in a year from a Poisson distribution with this
rate. We then sampled the locations of these events
uniformly in the volume, the orientations uniformly
on a unit sphere, and the individual NS masses
uniformly in ½1.2M⊙; 1.6M⊙�. Of these systems
∼120 had a network SNR ≥ 8 and ∼30 had a
network SNR ≥ 12. We performed parameter esti-
mation for the 20 loudest (highest SNR) sources
with network SNR that ranged from 63.7 down to
13.6, integrating between the GW frequencies
flow ¼ 30 Hz and fISCO.

(3) EOS.—We used the piecewise-polytrope fit to the
MPA1 EOS given in Table I which has a radius and
maximum mass roughly in the middle of the range
and then calculated the corresponding tidal param-
eter for each sampled NS. Using the fit instead of the
tabulated EOS separates the systematic error due to
the inexact EOS fit from the analysis of statistical
errors presented here, and we leave the discussion of
these systematic errors to Sec. VI B.

Using zero-noise data described in Sec. IV C, we show in
Fig. 3 the measurability of the EOS, radius, and tidal
deformability for the loudest 20 events in our population.
The contours represent the 68% (1σ), 95% (2σ), and 99.7%
(3σ) credible regions. In the left panel we plot the credible
region for logðpÞ as well as for p=ptrue, where we call the
piecewise-polytrope fit to the MPA1 EOS the “true” EOS.
We generate these figures as follows: At the density ρ,
we evaluate log½pðρ; ~EÞ� for each set of EOS parameters
from the MCMC simulation. We then evaluate the credible
interval at that density from the sampled logðpÞ values.
The same is done for p=ptrue. In the top right panel, we
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generated the credible interval for each mass M from the
radii samples that were found by evaluating RðM; ~EÞ for
each set of EOS parameters in the MCMC simulation.
For masses greater than the 1.93M⊙ prior, some of the
sampled EOS parameters do not allow for a stable NS. For
those sampled EOS parameters, an object of that mass
would lead to a black hole. In this case, the distribution
of radii becomes bimodal, with a delta function at the
Schwarzschild radius 2GM=c2 and weight proportional to
the fraction of samples that do not allow for a stable NS.
The credible interval then represents the fraction of MCMC
samples that produce a NS in that radius interval or a black
hole. The bottom right panel shows the confidence intervals
for the tidal deformability λ. For the samples that produce a
black hole above 1.93M⊙, λ ¼ 0 [51].
Figure 3 has sharp peaks in the fractional uncertainty

p=ptrue around the variable transition density ρ0 ≲ ρnuc and
at the fixed transition densities ρ1 and ρ2 between the
polytrope pieces. This is due to the choice of parameterized
EOS model. Allowing the transition densities to be addi-
tional free parameters would likely smooth these features
out. Indeed, the EOS fit in Steiner, Lattimer, and Brown [5]

which included the transition densities as free parameters
did not show such features in the results for p=ptrue.
Above the transition density ρ2, the results increasingly

underpredict the pressure. This occurs because, although
the MPA1 EOS is causal with vs;max ¼ 0.994 (Table I), the
corresponding piecewise-polytrope fit overpredicts vs;max
by∼5% and is therefore acausal at high densities. However,
the accepted MCMC samples are required to have
vs;max ≤ c, resulting in accepted samples corresponding
to smaller pressures.
The credible interval is largest at densities below ∼ρnuc

and for corresponding low-mass stars where the densities
are lower. This results because the bulk of NS matter is
above ∼ρnuc, and we included minimal a priori information
on how the core EOS joins onto the lower-density crust
EOS. In contrast, Steiner, Lattimer, and Brown [5] para-
meterized the EOS around ρnuc in terms of the baryon
density and proton fraction with four free parameters
[Eq. (33) of Ref. [5]], and this provides stronger a priori
constraints on the behavior below ∼ρnuc (Fig. 8 of Ref. [5]).
Overall, it is clear that in some density regions, a significant
contribution to the credible interval comes from our choice

FIG. 3 (color online). Uncertainty in the recovered EOS, radius, and tidal deformability for the three-detector aLIGO-aVirgo network.
Results are shown for the loudest 20 events with network SNR from 63.7 down to 13.6. The red, green, and blue regions represent the
68% (1σ), 95% (2σ), and 99.7% (3σ) credible regions, respectively. In the bottom left panel, ptrue is the pressure of the true injected EOS,
which in this case is the fit to the MPA1 EOS. In the right panels, the vertical line at 1.93M⊙ is the minimum mass, set by the prior,
where some accepted EOS parameters do not produce a stable NS.
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of EOS parameterization which was not optimized for the
purposes here, rather than from the sensitivity of the GW
detectors.
We also find that the error in the tidal deformability λ is

smallest in the mass interval 1.2M⊙–1.6M⊙ where the
BNS masses were drawn from. This is not surprising.

However, λ can still be measured with comparable accuracy
for a much larger range of masses. This is in contrast to the
results of Del Pozzo et al. [20] that did not incorporate
the additional information about the EOS presented in
Sec. III A.
Finally, we show how the credible region depends on

the number of events in Fig. 4. The dashed gray curve
represents the lower limit set by the priors without any BNS
inspiral data. This lower limit for the radius of ∼10 km
above 1M⊙ is in mild tension with Guillot et al. [6] who,
combining data from observations of several NSs, found
that the NS radius is 7.6–10.4 km (90% confidence). A
similar lower bound from the maximum mass and causality
constraints was found in Ref. [52] (dotted curve in the left
panel of Fig. 11 of Ref. [52]). However, by softening the
EOS so that vs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dp=dϵ

p ¼ c whenever their piecewise-
polytrope parameterization became acausal, they were able
to weaken this constraint, and their lower limit on the radius
is ∼1 km less than the one presented here. The upper limit
from the prior (not shown here) is a few times larger than
the scale of the figures and is set mainly by the causality
constraint. This is in contrast to Ref. [52]. Because they
used strong assumptions about the EOS below ∼ρnuc from
chiral effective field theory, they were able to place an
upper limit on the NS radius of ∼15 km. Because we use a
much less restricted low-density EOS, the pressure at
higher densities is allowed to have much larger values,
resulting in larger radii.
When data from the BNS inspirals are included, the

overwhelming majority of the information about the EOS is
obtained from just the loudest five events in the population.
After the loudest five events, including more events does
not improve the measurability of the EOS parameters,
radius, or tidal deformability.

B. Highest known NS mass

As discussed in Sec. III A, the highest-mass NSs with
rigorous constraints are ∼2M⊙ [1,2], and we have used
1.93M⊙ as the lower bound on the maximum mass.
However, there is also evidence for NSs with higher
masses. In particular, a class of pulsars known as black
widows irradiate their companions and generate outflows
that are accreted onto the pulsar, significantly increasing
the pulsar’s mass. Using spectra to determine the radial
velocity of the companion, PSRB1957þ 20 was found to
have a mass of 2.40� 0.12M⊙ after correcting for the
anisotropic emission of the companion which causes the
center of light to lie inward relative to the center of mass.
However, considering systematic uncertainties in the model
they found a conservative lower limit of 1.66M⊙ [53].
Another black-widow pulsar, PSR J1311-3430, was found
to have a mass of 2.68� 0.14M⊙, but considering similar
uncertainties, a lower limit of 2.1M⊙ was claimed [54].
In Fig. 5 we demonstrate that the confirmation of a NS

with a lower-mass bound of 2.4M⊙, for example, would

FIG. 4 (color online). The same BNS population as Fig. 3.
Contours represent the 95% credible regions for the loudest one,
five, and 20 inspiral events. Including quieter events from the
population does not improve the results. Also shown is the lower
limit on the 95% credible region from just the maximum mass
(Mmax ≥ 1.93M⊙) and causality priors.

RECONSTRUCTING THE NEUTRON-STAR EQUATION OF … PHYSICAL REVIEW D 91, 043002 (2015)

043002-11



place a significantly tighter lower bound on the pressure for
ρ≳ ρ1. The maximum mass of the MPA1 EOS is 2.461M⊙
(2.457M⊙ for the piecewise-polytrope fit), so this EOS
would almost be ruled out. In contrast, the upper bound on

the pressure above∼ρ2 ¼ 1015 g=cm3 in Fig. 5 comes from
the causality requirement. (Recall from Fig. 1, the causality
constraint restricts large values of Γ3 and partially restricts
large values of Γ2.) Higher-mass measurements will there-
fore not decrease the upper limit on the pressure at the
highest NS densities. Similarly, observations of higher-
mass NSs place tighter lower bounds on the radius and
tidal deformability at high masses but do not improve the
upper bound.

C. Distribution of BNS masses

The density profile in a NS depends on its mass, with
more massive stars consisting of denser matter. We thus
expect low-mass stars to better estimate the lower-density
EOS and higher-mass stars to better estimate the higher-
density EOS. We generate four BNS populations with
different mass distributions and then examine how the error
in recovering the EOS depends on the NS masses. The first
population is the same as above, using masses uniformly
sampled in the range 1.2M⊙–1.6M⊙. We also examine
three additional populations where the NSs are either all
1.0M⊙, all 1.4M⊙, or all 1.8M⊙. In order to make a direct
comparison between these populations, we hold all of the
parameters fixed except for the masses and then adjust the
tidal parameters of each system as determined by the fit to
the MPA1 EOS. Additionally, we only examine the loudest
five systems in each population which, as shown above,
contain the majority of the EOS information. As a result,
adjusting their masses in this range will not push these
events above or below the detection threshold.
In Fig. 6, we find that when all NSs have masses of either

1.0M⊙, 1.4M⊙, or 1.8M⊙, the uncertainty in pressure is
smallest around 1014.6, 1014.7, or 1014.8 g=cm3, respec-
tively. We find similar results for the radius and tidal
deformability; the location of the minimum uncertainty
scales with the observed masses, and for the tidal deform-
ability, the minima occur very close to the masses of the
observed NSs. Interestingly, the results for masses fixed at
1.4M⊙ and for a uniform distribution from 1.2M⊙–1.6M⊙
are almost identical, indicating that useful information can
be found even if the range of observed masses is very small.

D. Comparison of LALINFERENCEMCMC
with Fisher matrix

In addition to the results found above by evaluating the
quasilikelihood [Eq. (25)] with LALINFERENCEMCMC,
we also use the Fisher matrix approximation [Eq. (37)] to
evaluate the quasilikelihood. This approach is significantly
faster but only accurate in the limit of large SNR signals.
For the Fisher matrix approximation, we used a single
detector with the broadband PSD but scaled the amplitude
such that the SNR was equal to the network SNR for the
full aLIGO-aVirgo network. The waveform was identical to
the one used with LALINFERENCEMCMC, except we did
not use the term in the next-to-leading-order tidal correction

FIG. 5 (color online). Dependence of credible regions on the
highest known NS mass. The 95% credible regions are shown for
the same 20 BNS systems as in Fig. 3. The maximum mass prior
is set to Mmax ≥ 1.93M⊙ for the red shaded region and Mmax ≥
2.4M⊙ for the blue shaded region. Also shown are the lower
limits on the 95% credible regions from just the maximum mass
and causality priors, with Mmax ≥ 1.93M⊙ (red dashed line) and
Mmax ≥ 2.4M⊙ (blue dashed line).
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containing δ ~Λ, and thus ~Λ was our only tidal parameter.
Because δ ~Λ has an insignificant impact on the waveform
relative to ~Λ and is unmeasurable as discussed in Ref. [21],
this is approximately equivalent to placing a reasonable
flat prior on δ ~Λ and then marginalizing over its values

as is done in the LALINFERENCEMCMC calculation.
Furthermore, we use flat priors for lnðMÞ and lnðηÞ in
the Fisher matrix calculation instead of the flat priors form1

and m2 used in the LALINFERENCEMCMC calculation.
In Fig. 7, we compare the results for calculating

the quasilikelihood with LALINFERENCEMCMC and the
Fisher matrix approximation. We find that, even with the
differences listed above, the results are still comparable.

FIG. 7 (color online). The same BNS population as Fig. 3.
The SNR in the Fisher matrix calculation is set to match the
network SNR of the LALINFERENCEMCMC calculation. Con-
tours represent 95% credible regions.

FIG. 6 (color online). Dependence of credible regions on the
masses of NSs in the simulated BNS population. Results use the
same BNS parameters as in Fig. 3, except the masses are varied to
be all 1.0M⊙ (green dot-dashed line), all 1.4M⊙ (blue dashed
line), and all 1.8M⊙ (magenta line). Also shown is the lower limit
from just the maximum mass (Mmax ≥ 1.93M⊙) and causality
priors.
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The Fisher matrix approximation, however, slightly under-
estimates the uncertainty in the pressure, radius, and tidal
deformability.

E. Dependence on EOS model

In this subsection we determine how the measurability of
the EOS depends on the choice of true EOS. To do this, we

use the same population of BNS systems as in Sec. VA and
then vary the EOS and corresponding tidal deformability.
Here we use the tabulated EOS models listed in Table I
instead of the least-squares fit used above. This will allow
us to examine systematic errors in Sec. VI B from the
inexact EOS parameterization. For efficiency we also
calculate the quasilikelihood with the Fisher matrix

FIG. 8 (color online). Dependence of the EOS credible region on the true EOS for the 20 loudest BNS systems. Contours represent the
68% and 95% credible regions. The BNS parameters are the same as in Fig. 3 except for the choice of tabulated EOS. Results were
calculated using the Fisher matrix approximation to the quasilikelihood, and the SNR in the Fisher matrix calculation was scaled to
match the network SNR of the three-detector network as in Fig. 7. From left to right then top to bottom, the true EOSs are SLy, ENG,
MPA1, MS1, MS1b, H4, and ALF2. Unlike the results above, the true EOSs used here are the tabulated EOSs, so the recovered EOSs
also include the systematic bias from the inexact EOS parameterization. The corresponding best-fit piecewise polytropes are shown as
dashed curves. For each panel, the other EOSs are also shown relative to the true tabulated EOS. The quantity p=ptrue is not defined
above the highest density in the EOS table, and for SLy, MPA1, and H4, the EOS table ends before the 1015.5 g=cm3 right limit
of each panel.
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approximation which gives results consistent with
LALINFERENCEMCMC as shown above.
The uncertainty in the pressure for these EOSs is shown

in Fig. 8, and there are a few features to note. First, if the
true EOS has a maximum speed of sound below the central
density of the maximum mass NS vs;max that is close to c
(SLy, ENG, MPA1, MS1, MS1b), the causality constraint
places a useful upper bound on the pressure estimate
pðρÞ=ptrueðρÞ at densities above ≳ρ2. However, for the
H4 and ALF2 EOSs where vs;max ∼ 0.6, the causality
requirement only provides a weak constraint on the
high-density EOS. Second, we note that softer EOSs (lower
pressures) result in stars that are more easily compressed
(smaller radii) and have higher densities. They will there-
fore probe higher densities. We find that for the softer EOSs
SLy, ENG, and MPA1, the uncertainty in the pressure is
minimized at densities ρ≳ ρ1, whereas for the stiffer EOSs
MS1, MS1b, H4, and ALF2, the uncertainty in the pressure
is minimized at densities ρ≲ ρ1.
The corresponding uncertainties in R and λ for these

seven EOSs is shown in Fig. 9. The full width of the

95% credible regions is ∼1–2 km for the radius and
∼1–2 × 1036 g cm2 s2 for the tidal deformability in the
mass range 1M⊙–2M⊙ and is roughly consistent for all
EOSs. For λ, the credible region is smallest in the range
1.2M⊙–1.6M⊙ from which the BNS population is
sampled.

F. Noise realizations and sampled populations

In the above results, we used the zero-noise averaged
likelihood [Eq. (36)] which gives results averaged over
individual realizations of the detector noise. To determine
how much the recovered EOS, radius, and tidal deform-
ability can vary with the individual noise realizations, we
injected the inspiral waveforms in our population into five
different sets of detector noise and recovered the param-
eters with LALINFERENCEMCMC. Figure 10 shows the
recovered EOS, radius, and tidal deformability for each
of our five noise realizations. For the pressure, the lower
limits are roughly the same except in the region
1014.5–1014.9 g=cm3. This results from the fact that much
of the lower bound is determined by the prior and the

FIG. 9 (color online). The 95% credible regions for the radius and tidal deformability for the same BNS systems and tabulated EOSs
used in Fig. 8. In the left panels the EOSs are SLy, MPA1, H4, MS1 from bottom to top, and in the right panels they are ENG, ALF2 and
MS1b from bottom to top. The tabulated EOS models, and not the fits, were used in generating the simulated waveforms. The lower
bound from the mass and causality prior is also shown.

RECONSTRUCTING THE NEUTRON-STAR EQUATION OF … PHYSICAL REVIEW D 91, 043002 (2015)

043002-15



choice of EOS parameterization. We also show results for
the zero-noise data presented in Fig. 4, and this does appear
to be the average of the individual noise realizations.
Finally, we examined how much the results depend on

the sampled population. We sampled five different pop-
ulations from the distribution described in Sec. VA. These
populations had between 121 and 127 events with network

SNR ≥ 8, and the highest network SNR event in each
population was between 41 and 88. We then evaluated the
credible regions for the EOS, radius, and tidal deform-
ability using zero-noise data. The results for the loudest five
events in each population are shown in Fig. 11. For a year
of data with the realistic event rate, the reconstructed EOS
as well as radius and tidal deformability are only mildly

FIG. 10 (color online). The same BNS population and priors as
Figs. 3 and 4. Contours represent 95% credible regions for the
loudest five events. The different contours correspond to different
noise realizations. The dashed contour corresponds to the zero-
noise data also shown in Fig. 4.

FIG. 11 (color online). Five different populations of simulated
BNS events for a one-year period using the realistic event rate.
Contours represent the 95% credible regions for the loudest five
events in each population using zero-noise data. Population 1 is
the same as in Figs. 3 and 4.
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sensitive to the particular realization of the number of BNS
events and source parameters.

VI. SYSTEMATIC ERRORS

A. Waveform model

The presentation of statistical errors above assumed an
exact waveform model and a parameterized EOS that
exactly fits the true EOS. At present, however, the PN
inspiral waveform is only known completely to 3.5PN
order in the point-particle terms, while the leading EOS-
dependent tidal term enters at the same order as 5PN point-
particle terms. Failing to include 4PN and higher-order
point-particle terms can therefore bias the recovered
parameters. As demonstrated in Fisher matrix studies
[22,23] and in an MCMC study [21], the systematic error
in the tidal parameter ~Λ from the current waveform
uncertainty is as large as the statistical error for aLIGO.
To examine the effect that uncertainty in the waveform

model has on the recovered EOS, we will use a similar
analysis to these previous works. We use variations in the
current PN waveforms which vary only in how the wave-
form phase is calculated from the energy and luminosity.
The waveform variations we use, described in Sec. II, are
the TaylorF2, TaylorT1, and TaylorT4 waveforms. For the
loudest five events, we injected these three waveform
variations into zero-noise data and then used the
TaylorF2 waveform as the template to estimate the wave-
form parameters ~θ with LALINFERENCEMCMC. In Fig. 12
we show the bias in the recovered EOS, radius, and tidal
parameter that results from the waveform uncertainty. The
ordering is consistent with that of Ref. [21]; injecting the
TaylorT1 waveform and recovering with the TaylorF2
waveform overestimates the tidal parameter while injecting
the TaylorT4 waveform and recovering with the TaylorF2
waveform underestimates the tidal parameter. Likewise,
injecting the TaylorT1 waveform overestimates the true
pressure and radius, while the TaylorT4 waveform under-
estimates the true pressure and radius. Overall, failing to
include the correct 4PN and higher point-particle terms can
lead to a bias that is in some cases larger than the 95%
statistical uncertainty.
As in Refs. [21–23], we focused on the uncertainties in the

point-particle description, but uncertainties in the description
of matter effects may also need to be accounted for. Initial
comparisons between the analytical waveforms and numeri-
cal BNS simulations suggested a large, unaccounted for
amplification in tidal effects during the last several orbits
before merger [55,56]. However, recent simulations using a
code with a higher convergence order has shown that the
current analytical tidal description is consistent with numeri-
cal relativity for the last seven orbits up to contact [57].
Additional small matter effects, however, are known to exist.
Yagi, for example, calculated the correction to the PN
waveform from higher multipole tidal interactions [58]. In

addition, the amplification of the tidal deformation that
occurs due to resonance when the GW frequency approaches
each NS's f-mode frequency also leads to a small correction
[12]. These effects will lead to a fractional error in the
recovered parameters if not properly included.
As an alternative to the PN approximation, the effective

one body (EOB) formalism, which uses various techniques

FIG. 12 (color online). Systematic errors in the recovered EOS
due to uncertainty in the correct GW model. TaylorF2, TaylorT1,
and TaylorT4 waveforms were injected into the data, and the
parameters were recovered with the TaylorF2 waveform. The
95% credible regions are shown for the loudest five systems.
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to resum the PN series, may converge more rapidly to the
true binary waveform. EOB waveforms have been shown to
accurately reproduce numerical binary black hole (BBH)
waveforms. For example, Damour, Nagar, and Bernuzzi
[59] compared a recent EOB implementation with non-
spinning BBH simulations of the last ∼30 GW GW cycles
and found a phase difference of < 0.1 rad after fitting the
unknown 5PN contribution in the EOB radial potential to
the numerical data. Since the tidal contribution to the
waveform over this same interval is usually more than a
radian, the current EOB waveform may be accurate enough
for removing systematic errors due to uncertainties in the
point-particle model. Tidal interactions have also been
calculated in the EOB formalism for the first few multipoles
to 2PN order in the EOB radial potential [27], and
comparisons with numerical BNS simulations have shown
that EOB waveforms are also consistent with the numerical
waveforms [60,61].
In our analysis we injected waveforms with zero NS

spin and zero eccentricity and used a nonspinning, non-
eccentric waveform template to recover the parameters.
While NSs in known BNS systems have dimensionless
spins of jχj ≲ 0.02, not including the spin terms in the
template can lead to systematic errors in ~Λ that are greater
than the statistical errors if the NSs have spins of jχj≳ 0.03
[22]. Likewise, the systematic error in ~Λ from not including
the eccentricity terms will be greater than the statistical
error if the BNS system has an initial eccentricity at 10 Hz
of e0 ≳ 0.003, and this may occur for a small fraction of
BNS systems formed in dense stellar environments [22].
These terms will need to be included in future studies.
Finally, in order to measure the NS EOS with BNS

inspiral observations, one needs to know that one is
observing a BNS inspiral. Attempting to recover the tidal
parameter with a BNS waveform template, when one has
actually observed a BHNS or BBH inspiral, will give
erroneous results. One can positively identify a BH if its
mass or spin is large enough because NSs have a more
restricted range of allowed masses and spins (M ≲ 3.2M⊙
to satisfy causality [62] and dimensionless spin jχj≲ 0.7 to
satisfy the Kepler constraint [63]). Furthermore, NSs in
known BNS systems have masses in the range 1.0M⊙ ≲
M ≲ 1.6M⊙ shown in Fig. 2 and spins jχj≲ 0.02 [22].
Restricting their analysis to aligned-spin systems, Hannam
et al. [64] found that it would be difficult to distinguish
between NSs and BHs in binaries except for the loudest
few percent of signals. However, precession can break the
mass-ratio–spin degeneracy, and using precessing wave-
forms, Chatziioannou et al. [65] found that one can
distinguish between NSs and BHs for the majority of
detected signals. Fortunately, as shown in Sec. VA, the
majority of EOS information comes from the loudest few
events, so even if one cannot determine if the weakest
signals come from a BBH, BHNS, or BNS event, this will
not significantly effect one’s ability to measure the EOS.

B. EOS fit

In addition to errors in the waveform model, the choice
of EOS parameterization can also affect the measurement
of the EOS, and if unable to sufficiently capture complex
behavior in the true EOS, the parameterization will intro-
duce systematic errors. As shown in Fig. 8, the piecewise-
polytrope fit can usually reproduce the tabulated EOS to a
few percent. However, at the lower and upper density
regions, the fit becomes worse. In addition, for the ALF2
EOS, there is a significant change in the EOS around
1014.5 g=cm3 which is not modeled well by the fixed
polytrope in that density interval. As a result, although
the statistical error is small, the offset from the tabulated
ALF2 EOS around 1014.5 g=cm3 is larger than the 95%
credible interval for the statistical error. For EOSs such as
ALF2, the four-parameter piecewise polytrope used here
will not be an appropriate fit. As found in Table I, it has the
largest residual of the seven EOSs by more than a factor of
2, mainly due to the behavior around 1014.5 g=cm3.
The recovered RðMÞ and λðMÞ curves, however, are less

affected by the inability of the EOS fit to capture detailed
behavior of the tabulated EOSs. As can be seen in Fig. 9,
when the tabulated EOS model is used as the true EOS, the
tabulated EOS is still contained in the 95% credible region.
This is likely because, although the EOS fit poorly
reproduces the tabulated EOSs at specific densities, inte-
grating the stelar structure equations to find R and λ
effectively smooths over these poorly fit density regions.
The original intent of the four-parameter piecewise

polytrope was to provide a reasonable fit to a wide range
of EOS models with a small number of parameters that
have an intuitive meaning [35]. However, it appears that for
directly measuring the EOS with inspiral observations, a
more sophisticated EOS will be needed. Two possibilities,
mentioned in Sec. III B, are the parameterization in
Ref. [5], which uses a piecewise polytrope with variable
density intervals, and the spectral fit of Ref. [37]. However,
the optimal parameterization for recovering the EOS from
GW data remains to be determined.

C. Other potential sources of error

In addition to the systematic errors from the waveform
model and EOS fit which can be reduced with better
modeling, other effects that could interfere with the
measurement of ~Λ and the EOS have been suggested.
Using the unipolar inductor model of Goldreich and
Lynden-Bell [66], it was suggested that interactions
between a NS with a large magnetic dipole and its NS
companion could create a torque on the binary that could
potentially lead to a phase shift in the waveform of a few
cycles [67]. If true, this would likely contaminate the
measurement of tidal interactions. However, as pointed out
by Lai [68], the current in the circuit between the binary
pair will generate a toroidal magnetic field that breaks the
circuit leading to a maximum current. Lai then found that
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this upper limit is orders of magnitude too small to effect
the waveform of the binary.
The tidal interaction discussed so far in this paper assumes

the tidal field changes adiabatically.However, if the frequency
of the tidal field variation (amultiple of the orbital frequency)
approaches the resonant frequency of the various NS oscil-
lation modes, the mode can be driven to large amplitudes. If
the mode couples strongly to the tidal potential, this can lead
to a phase shift as the binary passes through that resonance
during the inspiral. This effect was examined for the gmodes,
f modes, and r modes of nonspinning and spinning NSs
[69,70]. In general, the g modes and r modes will lead to a
phase shift less than 0.1 rad, with maximum values for the
largest spins and radii. The fmode that has a small impact on
the last few cycles, as discussed above, can lead to an
appreciable effect at lower GW frequencies only if the NS
is spinning at several hundred hertz.
Finally, detector calibration errors will also impact the

recovery of parameters. The uncertainty in the amplitude
and phase of the Fourier transformed detector output ~dðfÞ
due to calibration errors are frequency dependent, and, for
initial LIGO, were ∼10% for the amplitude and ∼0.05 rad
for the phase of ~dðfÞ over the bandwidth of the detector
[71]. The intrinsic parameters we are interested in here
(masses and tidal parameters) are mostly determined by the
phase evolution, and under the assumption that calibration
errors will be similar for aLIGO, Vitale et al. found, using a
Bayesian analysis, that the uncertainties in the chirp mass
and symmetric mass ratio due to calibration errors would be
∼20% as large as the statistical errors from detector noise
[71]. For the tidal parameter ~Λ which contributes a few
radians to the GW phase, this ∼0.05 rad calibration error is
not likely to dominate over the statistical error, but it should
be included in future studies.

VII. DISCUSSION

We have shown that, with a realistic population of BNS
inspiral events, the advanced LIGO-Virgo GW network now
undergoing construction can provide valuable information
about the EOS and NS properties such as the radius and tidal
deformability. Typical statistical errors in the pressure will be
on the order of 10% to a factor of 2 from 1–4 times nuclear
density. This corresponds to a 95% credible region of width
∼1–2 km for the radius and ∼1–2 × 1036 g cm2 s2 for the
tidal deformability over the mass range 1M⊙–2M⊙. These

results are in agreement with those of Ref. [20] which
showed that with tens of BNS observations, λ could be
measured at a reference mass of 1.4M⊙ to about 10%.
However, our results show that incorporating additional
known EOS information allows us to measure NS properties
at other masses as well, and this is true even if BNS systems
have a narrow range of NS masses.
However, in Sec. VI we found that currently unknown

high-order point-particle PN terms will create a large
systematic bias in the recovered EOS that will be larger
than the statistical uncertainties. These terms will need to
be calculated or fit with numerical simulations to accurately
measure the EOS, and significant work remains before the
resulting waveform templates can be trusted. The choice of
EOS parameterization can also affect the recovered EOS,
and EOSs with complex behavior such as the ALF2
EOS will need to be modeled with more sophisticated
EOS parameterizations.
Our results indicate that advanced GW detectors can

measure the NS radius with similar statistical errors to those
from electromagnetic observations of NSs whose errors
are typically in the range of a few kilometers. However,
although both electromagnetic and GWmeasurements have
systematic errors, the gravitational waveforms from inspir-
alling BNS systems are an intrinsically cleaner source of
data than the electromagnetic emission of NSs. Ultimately,
electromagnetic and GW measurements will have to agree,
and comparing the results will provide an important
consistency check on our understanding of general rela-
tivity, electromagnetic radiation from NSs, and the EOS.
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